1 /* $NetBSD: lfs_segment.c,v 1.153 2004/05/19 11:29:32 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /* 39 * Copyright (c) 1991, 1993 40 * The Regents of the University of California. All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.153 2004/05/19 11:29:32 yamt Exp $"); 71 72 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str)) 73 74 #if defined(_KERNEL_OPT) 75 #include "opt_ddb.h" 76 #endif 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/namei.h> 81 #include <sys/kernel.h> 82 #include <sys/resourcevar.h> 83 #include <sys/file.h> 84 #include <sys/stat.h> 85 #include <sys/buf.h> 86 #include <sys/proc.h> 87 #include <sys/vnode.h> 88 #include <sys/mount.h> 89 90 #include <miscfs/specfs/specdev.h> 91 #include <miscfs/fifofs/fifo.h> 92 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/dir.h> 95 #include <ufs/ufs/ufsmount.h> 96 #include <ufs/ufs/ufs_extern.h> 97 98 #include <ufs/lfs/lfs.h> 99 #include <ufs/lfs/lfs_extern.h> 100 101 #include <uvm/uvm.h> 102 #include <uvm/uvm_extern.h> 103 104 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 105 106 extern int count_lock_queue(void); 107 extern struct simplelock vnode_free_list_slock; /* XXX */ 108 extern struct simplelock bqueue_slock; /* XXX */ 109 110 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 111 static void lfs_super_aiodone(struct buf *); 112 static void lfs_cluster_aiodone(struct buf *); 113 static void lfs_cluster_callback(struct buf *); 114 115 /* 116 * Determine if it's OK to start a partial in this segment, or if we need 117 * to go on to a new segment. 118 */ 119 #define LFS_PARTIAL_FITS(fs) \ 120 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 121 fragstofsb((fs), (fs)->lfs_frag)) 122 123 int lfs_match_fake(struct lfs *, struct buf *); 124 void lfs_newseg(struct lfs *); 125 /* XXX ondisk32 */ 126 void lfs_shellsort(struct buf **, int32_t *, int, int); 127 void lfs_supercallback(struct buf *); 128 void lfs_updatemeta(struct segment *); 129 void lfs_writesuper(struct lfs *, daddr_t); 130 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 131 struct segment *sp, int dirops); 132 133 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 134 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 135 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 136 int lfs_dirvcount = 0; /* # active dirops */ 137 138 /* Statistics Counters */ 139 int lfs_dostats = 1; 140 struct lfs_stats lfs_stats; 141 142 /* op values to lfs_writevnodes */ 143 #define VN_REG 0 144 #define VN_DIROP 1 145 #define VN_EMPTY 2 146 #define VN_CLEAN 3 147 148 /* 149 * XXX KS - Set modification time on the Ifile, so the cleaner can 150 * read the fs mod time off of it. We don't set IN_UPDATE here, 151 * since we don't really need this to be flushed to disk (and in any 152 * case that wouldn't happen to the Ifile until we checkpoint). 153 */ 154 void 155 lfs_imtime(struct lfs *fs) 156 { 157 struct timespec ts; 158 struct inode *ip; 159 160 TIMEVAL_TO_TIMESPEC(&time, &ts); 161 ip = VTOI(fs->lfs_ivnode); 162 ip->i_ffs1_mtime = ts.tv_sec; 163 ip->i_ffs1_mtimensec = ts.tv_nsec; 164 } 165 166 /* 167 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 168 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 169 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 170 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 171 */ 172 173 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp) 174 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 175 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL 176 177 int 178 lfs_vflush(struct vnode *vp) 179 { 180 struct inode *ip; 181 struct lfs *fs; 182 struct segment *sp; 183 struct buf *bp, *nbp, *tbp, *tnbp; 184 int error, s; 185 int flushed; 186 #if 0 187 int redo; 188 #endif 189 190 ip = VTOI(vp); 191 fs = VFSTOUFS(vp->v_mount)->um_lfs; 192 193 if (ip->i_flag & IN_CLEANING) { 194 #ifdef DEBUG_LFS 195 ivndebug(vp,"vflush/in_cleaning"); 196 #endif 197 LFS_CLR_UINO(ip, IN_CLEANING); 198 LFS_SET_UINO(ip, IN_MODIFIED); 199 200 /* 201 * Toss any cleaning buffers that have real counterparts 202 * to avoid losing new data. 203 */ 204 s = splbio(); 205 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 206 nbp = LIST_NEXT(bp, b_vnbufs); 207 if (!LFS_IS_MALLOC_BUF(bp)) 208 continue; 209 /* 210 * Look for pages matching the range covered 211 * by cleaning blocks. It's okay if more dirty 212 * pages appear, so long as none disappear out 213 * from under us. 214 */ 215 if (bp->b_lblkno > 0 && vp->v_type == VREG && 216 vp != fs->lfs_ivnode) { 