xref: /netbsd-src/sys/ufs/lfs/lfs_segment.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: lfs_segment.c,v 1.209 2008/02/15 13:30:56 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 /*
39  * Copyright (c) 1991, 1993
40  *	The Regents of the University of California.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)lfs_segment.c	8.10 (Berkeley) 6/10/95
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.209 2008/02/15 13:30:56 ad Exp $");
71 
72 #ifdef DEBUG
73 # define vndebug(vp, str) do {						\
74 	if (VTOI(vp)->i_flag & IN_CLEANING)				\
75 		DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
76 		     VTOI(vp)->i_number, (str), op));			\
77 } while(0)
78 #else
79 # define vndebug(vp, str)
80 #endif
81 #define ivndebug(vp, str) \
82 	DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
83 
84 #if defined(_KERNEL_OPT)
85 #include "opt_ddb.h"
86 #endif
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/namei.h>
91 #include <sys/kernel.h>
92 #include <sys/resourcevar.h>
93 #include <sys/file.h>
94 #include <sys/stat.h>
95 #include <sys/buf.h>
96 #include <sys/proc.h>
97 #include <sys/vnode.h>
98 #include <sys/mount.h>
99 #include <sys/kauth.h>
100 #include <sys/syslog.h>
101 
102 #include <miscfs/specfs/specdev.h>
103 #include <miscfs/fifofs/fifo.h>
104 
105 #include <ufs/ufs/inode.h>
106 #include <ufs/ufs/dir.h>
107 #include <ufs/ufs/ufsmount.h>
108 #include <ufs/ufs/ufs_extern.h>
109 
110 #include <ufs/lfs/lfs.h>
111 #include <ufs/lfs/lfs_extern.h>
112 
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_extern.h>
115 
116 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
117 
118 extern int count_lock_queue(void);
119 extern kmutex_t vnode_free_list_lock;		/* XXX */
120 
121 static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
122 static void lfs_free_aiodone(struct buf *);
123 static void lfs_super_aiodone(struct buf *);
124 static void lfs_cluster_aiodone(struct buf *);
125 static void lfs_cluster_callback(struct buf *);
126 
127 /*
128  * Determine if it's OK to start a partial in this segment, or if we need
129  * to go on to a new segment.
130  */
131 #define	LFS_PARTIAL_FITS(fs) \
132 	((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
133 	fragstofsb((fs), (fs)->lfs_frag))
134 
135 /*
136  * Figure out whether we should do a checkpoint write or go ahead with
137  * an ordinary write.
138  */
139 #define LFS_SHOULD_CHECKPOINT(fs, flags) \
140         ((flags & SEGM_CLEAN) == 0 &&					\
141 	  ((fs->lfs_nactive > LFS_MAX_ACTIVE ||				\
142 	    (flags & SEGM_CKP) ||					\
143 	    fs->lfs_nclean < LFS_MAX_ACTIVE)))
144 
145 int	 lfs_match_fake(struct lfs *, struct buf *);
146 void	 lfs_newseg(struct lfs *);
147 /* XXX ondisk32 */
148 void	 lfs_shellsort(struct buf **, int32_t *, int, int);
149 void	 lfs_supercallback(struct buf *);
150 void	 lfs_updatemeta(struct segment *);
151 void	 lfs_writesuper(struct lfs *, daddr_t);
152 int	 lfs_writevnodes(struct lfs *fs, struct mount *mp,
153 	    struct segment *sp, int dirops);
154 
155 int	lfs_allclean_wakeup;		/* Cleaner wakeup address. */
156 int	lfs_writeindir = 1;		/* whether to flush indir on non-ckp */
157 int	lfs_clean_vnhead = 0;		/* Allow freeing to head of vn list */
158 int	lfs_dirvcount = 0;		/* # active dirops */
159 
160 /* Statistics Counters */
161 int lfs_dostats = 1;
162 struct lfs_stats lfs_stats;
163 
164 /* op values to lfs_writevnodes */
165 #define	VN_REG		0
166 #define	VN_DIROP	1
167 #define	VN_EMPTY	2
168 #define VN_CLEAN	3
169 
170 /*
171  * XXX KS - Set modification time on the Ifile, so the cleaner can
172  * read the fs mod time off of it.  We don't set IN_UPDATE here,
173  * since we don't really need this to be flushed to disk (and in any
174  * case that wouldn't happen to the Ifile until we checkpoint).
175  */
176 void
177 lfs_imtime(struct lfs *fs)
178 {
179 	struct timespec ts;
180 	struct inode *ip;
181 
182 	ASSERT_MAYBE_SEGLOCK(fs);
183 	vfs_timestamp(&ts);
184 	ip = VTOI(fs->lfs_ivnode);
185 	ip->i_ffs1_mtime = ts.tv_sec;
186 	ip->i_ffs1_mtimensec = ts.tv_nsec;
187 }
188 
189 /*
190  * Ifile and meta data blocks are not marked busy, so segment writes MUST be
191  * single threaded.  Currently, there are two paths into lfs_segwrite, sync()
192  * and getnewbuf().  They both mark the file system busy.  Lfs_vflush()
193  * explicitly marks the file system busy.  So lfs_segwrite is safe.  I think.
194  */
195 
196 #define IS_FLUSHING(fs,vp)  ((fs)->lfs_flushvp == (vp))
197 
198 int
199 lfs_vflush(struct vnode *vp)
200 {
201 	struct inode *ip;
202 	struct lfs *fs;
203 	struct segment *sp;
204 	struct buf *bp, *nbp, *tbp, *tnbp;
205 	int error;
206 	int flushed;
207 	int relock;
208 	int loopcount;
209 
210 	ip = VTOI(vp);
211 	fs = VFSTOUFS(vp->v_mount)->um_lfs;
212 	relock = 0;
213 
214     top:
215 	ASSERT_NO_SEGLOCK(fs);
216 	if (ip->i_flag & IN_CLEANING) {
217 		ivndebug(vp,"vflush/in_cleaning");
218 		mutex_enter(&lfs_lock);
219 		LFS_CLR_UINO(ip, IN_CLEANING);
220 		LFS_SET_UINO(ip, IN_MODIFIED);
221 		mutex_exit(&lfs_lock);
222 
223 		/*
224 		 * Toss any cleaning buffers that have real counterparts
225 		 * to avoid losing new data.
226 		 */
227 		mutex_enter(&vp->v_interlock);
228 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
229 			nbp = LIST_NEXT(bp, b_vnbufs);
230 			if (!LFS_IS_MALLOC_BUF(bp))
231 				continue;
232 			/*
233 			 * Look for pages matching the range covered
234 			 * by cleaning blocks.  It's okay if more dirty
235 			 * pages appear, so long as none disappear out
236 			 * from under us.
237 			 */
238 			if (bp->b_lblkno > 0 && vp->v_type == VREG &&
239 			    vp != fs->lfs_ivnode) {
240 				struct vm_page *pg;
241 				voff_t off;
242 
243 				for (off = lblktosize(fs, bp->b_lblkno);
244 				     off < lblktosize(fs, bp->b_lblkno + 1);
245 				     off += PAGE_SIZE) {
246 					pg = uvm_pagelookup(&vp->v_uobj, off);
247 					if (pg == NULL)
248 						continue;
249 					if ((pg->flags & PG_CLEAN) == 0 ||
250 					    pmap_is_modified(pg)) {
251 						fs->lfs_avail += btofsb(fs,
252 							bp->b_bcount);
253 						wakeup(&fs->lfs_avail);
254 						mutex_exit(&vp->v_interlock);
255 						lfs_freebuf(fs, bp);
256 						mutex_enter(&vp->v_interlock);
257 						bp = NULL;
258 						break;
259 					}
260 				}
261 			}
262 			for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
263 			    tbp = tnbp)
264 			{
265 				tnbp = LIST_NEXT(tbp, b_vnbufs);
266 				if (tbp->b_vp == bp->b_vp
267 				   && tbp->b_lblkno == bp->b_lblkno
268 				   && tbp != bp)
269 				{
270 					fs->lfs_avail += btofsb(fs,
271 						bp->b_bcount);
272 					wakeup(&fs->lfs_avail);
273 					mutex_exit(&vp->v_interlock);
274 					lfs_freebuf(fs, bp);
275 					mutex_enter(&vp->v_interlock);
276 					bp = NULL;
277 					break;
278 				}
279 			}
280 		}
281 	} else {
282 		mutex_enter(&vp->v_interlock);
283 	}
284 
285 	/* If the node is being written, wait until that is done */
286 	while (WRITEINPROG(vp)) {
287 		ivndebug(vp,"vflush/writeinprog");
288 		cv_wait(&vp->v_cv, &vp->v_interlock);
289 	}
290 	mutex_exit(&vp->v_interlock);
291 
292 	/* Protect against VI_XLOCK deadlock in vinvalbuf() */
293 	lfs_seglock(fs, SEGM_SYNC);
294 
295 	/* If we're supposed to flush a freed inode, just toss it */
296 	if (ip->i_lfs_iflags & LFSI_DELETED) {
297 		DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
298 		      ip->i_number));
299 		/* Drain v_numoutput */
300 		mutex_enter(&vp->v_interlock);
301 		while (vp->v_numoutput > 0) {
302 			cv_wait(&vp->v_cv, &vp->v_interlock);
303 		}
304 		KASSERT(vp->v_numoutput == 0);
305 		mutex_exit(&vp->v_interlock);
306 
307 		mutex_enter(&bufcache_lock);
308 		for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
309 			nbp = LIST_NEXT(bp, b_vnbufs);
310 
311 			KASSERT((bp->b_flags & B_GATHERED) == 0);
312 			if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
313 				fs->lfs_avail += btofsb(fs, bp->b_bcount);
314 				wakeup(&fs->lfs_avail);
315 			}
316 			/* Copied from lfs_writeseg */
317 			if (bp->b_iodone != NULL) {
318 				mutex_exit(&bufcache_lock);
319 				biodone(bp);
320 				mutex_enter(&bufcache_lock);
321 			} else {
322 				bremfree(bp);
323 				LFS_UNLOCK_BUF(bp);
324 				mutex_enter(&vp->v_interlock);
325 				bp->b_flags &= ~(B_READ | B_GATHERED);
326 				bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
327 				bp->b_error = 0;
328 				reassignbuf(bp, vp);
329 				mutex_exit(&vp->v_interlock);
330 				brelse(bp, 0);
331 			}
332 		}
333 		mutex_exit(&bufcache_lock);
334 		LFS_CLR_UINO(ip, IN_CLEANING);
335 		LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
336 		ip->i_flag &= ~IN_ALLMOD;
337 		DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
338 		      ip->i_number));
339 		lfs_segunlock(fs);
340 
341 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
342 
343 		return 0;
344 	}
345 
346 	fs->lfs_flushvp = vp;
347 	if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
348 		error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
349 		fs->lfs_flushvp = NULL;
350 		KASSERT(fs->lfs_flushvp_fakevref == 0);
351 		lfs_segunlock(fs);
352 
353 		/* Make sure that any pending buffers get written */
354 		mutex_enter(&vp->v_interlock);
355 		while (vp->v_numoutput > 0) {
356 			cv_wait(&vp->v_cv, &vp->v_interlock);
357 		}
358 		KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
359 		KASSERT(vp->v_numoutput == 0);
360 		mutex_exit(&vp->v_interlock);
361 
362 		return error;
363 	}
364 	sp = fs->lfs_sp;
365 
366 	flushed = 0;
367 	if (VPISEMPTY(vp)) {
368 		lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
369 		++flushed;
370 	} else if ((ip->i_flag & IN_CLEANING) &&
371 		  (fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
372 		ivndebug(vp,"vflush/clean");
373 		lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
374 		++flushed;
375 	} else if (lfs_dostats) {
376 		if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
377 			++lfs_stats.vflush_invoked;
378 		ivndebug(vp,"vflush");
379 	}
380 
381 #ifdef DIAGNOSTIC
382 	if (vp->v_uflag & VU_DIROP) {
383 		DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
384 		/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
385 	}
386 	if (vp->v_usecount < 0) {
387 		printf("usecount=%ld\n", (long)vp->v_usecount);
388 		panic("lfs_vflush: usecount<0");
389 	}
390 #endif
391 
392 	do {
393 		loopcount = 0;
394 		do {
395 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
396 				relock = lfs_writefile(fs, sp, vp);
397 				if (relock) {
398 					/*
399 					 * Might have to wait for the
400 					 * cleaner to run; but we're
401 					 * still not done with this vnode.
