xref: /netbsd-src/sys/ufs/lfs/lfs_segment.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: lfs_segment.c,v 1.9 1997/06/13 08:59:51 pk Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)lfs_segment.c	8.5 (Berkeley) 1/4/94
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/namei.h>
41 #include <sys/kernel.h>
42 #include <sys/resourcevar.h>
43 #include <sys/file.h>
44 #include <sys/stat.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 
52 #include <miscfs/specfs/specdev.h>
53 #include <miscfs/fifofs/fifo.h>
54 
55 #include <ufs/ufs/quota.h>
56 #include <ufs/ufs/inode.h>
57 #include <ufs/ufs/dir.h>
58 #include <ufs/ufs/ufsmount.h>
59 #include <ufs/ufs/ufs_extern.h>
60 
61 #include <ufs/lfs/lfs.h>
62 #include <ufs/lfs/lfs_extern.h>
63 
64 extern int count_lock_queue __P((void));
65 
66 #define MAX_ACTIVE	10
67 /*
68  * Determine if it's OK to start a partial in this segment, or if we need
69  * to go on to a new segment.
70  */
71 #define	LFS_PARTIAL_FITS(fs) \
72 	((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
73 	1 << (fs)->lfs_fsbtodb)
74 
75 void	 lfs_callback __P((struct buf *));
76 void	 lfs_gather __P((struct lfs *, struct segment *,
77 	     struct vnode *, int (*) __P((struct lfs *, struct buf *))));
78 int	 lfs_gatherblock __P((struct segment *, struct buf *, int *));
79 void	 lfs_iset __P((struct inode *, daddr_t, time_t));
80 int	 lfs_match_data __P((struct lfs *, struct buf *));
81 int	 lfs_match_dindir __P((struct lfs *, struct buf *));
82 int	 lfs_match_indir __P((struct lfs *, struct buf *));
83 int	 lfs_match_tindir __P((struct lfs *, struct buf *));
84 void	 lfs_newseg __P((struct lfs *));
85 void	 lfs_shellsort __P((struct buf **, daddr_t *, register int));
86 void	 lfs_supercallback __P((struct buf *));
87 void	 lfs_updatemeta __P((struct segment *));
88 int	 lfs_vref __P((struct vnode *));
89 void	 lfs_vunref __P((struct vnode *));
90 void	 lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
91 int	 lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
92 int	 lfs_writeseg __P((struct lfs *, struct segment *));
93 void	 lfs_writesuper __P((struct lfs *));
94 void	 lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
95 	    struct segment *sp, int dirops));
96 
97 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
98 
99 /* Statistics Counters */
100 #define DOSTATS
101 struct lfs_stats lfs_stats;
102 
103 /* op values to lfs_writevnodes */
104 #define	VN_REG	0
105 #define	VN_DIROP	1
106 #define	VN_EMPTY	2
107 
108 /*
109  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
110  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
111  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
112  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
113  */
114 
115 int
116 lfs_vflush(vp)
117 	struct vnode *vp;
118 {
119 	struct inode *ip;
120 	struct lfs *fs;
121 	struct segment *sp;
122 
123 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
124 	if (fs->lfs_nactive > MAX_ACTIVE)
125 		return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP));
126 	lfs_seglock(fs, SEGM_SYNC);
127 	sp = fs->lfs_sp;
128 
129 
130 	ip = VTOI(vp);
131 	if (vp->v_dirtyblkhd.lh_first == NULL)
132 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
133 
134 	do {
135 		do {
136 			if (vp->v_dirtyblkhd.lh_first != NULL)
137 				lfs_writefile(fs, sp, vp);
138 		} while (lfs_writeinode(fs, sp, ip));
139 
140 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
141 
142 #ifdef DOSTATS
143 	++lfs_stats.nwrites;
144 	if (sp->seg_flags & SEGM_SYNC)
145 		++lfs_stats.nsync_writes;
146 	if (sp->seg_flags & SEGM_CKP)
147 		++lfs_stats.ncheckpoints;
148 #endif
149 	lfs_segunlock(fs);
150 	return (0);
151 }
152 
153 void
154 lfs_writevnodes(fs, mp, sp, op)
155 	struct lfs *fs;
156 	struct mount *mp;
157 	struct segment *sp;
158 	int op;
159 {
160 	struct inode *ip;
161 	struct vnode *vp;
162 
163 loop:
164 	for (vp = mp->mnt_vnodelist.lh_first;
165 	     vp != NULL;
166 	     vp = vp->v_mntvnodes.le_next) {
167 		/*
168 		 * If the vnode that we are about to sync is no longer
169 		 * associated with this mount point, start over.