217 struct vm_page *pg; 218 voff_t off; 219 220 simple_lock(&vp->v_interlock); 221 for (off = lblktosize(fs, bp->b_lblkno); 222 off < lblktosize(fs, bp->b_lblkno + 1); 223 off += PAGE_SIZE) { 224 pg = uvm_pagelookup(&vp->v_uobj, off); 225 if (pg == NULL) 226 continue; 227 if ((pg->flags & PG_CLEAN) == 0 || 228 pmap_is_modified(pg)) { 229 fs->lfs_avail += btofsb(fs, 230 bp->b_bcount); 231 wakeup(&fs->lfs_avail); 232 lfs_freebuf(fs, bp); 233 bp = NULL; 234 goto nextbp; 235 } 236 } 237 simple_unlock(&vp->v_interlock); 238 } 239 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 240 tbp = tnbp) 241 { 242 tnbp = LIST_NEXT(tbp, b_vnbufs); 243 if (tbp->b_vp == bp->b_vp 244 && tbp->b_lblkno == bp->b_lblkno 245 && tbp != bp) 246 { 247 fs->lfs_avail += btofsb(fs, 248 bp->b_bcount); 249 wakeup(&fs->lfs_avail); 250 lfs_freebuf(fs, bp); 251 bp = NULL; 252 break; 253 } 254 } 255 nextbp: 256 ; 257 } 258 splx(s); 259 } 260 261 /* If the node is being written, wait until that is done */ 262 s = splbio(); 263 if (WRITEINPROG(vp)) { 264 #ifdef DEBUG_LFS 265 ivndebug(vp,"vflush/writeinprog"); 266 #endif 267 tsleep(vp, PRIBIO+1, "lfs_vw", 0); 268 } 269 splx(s); 270 271 /* Protect against VXLOCK deadlock in vinvalbuf() */ 272 lfs_seglock(fs, SEGM_SYNC); 273 274 /* If we're supposed to flush a freed inode, just toss it */ 275 /* XXX - seglock, so these buffers can't be gathered, right? */ 276 if (ip->i_mode == 0) { 277 printf("lfs_vflush: ino %d is freed, not flushing\n", 278 ip->i_number); 279 s = splbio(); 280 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 281 nbp = LIST_NEXT(bp, b_vnbufs); 282 if (bp->b_flags & B_DELWRI) { /* XXX always true? */ 283 fs->lfs_avail += btofsb(fs, bp->b_bcount); 284 wakeup(&fs->lfs_avail); 285 } 286 /* Copied from lfs_writeseg */ 287 if (bp->b_flags & B_CALL) { 288 biodone(bp); 289 } else { 290 bremfree(bp); 291 LFS_UNLOCK_BUF(bp); 292 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | 293 B_GATHERED); 294 bp->b_flags |= B_DONE; 295 reassignbuf(bp, vp); 296 brelse(bp); 297 } 298 } 299 splx(s); 300 LFS_CLR_UINO(ip, IN_CLEANING); 301 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 302 ip->i_flag &= ~IN_ALLMOD; 303 printf("lfs_vflush: done not flushing ino %d\n", 304 ip->i_number); 305 lfs_segunlock(fs); 306 return 0; 307 } 308 309 SET_FLUSHING(fs,vp); 310 if (fs->lfs_nactive > LFS_MAX_ACTIVE || 311 (fs->lfs_sp->seg_flags & SEGM_CKP)) { 312 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 313 CLR_FLUSHING(fs,vp); 314 lfs_segunlock(fs); 315 return error; 316 } 317 sp = fs->lfs_sp; 318 319 flushed = 0; 320 if (VPISEMPTY(vp)) { 321 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 322 ++flushed; 323 } else if ((ip->i_flag & IN_CLEANING) && 324 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 325 #ifdef DEBUG_LFS 326 ivndebug(vp,"vflush/clean"); 327 #endif 328 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 329 ++flushed; 330 } else if (lfs_dostats) { 331 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 332 ++lfs_stats.vflush_invoked; 333 #ifdef DEBUG_LFS 334 ivndebug(vp,"vflush"); 335 #endif 336 } 337 338 #ifdef DIAGNOSTIC 339 /* XXX KS This actually can happen right now, though it shouldn't(?) */ 340 if (vp->v_flag & VDIROP) { 341 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n"); 342 /* panic("VDIROP being flushed...this can\'t happen"); */ 343 } 344 if (vp->v_usecount < 0) { 345 printf("usecount=%ld\n", (long)vp->v_usecount); 346 panic("lfs_vflush: usecount<0"); 347 } 348 #endif 349 350 #if 1 351 do { 352 do { 353 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 354 lfs_writefile(fs, sp, vp); 355 } while (lfs_writeinode(fs, sp, ip)); 356 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 357 #else 358 if (flushed && vp != fs->lfs_ivnode) 359 lfs_writeseg(fs, sp); 360 else do { 361 fs->lfs_flags &= ~LFS_IFDIRTY; 362 lfs_writefile(fs, sp, vp); 363 redo = lfs_writeinode(fs, sp, ip); 364 redo += lfs_writeseg(fs, sp); 365 redo += (fs->lfs_flags & LFS_IFDIRTY); 366 } while (redo && vp == fs->lfs_ivnode); 367 #endif 368 if (lfs_dostats) { 369 ++lfs_stats.nwrites; 370 if (sp->seg_flags & SEGM_SYNC) 371 ++lfs_stats.nsync_writes; 372 if (sp->seg_flags & SEGM_CKP) 373 ++lfs_stats.ncheckpoints; 374 } 375 /* 376 * If we were called from somewhere that has already held the seglock 377 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 378 * the write to complete because we are still locked. 