402 					 */
403 					KDASSERT(ip->i_number != LFS_IFILE_INUM);
404 					lfs_writeinode(fs, sp, ip);
405 					mutex_enter(&lfs_lock);
406 					LFS_SET_UINO(ip, IN_MODIFIED);
407 					mutex_exit(&lfs_lock);
408 					lfs_writeseg(fs, sp);
409 					lfs_segunlock(fs);
410 					lfs_segunlock_relock(fs);
411 					goto top;
412 				}
413 			}
414 			/*
415 			 * If we begin a new segment in the middle of writing
416 			 * the Ifile, it creates an inconsistent checkpoint,
417 			 * since the Ifile information for the new segment
418 			 * is not up-to-date.  Take care of this here by
419 			 * sending the Ifile through again in case there
420 			 * are newly dirtied blocks.  But wait, there's more!
421 			 * This second Ifile write could *also* cross a segment
422 			 * boundary, if the first one was large.  The second
423 			 * one is guaranteed to be no more than 8 blocks,
424 			 * though (two segment blocks and supporting indirects)
425 			 * so the third write *will not* cross the boundary.
426 			 */
427 			if (vp == fs->lfs_ivnode) {
428 				lfs_writefile(fs, sp, vp);
429 				lfs_writefile(fs, sp, vp);
430 			}
431 #ifdef DEBUG
432 			if (++loopcount > 2)
433 				log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
434 #endif
435 		} while (lfs_writeinode(fs, sp, ip));
436 	} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
437 
438 	if (lfs_dostats) {
439 		++lfs_stats.nwrites;
440 		if (sp->seg_flags & SEGM_SYNC)
441 			++lfs_stats.nsync_writes;
442 		if (sp->seg_flags & SEGM_CKP)
443 			++lfs_stats.ncheckpoints;
444 	}
445 	/*
446 	 * If we were called from somewhere that has already held the seglock
447 	 * (e.g., lfs_markv()), the lfs_segunlock will not wait for
448 	 * the write to complete because we are still locked.
449 	 * Since lfs_vflush() must return the vnode with no dirty buffers,
450 	 * we must explicitly wait, if that is the case.
451 	 *
452 	 * We compare the iocount against 1, not 0, because it is
453 	 * artificially incremented by lfs_seglock().
454 	 */
455 	mutex_enter(&lfs_lock);
456 	if (fs->lfs_seglock > 1) {
457 		while (fs->lfs_iocount > 1)
458 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
459 				     "lfs_vflush", 0, &lfs_lock);
460 	}
461 	mutex_exit(&lfs_lock);
462 
463 	lfs_segunlock(fs);
464 
465 	/* Wait for these buffers to be recovered by aiodoned */
466 	mutex_enter(&vp->v_interlock);
467 	while (vp->v_numoutput > 0) {
468 		cv_wait(&vp->v_cv, &vp->v_interlock);
469 	}
470 	KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
471 	KASSERT(vp->v_numoutput == 0);
472 	mutex_exit(&vp->v_interlock);
473 
474 	fs->lfs_flushvp = NULL;
475 	KASSERT(fs->lfs_flushvp_fakevref == 0);
476 
477 	return (0);
478 }
479 
480 int
481 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
482 {
483 	struct inode *ip;
484 	struct vnode *vp;
485 	int inodes_written = 0, only_cleaning;
486 	int error = 0;
487 
488 	ASSERT_SEGLOCK(fs);
489  loop:
490 	/* start at last (newest) vnode. */
491 	mutex_enter(&mntvnode_lock);
492 	TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
493 		/*
494 		 * If the vnode that we are about to sync is no longer
495 		 * associated with this mount point, start over.
496 		 */
497 		if (vp->v_mount != mp) {
498 			DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
499 			/*
500 			 * After this, pages might be busy
501 			 * due to our own previous putpages.
502 			 * Start actual segment write here to avoid deadlock.
503 			 */
504 			mutex_exit(&mntvnode_lock);
505 			(void)lfs_writeseg(fs, sp);
506 			goto loop;
507 		}
508 
509 		mutex_enter(&vp->v_interlock);
510 		if (vp->v_type == VNON || vismarker(vp) ||
511 		    (vp->v_iflag & VI_CLEAN) != 0) {
512 			mutex_exit(&vp->v_interlock);
513 			continue;
514 		}
515 
516 		ip = VTOI(vp);
517 		if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
518 		    (op != VN_DIROP && op != VN_CLEAN &&
519 		    (vp->v_uflag & VU_DIROP))) {
520 			mutex_exit(&vp->v_interlock);
521 			vndebug(vp,"dirop");
522 			continue;
523 		}
524 
525 		if (op == VN_EMPTY && !VPISEMPTY(vp)) {
526 			mutex_exit(&vp->v_interlock);
527 			vndebug(vp,"empty");
528 			continue;
529 		}
530 
531 		if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
532 		   && vp != fs->lfs_flushvp
533 		   && !(ip->i_flag & IN_CLEANING)) {
534 			mutex_exit(&vp->v_interlock);
535 			vndebug(vp,"cleaning");
536 			continue;
537 		}
538 
539 		mutex_exit(&mntvnode_lock);
540 		if (lfs_vref(vp)) {
541 			vndebug(vp,"vref");
542 			mutex_enter(&mntvnode_lock);
543 			continue;
544 		}
545 
546 		only_cleaning = 0;
547 		/*
548 		 * Write the inode/file if dirty and it's not the IFILE.
549 		 */
550 		if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
551 			only_cleaning =
552 			    ((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
553 
554 			if (ip->i_number != LFS_IFILE_INUM) {
555 				error = lfs_writefile(fs, sp, vp);
556 				if (error) {
557 					lfs_vunref(vp);
558 					if (error == EAGAIN) {
559 						/*
560 						 * This error from lfs_putpages
561 						 * indicates we need to drop
562 						 * the segment lock and start
563 						 * over after the cleaner has
564 						 * had a chance to run.
565 						 */
566 						lfs_writeinode(fs, sp, ip);
567 						lfs_writeseg(fs, sp);
568 						if (!VPISEMPTY(vp) &&
569 						    !WRITEINPROG(vp) &&
570 						    !(ip->i_flag & IN_ALLMOD)) {
571 							mutex_enter(&lfs_lock);
572 							LFS_SET_UINO(ip, IN_MODIFIED);
573 							mutex_exit(&lfs_lock);
574 						}
575 						mutex_enter(&mntvnode_lock);
576 						break;
577 					}
578 					error = 0; /* XXX not quite right */
579 					mutex_enter(&mntvnode_lock);
580 					continue;
581 				}
582 
583 				if (!VPISEMPTY(vp)) {
584 					if (WRITEINPROG(vp)) {
585 						ivndebug(vp,"writevnodes/write2");
586 					} else if (!(ip->i_flag & IN_ALLMOD)) {
587 						mutex_enter(&lfs_lock);
588 						LFS_SET_UINO(ip, IN_MODIFIED);
589 						mutex_exit(&lfs_lock);
590 					}
591 				}
592 				(void) lfs_writeinode(fs, sp, ip);
593 				inodes_written++;
594 			}
595 		}
596 
597 		if (lfs_clean_vnhead && only_cleaning)
598 			lfs_vunref_head(vp);
599 		else
600 			lfs_vunref(vp);
601 
602 		mutex_enter(&mntvnode_lock);
603 	}
604 	mutex_exit(&mntvnode_lock);
605 	return error;
606 }
607 
608 /*
609  * Do a checkpoint.
610  */
611 int
612 lfs_segwrite(struct mount *mp, int flags)
613 {
614 	struct buf *bp;
615 	struct inode *ip;
616 	struct lfs *fs;
617 	struct segment *sp;
618 	struct vnode *vp;
619 	SEGUSE *segusep;
620 	int do_ckp, did_ckp, error;
621 	unsigned n, segleft, maxseg, sn, i, curseg;
622 	int writer_set = 0;
623 	int dirty;
624 	int redo;
625 	int um_error;
626 	int loopcount;
627 
628 	fs = VFSTOUFS(mp)->um_lfs;
629 	ASSERT_MAYBE_SEGLOCK(fs);
630 
631 	if (fs->lfs_ronly)
632 		return EROFS;
633 
634 	lfs_imtime(fs);
635 
636 	/*
637 	 * Allocate a segment structure and enough space to hold pointers to
638 	 * the maximum possible number of buffers which can be described in a
639 	 * single summary block.
640 	 */
641 	do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
642 
643 	lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
644 	sp = fs->lfs_sp;
645 	if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
646 		do_ckp = 1;
647 
648 	/*
649 	 * If lfs_flushvp is non-NULL, we are called from lfs_vflush,
650 	 * in which case we have to flush *all* buffers off of this vnode.
651 	 * We don't care about other nodes, but write any non-dirop nodes
652 	 * anyway in anticipation of another getnewvnode().
653 	 *
654 	 * If we're cleaning we only write cleaning and ifile blocks, and
655 	 * no dirops, since otherwise we'd risk corruption in a crash.
656 	 */
657 	if (sp->seg_flags & SEGM_CLEAN)
658 		lfs_writevnodes(fs, mp, sp, VN_CLEAN);
659 	else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
660 		do {
661 			um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
662 
663 			if (do_ckp || fs->lfs_dirops == 0) {
664 				if (!writer_set) {
665 					lfs_writer_enter(fs, "lfs writer");
666 					writer_set = 1;
667 				}
668 				error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
669 				if (um_error == 0)
670 					um_error = error;
671 				/* In case writevnodes errored out */
672 				lfs_flush_dirops(fs);
673 				((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
674 				lfs_finalize_fs_seguse(fs);
675 			}
676 			if (do_ckp && um_error) {
677 				lfs_segunlock_relock(fs);
678 				sp = fs->lfs_sp;
679 			}
680 		} while (do_ckp && um_error != 0);
681 	}
682 
683 	/*
684 	 * If we are doing a checkpoint, mark everything since the
685 	 * last checkpoint as no longer ACTIVE.
686 	 */
687 	if (do_ckp || fs->lfs_doifile) {
688 		segleft = fs->lfs_nseg;
689 		curseg = 0;
690 		for (n = 0; n < fs->lfs_segtabsz; n++) {
691 			dirty = 0;
692 			if (bread(fs->lfs_ivnode,
693 			    fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
694 				panic("lfs_segwrite: ifile read");
695 			segusep = (SEGUSE *)bp->b_data;
696 			maxseg = min(segleft, fs->lfs_sepb);
697 			for (i = 0; i < maxseg; i++) {
698 				sn = curseg + i;
699 				if (sn != dtosn(fs, fs->lfs_curseg) &&
700 				    segusep->su_flags & SEGUSE_ACTIVE) {
701 					segusep->su_flags &= ~SEGUSE_ACTIVE;
702 					--fs->lfs_nactive;
703 					++dirty;
704 				}
705 				fs->lfs_suflags[fs->lfs_activesb][sn] =
706 					segusep->su_flags;
707 				if (fs->lfs_version > 1)
708 					++segusep;
709 				else
710 					segusep = (SEGUSE *)
711 						((SEGUSE_V1 *)segusep + 1);
712 			}
713 
714 			if (dirty)
715 				error = LFS_BWRITE_LOG(bp); /* Ifile */
716 			else
717 				brelse(bp, 0);
718 			segleft -= fs->lfs_sepb;
719 			curseg += fs->lfs_sepb;
720 		}
721 	}
722 
723 	KASSERT(LFS_SEGLOCK_HELD(fs));
724 
725 	did_ckp = 0;
726 	if (do_ckp || fs->lfs_doifile) {
727 		vp = fs->lfs_ivnode;
728 		vn_lock(vp, LK_EXCLUSIVE);
729 		loopcount = 0;
730 		do {
731 #ifdef DEBUG
732 			LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
733 #endif
734 			mutex_enter(&lfs_lock);
735 			fs->lfs_flags &= ~LFS_IFDIRTY;
736 			mutex_exit(&lfs_lock);
737 
738 			ip = VTOI(vp);
739 
740 			if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
741 				/*
742 				 * Ifile has no pages, so we don't need
743 				 * to check error return here.
744 				 */
745 				lfs_writefile(fs, sp, vp);
746 				/*
747 				 * Ensure the Ifile takes the current segment
748 				 * into account.  See comment in lfs_vflush.
749 				 */
750 				lfs_writefile(fs, sp, vp);
751 				lfs_writefile(fs, sp, vp);
752 			}
753 
754 			if (ip->i_flag & IN_ALLMOD)
755 				++did_ckp;
756 #if 0
757 			redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
758 #else
759 			redo = lfs_writeinode(fs, sp, ip);
760 #endif
761 			redo += lfs_writeseg(fs, sp);
762 			mutex_enter(&lfs_lock);
763 			redo += (fs->lfs_flags & LFS_IFDIRTY);
764 			mutex_exit(&lfs_lock);
765 #ifdef DEBUG
766 			if (++loopcount > 2)
767 				log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
768 					loopcount);
769 #endif
770 		} while (redo && do_ckp);
771 
772 		/*
773 		 * Unless we are unmounting, the Ifile may continue to have
774 		 * dirty blocks even after a checkpoint, due to changes to
775 		 * inodes' atime.  If we're checkpointing, it's "impossible"
776 		 * for other parts of the Ifile to be dirty after the loop
777 		 * above, since we hold the segment lock.