170 		 */
171 		if (vp->v_mount != mp)
172 			goto loop;
173 
174 		/* XXX ignore dirops for now
175 		if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
176 		    op != VN_DIROP && (vp->v_flag & VDIROP))
177 			continue;
178 		*/
179 
180 		if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
181 			continue;
182 
183 		if (vp->v_type == VNON)
184 			continue;
185 
186 		if (lfs_vref(vp))
187 			continue;
188 
189 		/*
190 		 * Write the inode/file if dirty and it's not the
191 		 * the IFILE.
192 		 */
193 		ip = VTOI(vp);
194 		if ((ip->i_flag &
195 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
196 		    vp->v_dirtyblkhd.lh_first != NULL) &&
197 		    ip->i_number != LFS_IFILE_INUM) {
198 			if (vp->v_dirtyblkhd.lh_first != NULL)
199 				lfs_writefile(fs, sp, vp);
200 			(void) lfs_writeinode(fs, sp, ip);
201 		}
202 		vp->v_flag &= ~VDIROP;
203 		lfs_vunref(vp);
204 	}
205 }
206 
207 int
208 lfs_segwrite(mp, flags)
209 	struct mount *mp;
210 	int flags;			/* Do a checkpoint. */
211 {
212 	struct buf *bp;
213 	struct inode *ip;
214 	struct lfs *fs;
215 	struct segment *sp;
216 	struct vnode *vp;
217 	SEGUSE *segusep;
218 	daddr_t ibno;
219 	CLEANERINFO *cip;
220 	int clean, do_ckp, error, i;
221 
222 	fs = VFSTOUFS(mp)->um_lfs;
223 
224  	/*
225  	 * If we have fewer than 2 clean segments, wait until cleaner
226 	 * writes.
227  	 */
228 	do {
229 		LFS_CLEANERINFO(cip, fs, bp);
230 		clean = cip->clean;
231 		brelse(bp);
232 		if (clean <= 2) {
233 			printf ("segs clean: %d\n", clean);
234 			wakeup(&lfs_allclean_wakeup);
235 			error = tsleep(&fs->lfs_avail, PRIBIO + 1,
236 				       "lfs writer", 0);
237 			if (error)
238 				return (error);
239 		}
240 	} while (clean <= 2 );
241 
242 	/*
243 	 * Allocate a segment structure and enough space to hold pointers to
244 	 * the maximum possible number of buffers which can be described in a
245 	 * single summary block.
246 	 */
247 	do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
248 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
249 	sp = fs->lfs_sp;
250 
251 	lfs_writevnodes(fs, mp, sp, VN_REG);
252 
253 	/* XXX ignore ordering of dirops for now */
254 	/* XXX
255 	fs->lfs_writer = 1;
256 	if (fs->lfs_dirops && (error =
257 	    tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
258 		free(sp->bpp, M_SEGMENT);
259 		free(sp, M_SEGMENT);
260 		fs->lfs_writer = 0;
261 		return (error);
262 	}
263 
264 	lfs_writevnodes(fs, mp, sp, VN_DIROP);
265 	*/
266 
267 	/*
268 	 * If we are doing a checkpoint, mark everything since the
269 	 * last checkpoint as no longer ACTIVE.
270 	 */
271 	if (do_ckp)
272 		for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
273 		     --ibno >= fs->lfs_cleansz; ) {
274 			if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
275 			    NOCRED, &bp))
276 
277 				panic("lfs: ifile read");
278 			segusep = (SEGUSE *)bp->b_data;
279 			for (i = fs->lfs_sepb; i--; segusep++)
280 				segusep->su_flags &= ~SEGUSE_ACTIVE;
281 
282 			error = VOP_BWRITE(bp);
283 		}
284 
285 	if (do_ckp || fs->lfs_doifile) {
286 redo:
287 		vp = fs->lfs_ivnode;
288 		while (vget(vp, 1));
289 		ip = VTOI(vp);
290 		if (vp->v_dirtyblkhd.lh_first != NULL)
291 			lfs_writefile(fs, sp, vp);
292 		(void)lfs_writeinode(fs, sp, ip);
293 		vput(vp);
294 		if (lfs_writeseg(fs, sp) && do_ckp)
295 			goto redo;
296 	} else
297 		(void) lfs_writeseg(fs, sp);
298 
299 	/*
300 	 * If the I/O count is non-zero, sleep until it reaches zero.  At the
301 	 * moment, the user's process hangs around so we can sleep.
302 	 */
303 	/* XXX ignore dirops for now
304 	fs->lfs_writer = 0;
305 	fs->lfs_doifile = 0;
306 	wakeup(&fs->lfs_dirops);
307 	*/
308 
309 #ifdef DOSTATS
310 	++lfs_stats.nwrites;
311 	if (sp->seg_flags & SEGM_SYNC)
312 		++lfs_stats.nsync_writes;
313 	if (sp->seg_flags & SEGM_CKP)
314 		++lfs_stats.ncheckpoints;
315 #endif
316 	lfs_segunlock(fs);
317 	return (0);
318 }
319 
320 /*
321  * Write the dirty blocks associated with a vnode.