379 * Since lfs_vflush() must return the vnode with no dirty buffers, 380 * we must explicitly wait, if that is the case. 381 * 382 * We compare the iocount against 1, not 0, because it is 383 * artificially incremented by lfs_seglock(). 384 */ 385 simple_lock(&fs->lfs_interlock); 386 if (fs->lfs_seglock > 1) { 387 simple_unlock(&fs->lfs_interlock); 388 while (fs->lfs_iocount > 1) 389 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1, 390 "lfs_vflush", 0); 391 } else 392 simple_unlock(&fs->lfs_interlock); 393 394 lfs_segunlock(fs); 395 396 /* Wait for these buffers to be recovered by aiodoned */ 397 s = splbio(); 398 simple_lock(&global_v_numoutput_slock); 399 while (vp->v_numoutput > 0) { 400 vp->v_flag |= VBWAIT; 401 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0, 402 &global_v_numoutput_slock); 403 } 404 simple_unlock(&global_v_numoutput_slock); 405 splx(s); 406 407 CLR_FLUSHING(fs,vp); 408 return (0); 409 } 410 411 #ifdef DEBUG_LFS_VERBOSE 412 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op) 413 #else 414 # define vndebug(vp,str) 415 #endif 416 417 int 418 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 419 { 420 struct inode *ip; 421 struct vnode *vp, *nvp; 422 int inodes_written = 0, only_cleaning; 423 424 #ifndef LFS_NO_BACKVP_HACK 425 /* BEGIN HACK */ 426 #define VN_OFFSET \ 427 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp) 428 #define BACK_VP(VP) \ 429 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET)) 430 #define BEG_OF_VLIST \ 431 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \ 432 - VN_OFFSET)) 433 434 /* Find last vnode. */ 435 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); 436 vp && LIST_NEXT(vp, v_mntvnodes) != NULL; 437 vp = LIST_NEXT(vp, v_mntvnodes)); 438 for (; vp && vp != BEG_OF_VLIST; vp = nvp) { 439 nvp = BACK_VP(vp); 440 #else 441 loop: 442 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { 443 nvp = LIST_NEXT(vp, v_mntvnodes); 444 #endif 445 /* 446 * If the vnode that we are about to sync is no longer 447 * associated with this mount point, start over. 448 */ 449 if (vp->v_mount != mp) { 450 printf("lfs_writevnodes: starting over\n"); 451 /* 452 * After this, pages might be busy 453 * due to our own previous putpages. 454 * Start actual segment write here to avoid deadlock. 455 */ 456 (void)lfs_writeseg(fs, sp); 457 goto loop; 458 } 459 460 if (vp->v_type == VNON) { 461 continue; 462 } 463 464 ip = VTOI(vp); 465 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) || 466 (op != VN_DIROP && op != VN_CLEAN && 467 (vp->v_flag & VDIROP))) { 468 vndebug(vp,"dirop"); 469 continue; 470 } 471 472 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 473 vndebug(vp,"empty"); 474 continue; 475 } 476 477 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 478 && vp != fs->lfs_flushvp 479 && !(ip->i_flag & IN_CLEANING)) { 480 vndebug(vp,"cleaning"); 481 continue; 482 } 483 484 if (lfs_vref(vp)) { 485 vndebug(vp,"vref"); 486 continue; 487 } 488 489 only_cleaning = 0; 490 /* 491 * Write the inode/file if dirty and it's not the IFILE. 492 */ 493 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 494 only_cleaning = 495 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 496 497 if (ip->i_number != LFS_IFILE_INUM) 498 lfs_writefile(fs, sp, vp); 499 if (!VPISEMPTY(vp)) { 500 if (WRITEINPROG(vp)) { 501 #ifdef DEBUG_LFS 502 ivndebug(vp,"writevnodes/write2"); 503 #endif 504 } else if (!(ip->i_flag & IN_ALLMOD)) { 505 #ifdef DEBUG_LFS 506 printf("<%d>",ip->i_number); 507 #endif 508 LFS_SET_UINO(ip, IN_MODIFIED); 509 } 510 } 511 (void) lfs_writeinode(fs, sp, ip); 512 inodes_written++; 513 } 514 515 if (lfs_clean_vnhead && only_cleaning) 516 lfs_vunref_head(vp); 517 else 518 lfs_vunref(vp); 519 } 520 return inodes_written; 521 } 522 523 /* 524 * Do a checkpoint. 525 */ 526 int 527 lfs_segwrite(struct mount *mp, int flags) 528 { 529 struct buf *bp; 530 struct inode *ip; 531 struct lfs *fs; 532 struct segment *sp; 533 struct vnode *vp; 534 SEGUSE *segusep; 535 int do_ckp, did_ckp, error, s; 536 unsigned n, segleft, maxseg, sn, i, curseg; 537 int writer_set = 0; 538 int dirty; 539 int redo; 540 541 fs = VFSTOUFS(mp)->um_lfs; 542 543 if (fs->lfs_ronly) 544 return EROFS; 545 546 lfs_imtime(fs); 547 548 /* 549 * Allocate a segment structure and enough space to hold pointers to 550 * the maximum possible number of buffers which can be described in a 551 * single summary block. 552 */ 553 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE; 554 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 555 sp = fs->lfs_sp; 556 557 /* 558 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 559 * in which case we have to flush *all* buffers off of this vnode. 