778 		 */
779 		mutex_enter(&vp->v_interlock);
780 		if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
781 			LFS_CLR_UINO(ip, IN_ALLMOD);
782 		}
783 #ifdef DIAGNOSTIC
784 		else if (do_ckp) {
785 			int do_panic = 0;
786 			LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
787 				if (bp->b_lblkno < fs->lfs_cleansz +
788 				    fs->lfs_segtabsz &&
789 				    !(bp->b_flags & B_GATHERED)) {
790 					printf("ifile lbn %ld still dirty (flags %lx)\n",
791 						(long)bp->b_lblkno,
792 						(long)bp->b_flags);
793 					++do_panic;
794 				}
795 			}
796 			if (do_panic)
797 				panic("dirty blocks");
798 		}
799 #endif
800 		mutex_exit(&vp->v_interlock);
801 		VOP_UNLOCK(vp, 0);
802 	} else {
803 		(void) lfs_writeseg(fs, sp);
804 	}
805 
806 	/* Note Ifile no longer needs to be written */
807 	fs->lfs_doifile = 0;
808 	if (writer_set)
809 		lfs_writer_leave(fs);
810 
811 	/*
812 	 * If we didn't write the Ifile, we didn't really do anything.
813 	 * That means that (1) there is a checkpoint on disk and (2)
814 	 * nothing has changed since it was written.
815 	 *
816 	 * Take the flags off of the segment so that lfs_segunlock
817 	 * doesn't have to write the superblock either.
818 	 */
819 	if (do_ckp && !did_ckp) {
820 		sp->seg_flags &= ~SEGM_CKP;
821 	}
822 
823 	if (lfs_dostats) {
824 		++lfs_stats.nwrites;
825 		if (sp->seg_flags & SEGM_SYNC)
826 			++lfs_stats.nsync_writes;
827 		if (sp->seg_flags & SEGM_CKP)
828 			++lfs_stats.ncheckpoints;
829 	}
830 	lfs_segunlock(fs);
831 	return (0);
832 }
833 
834 /*
835  * Write the dirty blocks associated with a vnode.
836  */
837 int
838 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
839 {
840 	struct finfo *fip;
841 	struct inode *ip;
842 	int i, frag;
843 	int error;
844 
845 	ASSERT_SEGLOCK(fs);
846 	error = 0;
847 	ip = VTOI(vp);
848 
849 	fip = sp->fip;
850 	lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
851 
852 	if (vp->v_uflag & VU_DIROP)
853 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
854 
855 	if (sp->seg_flags & SEGM_CLEAN) {
856 		lfs_gather(fs, sp, vp, lfs_match_fake);
857 		/*
858 		 * For a file being flushed, we need to write *all* blocks.
859 		 * This means writing the cleaning blocks first, and then
860 		 * immediately following with any non-cleaning blocks.
861 		 * The same is true of the Ifile since checkpoints assume
862 		 * that all valid Ifile blocks are written.
863 		 */
864 		if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
865 			lfs_gather(fs, sp, vp, lfs_match_data);
866 			/*
867 			 * Don't call VOP_PUTPAGES: if we're flushing,
868 			 * we've already done it, and the Ifile doesn't
869 			 * use the page cache.
870 			 */
871 		}
872 	} else {
873 		lfs_gather(fs, sp, vp, lfs_match_data);
874 		/*
875 		 * If we're flushing, we've already called VOP_PUTPAGES
876 		 * so don't do it again.  Otherwise, we want to write
877 		 * everything we've got.
878 		 */
879 		if (!IS_FLUSHING(fs, vp)) {
880 			mutex_enter(&vp->v_interlock);
881 			error = VOP_PUTPAGES(vp, 0, 0,
882 				PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
883 		}
884 	}
885 
886 	/*
887 	 * It may not be necessary to write the meta-data blocks at this point,
888 	 * as the roll-forward recovery code should be able to reconstruct the
889 	 * list.
890 	 *
891 	 * We have to write them anyway, though, under two conditions: (1) the
892 	 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are
893 	 * checkpointing.
894 	 *
895 	 * BUT if we are cleaning, we might have indirect blocks that refer to
896 	 * new blocks not being written yet, in addition to fragments being
897 	 * moved out of a cleaned segment.  If that is the case, don't
898 	 * write the indirect blocks, or the finfo will have a small block
899 	 * in the middle of it!
900 	 * XXX in this case isn't the inode size wrong too?
901 	 */
902 	frag = 0;
903 	if (sp->seg_flags & SEGM_CLEAN) {
904 		for (i = 0; i < NDADDR; i++)
905 			if (ip->i_lfs_fragsize[i] > 0 &&
906 			    ip->i_lfs_fragsize[i] < fs->lfs_bsize)
907 				++frag;
908 	}
909 #ifdef DIAGNOSTIC
910 	if (frag > 1)
911 		panic("lfs_writefile: more than one fragment!");
912 #endif
913 	if (IS_FLUSHING(fs, vp) ||
914 	    (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
915 		lfs_gather(fs, sp, vp, lfs_match_indir);
916 		lfs_gather(fs, sp, vp, lfs_match_dindir);
917 		lfs_gather(fs, sp, vp, lfs_match_tindir);
918 	}
919 	fip = sp->fip;
920 	lfs_release_finfo(fs);
921 
922 	return error;
923 }
924 
925 /*
926  * Update segment accounting to reflect this inode's change of address.
927  */
928 static int
929 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
930 {
931 	struct buf *bp;
932 	daddr_t daddr;
933 	IFILE *ifp;
934 	SEGUSE *sup;
935 	ino_t ino;
936 	int redo_ifile, error;
937 	u_int32_t sn;
938 
939 	redo_ifile = 0;
940 
941 	/*
942 	 * If updating the ifile, update the super-block.  Update the disk
943 	 * address and access times for this inode in the ifile.
944 	 */
945 	ino = ip->i_number;
946 	if (ino == LFS_IFILE_INUM) {
947 		daddr = fs->lfs_idaddr;
948 		fs->lfs_idaddr = dbtofsb(fs, ndaddr);
949 	} else {
950 		LFS_IENTRY(ifp, fs, ino, bp);
951 		daddr = ifp->if_daddr;
952 		ifp->if_daddr = dbtofsb(fs, ndaddr);
953 		error = LFS_BWRITE_LOG(bp); /* Ifile */
954 	}
955 
956 	/*
957 	 * If this is the Ifile and lfs_offset is set to the first block
958 	 * in the segment, dirty the new segment's accounting block
959 	 * (XXX should already be dirty?) and tell the caller to do it again.
960 	 */
961 	if (ip->i_number == LFS_IFILE_INUM) {
962 		sn = dtosn(fs, fs->lfs_offset);
963 		if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
964 		    fs->lfs_offset) {
965 			LFS_SEGENTRY(sup, fs, sn, bp);
966 			KASSERT(bp->b_oflags & BO_DELWRI);
967 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
968 			/* fs->lfs_flags |= LFS_IFDIRTY; */
969 			redo_ifile |= 1;
970 		}
971 	}
972 
973 	/*
974 	 * The inode's last address should not be in the current partial
975 	 * segment, except under exceptional circumstances (lfs_writevnodes
976 	 * had to start over, and in the meantime more blocks were written
977 	 * to a vnode).	 Both inodes will be accounted to this segment
978 	 * in lfs_writeseg so we need to subtract the earlier version
979 	 * here anyway.	 The segment count can temporarily dip below
980 	 * zero here; keep track of how many duplicates we have in
981 	 * "dupino" so we don't panic below.
982 	 */
983 	if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
984 		++sp->ndupino;
985 		DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
986 		      "(ino %d daddr 0x%llx) ndupino=%d\n", ino,
987 		      (long long)daddr, sp->ndupino));
988 	}
989 	/*
990 	 * Account the inode: it no longer belongs to its former segment,
991 	 * though it will not belong to the new segment until that segment
992 	 * is actually written.
993 	 */
994 	if (daddr != LFS_UNUSED_DADDR) {
995 		u_int32_t oldsn = dtosn(fs, daddr);
996 #ifdef DIAGNOSTIC
997 		int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
998 #endif
999 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1000 #ifdef DIAGNOSTIC
1001 		if (sup->su_nbytes +
1002 		    sizeof (struct ufs1_dinode) * ndupino
1003 		      < sizeof (struct ufs1_dinode)) {
1004 			printf("lfs_writeinode: negative bytes "
1005 			       "(segment %" PRIu32 " short by %d, "
1006 			       "oldsn=%" PRIu32 ", cursn=%" PRIu32
1007 			       ", daddr=%" PRId64 ", su_nbytes=%u, "
1008 			       "ndupino=%d)\n",
1009 			       dtosn(fs, daddr),
1010 			       (int)sizeof (struct ufs1_dinode) *
1011 				   (1 - sp->ndupino) - sup->su_nbytes,
1012 			       oldsn, sp->seg_number, daddr,
1013 			       (unsigned int)sup->su_nbytes,
1014 			       sp->ndupino);
1015 			panic("lfs_writeinode: negative bytes");
1016 			sup->su_nbytes = sizeof (struct ufs1_dinode);
1017 		}
1018 #endif
1019 		DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
1020 		      dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
1021 		sup->su_nbytes -= sizeof (struct ufs1_dinode);
1022 		redo_ifile |=
1023 			(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
1024 		if (redo_ifile) {
1025 			mutex_enter(&lfs_lock);
1026 			fs->lfs_flags |= LFS_IFDIRTY;
1027 			mutex_exit(&lfs_lock);
1028 			/* Don't double-account */
1029 			fs->lfs_idaddr = 0x0;
1030 		}
1031 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
1032 	}
1033 
1034 	return redo_ifile;
1035 }
1036 
1037 int
1038 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
1039 {
1040 	struct buf *bp;
1041 	struct ufs1_dinode *cdp;
1042 	daddr_t daddr;
1043 	int32_t *daddrp;	/* XXX ondisk32 */
1044 	int i, ndx;
1045 	int redo_ifile = 0;
1046 	int gotblk = 0;
1047 	int count;
1048 
1049 	ASSERT_SEGLOCK(fs);
1050 	if (!(ip->i_flag & IN_ALLMOD))
1051 		return (0);
1052 
1053 	/* Can't write ifile when writer is not set */
1054 	KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
1055 		(sp->seg_flags & SEGM_CLEAN));
1056 
1057 	/*
1058 	 * If this is the Ifile, see if writing it here will generate a
1059 	 * temporary misaccounting.  If it will, do the accounting and write
1060 	 * the blocks, postponing the inode write until the accounting is
1061 	 * solid.
1062 	 */
1063 	count = 0;
1064 	while (ip->i_number == LFS_IFILE_INUM) {
1065 		int redo = 0;
1066 
1067 		if (sp->idp == NULL && sp->ibp == NULL &&
1068 		    (sp->seg_bytes_left < fs->lfs_ibsize ||
1069 		     sp->sum_bytes_left < sizeof(int32_t))) {
1070 			(void) lfs_writeseg(fs, sp);
1071 			continue;
1072 		}
1073 
1074 		/* Look for dirty Ifile blocks */
1075 		LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
1076 			if (!(bp->b_flags & B_GATHERED)) {
1077 				redo = 1;
1078 				break;
1079 			}
1080 		}
1081 
1082 		if (redo == 0)
1083 			redo = lfs_update_iaddr(fs, sp, ip, 0x0);
1084 		if (redo == 0)
1085 			break;
1086 
1087 		if (sp->idp) {
1088 			sp->idp->di_inumber = 0;
1089 			sp->idp = NULL;
1090 		}
1091 		++count;
1092 		if (count > 2)
1093 			log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
1094 		lfs_writefile(fs, sp, fs->lfs_ivnode);
1095 	}
1096 
1097 	/* Allocate a new inode block if necessary. */
1098 	if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
1099 	    sp->ibp == NULL) {
1100 		/* Allocate a new segment if necessary. */
1101 		if (sp->seg_bytes_left < fs->lfs_ibsize ||
1102 		    sp->sum_bytes_left < sizeof(int32_t))
1103 			(void) lfs_writeseg(fs, sp);
1104 
1105 		/* Get next inode block. */
1106 		daddr = fs->lfs_offset;
1107 		fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
1108 		sp->ibp = *sp->cbpp++ =
1109 			getblk(VTOI(fs->lfs_ivnode)->i_devvp,
1110 			    fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
1111 		gotblk++;
1112 
1113 		/* Zero out inode numbers */
1114 		for (i = 0; i < INOPB(fs); ++i)
1115 			((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
1116 			    0;
1117 
1118 		++sp->start_bpp;
1119 		fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
1120 		/* Set remaining space counters. */
1121 		sp->seg_bytes_left -= fs->lfs_ibsize;
1122 		sp->sum_bytes_left -= sizeof(int32_t);
1123 		ndx = fs->lfs_sumsize / sizeof(int32_t) -
1124 			sp->ninodes / INOPB(fs) - 1;
1125 		((int32_t *)(sp->segsum))[ndx] = daddr;
1126 	}
1127 
1128 	/* Check VU_DIROP in case there is a new file with no data blocks */
1129 	if (ITOV(ip)->v_uflag & VU_DIROP)
1130 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1131 
1132 	/* Update the inode times and copy the inode onto the inode page. */
1133 	/* XXX kludge --- don't redirty the ifile just to put times on it */
1134 	if (ip->i_number != LFS_IFILE_INUM)
1135 		LFS_ITIMES(ip, NULL, NULL, NULL);
1136 
1137 	/*
1138 	 * If this is the Ifile, and we've already written the Ifile in this
1139 	 * partial segment, just overwrite it (it's not on disk yet) and
1140 	 * continue.