322  */
323 void
324 lfs_writefile(fs, sp, vp)
325 	struct lfs *fs;
326 	struct segment *sp;
327 	struct vnode *vp;
328 {
329 	struct buf *bp;
330 	struct finfo *fip;
331 	IFILE *ifp;
332 
333 	if (sp->seg_bytes_left < fs->lfs_bsize ||
334 	    sp->sum_bytes_left < sizeof(struct finfo))
335 		(void) lfs_writeseg(fs, sp);
336 
337 	sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t);
338 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
339 
340 	fip = sp->fip;
341 	fip->fi_nblocks = 0;
342 	fip->fi_ino = VTOI(vp)->i_number;
343 	LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
344 	fip->fi_version = ifp->if_version;
345 	brelse(bp);
346 
347 	/*
348 	 * It may not be necessary to write the meta-data blocks at this point,
349 	 * as the roll-forward recovery code should be able to reconstruct the
350 	 * list.
351 	 */
352 	lfs_gather(fs, sp, vp, lfs_match_data);
353 	lfs_gather(fs, sp, vp, lfs_match_indir);
354 	lfs_gather(fs, sp, vp, lfs_match_dindir);
355 #ifdef TRIPLE
356 	lfs_gather(fs, sp, vp, lfs_match_tindir);
357 #endif
358 
359 	fip = sp->fip;
360 	if (fip->fi_nblocks != 0) {
361 		sp->fip =
362 		    (struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
363 		    sizeof(daddr_t) * (fip->fi_nblocks - 1));
364 		sp->start_lbp = &sp->fip->fi_blocks[0];
365 	} else {
366 		sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t);
367 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
368 	}
369 }
370 
371 int
372 lfs_writeinode(fs, sp, ip)
373 	struct lfs *fs;
374 	struct segment *sp;
375 	struct inode *ip;
376 {
377 	struct buf *bp, *ibp;
378 	IFILE *ifp;
379 	SEGUSE *sup;
380 	daddr_t daddr;
381 	ino_t ino;
382 	int error, i, ndx;
383 	int redo_ifile = 0;
384 	struct timespec ts;
385 
386 	if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
387 		return(0);
388 
389 	/* Allocate a new inode block if necessary. */
390 	if (sp->ibp == NULL) {
391 		/* Allocate a new segment if necessary. */
392 		if (sp->seg_bytes_left < fs->lfs_bsize ||
393 		    sp->sum_bytes_left < sizeof(daddr_t))
394 			(void) lfs_writeseg(fs, sp);
395 
396 		/* Get next inode block. */
397 		daddr = fs->lfs_offset;
398 		fs->lfs_offset += fsbtodb(fs, 1);
399 		sp->ibp = *sp->cbpp++ =
400 		    lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
401 		    fs->lfs_bsize);
402 		/* Zero out inode numbers */
403 		for (i = 0; i < INOPB(fs); ++i)
404 			((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
405 		++sp->start_bpp;
406 		fs->lfs_avail -= fsbtodb(fs, 1);
407 		/* Set remaining space counters. */
408 		sp->seg_bytes_left -= fs->lfs_bsize;
409 		sp->sum_bytes_left -= sizeof(daddr_t);
410 		ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) -
411 		    sp->ninodes / INOPB(fs) - 1;
412 		((daddr_t *)(sp->segsum))[ndx] = daddr;
413 	}
414 
415 	/* Update the inode times and copy the inode onto the inode page. */
416 	if (ip->i_flag & IN_MODIFIED)
417 		--fs->lfs_uinodes;
418 	TIMEVAL_TO_TIMESPEC(&time, &ts);
419 	FFS_ITIMES(ip, &ts, &ts, &ts);
420 	ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
421 	bp = sp->ibp;
422 	((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din.ffs_din;
423 	/* Increment inode count in segment summary block. */
424 	++((SEGSUM *)(sp->segsum))->ss_ninos;
425 
426 	/* If this page is full, set flag to allocate a new page. */
427 	if (++sp->ninodes % INOPB(fs) == 0)
428 		sp->ibp = NULL;
429 
430 	/*
431 	 * If updating the ifile, update the super-block.  Update the disk
432 	 * address and access times for this inode in the ifile.