560 * We don't care about other nodes, but write any non-dirop nodes 561 * anyway in anticipation of another getnewvnode(). 562 * 563 * If we're cleaning we only write cleaning and ifile blocks, and 564 * no dirops, since otherwise we'd risk corruption in a crash. 565 */ 566 if (sp->seg_flags & SEGM_CLEAN) 567 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 568 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 569 lfs_writevnodes(fs, mp, sp, VN_REG); 570 if (!fs->lfs_dirops || !fs->lfs_flushvp) { 571 error = lfs_writer_enter(fs, "lfs writer"); 572 if (error) { 573 printf("segwrite mysterious error\n"); 574 /* XXX why not segunlock? */ 575 pool_put(&fs->lfs_bpppool, sp->bpp); 576 sp->bpp = NULL; 577 pool_put(&fs->lfs_segpool, sp); 578 sp = fs->lfs_sp = NULL; 579 return (error); 580 } 581 writer_set = 1; 582 lfs_writevnodes(fs, mp, sp, VN_DIROP); 583 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 584 } 585 } 586 587 /* 588 * If we are doing a checkpoint, mark everything since the 589 * last checkpoint as no longer ACTIVE. 590 */ 591 if (do_ckp) { 592 segleft = fs->lfs_nseg; 593 curseg = 0; 594 for (n = 0; n < fs->lfs_segtabsz; n++) { 595 dirty = 0; 596 if (bread(fs->lfs_ivnode, 597 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp)) 598 panic("lfs_segwrite: ifile read"); 599 segusep = (SEGUSE *)bp->b_data; 600 maxseg = min(segleft, fs->lfs_sepb); 601 for (i = 0; i < maxseg; i++) { 602 sn = curseg + i; 603 if (sn != dtosn(fs, fs->lfs_curseg) && 604 segusep->su_flags & SEGUSE_ACTIVE) { 605 segusep->su_flags &= ~SEGUSE_ACTIVE; 606 --fs->lfs_nactive; 607 ++dirty; 608 } 609 fs->lfs_suflags[fs->lfs_activesb][sn] = 610 segusep->su_flags; 611 if (fs->lfs_version > 1) 612 ++segusep; 613 else 614 segusep = (SEGUSE *) 615 ((SEGUSE_V1 *)segusep + 1); 616 } 617 618 if (dirty) 619 error = LFS_BWRITE_LOG(bp); /* Ifile */ 620 else 621 brelse(bp); 622 segleft -= fs->lfs_sepb; 623 curseg += fs->lfs_sepb; 624 } 625 } 626 627 did_ckp = 0; 628 if (do_ckp || fs->lfs_doifile) { 629 do { 630 vp = fs->lfs_ivnode; 631 632 #ifdef DEBUG 633 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0); 634 #endif 635 fs->lfs_flags &= ~LFS_IFDIRTY; 636 637 ip = VTOI(vp); 638 639 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 640 lfs_writefile(fs, sp, vp); 641 642 if (ip->i_flag & IN_ALLMOD) 643 ++did_ckp; 644 redo = lfs_writeinode(fs, sp, ip); 645 redo += lfs_writeseg(fs, sp); 646 redo += (fs->lfs_flags & LFS_IFDIRTY); 647 } while (redo && do_ckp); 648 649 /* 650 * Unless we are unmounting, the Ifile may continue to have 651 * dirty blocks even after a checkpoint, due to changes to 652 * inodes' atime. If we're checkpointing, it's "impossible" 653 * for other parts of the Ifile to be dirty after the loop 654 * above, since we hold the segment lock. 655 */ 656 s = splbio(); 657 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 658 LFS_CLR_UINO(ip, IN_ALLMOD); 659 } 660 #ifdef DIAGNOSTIC 661 else if (do_ckp) { 662 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 663 if (bp->b_lblkno < fs->lfs_cleansz + 664 fs->lfs_segtabsz && 665 !(bp->b_flags & B_GATHERED)) { 666 panic("dirty blocks"); 667 } 668 } 669 } 670 #endif 671 splx(s); 672 } else { 673 (void) lfs_writeseg(fs, sp); 674 } 675 676 /* Note Ifile no longer needs to be written */ 677 fs->lfs_doifile = 0; 678 if (writer_set) 679 lfs_writer_leave(fs); 680 681 /* 682 * If we didn't write the Ifile, we didn't really do anything. 683 * That means that (1) there is a checkpoint on disk and (2) 684 * nothing has changed since it was written. 685 * 686 * Take the flags off of the segment so that lfs_segunlock 687 * doesn't have to write the superblock either. 688 */ 689 if (do_ckp && !did_ckp) { 690 sp->seg_flags &= ~SEGM_CKP; 691 } 692 693 if (lfs_dostats) { 694 ++lfs_stats.nwrites; 695 if (sp->seg_flags & SEGM_SYNC) 696 ++lfs_stats.nsync_writes; 697 if (sp->seg_flags & SEGM_CKP) 698 ++lfs_stats.ncheckpoints; 699 } 700 lfs_segunlock(fs); 701 return (0); 702 } 703 704 /* 705 * Write the dirty blocks associated with a vnode. 706 */ 707 void 708 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 709 { 710 struct buf *bp; 711 struct finfo *fip; 712 struct inode *ip; 713 IFILE *ifp; 714 int i, frag; 715 716 ip = VTOI(vp); 717 718 if (sp->seg_bytes_left < fs->lfs_bsize || 719 sp->sum_bytes_left < sizeof(struct finfo)) 720 (void) lfs_writeseg(fs, sp); 721 722 sp->sum_bytes_left -= FINFOSIZE; 723 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 724 725 if (vp->v_flag & VDIROP) 726 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 727 728 fip = sp->fip; 729 fip->fi_nblocks = 0; 730 fip->fi_ino = ip->i_number; 731 LFS_IENTRY(ifp, fs, fip->fi_ino, bp); 732 fip->fi_version = ifp->if_version; 733 brelse(bp); 734 735 if (sp->seg_flags & SEGM_CLEAN) { 736 lfs_gather(fs, sp, vp, lfs_match_fake); 737 /* 738 * For a file being flushed, we need to write *all* blocks. 