1141 	 *
1142 	 * XXX we know that the bp that we get the second time around has
1143 	 * already been gathered.
1144 	 */
1145 	if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
1146 		*(sp->idp) = *ip->i_din.ffs1_din;
1147 		ip->i_lfs_osize = ip->i_size;
1148 		return 0;
1149 	}
1150 
1151 	bp = sp->ibp;
1152 	cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
1153 	*cdp = *ip->i_din.ffs1_din;
1154 
1155 	/*
1156 	 * If cleaning, link counts and directory file sizes cannot change,
1157 	 * since those would be directory operations---even if the file
1158 	 * we are writing is marked VU_DIROP we should write the old values.
1159 	 * If we're not cleaning, of course, update the values so we get
1160 	 * current values the next time we clean.
1161 	 */
1162 	if (sp->seg_flags & SEGM_CLEAN) {
1163 		if (ITOV(ip)->v_uflag & VU_DIROP) {
1164 			cdp->di_nlink = ip->i_lfs_odnlink;
1165 			/* if (ITOV(ip)->v_type == VDIR) */
1166 			cdp->di_size = ip->i_lfs_osize;
1167 		}
1168 	} else {
1169 		ip->i_lfs_odnlink = cdp->di_nlink;
1170 		ip->i_lfs_osize = ip->i_size;
1171 	}
1172 
1173 
1174 	/* We can finish the segment accounting for truncations now */
1175 	lfs_finalize_ino_seguse(fs, ip);
1176 
1177 	/*
1178 	 * If we are cleaning, ensure that we don't write UNWRITTEN disk
1179 	 * addresses to disk; possibly change the on-disk record of
1180 	 * the inode size, either by reverting to the previous size
1181 	 * (in the case of cleaning) or by verifying the inode's block
1182 	 * holdings (in the case of files being allocated as they are being
1183 	 * written).
1184 	 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
1185 	 * XXX count on disk wrong by the same amount.	We should be
1186 	 * XXX able to "borrow" from lfs_avail and return it after the
1187 	 * XXX Ifile is written.  See also in lfs_writeseg.
1188 	 */
1189 
1190 	/* Check file size based on highest allocated block */
1191 	if (((ip->i_ffs1_mode & IFMT) == IFREG ||
1192 	     (ip->i_ffs1_mode & IFMT) == IFDIR) &&
1193 	    ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
1194 		cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
1195 		DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
1196 		      PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
1197 	}
1198 	if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
1199 		DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
1200 		      " at %x\n", ip->i_number, ip->i_lfs_effnblks,
1201 		      ip->i_ffs1_blocks, fs->lfs_offset));
1202 		for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
1203 		     daddrp++) {
1204 			if (*daddrp == UNWRITTEN) {
1205 				DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
1206 				*daddrp = 0;
1207 			}
1208 		}
1209 	}
1210 
1211 #ifdef DIAGNOSTIC
1212 	/*
1213 	 * Check dinode held blocks against dinode size.
1214 	 * This should be identical to the check in lfs_vget().
1215 	 */
1216 	for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1217 	     i < NDADDR; i++) {
1218 		KASSERT(i >= 0);
1219 		if ((cdp->di_mode & IFMT) == IFLNK)
1220 			continue;
1221 		if (((cdp->di_mode & IFMT) == IFBLK ||
1222 		     (cdp->di_mode & IFMT) == IFCHR) && i == 0)
1223 			continue;
1224 		if (cdp->di_db[i] != 0) {
1225 # ifdef DEBUG
1226 			lfs_dump_dinode(cdp);
1227 # endif
1228 			panic("writing inconsistent inode");
1229 		}
1230 	}
1231 #endif /* DIAGNOSTIC */
1232 
1233 	if (ip->i_flag & IN_CLEANING)
1234 		LFS_CLR_UINO(ip, IN_CLEANING);
1235 	else {
1236 		/* XXX IN_ALLMOD */
1237 		LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
1238 			     IN_UPDATE | IN_MODIFY);
1239 		if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
1240 			LFS_CLR_UINO(ip, IN_MODIFIED);
1241 		else {
1242 			DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
1243 			    "blks=%d, eff=%d\n", ip->i_number,
1244 			    ip->i_ffs1_blocks, ip->i_lfs_effnblks));
1245 		}
1246 	}
1247 
1248 	if (ip->i_number == LFS_IFILE_INUM) {
1249 		/* We know sp->idp == NULL */
1250 		sp->idp = ((struct ufs1_dinode *)bp->b_data) +
1251 			(sp->ninodes % INOPB(fs));
1252 
1253 		/* Not dirty any more */
1254 		mutex_enter(&lfs_lock);
1255 		fs->lfs_flags &= ~LFS_IFDIRTY;
1256 		mutex_exit(&lfs_lock);
1257 	}
1258 
1259 	if (gotblk) {
1260 		mutex_enter(&bufcache_lock);
1261 		LFS_LOCK_BUF(bp);
1262 		brelsel(bp, 0);
1263 		mutex_exit(&bufcache_lock);
1264 	}
1265 
1266 	/* Increment inode count in segment summary block. */
1267 	++((SEGSUM *)(sp->segsum))->ss_ninos;
1268 
1269 	/* If this page is full, set flag to allocate a new page. */
1270 	if (++sp->ninodes % INOPB(fs) == 0)
1271 		sp->ibp = NULL;
1272 
1273 	redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
1274 
1275 	KASSERT(redo_ifile == 0);
1276 	return (redo_ifile);
1277 }
1278 
1279 int
1280 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
1281 {
1282 	struct lfs *fs;
1283 	int vers;
1284 	int j, blksinblk;
1285 
1286 	ASSERT_SEGLOCK(sp->fs);
1287 	/*
1288 	 * If full, finish this segment.  We may be doing I/O, so
1289 	 * release and reacquire the splbio().
1290 	 */
1291 #ifdef DIAGNOSTIC
1292 	if (sp->vp == NULL)
1293 		panic ("lfs_gatherblock: Null vp in segment");
1294 #endif
1295 	fs = sp->fs;
1296 	blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
1297 	if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
1298 	    sp->seg_bytes_left < bp->b_bcount) {
1299 		if (mptr)
1300 			mutex_exit(mptr);
1301 		lfs_updatemeta(sp);
1302 
1303 		vers = sp->fip->fi_version;
1304 		(void) lfs_writeseg(fs, sp);
1305 
1306 		/* Add the current file to the segment summary. */
1307 		lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
1308 
1309 		if (mptr)
1310 			mutex_enter(mptr);
1311 		return (1);
1312 	}
1313 
1314 	if (bp->b_flags & B_GATHERED) {
1315 		DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
1316 		      " lbn %" PRId64 "\n",
1317 		      sp->fip->fi_ino, bp->b_lblkno));
1318 		return (0);
1319 	}
1320 
1321 	/* Insert into the buffer list, update the FINFO block. */
1322 	bp->b_flags |= B_GATHERED;
1323 
1324 	*sp->cbpp++ = bp;
1325 	for (j = 0; j < blksinblk; j++) {
1326 		sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
1327 		/* This block's accounting moves from lfs_favail to lfs_avail */
1328 		lfs_deregister_block(sp->vp, bp->b_lblkno + j);
1329 	}
1330 
1331 	sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
1332 	sp->seg_bytes_left -= bp->b_bcount;
1333 	return (0);
1334 }
1335 
1336 int
1337 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
1338     int (*match)(struct lfs *, struct buf *))
1339 {
1340 	struct buf *bp, *nbp;
1341 	int count = 0;
1342 
1343 	ASSERT_SEGLOCK(fs);
1344 	if (vp->v_type == VBLK)
1345 		return 0;
1346 	KASSERT(sp->vp == NULL);
1347 	sp->vp = vp;
1348 	mutex_enter(&bufcache_lock);
1349 
1350 #ifndef LFS_NO_BACKBUF_HACK
1351 /* This is a hack to see if ordering the blocks in LFS makes a difference. */
1352 # define	BUF_OFFSET	\
1353 	(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
1354 # define	BACK_BUF(BP)	\
1355 	((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
1356 # define	BEG_OF_LIST	\
1357 	((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
1358 
1359 loop:
1360 	/* Find last buffer. */
1361 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
1362 	     bp && LIST_NEXT(bp, b_vnbufs) != NULL;
1363 	     bp = LIST_NEXT(bp, b_vnbufs))
1364 		/* nothing */;
1365 	for (; bp && bp != BEG_OF_LIST; bp = nbp) {
1366 		nbp = BACK_BUF(bp);
1367 #else /* LFS_NO_BACKBUF_HACK */
1368 loop:
1369 	for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1370 		nbp = LIST_NEXT(bp, b_vnbufs);
1371 #endif /* LFS_NO_BACKBUF_HACK */
1372 		if ((bp->b_cflags & BC_BUSY) != 0 ||
1373 		    (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
1374 #ifdef DEBUG
1375 			if (vp == fs->lfs_ivnode &&
1376 			    (bp->b_cflags & BC_BUSY) != 0 &&
1377 			    (bp->b_flags & B_GATHERED) == 0)
1378 				log(LOG_NOTICE, "lfs_gather: ifile lbn %"
1379 				      PRId64 " busy (%x) at 0x%x",
1380 				      bp->b_lblkno, bp->b_flags,
1381 				      (unsigned)fs->lfs_offset);
1382 #endif
1383 			continue;
1384 		}
1385 #ifdef DIAGNOSTIC
1386 # ifdef LFS_USE_B_INVAL
1387 		if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
1388 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1389 			      " is BC_INVAL\n", bp->b_lblkno));
1390 			VOP_PRINT(bp->b_vp);
1391 		}
1392 # endif /* LFS_USE_B_INVAL */
1393 		if (!(bp->b_oflags & BO_DELWRI))
1394 			panic("lfs_gather: bp not BO_DELWRI");
1395 		if (!(bp->b_flags & B_LOCKED)) {
1396 			DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
1397 			      " blk %" PRId64 " not B_LOCKED\n",
1398 			      bp->b_lblkno,
1399 			      dbtofsb(fs, bp->b_blkno)));
1400 			VOP_PRINT(bp->b_vp);
1401 			panic("lfs_gather: bp not B_LOCKED");
1402 		}
1403 #endif
1404 		if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
1405 			goto loop;
1406 		}
1407 		count++;
1408 	}
1409 	mutex_exit(&bufcache_lock);
1410 	lfs_updatemeta(sp);
1411 	KASSERT(sp->vp == vp);
1412 	sp->vp = NULL;
1413 	return count;
1414 }
1415 
1416 #if DEBUG
1417 # define DEBUG_OOFF(n) do {						\
1418 	if (ooff == 0) {						\
1419 		DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
1420 			"ino %d lbn %" PRId64 " at 0x%" PRIx32		\
1421 			", was 0x0 (or %" PRId64 ")\n",			\
1422 			(n), ip->i_number, lbn, ndaddr, daddr));	\
1423 	}								\
1424 } while (0)
1425 #else
1426 # define DEBUG_OOFF(n)
1427 #endif
1428 
1429 /*
1430  * Change the given block's address to ndaddr, finding its previous
1431  * location using ufs_bmaparray().
1432  *
1433  * Account for this change in the segment table.
1434  *
1435  * called with sp == NULL by roll-forwarding code.