433 	 */
434 	ino = ip->i_number;
435 	if (ino == LFS_IFILE_INUM) {
436 		daddr = fs->lfs_idaddr;
437 		fs->lfs_idaddr = bp->b_blkno;
438 	} else {
439 		LFS_IENTRY(ifp, fs, ino, ibp);
440 		daddr = ifp->if_daddr;
441 		ifp->if_daddr = bp->b_blkno;
442 		error = VOP_BWRITE(ibp);
443 	}
444 
445 	/*
446 	 * No need to update segment usage if there was no former inode address
447 	 * or if the last inode address is in the current partial segment.
448 	 */
449 	if (daddr != LFS_UNUSED_DADDR &&
450 	    !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
451 		LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
452 #ifdef DIAGNOSTIC
453 		if (sup->su_nbytes < sizeof(struct dinode)) {
454 			/* XXX -- Change to a panic. */
455 			printf("lfs: negative bytes (segment %d)\n",
456 			    datosn(fs, daddr));
457 			panic("negative bytes");
458 		}
459 #endif
460 		sup->su_nbytes -= sizeof(struct dinode);
461 		redo_ifile =
462 		    (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
463 		error = VOP_BWRITE(bp);
464 	}
465 	return (redo_ifile);
466 }
467 
468 int
469 lfs_gatherblock(sp, bp, sptr)
470 	struct segment *sp;
471 	struct buf *bp;
472 	int *sptr;
473 {
474 	struct lfs *fs;
475 	int version;
476 
477 	/*
478 	 * If full, finish this segment.  We may be doing I/O, so
479 	 * release and reacquire the splbio().
480 	 */
481 #ifdef DIAGNOSTIC
482 	if (sp->vp == NULL)
483 		panic ("lfs_gatherblock: Null vp in segment");
484 #endif
485 	fs = sp->fs;
486 	if (sp->sum_bytes_left < sizeof(daddr_t) ||
487 	    sp->seg_bytes_left < fs->lfs_bsize) {
488 		if (sptr)
489 			splx(*sptr);
490 		lfs_updatemeta(sp);
491 
492 		version = sp->fip->fi_version;
493 		(void) lfs_writeseg(fs, sp);
494 
495 		sp->fip->fi_version = version;
496 		sp->fip->fi_ino = VTOI(sp->vp)->i_number;
497 		/* Add the current file to the segment summary. */
498 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
499 		sp->sum_bytes_left -=
500 		    sizeof(struct finfo) - sizeof(daddr_t);
501 
502 		if (sptr)
503 			*sptr = splbio();
504 		return(1);
505 	}
506 
507 	/* Insert into the buffer list, update the FINFO block. */
508 	bp->b_flags |= B_GATHERED;
509 	*sp->cbpp++ = bp;
510 	sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
511 
512 	sp->sum_bytes_left -= sizeof(daddr_t);
513 	sp->seg_bytes_left -= fs->lfs_bsize;
514 	return(0);
515 }
516 
517 void
518 lfs_gather(fs, sp, vp, match)
519 	struct lfs *fs;
520 	struct segment *sp;
521 	struct vnode *vp;
522 	int (*match) __P((struct lfs *, struct buf *));
523 {
524 	struct buf *bp;
525 	int s;
526 
527 	sp->vp = vp;
528 	s = splbio();
529 loop:	for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
530 		if (bp->b_flags & B_BUSY || !match(fs, bp) ||
531 		    bp->b_flags & B_GATHERED)
532 			continue;
533 #ifdef DIAGNOSTIC
534 		if (!(bp->b_flags & B_DELWRI))
535 			panic("lfs_gather: bp not B_DELWRI");
536 		if (!(bp->b_flags & B_LOCKED))
537 			panic("lfs_gather: bp not B_LOCKED");
538 #endif
539 		if (lfs_gatherblock(sp, bp, &s))
540 			goto loop;
541 	}
542 	splx(s);
543 	lfs_updatemeta(sp);
544 	sp->vp = NULL;
545 }
546 
547 
548 /*
549  * Update the metadata that points to the blocks listed in the FINFO
550  * array.
551  */
552 void
553 lfs_updatemeta(sp)
554 	struct segment *sp;
555 {
556 	SEGUSE *sup;
557 	struct buf *bp;
558 	struct lfs *fs;
559 	struct vnode *vp;
560 	struct indir a[NIADDR + 2], *ap;
561 	struct inode *ip;
562 	daddr_t daddr, lbn, off;
563 	int db_per_fsb, error, i, nblocks, num;
564 
565 	vp = sp->vp;
566 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
567 	if (vp == NULL || nblocks == 0)
568 		return;
569 
570 	/* Sort the blocks. */
571 	if (!(sp->seg_flags & SEGM_CLEAN))
572 		lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
573 
574 	/*
575 	 * Assign disk addresses, and update references to the logical
576 	 * block and the segment usage information.