739 * This means writing the cleaning blocks first, and then 740 * immediately following with any non-cleaning blocks. 741 * The same is true of the Ifile since checkpoints assume 742 * that all valid Ifile blocks are written. 743 */ 744 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) { 745 lfs_gather(fs, sp, vp, lfs_match_data); 746 /* 747 * Don't call VOP_PUTPAGES: if we're flushing, 748 * we've already done it, and the Ifile doesn't 749 * use the page cache. 750 */ 751 } 752 } else { 753 lfs_gather(fs, sp, vp, lfs_match_data); 754 /* 755 * If we're flushing, we've already called VOP_PUTPAGES 756 * so don't do it again. Otherwise, we want to write 757 * everything we've got. 758 */ 759 if (!IS_FLUSHING(fs, vp)) { 760 simple_lock(&vp->v_interlock); 761 VOP_PUTPAGES(vp, 0, 0, 762 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 763 } 764 } 765 766 /* 767 * It may not be necessary to write the meta-data blocks at this point, 768 * as the roll-forward recovery code should be able to reconstruct the 769 * list. 770 * 771 * We have to write them anyway, though, under two conditions: (1) the 772 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 773 * checkpointing. 774 * 775 * BUT if we are cleaning, we might have indirect blocks that refer to 776 * new blocks not being written yet, in addition to fragments being 777 * moved out of a cleaned segment. If that is the case, don't 778 * write the indirect blocks, or the finfo will have a small block 779 * in the middle of it! 780 * XXX in this case isn't the inode size wrong too? 781 */ 782 frag = 0; 783 if (sp->seg_flags & SEGM_CLEAN) { 784 for (i = 0; i < NDADDR; i++) 785 if (ip->i_lfs_fragsize[i] > 0 && 786 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 787 ++frag; 788 } 789 #ifdef DIAGNOSTIC 790 if (frag > 1) 791 panic("lfs_writefile: more than one fragment!"); 792 #endif 793 if (IS_FLUSHING(fs, vp) || 794 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 795 lfs_gather(fs, sp, vp, lfs_match_indir); 796 lfs_gather(fs, sp, vp, lfs_match_dindir); 797 lfs_gather(fs, sp, vp, lfs_match_tindir); 798 } 799 fip = sp->fip; 800 if (fip->fi_nblocks != 0) { 801 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE + 802 sizeof(int32_t) * (fip->fi_nblocks)); 803 sp->start_lbp = &sp->fip->fi_blocks[0]; 804 } else { 805 sp->sum_bytes_left += FINFOSIZE; 806 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 807 } 808 } 809 810 int 811 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 812 { 813 struct buf *bp, *ibp; 814 struct ufs1_dinode *cdp; 815 IFILE *ifp; 816 SEGUSE *sup; 817 daddr_t daddr; 818 int32_t *daddrp; /* XXX ondisk32 */ 819 ino_t ino; 820 int error, i, ndx, fsb = 0; 821 int redo_ifile = 0; 822 struct timespec ts; 823 int gotblk = 0; 824 825 if (!(ip->i_flag & IN_ALLMOD)) 826 return (0); 827 828 /* Allocate a new inode block if necessary. */ 829 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 830 sp->ibp == NULL) { 831 /* Allocate a new segment if necessary. */ 832 if (sp->seg_bytes_left < fs->lfs_ibsize || 833 sp->sum_bytes_left < sizeof(int32_t)) 834 (void) lfs_writeseg(fs, sp); 835 836 /* Get next inode block. */ 837 daddr = fs->lfs_offset; 838 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 839 sp->ibp = *sp->cbpp++ = 840 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 841 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); 842 gotblk++; 843 844 /* Zero out inode numbers */ 845 for (i = 0; i < INOPB(fs); ++i) 846 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 847 0; 848 849 ++sp->start_bpp; 850 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 851 /* Set remaining space counters. */ 852 sp->seg_bytes_left -= fs->lfs_ibsize; 853 sp->sum_bytes_left -= sizeof(int32_t); 854 ndx = fs->lfs_sumsize / sizeof(int32_t) - 855 sp->ninodes / INOPB(fs) - 1; 856 ((int32_t *)(sp->segsum))[ndx] = daddr; 857 } 858 859 /* Update the inode times and copy the inode onto the inode page. */ 860 TIMEVAL_TO_TIMESPEC(&time, &ts); 861 /* XXX kludge --- don't redirty the ifile just to put times on it */ 862 if (ip->i_number != LFS_IFILE_INUM) 863 LFS_ITIMES(ip, &ts, &ts, &ts); 864 865 /* 866 * If this is the Ifile, and we've already written the Ifile in this 867 * partial segment, just overwrite it (it's not on disk yet) and 868 * continue. 