1436  */
1437 void
1438 lfs_update_single(struct lfs *fs, struct segment *sp,
1439     struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
1440 {
1441 	SEGUSE *sup;
1442 	struct buf *bp;
1443 	struct indir a[NIADDR + 2], *ap;
1444 	struct inode *ip;
1445 	daddr_t daddr, ooff;
1446 	int num, error;
1447 	int bb, osize, obb;
1448 
1449 	ASSERT_SEGLOCK(fs);
1450 	KASSERT(sp == NULL || sp->vp == vp);
1451 	ip = VTOI(vp);
1452 
1453 	error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
1454 	if (error)
1455 		panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
1456 
1457 	daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
1458 	KASSERT(daddr <= LFS_MAX_DADDR);
1459 	if (daddr > 0)
1460 		daddr = dbtofsb(fs, daddr);
1461 
1462 	bb = fragstofsb(fs, numfrags(fs, size));
1463 	switch (num) {
1464 	    case 0:
1465 		    ooff = ip->i_ffs1_db[lbn];
1466 		    DEBUG_OOFF(0);
1467 		    if (ooff == UNWRITTEN)
1468 			    ip->i_ffs1_blocks += bb;
1469 		    else {
1470 			    /* possible fragment truncation or extension */
1471 			    obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
1472 			    ip->i_ffs1_blocks += (bb - obb);
1473 		    }
1474 		    ip->i_ffs1_db[lbn] = ndaddr;
1475 		    break;
1476 	    case 1:
1477 		    ooff = ip->i_ffs1_ib[a[0].in_off];
1478 		    DEBUG_OOFF(1);
1479 		    if (ooff == UNWRITTEN)
1480 			    ip->i_ffs1_blocks += bb;
1481 		    ip->i_ffs1_ib[a[0].in_off] = ndaddr;
1482 		    break;
1483 	    default:
1484 		    ap = &a[num - 1];
1485 		    if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
1486 			    panic("lfs_updatemeta: bread bno %" PRId64,
1487 				  ap->in_lbn);
1488 
1489 		    /* XXX ondisk32 */
1490 		    ooff = ((int32_t *)bp->b_data)[ap->in_off];
1491 		    DEBUG_OOFF(num);
1492 		    if (ooff == UNWRITTEN)
1493 			    ip->i_ffs1_blocks += bb;
1494 		    /* XXX ondisk32 */
1495 		    ((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
1496 		    (void) VOP_BWRITE(bp);
1497 	}
1498 
1499 	KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
1500 
1501 	/* Update hiblk when extending the file */
1502 	if (lbn > ip->i_lfs_hiblk)
1503 		ip->i_lfs_hiblk = lbn;
1504 
1505 	/*
1506 	 * Though we'd rather it couldn't, this *can* happen right now
1507 	 * if cleaning blocks and regular blocks coexist.
1508 	 */
1509 	/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
1510 
1511 	/*
1512 	 * Update segment usage information, based on old size
1513 	 * and location.
1514 	 */
1515 	if (daddr > 0) {
1516 		u_int32_t oldsn = dtosn(fs, daddr);
1517 #ifdef DIAGNOSTIC
1518 		int ndupino;
1519 
1520 		if (sp && sp->seg_number == oldsn) {
1521 			ndupino = sp->ndupino;
1522 		} else {
1523 			ndupino = 0;
1524 		}
1525 #endif
1526 		KASSERT(oldsn < fs->lfs_nseg);
1527 		if (lbn >= 0 && lbn < NDADDR)
1528 			osize = ip->i_lfs_fragsize[lbn];
1529 		else
1530 			osize = fs->lfs_bsize;
1531 		LFS_SEGENTRY(sup, fs, oldsn, bp);
1532 #ifdef DIAGNOSTIC
1533 		if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
1534 		    < osize) {
1535 			printf("lfs_updatemeta: negative bytes "
1536 			       "(segment %" PRIu32 " short by %" PRId64
1537 			       ")\n", dtosn(fs, daddr),
1538 			       (int64_t)osize -
1539 			       (sizeof (struct ufs1_dinode) * ndupino +
1540 				sup->su_nbytes));
1541 			printf("lfs_updatemeta: ino %llu, lbn %" PRId64
1542 			       ", addr = 0x%" PRIx64 "\n",
1543 			       (unsigned long long)ip->i_number, lbn, daddr);
1544 			printf("lfs_updatemeta: ndupino=%d\n", ndupino);
1545 			panic("lfs_updatemeta: negative bytes");
1546 			sup->su_nbytes = osize -
1547 			    sizeof (struct ufs1_dinode) * ndupino;
1548 		}
1549 #endif
1550 		DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
1551 		      " db 0x%" PRIx64 "\n",
1552 		      dtosn(fs, daddr), osize,
1553 		      ip->i_number, lbn, daddr));
1554 		sup->su_nbytes -= osize;
1555 		if (!(bp->b_flags & B_GATHERED)) {
1556 			mutex_enter(&lfs_lock);
1557 			fs->lfs_flags |= LFS_IFDIRTY;
1558 			mutex_exit(&lfs_lock);
1559 		}
1560 		LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
1561 	}
1562 	/*
1563 	 * Now that this block has a new address, and its old
1564 	 * segment no longer owns it, we can forget about its
1565 	 * old size.
1566 	 */
1567 	if (lbn >= 0 && lbn < NDADDR)
1568 		ip->i_lfs_fragsize[lbn] = size;
1569 }
1570 
1571 /*
1572  * Update the metadata that points to the blocks listed in the FINFO
1573  * array.
1574  */
1575 void
1576 lfs_updatemeta(struct segment *sp)
1577 {
1578 	struct buf *sbp;
1579 	struct lfs *fs;
1580 	struct vnode *vp;
1581 	daddr_t lbn;
1582 	int i, nblocks, num;
1583 	int bb;
1584 	int bytesleft, size;
1585 
1586 	ASSERT_SEGLOCK(sp->fs);
1587 	vp = sp->vp;
1588 	nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
1589 	KASSERT(nblocks >= 0);
1590 	KASSERT(vp != NULL);
1591 	if (nblocks == 0)
1592 		return;
1593 
1594 	/*
1595 	 * This count may be high due to oversize blocks from lfs_gop_write.
1596 	 * Correct for this. (XXX we should be able to keep track of these.)
1597 	 */
1598 	fs = sp->fs;
1599 	for (i = 0; i < nblocks; i++) {
1600 		if (sp->start_bpp[i] == NULL) {
1601 			DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
1602 			nblocks = i;
1603 			break;
1604 		}
1605 		num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
1606 		KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
1607 		nblocks -= num - 1;
1608 	}
1609 
1610 	KASSERT(vp->v_type == VREG ||
1611 	   nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
1612 	KASSERT(nblocks == sp->cbpp - sp->start_bpp);
1613 
1614 	/*
1615 	 * Sort the blocks.
1616 	 *
1617 	 * We have to sort even if the blocks come from the
1618 	 * cleaner, because there might be other pending blocks on the
1619 	 * same inode...and if we don't sort, and there are fragments
1620 	 * present, blocks may be written in the wrong place.
1621 	 */
1622 	lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
1623 
1624 	/*
1625 	 * Record the length of the last block in case it's a fragment.
1626 	 * If there are indirect blocks present, they sort last.  An
1627 	 * indirect block will be lfs_bsize and its presence indicates
1628 	 * that you cannot have fragments.
1629 	 *
1630 	 * XXX This last is a lie.  A cleaned fragment can coexist with
1631 	 * XXX a later indirect block.	This will continue to be
1632 	 * XXX true until lfs_markv is fixed to do everything with
1633 	 * XXX fake blocks (including fake inodes and fake indirect blocks).
1634 	 */
1635 	sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
1636 		fs->lfs_bmask) + 1;
1637 
1638 	/*
1639 	 * Assign disk addresses, and update references to the logical
1640 	 * block and the segment usage information.
1641 	 */
1642 	for (i = nblocks; i--; ++sp->start_bpp) {
1643 		sbp = *sp->start_bpp;
1644 		lbn = *sp->start_lbp;
1645 		KASSERT(sbp->b_lblkno == lbn);
1646 
1647 		sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
1648 
1649 		/*
1650 		 * If we write a frag in the wrong place, the cleaner won't
1651 		 * be able to correctly identify its size later, and the
1652 		 * segment will be uncleanable.	 (Even worse, it will assume
1653 		 * that the indirect block that actually ends the list
1654 		 * is of a smaller size!)
1655 		 */
1656 		if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
1657 			panic("lfs_updatemeta: fragment is not last block");
1658 
1659 		/*
1660 		 * For each subblock in this possibly oversized block,
1661 		 * update its address on disk.
1662 		 */
1663 		KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
1664 		KASSERT(vp == sbp->b_vp);
1665 		for (bytesleft = sbp->b_bcount; bytesleft > 0;
1666 		     bytesleft -= fs->lfs_bsize) {
1667 			size = MIN(bytesleft, fs->lfs_bsize);
1668 			bb = fragstofsb(fs, numfrags(fs, size));
1669 			lbn = *sp->start_lbp++;
1670 			lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
1671 			    size);
1672 			fs->lfs_offset += bb;
1673 		}
1674 
1675 	}
1676 
1677 	/* This inode has been modified */
1678 	LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
1679 }
1680 
1681 /*
1682  * Move lfs_offset to a segment earlier than sn.
1683  */
1684 int
1685 lfs_rewind(struct lfs *fs, int newsn)
1686 {
1687 	int sn, osn, isdirty;
1688 	struct buf *bp;
1689 	SEGUSE *sup;
1690 
1691 	ASSERT_SEGLOCK(fs);
1692 
1693 	osn = dtosn(fs, fs->lfs_offset);
1694 	if (osn < newsn)
1695 		return 0;
1696 
1697 	/* lfs_avail eats the remaining space in this segment */
1698 	fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
1699 
1700 	/* Find a low-numbered segment */
1701 	for (sn = 0; sn < fs->lfs_nseg; ++sn) {
1702 		LFS_SEGENTRY(sup, fs, sn, bp);
1703 		isdirty = sup->su_flags & SEGUSE_DIRTY;
1704 		brelse(bp, 0);
1705 
1706 		if (!isdirty)
1707 			break;
1708 	}
1709 	if (sn == fs->lfs_nseg)
1710 		panic("lfs_rewind: no clean segments");
1711 	if (newsn >= 0 && sn >= newsn)
1712 		return ENOENT;
1713 	fs->lfs_nextseg = sn;
1714 	lfs_newseg(fs);
1715 	fs->lfs_offset = fs->lfs_curseg;
1716 
1717 	return 0;
1718 }
1719 
1720 /*
1721  * Start a new partial segment.
1722  *
1723  * Return 1 when we entered to a new segment.
1724  * Otherwise, return 0.
1725  */
1726 int
1727 lfs_initseg(struct lfs *fs)
1728 {
1729 	struct segment *sp = fs->lfs_sp;
1730 	SEGSUM *ssp;
1731 	struct buf *sbp;	/* buffer for SEGSUM */
1732 	int repeat = 0;		/* return value */
1733 
1734 	ASSERT_SEGLOCK(fs);
1735 	/* Advance to the next segment. */
1736 	if (!LFS_PARTIAL_FITS(fs)) {
1737 		SEGUSE *sup;
1738 		struct buf *bp;
1739 
1740 		/* lfs_avail eats the remaining space */
1741 		fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
1742 						   fs->lfs_curseg);
1743 		/* Wake up any cleaning procs waiting on this file system. */
1744 		lfs_wakeup_cleaner(fs);
1745 		lfs_newseg(fs);
1746 		repeat = 1;
1747 		fs->lfs_offset = fs->lfs_curseg;
1748 
1749 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1750 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
1751 
1752 		/*
1753 		 * If the segment contains a superblock, update the offset
1754 		 * and summary address to skip over it.
1755 		 */
1756 		LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
1757 		if (sup->su_flags & SEGUSE_SUPERBLOCK) {
1758 			fs->lfs_offset += btofsb(fs, LFS_SBPAD);
1759 			sp->seg_bytes_left -= LFS_SBPAD;
1760 		}
1761 		brelse(bp, 0);
1762 		/* Segment zero could also contain the labelpad */
1763 		if (fs->lfs_version > 1 && sp->seg_number == 0 &&
1764 		    fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
1765 			fs->lfs_offset +=
1766 			    btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
1767 			sp->seg_bytes_left -=
1768 			    LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
1769 		}
1770 	} else {
1771 		sp->seg_number = dtosn(fs, fs->lfs_curseg);
1772 		sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
1773 				      (fs->lfs_offset - fs->lfs_curseg));
1774 	}
1775 	fs->lfs_lastpseg = fs->lfs_offset;
1776 
1777 	/* Record first address of this partial segment */
1778 	if (sp->seg_flags & SEGM_CLEAN) {
1779 		fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
1780 		if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
1781 			/* "1" is the artificial inc in lfs_seglock */
1782 			mutex_enter(&lfs_lock);
1783 			while (fs->lfs_iocount > 1) {
1784 				mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1785 				    "lfs_initseg", 0, &lfs_lock);
1786 			}
1787 			mutex_exit(&lfs_lock);
1788 			fs->lfs_cleanind = 0;
1789 		}
1790 	}
1791 
1792 	sp->fs = fs;
1793 	sp->ibp = NULL;
1794 	sp->idp = NULL;
1795 	sp->ninodes = 0;
1796 	sp->ndupino = 0;
1797 
1798 	sp->cbpp = sp->bpp;
1799 
1800 	/* Get a new buffer for SEGSUM */
1801 	sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
1802 	    fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
1803 
1804 	/* ... and enter it into the buffer list. */
1805 	*sp->cbpp = sbp;
1806 	sp->cbpp++;
1807 	fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
1808 
1809 	sp->start_bpp = sp->cbpp;
1810 
1811 	/* Set point to SEGSUM, initialize it. */
1812 	ssp = sp->segsum = sbp->b_data;
1813 	memset(ssp, 0, fs->lfs_sumsize);
1814 	ssp->ss_next = fs->lfs_nextseg;
1815 	ssp->ss_nfinfo = ssp->ss_ninos = 0;
1816 	ssp->ss_magic = SS_MAGIC;
1817 
1818 	/* Set pointer to first FINFO, initialize it. */
1819 	sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
1820 	sp->fip->fi_nblocks = 0;
1821 	sp->start_lbp = &sp->fip->fi_blocks[0];
1822 	sp->fip->fi_lastlength = 0;
1823 
1824 	sp->seg_bytes_left -= fs->lfs_sumsize;
1825 	sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
1826 
1827 	return (repeat);
1828 }
1829 
1830 /*
1831  * Remove SEGUSE_INVAL from all segments.