577 	 */
578 	fs = sp->fs;
579 	db_per_fsb = fsbtodb(fs, 1);
580 	for (i = nblocks; i--; ++sp->start_bpp) {
581 		lbn = *sp->start_lbp++;
582 		(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
583 		fs->lfs_offset += db_per_fsb;
584 
585 		error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
586 		if (error)
587 			panic("lfs_updatemeta: ufs_bmaparray %d", error);
588 		ip = VTOI(vp);
589 		switch (num) {
590 		case 0:
591 			ip->i_ffs_db[lbn] = off;
592 			break;
593 		case 1:
594 			ip->i_ffs_ib[a[0].in_off] = off;
595 			break;
596 		default:
597 			ap = &a[num - 1];
598 			if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
599 				panic("lfs_updatemeta: bread bno %d",
600 				    ap->in_lbn);
601 			/*
602 			 * Bread may create a new indirect block which needs
603 			 * to get counted for the inode.
604 			 */
605 			if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
606 printf ("Updatemeta allocating indirect block: shouldn't happen\n");
607 				ip->i_ffs_blocks += btodb(fs->lfs_bsize);
608 				fs->lfs_bfree -= btodb(fs->lfs_bsize);
609 			}
610 			((daddr_t *)bp->b_data)[ap->in_off] = off;
611 			VOP_BWRITE(bp);
612 		}
613 
614 		/* Update segment usage information. */
615 		if (daddr != UNASSIGNED &&
616 		    !(daddr >= fs->lfs_lastpseg && daddr <= off)) {
617 			LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
618 #ifdef DIAGNOSTIC
619 			if (sup->su_nbytes < fs->lfs_bsize) {
620 				/* XXX -- Change to a panic. */
621 				printf("lfs: negative bytes (segment %d)\n",
622 				    datosn(fs, daddr));
623 				panic ("Negative Bytes");
624 			}
625 #endif
626 			sup->su_nbytes -= fs->lfs_bsize;
627 			error = VOP_BWRITE(bp);
628 		}
629 	}
630 }
631 
632 /*
633  * Start a new segment.
634  */
635 int
636 lfs_initseg(fs)
637 	struct lfs *fs;
638 {
639 	struct segment *sp;
640 	SEGUSE *sup;
641 	SEGSUM *ssp;
642 	struct buf *bp;
643 	int repeat;
644 
645 	sp = fs->lfs_sp;
646 
647 	repeat = 0;
648 	/* Advance to the next segment. */
649 	if (!LFS_PARTIAL_FITS(fs)) {
650 		/* Wake up any cleaning procs waiting on this file system. */
651 		wakeup(&lfs_allclean_wakeup);
652 
653 		lfs_newseg(fs);
654 		repeat = 1;
655 		fs->lfs_offset = fs->lfs_curseg;
656 		sp->seg_number = datosn(fs, fs->lfs_curseg);
657 		sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
658 
659 		/*
660 		 * If the segment contains a superblock, update the offset
661 		 * and summary address to skip over it.
662 		 */
663 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
664 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
665 			fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
666 			sp->seg_bytes_left -= LFS_SBPAD;
667 		}
668 		brelse(bp);
669 	} else {
670 		sp->seg_number = datosn(fs, fs->lfs_curseg);
671 		sp->seg_bytes_left = (fs->lfs_dbpseg -
672 		    (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
673 	}
674 	fs->lfs_lastpseg = fs->lfs_offset;
675 
676 	sp->fs = fs;
677 	sp->ibp = NULL;
678 	sp->ninodes = 0;
679 
680 	/* Get a new buffer for SEGSUM and enter it into the buffer list. */
681 	sp->cbpp = sp->bpp;
682 	*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
683 	     LFS_SUMMARY_SIZE);
684 	sp->segsum = (*sp->cbpp)->b_data;
685 	bzero(sp->segsum, LFS_SUMMARY_SIZE);
686 	sp->start_bpp = ++sp->cbpp;
687 	fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
688 
689 	/* Set point to SEGSUM, initialize it. */
690 	ssp = sp->segsum;
691 	ssp->ss_next = fs->lfs_nextseg;
692 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
693 
694 	/* Set pointer to first FINFO, initialize it. */
695 	sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
696 	sp->fip->fi_nblocks = 0;
697 	sp->start_lbp = &sp->fip->fi_blocks[0];
698 
699 	sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
700 	sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
701 
702 	return(repeat);
703 }
704 
705 /*
706  * Return the next segment to write.