869 * 870 * XXX we know that the bp that we get the second time around has 871 * already been gathered. 872 */ 873 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 874 *(sp->idp) = *ip->i_din.ffs1_din; 875 ip->i_lfs_osize = ip->i_size; 876 return 0; 877 } 878 879 bp = sp->ibp; 880 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 881 *cdp = *ip->i_din.ffs1_din; 882 #ifdef LFS_IFILE_FRAG_ADDRESSING 883 if (fs->lfs_version > 1) 884 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs); 885 #endif 886 887 /* 888 * If we are cleaning, ensure that we don't write UNWRITTEN disk 889 * addresses to disk; possibly revert the inode size. 890 * XXX By not writing these blocks, we are making the lfs_avail 891 * XXX count on disk wrong by the same amount. We should be 892 * XXX able to "borrow" from lfs_avail and return it after the 893 * XXX Ifile is written. See also in lfs_writeseg. 894 */ 895 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 896 cdp->di_size = ip->i_lfs_osize; 897 #ifdef DEBUG_LFS 898 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n", 899 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks); 900 #endif 901 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 902 daddrp++) { 903 if (*daddrp == UNWRITTEN) { 904 #ifdef DEBUG_LFS 905 printf("lfs_writeinode: wiping UNWRITTEN\n"); 906 #endif 907 *daddrp = 0; 908 } 909 } 910 } else { 911 /* If all blocks are goig to disk, update the "size on disk" */ 912 ip->i_lfs_osize = ip->i_size; 913 } 914 915 if (ip->i_flag & IN_CLEANING) 916 LFS_CLR_UINO(ip, IN_CLEANING); 917 else { 918 /* XXX IN_ALLMOD */ 919 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 920 IN_UPDATE); 921 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 922 LFS_CLR_UINO(ip, IN_MODIFIED); 923 #ifdef DEBUG_LFS 924 else 925 printf("lfs_writeinode: ino %d: real blks=%d, " 926 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks, 927 ip->i_lfs_effnblks); 928 #endif 929 } 930 931 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */ 932 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 933 (sp->ninodes % INOPB(fs)); 934 if (gotblk) { 935 LFS_LOCK_BUF(bp); 936 brelse(bp); 937 } 938 939 /* Increment inode count in segment summary block. */ 940 ++((SEGSUM *)(sp->segsum))->ss_ninos; 941 942 /* If this page is full, set flag to allocate a new page. */ 943 if (++sp->ninodes % INOPB(fs) == 0) 944 sp->ibp = NULL; 945 946 /* 947 * If updating the ifile, update the super-block. Update the disk 948 * address and access times for this inode in the ifile. 949 */ 950 ino = ip->i_number; 951 if (ino == LFS_IFILE_INUM) { 952 daddr = fs->lfs_idaddr; 953 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno); 954 } else { 955 LFS_IENTRY(ifp, fs, ino, ibp); 956 daddr = ifp->if_daddr; 957 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb; 958 #ifdef LFS_DEBUG_NEXTFREE 959 if (ino > 3 && ifp->if_nextfree) { 960 vprint("lfs_writeinode",ITOV(ip)); 961 printf("lfs_writeinode: updating free ino %d\n", 962 ip->i_number); 963 } 964 #endif 965 error = LFS_BWRITE_LOG(ibp); /* Ifile */ 966 } 967 968 /* 969 * The inode's last address should not be in the current partial 970 * segment, except under exceptional circumstances (lfs_writevnodes 971 * had to start over, and in the meantime more blocks were written 972 * to a vnode). Both inodes will be accounted to this segment 973 * in lfs_writeseg so we need to subtract the earlier version 974 * here anyway. The segment count can temporarily dip below 975 * zero here; keep track of how many duplicates we have in 976 * "dupino" so we don't panic below. 977 */ 978 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) { 979 ++sp->ndupino; 980 printf("lfs_writeinode: last inode addr in current pseg " 981 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 982 (long long)daddr, sp->ndupino); 983 } 984 /* 985 * Account the inode: it no longer belongs to its former segment, 986 * though it will not belong to the new segment until that segment 987 * is actually written. 