1832  */
1833 void
1834 lfs_unset_inval_all(struct lfs *fs)
1835 {
1836 	SEGUSE *sup;
1837 	struct buf *bp;
1838 	int i;
1839 
1840 	for (i = 0; i < fs->lfs_nseg; i++) {
1841 		LFS_SEGENTRY(sup, fs, i, bp);
1842 		if (sup->su_flags & SEGUSE_INVAL) {
1843 			sup->su_flags &= ~SEGUSE_INVAL;
1844 			LFS_WRITESEGENTRY(sup, fs, i, bp);
1845 		} else
1846 			brelse(bp, 0);
1847 	}
1848 }
1849 
1850 /*
1851  * Return the next segment to write.
1852  */
1853 void
1854 lfs_newseg(struct lfs *fs)
1855 {
1856 	CLEANERINFO *cip;
1857 	SEGUSE *sup;
1858 	struct buf *bp;
1859 	int curseg, isdirty, sn, skip_inval;
1860 
1861 	ASSERT_SEGLOCK(fs);
1862 
1863 	/* Honor LFCNWRAPSTOP */
1864 	mutex_enter(&lfs_lock);
1865 	while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
1866 		if (fs->lfs_wrappass) {
1867 			log(LOG_NOTICE, "%s: wrappass=%d\n",
1868 				fs->lfs_fsmnt, fs->lfs_wrappass);
1869 			fs->lfs_wrappass = 0;
1870 			break;
1871 		}
1872 		fs->lfs_wrapstatus = LFS_WRAP_WAITING;
1873 		wakeup(&fs->lfs_nowrap);
1874 		log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
1875 		mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
1876 			&lfs_lock);
1877 	}
1878 	fs->lfs_wrapstatus = LFS_WRAP_GOING;
1879 	mutex_exit(&lfs_lock);
1880 
1881 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1882 	DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
1883 	      dtosn(fs, fs->lfs_nextseg)));
1884 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1885 	sup->su_nbytes = 0;
1886 	sup->su_nsums = 0;
1887 	sup->su_ninos = 0;
1888 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
1889 
1890 	LFS_CLEANERINFO(cip, fs, bp);
1891 	--cip->clean;
1892 	++cip->dirty;
1893 	fs->lfs_nclean = cip->clean;
1894 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1895 
1896 	fs->lfs_lastseg = fs->lfs_curseg;
1897 	fs->lfs_curseg = fs->lfs_nextseg;
1898 	skip_inval = 1;
1899 	for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
1900 		sn = (sn + 1) % fs->lfs_nseg;
1901 
1902 		if (sn == curseg) {
1903 			if (skip_inval)
1904 				skip_inval = 0;
1905 			else
1906 				panic("lfs_nextseg: no clean segments");
1907 		}
1908 		LFS_SEGENTRY(sup, fs, sn, bp);
1909 		isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
1910 		/* Check SEGUSE_EMPTY as we go along */
1911 		if (isdirty && sup->su_nbytes == 0 &&
1912 		    !(sup->su_flags & SEGUSE_EMPTY))
1913 			LFS_WRITESEGENTRY(sup, fs, sn, bp);
1914 		else
1915 			brelse(bp, 0);
1916 
1917 		if (!isdirty)
1918 			break;
1919 	}
1920 	if (skip_inval == 0)
1921 		lfs_unset_inval_all(fs);
1922 
1923 	++fs->lfs_nactive;
1924 	fs->lfs_nextseg = sntod(fs, sn);
1925 	if (lfs_dostats) {
1926 		++lfs_stats.segsused;
1927 	}
1928 }
1929 
1930 static struct buf *
1931 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
1932     int n)
1933 {
1934 	struct lfs_cluster *cl;
1935 	struct buf **bpp, *bp;
1936 
1937 	ASSERT_SEGLOCK(fs);
1938 	cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
1939 	bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
1940 	memset(cl, 0, sizeof(*cl));
1941 	cl->fs = fs;
1942 	cl->bpp = bpp;
1943 	cl->bufcount = 0;
1944 	cl->bufsize = 0;
1945 
1946 	/* If this segment is being written synchronously, note that */
1947 	if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
1948 		cl->flags |= LFS_CL_SYNC;
1949 		cl->seg = fs->lfs_sp;
1950 		++cl->seg->seg_iocount;
1951 	}
1952 
1953 	/* Get an empty buffer header, or maybe one with something on it */
1954 	bp = getiobuf(vp, true);
1955 	bp->b_dev = NODEV;
1956 	bp->b_blkno = bp->b_lblkno = addr;
1957 	bp->b_iodone = lfs_cluster_callback;
1958 	bp->b_private = cl;
1959 
1960 	return bp;
1961 }
1962 
1963 int
1964 lfs_writeseg(struct lfs *fs, struct segment *sp)
1965 {
1966 	struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
1967 	SEGUSE *sup;
1968 	SEGSUM *ssp;
1969 	int i;
1970 	int do_again, nblocks, byteoffset;
1971 	size_t el_size;
1972 	struct lfs_cluster *cl;
1973 	u_short ninos;
1974 	struct vnode *devvp;
1975 	char *p = NULL;
1976 	struct vnode *vp;
1977 	int32_t *daddrp;	/* XXX ondisk32 */
1978 	int changed;
1979 	u_int32_t sum;
1980 #ifdef DEBUG
1981 	FINFO *fip;
1982 	int findex;
1983 #endif
1984 
1985 	ASSERT_SEGLOCK(fs);
1986 
1987 	ssp = (SEGSUM *)sp->segsum;
1988 
1989 	/*
1990 	 * If there are no buffers other than the segment summary to write,
1991 	 * don't do anything.  If we are the end of a dirop sequence, however,
1992 	 * write the empty segment summary anyway, to help out the
1993 	 * roll-forward agent.
1994 	 */
1995 	if ((nblocks = sp->cbpp - sp->bpp) == 1) {
1996 		if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
1997 			return 0;
1998 	}
1999 
2000 	/* Note if partial segment is being written by the cleaner */
2001 	if (sp->seg_flags & SEGM_CLEAN)
2002 		ssp->ss_flags |= SS_CLEAN;
2003 
2004 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2005 
2006 	/* Update the segment usage information. */
2007 	LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
2008 
2009 	/* Loop through all blocks, except the segment summary. */
2010 	for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
2011 		if ((*bpp)->b_vp != devvp) {
2012 			sup->su_nbytes += (*bpp)->b_bcount;
2013 			DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
2014 			      " lbn %" PRId64 " db 0x%" PRIx64 "\n",
2015 			      sp->seg_number, (*bpp)->b_bcount,
2016 			      VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
2017 			      (*bpp)->b_blkno));
2018 		}
2019 	}
2020 
2021 #ifdef DEBUG
2022 	/* Check for zero-length and zero-version FINFO entries. */
2023 	fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
2024 	for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
2025 		KDASSERT(fip->fi_nblocks > 0);
2026 		KDASSERT(fip->fi_version > 0);
2027 		fip = (FINFO *)((char *)fip + FINFOSIZE +
2028 			sizeof(int32_t) * fip->fi_nblocks);
2029 	}
2030 #endif /* DEBUG */
2031 
2032 	ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
2033 	DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
2034 	      sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
2035 	      ssp->ss_ninos));
2036 	sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
2037 	/* sup->su_nbytes += fs->lfs_sumsize; */
2038 	if (fs->lfs_version == 1)
2039 		sup->su_olastmod = time_second;
2040 	else
2041 		sup->su_lastmod = time_second;
2042 	sup->su_ninos += ninos;
2043 	++sup->su_nsums;
2044 	fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
2045 
2046 	do_again = !(bp->b_flags & B_GATHERED);
2047 	LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
2048 
2049 	/*
2050 	 * Mark blocks B_BUSY, to prevent then from being changed between
2051 	 * the checksum computation and the actual write.
2052 	 *
2053 	 * If we are cleaning, check indirect blocks for UNWRITTEN, and if
2054 	 * there are any, replace them with copies that have UNASSIGNED
2055 	 * instead.
2056 	 */
2057 	mutex_enter(&bufcache_lock);
2058 	for (bpp = sp->bpp, i = nblocks - 1; i--;) {
2059 		++bpp;
2060 		bp = *bpp;
2061 		if (bp->b_iodone != NULL) {	 /* UBC or malloced buffer */
2062 			bp->b_cflags |= BC_BUSY;
2063 			continue;
2064 		}
2065 
2066 		while (bp->b_cflags & BC_BUSY) {
2067 			DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
2068 			      " data summary corruption for ino %d, lbn %"
2069 			      PRId64 "\n",
2070 			      VTOI(bp->b_vp)->i_number, bp->b_lblkno));
2071 			bp->b_cflags |= BC_WANTED;
2072 			cv_wait(&bp->b_busy, &bufcache_lock);
2073 		}
2074 		bp->b_cflags |= BC_BUSY;
2075 		mutex_exit(&bufcache_lock);
2076 		unbusybp = NULL;
2077 
2078 		/*
2079 		 * Check and replace indirect block UNWRITTEN bogosity.
2080 		 * XXX See comment in lfs_writefile.
2081 		 */
2082 		if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
2083 		   VTOI(bp->b_vp)->i_ffs1_blocks !=
2084 		   VTOI(bp->b_vp)->i_lfs_effnblks) {
2085 			DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
2086 			      VTOI(bp->b_vp)->i_number,
2087 			      VTOI(bp->b_vp)->i_lfs_effnblks,
2088 			      VTOI(bp->b_vp)->i_ffs1_blocks));
2089 			/* Make a copy we'll make changes to */
2090 			newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
2091 					   bp->b_bcount, LFS_NB_IBLOCK);
2092 			newbp->b_blkno = bp->b_blkno;
2093 			memcpy(newbp->b_data, bp->b_data,
2094 			       newbp->b_bcount);
2095 
2096 			changed = 0;
2097 			/* XXX ondisk32 */
2098 			for (daddrp = (int32_t *)(newbp->b_data);
2099 			     daddrp < (int32_t *)((char *)newbp->b_data +
2100 						  newbp->b_bcount); daddrp++) {
2101 				if (*daddrp == UNWRITTEN) {
2102 					++changed;
2103 					*daddrp = 0;
2104 				}
2105 			}
2106 			/*
2107 			 * Get rid of the old buffer.  Don't mark it clean,
2108 			 * though, if it still has dirty data on it.
2109 			 */
2110 			if (changed) {
2111 				DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
2112 				      " bp = %p newbp = %p\n", changed, bp,
2113 				      newbp));
2114 				*bpp = newbp;
2115 				bp->b_flags &= ~B_GATHERED;
2116 				bp->b_error = 0;
2117 				if (bp->b_iodone != NULL) {
2118 					DLOG((DLOG_SEG, "lfs_writeseg: "
2119 					      "indir bp should not be B_CALL\n"));
2120 					biodone(bp);
2121 					bp = NULL;
2122 				} else {
2123 					/* Still on free list, leave it there */
2124 					unbusybp = bp;
2125 					/*
2126 					 * We have to re-decrement lfs_avail
2127 					 * since this block is going to come
2128 					 * back around to us in the next
2129 					 * segment.