707  */
708 void
709 lfs_newseg(fs)
710 	struct lfs *fs;
711 {
712 	CLEANERINFO *cip;
713 	SEGUSE *sup;
714 	struct buf *bp;
715 	int curseg, isdirty, sn;
716 
717         LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
718         sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
719 	sup->su_nbytes = 0;
720 	sup->su_nsums = 0;
721 	sup->su_ninos = 0;
722         (void) VOP_BWRITE(bp);
723 
724 	LFS_CLEANERINFO(cip, fs, bp);
725 	--cip->clean;
726 	++cip->dirty;
727 	(void) VOP_BWRITE(bp);
728 
729 	fs->lfs_lastseg = fs->lfs_curseg;
730 	fs->lfs_curseg = fs->lfs_nextseg;
731 	for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
732 		sn = (sn + 1) % fs->lfs_nseg;
733 		if (sn == curseg)
734 			panic("lfs_nextseg: no clean segments");
735 		LFS_SEGENTRY(sup, fs, sn, bp);
736 		isdirty = sup->su_flags & SEGUSE_DIRTY;
737 		brelse(bp);
738 		if (!isdirty)
739 			break;
740 	}
741 
742 	++fs->lfs_nactive;
743 	fs->lfs_nextseg = sntoda(fs, sn);
744 #ifdef DOSTATS
745 	++lfs_stats.segsused;
746 #endif
747 }
748 
749 int
750 lfs_writeseg(fs, sp)
751 	struct lfs *fs;
752 	struct segment *sp;
753 {
754 	extern int locked_queue_count;
755 	struct buf **bpp, *bp, *cbp;
756 	SEGUSE *sup;
757 	SEGSUM *ssp;
758 	dev_t i_dev;
759 	size_t size;
760 	u_long *datap, *dp;
761 	int ch_per_blk, do_again, i, nblocks, num, s;
762 	int (*strategy)__P((void *));
763 	struct vop_strategy_args vop_strategy_a;
764 	u_short ninos;
765 	char *p;
766 
767 	/*
768 	 * If there are no buffers other than the segment summary to write
769 	 * and it is not a checkpoint, don't do anything.  On a checkpoint,
770 	 * even if there aren't any buffers, you need to write the superblock.
771 	 */
772 	if ((nblocks = sp->cbpp - sp->bpp) == 1)
773 		return (0);
774 
775 	ssp = (SEGSUM *)sp->segsum;
776 
777 	/* Update the segment usage information. */
778 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
779 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
780 	sup->su_nbytes += (nblocks - 1 - ninos) << fs->lfs_bshift;
781 	sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
782 	sup->su_nbytes += LFS_SUMMARY_SIZE;
783 	sup->su_lastmod = time.tv_sec;
784 	sup->su_ninos += ninos;
785 	++sup->su_nsums;
786 	do_again = !(bp->b_flags & B_GATHERED);
787 	(void)VOP_BWRITE(bp);
788 	/*
789 	 * Compute checksum across data and then across summary; the first
790 	 * block (the summary block) is skipped.  Set the create time here
791 	 * so that it's guaranteed to be later than the inode mod times.
792 	 *
793 	 * XXX
794 	 * Fix this to do it inline, instead of malloc/copy.
795 	 */
796 	datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
797 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
798 		if ((*++bpp)->b_flags & B_INVAL) {
799 			if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
800 				panic("lfs_writeseg: copyin failed");
801 		} else
802 			*dp++ = ((u_long *)(*bpp)->b_data)[0];
803 	}
804 	ssp->ss_create = time.tv_sec;
805 	ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
806 	ssp->ss_sumsum =
807 	    cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
808 	free(datap, M_SEGMENT);
809 #ifdef DIAGNOSTIC
810 	if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
811 		panic("lfs_writeseg: No diskspace for summary");
812 #endif
813 	fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
814 
815 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
816 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
817 
818 	/*
819 	 * When we simply write the blocks we lose a rotation for every block
820 	 * written.  To avoid this problem, we allocate memory in chunks, copy
821 	 * the buffers into the chunk and write the chunk.  MAXPHYS is the
822 	 * largest size I/O devices can handle.
823 	 * When the data is copied to the chunk, turn off the the B_LOCKED bit
824 	 * and brelse the buffer (which will move them to the LRU list).  Add
825 	 * the B_CALL flag to the buffer header so we can count I/O's for the
826 	 * checkpoints and so we can release the allocated memory.
827 	 *
828 	 * XXX
829 	 * This should be removed if the new virtual memory system allows us to
830 	 * easily make the buffers contiguous in kernel memory and if that's
831 	 * fast enough.
832 	 */
833 	ch_per_blk = MAXPHYS / fs->lfs_bsize;
834 	for (bpp = sp->bpp, i = nblocks; i;) {
835 		num = ch_per_blk;
836 		if (num > i)
837 			num = i;
838 		i -= num;
839 		size = num * fs->lfs_bsize;
840 
841 		cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
842 		    (*bpp)->b_blkno, size);
843 		cbp->b_dev = i_dev;
844 		cbp->b_flags |= B_ASYNC | B_BUSY;
845 
846 		s = splbio();
847 		++fs->lfs_iocount;
848 		for (p = cbp->b_data; num--;) {
849 			bp = *bpp++;
850 			/*
851 			 * Fake buffers from the cleaner are marked as B_INVAL.