988 */ 989 if (daddr != LFS_UNUSED_DADDR) { 990 u_int32_t oldsn = dtosn(fs, daddr); 991 #ifdef DIAGNOSTIC 992 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 993 #endif 994 LFS_SEGENTRY(sup, fs, oldsn, bp); 995 #ifdef DIAGNOSTIC 996 if (sup->su_nbytes + 997 sizeof (struct ufs1_dinode) * ndupino 998 < sizeof (struct ufs1_dinode)) { 999 printf("lfs_writeinode: negative bytes " 1000 "(segment %" PRIu32 " short by %d, " 1001 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1002 ", daddr=%" PRId64 ", su_nbytes=%u, " 1003 "ndupino=%d)\n", 1004 dtosn(fs, daddr), 1005 (int)sizeof (struct ufs1_dinode) * 1006 (1 - sp->ndupino) - sup->su_nbytes, 1007 oldsn, sp->seg_number, daddr, 1008 (unsigned int)sup->su_nbytes, 1009 sp->ndupino); 1010 panic("lfs_writeinode: negative bytes"); 1011 sup->su_nbytes = sizeof (struct ufs1_dinode); 1012 } 1013 #endif 1014 #ifdef DEBUG_SU_NBYTES 1015 printf("seg %d -= %d for ino %d inode\n", 1016 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino); 1017 #endif 1018 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1019 redo_ifile = 1020 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1021 if (redo_ifile) 1022 fs->lfs_flags |= LFS_IFDIRTY; 1023 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1024 } 1025 return (redo_ifile); 1026 } 1027 1028 int 1029 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr) 1030 { 1031 struct lfs *fs; 1032 int version; 1033 int j, blksinblk; 1034 1035 /* 1036 * If full, finish this segment. We may be doing I/O, so 1037 * release and reacquire the splbio(). 1038 */ 1039 #ifdef DIAGNOSTIC 1040 if (sp->vp == NULL) 1041 panic ("lfs_gatherblock: Null vp in segment"); 1042 #endif 1043 fs = sp->fs; 1044 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1045 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1046 sp->seg_bytes_left < bp->b_bcount) { 1047 if (sptr) 1048 splx(*sptr); 1049 lfs_updatemeta(sp); 1050 1051 version = sp->fip->fi_version; 1052 (void) lfs_writeseg(fs, sp); 1053 1054 sp->fip->fi_version = version; 1055 sp->fip->fi_ino = VTOI(sp->vp)->i_number; 1056 /* Add the current file to the segment summary. */ 1057 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 1058 sp->sum_bytes_left -= FINFOSIZE; 1059 1060 if (sptr) 1061 *sptr = splbio(); 1062 return (1); 1063 } 1064 1065 #ifdef DEBUG 1066 if (bp->b_flags & B_GATHERED) { 1067 printf("lfs_gatherblock: already gathered! Ino %d," 1068 " lbn %" PRId64 "\n", 1069 sp->fip->fi_ino, bp->b_lblkno); 1070 return (0); 1071 } 1072 #endif 1073 /* Insert into the buffer list, update the FINFO block. */ 1074 bp->b_flags |= B_GATHERED; 1075 1076 *sp->cbpp++ = bp; 1077 for (j = 0; j < blksinblk; j++) 1078 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1079 1080 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1081 sp->seg_bytes_left -= bp->b_bcount; 1082 return (0); 1083 } 1084 1085 int 1086 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1087 int (*match)(struct lfs *, struct buf *)) 1088 { 1089 struct buf *bp, *nbp; 1090 int s, count = 0; 1091 1092 KASSERT(sp->vp == NULL); 1093 sp->vp = vp; 1094 s = splbio(); 1095 1096 #ifndef LFS_NO_BACKBUF_HACK 1097 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1098 # define BUF_OFFSET \ 1099 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp) 1100 # define BACK_BUF(BP) \ 1101 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1102 # define BEG_OF_LIST \ 1103 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1104 1105 loop: 1106 /* Find last buffer. */ 1107 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1108 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1109 bp = LIST_NEXT(bp, b_vnbufs)) 1110 /* nothing */; 1111 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1112 nbp = BACK_BUF(bp); 1113 #else /* LFS_NO_BACKBUF_HACK */ 1114 loop: 1115 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1116 nbp = LIST_NEXT(bp, b_vnbufs); 1117 #endif /* LFS_NO_BACKBUF_HACK */ 1118 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) { 1119 #ifdef DEBUG_LFS 1120 if (vp == fs->lfs_ivnode && 1121 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY) 1122 printf("(%" PRId64 ":%lx)", 1123 bp->b_lblkno, bp->b_flags); 1124 #endif 1125 continue; 1126 } 1127 if (vp->v_type == VBLK) { 1128 /* For block devices, just write the blocks. */ 1129 /* XXX Do we really need to even do this? */ 1130 #ifdef DEBUG_LFS 1131 if (count == 0) 1132 printf("BLK("); 1133 printf("."); 1134 #endif 1135 /* 1136 * Get the block before bwrite, 1137 * so we don't corrupt the free list 1138 */ 1139 bp->b_flags |= B_BUSY; 1140 bremfree(bp); 1141 bwrite(bp); 1142 } else { 1143 #ifdef DIAGNOSTIC 1144 # ifdef LFS_USE_B_INVAL 1145 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) { 1146 printf("lfs_gather: lbn %" PRId64 " is " 1147 "B_INVAL\n", bp->b_lblkno); 1148 VOP_PRINT(bp->b_vp); 1149 } 1150 # endif /* LFS_USE_B_INVAL */ 1151 if (!