2130 					 */
2131 					fs->lfs_avail -=
2132 					    btofsb(fs, bp->b_bcount);
2133 				}
2134 			} else {
2135 				lfs_freebuf(fs, newbp);
2136 			}
2137 		}
2138 		mutex_enter(&bufcache_lock);
2139 		if (unbusybp != NULL) {
2140 			unbusybp->b_cflags &= ~BC_BUSY;
2141 			if (unbusybp->b_cflags & BC_WANTED)
2142 				cv_broadcast(&bp->b_busy);
2143 		}
2144 	}
2145 	mutex_exit(&bufcache_lock);
2146 
2147 	/*
2148 	 * Compute checksum across data and then across summary; the first
2149 	 * block (the summary block) is skipped.  Set the create time here
2150 	 * so that it's guaranteed to be later than the inode mod times.
2151 	 */
2152 	sum = 0;
2153 	if (fs->lfs_version == 1)
2154 		el_size = sizeof(u_long);
2155 	else
2156 		el_size = sizeof(u_int32_t);
2157 	for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
2158 		++bpp;
2159 		/* Loop through gop_write cluster blocks */
2160 		for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
2161 		     byteoffset += fs->lfs_bsize) {
2162 #ifdef LFS_USE_B_INVAL
2163 			if ((*bpp)->b_cflags & BC_INVAL) != 0 &&
2164 			    (*bpp)->b_iodone != NULL) {
2165 				if (copyin((void *)(*bpp)->b_saveaddr +
2166 					   byteoffset, dp, el_size)) {
2167 					panic("lfs_writeseg: copyin failed [1]:"
2168 						" ino %d blk %" PRId64,
2169 						VTOI((*bpp)->b_vp)->i_number,
2170 						(*bpp)->b_lblkno);
2171 				}
2172 			} else
2173 #endif /* LFS_USE_B_INVAL */
2174 			{
2175 				sum = lfs_cksum_part((char *)
2176 				    (*bpp)->b_data + byteoffset, el_size, sum);
2177 			}
2178 		}
2179 	}
2180 	if (fs->lfs_version == 1)
2181 		ssp->ss_ocreate = time_second;
2182 	else {
2183 		ssp->ss_create = time_second;
2184 		ssp->ss_serial = ++fs->lfs_serial;
2185 		ssp->ss_ident  = fs->lfs_ident;
2186 	}
2187 	ssp->ss_datasum = lfs_cksum_fold(sum);
2188 	ssp->ss_sumsum = cksum(&ssp->ss_datasum,
2189 	    fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
2190 
2191 	mutex_enter(&lfs_lock);
2192 	fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
2193 			  btofsb(fs, fs->lfs_sumsize));
2194 	fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
2195 			  btofsb(fs, fs->lfs_sumsize));
2196 	mutex_exit(&lfs_lock);
2197 
2198 	/*
2199 	 * When we simply write the blocks we lose a rotation for every block
2200 	 * written.  To avoid this problem, we cluster the buffers into a
2201 	 * chunk and write the chunk.  MAXPHYS is the largest size I/O
2202 	 * devices can handle, use that for the size of the chunks.
2203 	 *
2204 	 * Blocks that are already clusters (from GOP_WRITE), however, we
2205 	 * don't bother to copy into other clusters.
2206 	 */
2207 
2208 #define CHUNKSIZE MAXPHYS
2209 
2210 	if (devvp == NULL)
2211 		panic("devvp is NULL");
2212 	for (bpp = sp->bpp, i = nblocks; i;) {
2213 		cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
2214 		cl = cbp->b_private;
2215 
2216 		cbp->b_flags |= B_ASYNC;
2217 		cbp->b_cflags |= BC_BUSY;
2218 		cbp->b_bcount = 0;
2219 
2220 #if defined(DEBUG) && defined(DIAGNOSTIC)
2221 		if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
2222 		    / sizeof(int32_t)) {
2223 			panic("lfs_writeseg: real bpp overwrite");
2224 		}
2225 		if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
2226 			panic("lfs_writeseg: theoretical bpp overwrite");
2227 		}
2228 #endif
2229 
2230 		/*
2231 		 * Construct the cluster.
2232 		 */
2233 		mutex_enter(&lfs_lock);
2234 		++fs->lfs_iocount;
2235 		mutex_exit(&lfs_lock);
2236 		while (i && cbp->b_bcount < CHUNKSIZE) {
2237 			bp = *bpp;
2238 
2239 			if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
2240 				break;
2241 			if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
2242 				break;
2243 
2244 			/* Clusters from GOP_WRITE are expedited */
2245 			if (bp->b_bcount > fs->lfs_bsize) {
2246 				if (cbp->b_bcount > 0)
2247 					/* Put in its own buffer */
2248 					break;
2249 				else {
2250 					cbp->b_data = bp->b_data;
2251 				}
2252 			} else if (cbp->b_bcount == 0) {
2253 				p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
2254 							     LFS_NB_CLUSTER);
2255 				cl->flags |= LFS_CL_MALLOC;
2256 			}
2257 #ifdef DIAGNOSTIC
2258 			if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
2259 					      btodb(bp->b_bcount - 1))) !=
2260 			    sp->seg_number) {
2261 				printf("blk size %d daddr %" PRIx64
2262 				    " not in seg %d\n",
2263 				    bp->b_bcount, bp->b_blkno,
2264 				    sp->seg_number);
2265 				panic("segment overwrite");
2266 			}
2267 #endif
2268 
2269 #ifdef LFS_USE_B_INVAL
2270 			/*
2271 			 * Fake buffers from the cleaner are marked as B_INVAL.
2272 			 * We need to copy the data from user space rather than
2273 			 * from the buffer indicated.
2274 			 * XXX == what do I do on an error?
2275 			 */
2276 			if ((bp->b_cflags & BC_INVAL) != 0 &&
2277 			    bp->b_iodone != NULL) {
2278 				if (copyin(bp->b_saveaddr, p, bp->b_bcount))
2279 					panic("lfs_writeseg: "
2280 					    "copyin failed [2]");
2281 			} else
2282 #endif /* LFS_USE_B_INVAL */
2283 			if (cl->flags & LFS_CL_MALLOC) {
2284 				/* copy data into our cluster. */
2285 				memcpy(p, bp->b_data, bp->b_bcount);
2286 				p += bp->b_bcount;
2287 			}
2288 
2289 			cbp->b_bcount += bp->b_bcount;
2290 			cl->bufsize += bp->b_bcount;
2291 
2292 			bp->b_flags &= ~B_READ;
2293 			bp->b_error = 0;
2294 			cl->bpp[cl->bufcount++] = bp;
2295 
2296 			vp = bp->b_vp;
2297 			mutex_enter(&bufcache_lock);
2298 			mutex_enter(&vp->v_interlock);
2299 			bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
2300 			reassignbuf(bp, vp);
2301 			vp->v_numoutput++;
2302 			mutex_exit(&vp->v_interlock);
2303 			mutex_exit(&bufcache_lock);
2304 
2305 			bpp++;
2306 			i--;
2307 		}
2308 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2309 			BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
2310 		else
2311 			BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
2312 		mutex_enter(&devvp->v_interlock);
2313 		devvp->v_numoutput++;
2314 		mutex_exit(&devvp->v_interlock);
2315 		VOP_STRATEGY(devvp, cbp);
2316 		curproc->p_stats->p_ru.ru_oublock++;
2317 	}
2318 
2319 	if (lfs_dostats) {
2320 		++lfs_stats.psegwrites;
2321 		lfs_stats.blocktot += nblocks - 1;
2322 		if (fs->lfs_sp->seg_flags & SEGM_SYNC)
2323 			++lfs_stats.psyncwrites;
2324 		if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
2325 			++lfs_stats.pcleanwrites;
2326 			lfs_stats.cleanblocks += nblocks - 1;
2327 		}
2328 	}
2329 
2330 	return (lfs_initseg(fs) || do_again);
2331 }
2332 
2333 void
2334 lfs_writesuper(struct lfs *fs, daddr_t daddr)
2335 {
2336 	struct buf *bp;
2337 	struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2338 	int s;
2339 
2340 	ASSERT_MAYBE_SEGLOCK(fs);
2341 #ifdef DIAGNOSTIC
2342 	KASSERT(fs->lfs_magic == LFS_MAGIC);
2343 #endif
2344 	/*
2345 	 * If we can write one superblock while another is in
2346 	 * progress, we risk not having a complete checkpoint if we crash.
2347 	 * So, block here if a superblock write is in progress.
2348 	 */
2349 	mutex_enter(&lfs_lock);
2350 	s = splbio();
2351 	while (fs->lfs_sbactive) {
2352 		mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
2353 			&lfs_lock);
2354 	}
2355 	fs->lfs_sbactive = daddr;
2356 	splx(s);
2357 	mutex_exit(&lfs_lock);
2358 
2359 	/* Set timestamp of this version of the superblock */
2360 	if (fs->lfs_version == 1)
2361 		fs->lfs_otstamp = time_second;
2362 	fs->lfs_tstamp = time_second;
2363 
2364 	/* Checksum the superblock and copy it into a buffer. */
2365 	fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
2366 	bp = lfs_newbuf(fs, devvp,
2367 	    fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
2368 	memset((char *)bp->b_data + sizeof(struct dlfs), 0,
2369 	    LFS_SBPAD - sizeof(struct dlfs));
2370 	*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
2371 
2372 	bp->b_cflags |= BC_BUSY;
2373 	bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
2374 	bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
2375 	bp->b_error = 0;
2376 	bp->b_iodone = lfs_supercallback;
2377 
2378 	if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
2379 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
2380 	else
2381 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
2382 	curproc->p_stats->p_ru.ru_oublock++;
2383 
2384 	mutex_enter(&devvp->v_interlock);
2385 	devvp->v_numoutput++;
2386 	mutex_exit(&devvp->v_interlock);
2387 
2388 	mutex_enter(&lfs_lock);
2389 	++fs->lfs_iocount;
2390 	mutex_exit(&lfs_lock);
2391 	VOP_STRATEGY(devvp, bp);
2392 }
2393 
2394 /*
2395  * Logical block number match routines used when traversing the dirty block
2396  * chain.
2397  */
2398 int
2399 lfs_match_fake(struct lfs *fs, struct buf *bp)
2400 {
2401 
2402 	ASSERT_SEGLOCK(fs);
2403 	return LFS_IS_MALLOC_BUF(bp);
2404 }
2405 
2406 #if 0
2407 int
2408 lfs_match_real(struct lfs *fs, struct buf *bp)
2409 {
2410 
2411 	ASSERT_SEGLOCK(fs);
2412 	return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
2413 }
2414 #endif
2415 
2416 int
2417 lfs_match_data(struct lfs *fs, struct buf *bp)
2418 {
2419 
2420 	ASSERT_SEGLOCK(fs);
2421 	return (bp->b_lblkno >= 0);
2422 }
2423 
2424 int
2425 lfs_match_indir(struct lfs *fs, struct buf *bp)
2426 {
2427 	daddr_t lbn;
2428 
2429 	ASSERT_SEGLOCK(fs);
2430 	lbn = bp->b_lblkno;
2431 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
2432 }
2433 
2434 int
2435 lfs_match_dindir(struct lfs *fs, struct buf *bp)
2436 {
2437 	daddr_t lbn;
2438 
2439 	ASSERT_SEGLOCK(fs);
2440 	lbn = bp->b_lblkno;
2441 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
2442 }
2443 
2444 int
2445 lfs_match_tindir(struct lfs *fs, struct buf *bp)
2446 {
2447 	daddr_t lbn;
2448 
2449 	ASSERT_SEGLOCK(fs);
2450 	lbn = bp->b_lblkno;
2451 	return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
2452 }
2453 
2454 static void
2455 lfs_free_aiodone(struct buf *bp)
2456 {
2457 	struct lfs *fs;
2458 
2459 	KERNEL_LOCK(1, curlwp);
2460 	fs = bp->b_private;
2461 	ASSERT_NO_SEGLOCK(fs);
2462 	lfs_freebuf(fs, bp);
2463 	KERNEL_UNLOCK_LAST(curlwp);
2464 }
2465 
2466 static void
2467 lfs_super_aiodone(struct buf *bp)
2468 {
2469 	struct lfs *fs;
2470 
2471 	KERNEL_LOCK(1, curlwp);
2472 	fs = bp->b_private;
2473 	ASSERT_NO_SEGLOCK(fs);
2474 	mutex_enter(&lfs_lock);
2475 	fs->lfs_sbactive = 0;
2476 	if (--fs->lfs_iocount <= 1)
2477 		wakeup(&fs->lfs_iocount);
2478 	wakeup(&fs->lfs_sbactive);
2479 	mutex_exit(&lfs_lock);
2480 	lfs_freebuf(fs, bp);
2481 	KERNEL_UNLOCK_LAST(curlwp);
2482 }
2483 
2484 static void
2485 lfs_cluster_aiodone(struct buf *bp)
2486 {
2487 	struct lfs_cluster *cl;
2488 	struct lfs *fs;
2489 	struct buf *tbp, *fbp;
2490 	struct vnode *vp, *devvp, *ovp;
2491 	struct inode *ip;
2492 	int error;
2493 
2494 	KERNEL_LOCK(1, curlwp);
2495 
2496 	error = bp->b_error;
2497 	cl = bp->b_private;
2498 	fs = cl->fs;
2499 	devvp = VTOI(fs->lfs_ivnode)->i_devvp;
2500 	ASSERT_NO_SEGLOCK(fs);
2501 
2502 	/* Put the pages back, and release the buffer */
2503 	while (cl->bufcount--) {
2504 		tbp = cl->bpp[cl->bufcount];
2505 		KASSERT(tbp->b_cflags & BC_BUSY);
2506 		if (error) {
2507 			tbp->b_error = error;
2508 		}
2509 
2510 		/*
2511 		 * We're done with tbp.	 If it has not been re-dirtied since
2512 		 * the cluster was written, free it.  Otherwise, keep it on
2513 		 * the locked list to be written again.