852 			 * We need to copy the data from user space rather than
853 			 * from the buffer indicated.
854 			 * XXX == what do I do on an error?
855 			 */
856 			if (bp->b_flags & B_INVAL) {
857 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
858 					panic("lfs_writeseg: copyin failed");
859 			} else
860 				bcopy(bp->b_data, p, bp->b_bcount);
861 			p += bp->b_bcount;
862 			if (bp->b_flags & B_LOCKED)
863 				--locked_queue_count;
864 			bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
865 			     B_LOCKED | B_GATHERED);
866 			if (bp->b_flags & B_CALL) {
867 				/* if B_CALL, it was created with newbuf */
868 				brelvp(bp);
869 				if (!(bp->b_flags & B_INVAL))
870 					free(bp->b_data, M_SEGMENT);
871 				free(bp, M_SEGMENT);
872 			} else {
873 				bremfree(bp);
874 				bp->b_flags |= B_DONE;
875 				reassignbuf(bp, bp->b_vp);
876 				brelse(bp);
877 			}
878 		}
879 		++cbp->b_vp->v_numoutput;
880 		splx(s);
881 		cbp->b_bcount = p - (char *)cbp->b_data;
882 		/*
883 		 * XXXX This is a gross and disgusting hack.  Since these
884 		 * buffers are physically addressed, they hang off the
885 		 * device vnode (devvp).  As a result, they have no way
886 		 * of getting to the LFS superblock or lfs structure to
887 		 * keep track of the number of I/O's pending.  So, I am
888 		 * going to stuff the fs into the saveaddr field of
889 		 * the buffer (yuk).
890 		 */
891 		cbp->b_saveaddr = (caddr_t)fs;
892 		vop_strategy_a.a_desc = VDESC(vop_strategy);
893 		vop_strategy_a.a_bp = cbp;
894 		(strategy)(&vop_strategy_a);
895 	}
896 	/*
897 	 * XXX
898 	 * Vinvalbuf can move locked buffers off the locked queue
899 	 * and we have no way of knowing about this.  So, after
900 	 * doing a big write, we recalculate how many bufers are
901 	 * really still left on the locked queue.
902 	 */
903 	locked_queue_count = count_lock_queue();
904 	wakeup(&locked_queue_count);
905 #ifdef DOSTATS
906 	++lfs_stats.psegwrites;
907 	lfs_stats.blocktot += nblocks - 1;
908 	if (fs->lfs_sp->seg_flags & SEGM_SYNC)
909 		++lfs_stats.psyncwrites;
910 	if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
911 		++lfs_stats.pcleanwrites;
912 		lfs_stats.cleanblocks += nblocks - 1;
913 	}
914 #endif
915 	return (lfs_initseg(fs) || do_again);
916 }
917 
918 void
919 lfs_writesuper(fs)
920 	struct lfs *fs;
921 {
922 	struct buf *bp;
923 	dev_t i_dev;
924 	int (*strategy) __P((void *));
925 	int s;
926 	struct vop_strategy_args vop_strategy_a;
927 
928 	i_dev = VTOI(fs->lfs_ivnode)->i_dev;
929 	strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
930 
931 	/* Checksum the superblock and copy it into a buffer. */
932 	fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
933 	bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
934 	    LFS_SBPAD);
935 	*(struct lfs *)bp->b_data = *fs;
936 
937 	/* XXX Toggle between first two superblocks; for now just write first */
938 	bp->b_dev = i_dev;
939 	bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
940 	bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
941 	bp->b_iodone = lfs_supercallback;
942 	vop_strategy_a.a_desc = VDESC(vop_strategy);
943 	vop_strategy_a.a_bp = bp;
944 	s = splbio();
945 	++bp->b_vp->v_numoutput;
946 	splx(s);
947 	(strategy)(&vop_strategy_a);
948 }
949 
950 /*
951  * Logical block number match routines used when traversing the dirty block
952  * chain.
953  */
954 int
955 lfs_match_data(fs, bp)
956 	struct lfs *fs;
957 	struct buf *bp;
958 {
959 	return (bp->b_lblkno >= 0);
960 }
961 
962 int
963 lfs_match_indir(fs, bp)
964 	struct lfs *fs;
965 	struct buf *bp;
966 {
967 	int lbn;
968 
969 	lbn = bp->b_lblkno;
970 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
971 }
972 
973 int
974 lfs_match_dindir(fs, bp)
975 	struct lfs *fs;
976 	struct buf *bp;
977 {
978 	int lbn;
979 
980 	lbn = bp->b_lblkno;
981 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
982 }
983 
984 int
985 lfs_match_tindir(fs, bp)
986 	struct lfs *fs;
987 	struct buf *bp;
988 {
989 	int lbn;
990 
991 	lbn = bp->b_lblkno;
992 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
993 }
994 
995 /*
996  * Allocate a new buffer header.