2514 		 */
2515 		vp = tbp->b_vp;
2516 
2517 		tbp->b_flags &= ~B_GATHERED;
2518 
2519 		LFS_BCLEAN_LOG(fs, tbp);
2520 
2521 		mutex_enter(&bufcache_lock);
2522 		if (tbp->b_iodone == NULL) {
2523 			KASSERT(tbp->b_flags & B_LOCKED);
2524 			bremfree(tbp);
2525 			if (vp) {
2526 				mutex_enter(&vp->v_interlock);
2527 				reassignbuf(tbp, vp);
2528 				mutex_exit(&vp->v_interlock);
2529 			}
2530 			tbp->b_flags |= B_ASYNC; /* for biodone */
2531 		}
2532 
2533 		if (((tbp->b_flags | tbp->b_oflags) &
2534 		    (B_LOCKED | BO_DELWRI)) == B_LOCKED)
2535 			LFS_UNLOCK_BUF(tbp);
2536 
2537 		if (tbp->b_oflags & BO_DONE) {
2538 			DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
2539 				cl->bufcount, (long)tbp->b_flags));
2540 		}
2541 
2542 		if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
2543 			/*
2544 			 * A buffer from the page daemon.
2545 			 * We use the same iodone as it does,
2546 			 * so we must manually disassociate its
2547 			 * buffers from the vp.
2548 			 */
2549 			if ((ovp = tbp->b_vp) != NULL) {
2550 				/* This is just silly */
2551 				mutex_enter(&ovp->v_interlock);
2552 				brelvp(tbp);
2553 				mutex_exit(&ovp->v_interlock);
2554 				tbp->b_vp = vp;
2555 				tbp->b_objlock = &vp->v_interlock;
2556 			}
2557 			/* Put it back the way it was */
2558 			tbp->b_flags |= B_ASYNC;
2559 			/* Master buffers have BC_AGE */
2560 			if (tbp->b_private == tbp)
2561 				tbp->b_flags |= BC_AGE;
2562 		}
2563 		mutex_exit(&bufcache_lock);
2564 
2565 		biodone(tbp);
2566 
2567 		/*
2568 		 * If this is the last block for this vnode, but
2569 		 * there are other blocks on its dirty list,
2570 		 * set IN_MODIFIED/IN_CLEANING depending on what
2571 		 * sort of block.  Only do this for our mount point,
2572 		 * not for, e.g., inode blocks that are attached to
2573 		 * the devvp.
2574 		 * XXX KS - Shouldn't we set *both* if both types
2575 		 * of blocks are present (traverse the dirty list?)
2576 		 */
2577 		mutex_enter(&lfs_lock);
2578 		mutex_enter(&vp->v_interlock);
2579 		if (vp != devvp && vp->v_numoutput == 0 &&
2580 		    (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
2581 			ip = VTOI(vp);
2582 			DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
2583 			       ip->i_number));
2584 			if (LFS_IS_MALLOC_BUF(fbp))
2585 				LFS_SET_UINO(ip, IN_CLEANING);
2586 			else
2587 				LFS_SET_UINO(ip, IN_MODIFIED);
2588 		}
2589 		cv_broadcast(&vp->v_cv);
2590 		mutex_exit(&vp->v_interlock);
2591 		mutex_exit(&lfs_lock);
2592 	}
2593 
2594 	/* Fix up the cluster buffer, and release it */
2595 	if (cl->flags & LFS_CL_MALLOC)
2596 		lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
2597 	putiobuf(bp);
2598 
2599 	/* Note i/o done */
2600 	if (cl->flags & LFS_CL_SYNC) {
2601 		if (--cl->seg->seg_iocount == 0)
2602 			wakeup(&cl->seg->seg_iocount);
2603 	}
2604 	mutex_enter(&lfs_lock);
2605 #ifdef DIAGNOSTIC
2606 	if (fs->lfs_iocount == 0)
2607 		panic("lfs_cluster_aiodone: zero iocount");
2608 #endif
2609 	if (--fs->lfs_iocount <= 1)
2610 		wakeup(&fs->lfs_iocount);
2611 	mutex_exit(&lfs_lock);
2612 
2613 	KERNEL_UNLOCK_LAST(curlwp);
2614 
2615 	pool_put(&fs->lfs_bpppool, cl->bpp);
2616 	cl->bpp = NULL;
2617 	pool_put(&fs->lfs_clpool, cl);
2618 }
2619 
2620 static void
2621 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
2622 {
2623 	/* reset b_iodone for when this is a single-buf i/o. */
2624 	bp->b_iodone = aiodone;
2625 
2626 	workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
2627 }
2628 
2629 static void
2630 lfs_cluster_callback(struct buf *bp)
2631 {
2632 
2633 	lfs_generic_callback(bp, lfs_cluster_aiodone);
2634 }
2635 
2636 void
2637 lfs_supercallback(struct buf *bp)
2638 {
2639 
2640 	lfs_generic_callback(bp, lfs_super_aiodone);
2641 }
2642 
2643 /*
2644  * The only buffers that are going to hit these functions are the
2645  * segment write blocks, or the segment summaries, or the superblocks.
2646  *
2647  * All of the above are created by lfs_newbuf, and so do not need to be
2648  * released via brelse.
2649  */
2650 void
2651 lfs_callback(struct buf *bp)
2652 {
2653 
2654 	lfs_generic_callback(bp, lfs_free_aiodone);
2655 }
2656 
2657 /*
2658  * Shellsort (diminishing increment sort) from Data Structures and
2659  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
2660  * see also Knuth Vol. 3, page 84.  The increments are selected from
2661  * formula (8), page 95.  Roughly O(N^3/2).
2662  */
2663 /*
2664  * This is our own private copy of shellsort because we want to sort
2665  * two parallel arrays (the array of buffer pointers and the array of
2666  * logical block numbers) simultaneously.  Note that we cast the array
2667  * of logical block numbers to a unsigned in this routine so that the
2668  * negative block numbers (meta data blocks) sort AFTER the data blocks.
2669  */
2670 
2671 void
2672 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
2673 {
2674 	static int __rsshell_increments[] = { 4, 1, 0 };
2675 	int incr, *incrp, t1, t2;
2676 	struct buf *bp_temp;
2677 
2678 #ifdef DEBUG
2679 	incr = 0;
2680 	for (t1 = 0; t1 < nmemb; t1++) {
2681 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2682 			if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
2683 				/* dump before panic */
2684 				printf("lfs_shellsort: nmemb=%d, size=%d\n",
2685 				    nmemb, size);
2686 				incr = 0;
2687 				for (t1 = 0; t1 < nmemb; t1++) {
2688 					const struct buf *bp = bp_array[t1];
2689 
2690 					printf("bp[%d]: lbn=%" PRIu64 ", size=%"
2691 					    PRIu64 "\n", t1,
2692 					    (uint64_t)bp->b_bcount,
2693 					    (uint64_t)bp->b_lblkno);
2694 					printf("lbns:");
2695 					for (t2 = 0; t2 * size < bp->b_bcount;
2696 					    t2++) {
2697 						printf(" %" PRId32,
2698 						    lb_array[incr++]);
2699 					}
2700 					printf("\n");
2701 				}
2702 				panic("lfs_shellsort: inconsistent input");
2703 			}
2704 		}
2705 	}
2706 #endif
2707 
2708 	for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
2709 		for (t1 = incr; t1 < nmemb; ++t1)
2710 			for (t2 = t1 - incr; t2 >= 0;)
2711 				if ((u_int32_t)bp_array[t2]->b_lblkno >
2712 				    (u_int32_t)bp_array[t2 + incr]->b_lblkno) {
2713 					bp_temp = bp_array[t2];
2714 					bp_array[t2] = bp_array[t2 + incr];
2715 					bp_array[t2 + incr] = bp_temp;
2716 					t2 -= incr;
2717 				} else
2718 					break;
2719 
2720 	/* Reform the list of logical blocks */
2721 	incr = 0;
2722 	for (t1 = 0; t1 < nmemb; t1++) {
2723 		for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
2724 			lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
2725 		}
2726 	}
2727 }
2728 
2729 /*
2730  * Call vget with LK_NOWAIT.  If we are the one who holds VI_XLOCK,
2731  * however, we must press on.  Just fake success in that case.
2732  */
2733 int
2734 lfs_vref(struct vnode *vp)
2735 {
2736 	int error;
2737 	struct lfs *fs;
2738 
2739 	KASSERT(mutex_owned(&vp->v_interlock));
2740 
2741 	fs = VTOI(vp)->i_lfs;
2742 
2743 	ASSERT_MAYBE_SEGLOCK(fs);
2744 
2745 	/*
2746 	 * If we return 1 here during a flush, we risk vinvalbuf() not
2747 	 * being able to flush all of the pages from this vnode, which
2748 	 * will cause it to panic.  So, return 0 if a flush is in progress.
2749 	 */
2750 	error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
2751 	if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
2752 		++fs->lfs_flushvp_fakevref;
2753 		return 0;
2754 	}
2755 	return error;
2756 }
2757 
2758 /*
2759  * This is vrele except that we do not want to VOP_INACTIVE this vnode. We
2760  * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
2761  */
2762 void
2763 lfs_vunref(struct vnode *vp)
2764 {
2765 	struct lfs *fs;
2766 
2767 	fs = VTOI(vp)->i_lfs;
2768 	ASSERT_MAYBE_SEGLOCK(fs);
2769 
2770 	/*
2771 	 * Analogous to lfs_vref, if the node is flushing, fake it.
2772 	 */
2773 	if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
2774 		--fs->lfs_flushvp_fakevref;
2775 		return;
2776 	}
2777 
2778 	/* does not call inactive */
2779 	mutex_enter(&vp->v_interlock);
2780 	vrelel(vp, VRELEL_NOINACTIVE);
2781 }
2782 
2783 /*
2784  * We use this when we have vnodes that were loaded in solely for cleaning.
2785  * There is no reason to believe that these vnodes will be referenced again
2786  * soon, since the cleaning process is unrelated to normal filesystem
2787  * activity.  Putting cleaned vnodes at the tail of the list has the effect
2788  * of flushing the vnode LRU.  So, put vnodes that were loaded only for
2789  * cleaning at the head of the list, instead.
2790  */
2791 void
2792 lfs_vunref_head(struct vnode *vp)
2793 {
2794 
2795 	ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
2796 
2797 	/* does not call inactive, inserts non-held vnode at head of freelist */
2798 	mutex_enter(&vp->v_interlock);
2799 	vrelel(vp, VRELEL_NOINACTIVE | VRELEL_ONHEAD);
2800 }
2801 
2802 
2803 /*
2804  * Set up an FINFO entry for a new file.  The fip pointer is assumed to
2805  * point at uninitialized space.
2806  */
2807 void
2808 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
2809 {
2810 	struct segment *sp = fs->lfs_sp;
2811 
2812 	KASSERT(vers > 0);
2813 
2814 	if (sp->seg_bytes_left < fs->lfs_bsize ||
2815 	    sp->sum_bytes_left < sizeof(struct finfo))
2816 		(void) lfs_writeseg(fs, fs->lfs_sp);
2817 
2818 	sp->sum_bytes_left -= FINFOSIZE;
2819 	++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2820 	sp->fip->fi_nblocks = 0;
2821 	sp->fip->fi_ino = ino;
2822 	sp->fip->fi_version = vers;
2823 }
2824 
2825 /*
2826  * Release the FINFO entry, either clearing out an unused entry or
2827  * advancing us to the next available entry.
2828  */
2829 void
2830 lfs_release_finfo(struct lfs *fs)
2831 {
2832 	struct segment *sp = fs->lfs_sp;
2833 
2834 	if (sp->fip->fi_nblocks != 0) {
2835 		sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
2836 			sizeof(int32_t) * sp->fip->fi_nblocks);
2837 		sp->start_lbp = &sp->fip->fi_blocks[0];
2838 	} else {
2839 		sp->sum_bytes_left += FINFOSIZE;
2840 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
2841 	}
2842 }
2843