997  */
998 struct buf *
999 lfs_newbuf(vp, daddr, size)
1000 	struct vnode *vp;
1001 	daddr_t daddr;
1002 	size_t size;
1003 {
1004 	struct buf *bp;
1005 	size_t nbytes;
1006 
1007 	nbytes = roundup(size, DEV_BSIZE);
1008 	bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK);
1009 	bzero(bp, sizeof(struct buf));
1010 	if (nbytes)
1011 		bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK);
1012 	bgetvp(vp, bp);
1013 	bp->b_bufsize = size;
1014 	bp->b_bcount = size;
1015 	bp->b_lblkno = daddr;
1016 	bp->b_blkno = daddr;
1017 	bp->b_error = 0;
1018 	bp->b_resid = 0;
1019 	bp->b_iodone = lfs_callback;
1020 	bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
1021 	return (bp);
1022 }
1023 
1024 void
1025 lfs_callback(bp)
1026 	struct buf *bp;
1027 {
1028 	struct lfs *fs;
1029 
1030 	fs = (struct lfs *)bp->b_saveaddr;
1031 #ifdef DIAGNOSTIC
1032 	if (fs->lfs_iocount == 0)
1033 		panic("lfs_callback: zero iocount\n");
1034 #endif
1035 	if (--fs->lfs_iocount == 0)
1036 		wakeup(&fs->lfs_iocount);
1037 
1038 	brelvp(bp);
1039 	free(bp->b_data, M_SEGMENT);
1040 	free(bp, M_SEGMENT);
1041 }
1042 
1043 void
1044 lfs_supercallback(bp)
1045 	struct buf *bp;
1046 {
1047 	brelvp(bp);
1048 	free(bp->b_data, M_SEGMENT);
1049 	free(bp, M_SEGMENT);
1050 }
1051 
1052 /*
1053  * Shellsort (diminishing increment sort) from Data Structures and
1054  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
1055  * see also Knuth Vol. 3, page 84.  The increments are selected from
1056  * formula (8), page 95.  Roughly O(N^3/2).
1057  */
1058 /*
1059  * This is our own private copy of shellsort because we want to sort
1060  * two parallel arrays (the array of buffer pointers and the array of
1061  * logical block numbers) simultaneously.  Note that we cast the array
1062  * of logical block numbers to a unsigned in this routine so that the
1063  * negative block numbers (meta data blocks) sort AFTER the data blocks.
1064  */
1065 void
1066 lfs_shellsort(bp_array, lb_array, nmemb)
1067 	struct buf **bp_array;
1068 	daddr_t *lb_array;
1069 	register int nmemb;
1070 {
1071 	static int __rsshell_increments[] = { 4, 1, 0 };
1072 	register int incr, *incrp, t1, t2;
1073 	struct buf *bp_temp;
1074 	u_long lb_temp;
1075 
1076 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
1077 		for (t1 = incr; t1 < nmemb; ++t1)
1078 			for (t2 = t1 - incr; t2 >= 0;)
1079 				if (lb_array[t2] > lb_array[t2 + incr]) {
1080 					lb_temp = lb_array[t2];
1081 					lb_array[t2] = lb_array[t2 + incr];
1082 					lb_array[t2 + incr] = lb_temp;
1083 					bp_temp = bp_array[t2];
1084 					bp_array[t2] = bp_array[t2 + incr];
1085 					bp_array[t2 + incr] = bp_temp;
1086 					t2 -= incr;
1087 				} else
1088 					break;
1089 }
1090 
1091 /*
1092  * Check VXLOCK.  Return 1 if the vnode is locked.  Otherwise, vget it.
1093  */
1094 int
1095 lfs_vref(vp)
1096 	register struct vnode *vp;
1097 {
1098 
1099 	if (vp->v_flag & VXLOCK)
1100 		return(1);
1101 	return (vget(vp, 0));
1102 }
1103 
1104 void
1105 lfs_vunref(vp)
1106 	register struct vnode *vp;
1107 {
1108 	extern int lfs_no_inactive;
1109 
1110 	/*
1111 	 * This is vrele except that we do not want to VOP_INACTIVE
1112 	 * this vnode. Rather than inline vrele here, we use a global
1113 	 * flag to tell lfs_inactive not to run. Yes, its gross.
1114 	 */
1115 	lfs_no_inactive = 1;
1116 	vrele(vp);
1117 	lfs_no_inactive = 0;
1118 }
1119