(bp->b_flags & B_DELWRI)) 1152 panic("lfs_gather: bp not B_DELWRI"); 1153 if (!(bp->b_flags & B_LOCKED)) { 1154 printf("lfs_gather: lbn %" PRId64 " blk " 1155 "%" PRId64 " not B_LOCKED\n", 1156 bp->b_lblkno, 1157 dbtofsb(fs, bp->b_blkno)); 1158 VOP_PRINT(bp->b_vp); 1159 panic("lfs_gather: bp not B_LOCKED"); 1160 } 1161 #endif 1162 if (lfs_gatherblock(sp, bp, &s)) { 1163 goto loop; 1164 } 1165 } 1166 count++; 1167 } 1168 splx(s); 1169 #ifdef DEBUG_LFS 1170 if (vp->v_type == VBLK && count) 1171 printf(")\n"); 1172 #endif 1173 lfs_updatemeta(sp); 1174 KASSERT(sp->vp == vp); 1175 sp->vp = NULL; 1176 return count; 1177 } 1178 1179 #if DEBUG 1180 # define DEBUG_OOFF(n) do { \ 1181 if (ooff == 0) { \ 1182 printf("lfs_updatemeta[%d]: warning: writing " \ 1183 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1184 ", was 0x0 (or %" PRId64 ")\n", \ 1185 (n), ip->i_number, lbn, ndaddr, daddr); \ 1186 } \ 1187 } while (0) 1188 #else 1189 # define DEBUG_OOFF(n) 1190 #endif 1191 1192 /* 1193 * Change the given block's address to ndaddr, finding its previous 1194 * location using ufs_bmaparray(). 1195 * 1196 * Account for this change in the segment table. 1197 * 1198 * called with sp == NULL by roll-forwarding code. 1199 */ 1200 void 1201 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp, 1202 daddr_t lbn, int32_t ndaddr, int size) 1203 { 1204 SEGUSE *sup; 1205 struct buf *bp; 1206 struct indir a[NIADDR + 2], *ap; 1207 struct inode *ip; 1208 daddr_t daddr, ooff; 1209 int num, error; 1210 int bb, osize, obb; 1211 1212 KASSERT(sp == NULL || sp->vp == vp); 1213 ip = VTOI(vp); 1214 1215 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1216 if (error) 1217 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1218 1219 KASSERT(daddr <= LFS_MAX_DADDR); 1220 if (daddr > 0) 1221 daddr = dbtofsb(fs, daddr); 1222 1223 bb = fragstofsb(fs, numfrags(fs, size)); 1224 switch (num) { 1225 case 0: 1226 ooff = ip->i_ffs1_db[lbn]; 1227 DEBUG_OOFF(0); 1228 if (ooff == UNWRITTEN) 1229 ip->i_ffs1_blocks += bb; 1230 else { 1231 /* possible fragment truncation or extension */ 1232 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1233 ip->i_ffs1_blocks += (bb - obb); 1234 } 1235 ip->i_ffs1_db[lbn] = ndaddr; 1236 break; 1237 case 1: 1238 ooff = ip->i_ffs1_ib[a[0].in_off]; 1239 DEBUG_OOFF(1); 1240 if (ooff == UNWRITTEN) 1241 ip->i_ffs1_blocks += bb; 1242 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1243 break; 1244 default: 1245 ap = &a[num - 1]; 1246 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 1247 panic("lfs_updatemeta: bread bno %" PRId64, 1248 ap->in_lbn); 1249 1250 /* XXX ondisk32 */ 1251 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1252 DEBUG_OOFF(num); 1253 if (ooff == UNWRITTEN) 1254 ip->i_ffs1_blocks += bb; 1255 /* XXX ondisk32 */ 1256 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1257 (void) VOP_BWRITE(bp); 1258 } 1259 1260 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1261 1262 /* 1263 * Though we'd rather it couldn't, this *can* happen right now 1264 * if cleaning blocks and regular blocks coexist. 1265 */ 1266 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1267 1268 /* 1269 * Update segment usage information, based on old size 1270 * and location. 1271 */ 1272 if (daddr > 0) { 1273 u_int32_t oldsn = dtosn(fs, daddr); 1274 #ifdef DIAGNOSTIC 1275 int ndupino; 1276 1277 if (sp && sp->seg_number == oldsn) { 1278 ndupino = sp->ndupino; 1279 } else { 1280 ndupino = 0; 1281 } 1282 #endif 1283 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg); 1284 if (lbn >= 0 && lbn < NDADDR) 1285 osize = ip->i_lfs_fragsize[lbn]; 1286 else 1287 osize = fs->lfs_bsize; 1288 LFS_SEGENTRY(sup, fs, oldsn, bp); 1289 #ifdef DIAGNOSTIC 1290 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1291 < osize) { 1292 printf("lfs_updatemeta: negative bytes " 1293 "(segment %" PRIu32 " short by %" PRId64 1294 ")\n", dtosn(fs, daddr), 1295 (int64_t)osize - 1296 (sizeof (struct ufs1_dinode) * ndupino + 1297 sup->su_nbytes)); 1298 printf("lfs_updatemeta: ino %d, lbn %" PRId64 1299 ", addr = 0x%" PRIx64 "\n", 1300 ip->i_number, lbn, daddr); 1301 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1302 panic("lfs_updatemeta: negative bytes"); 1303 sup->su_nbytes = osize - 1304 sizeof (struct ufs1_dinode) * ndupino; 1305 } 1306 #endif 1307 #ifdef DEBUG_SU_NBYTES 1308 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1309 " db 0x%" PRIx64 "\n", 1310 dtosn(fs, daddr), osize, 1311 ip->i_number, lbn, daddr); 1312 #endif 1313 sup->su_nbytes -= osize; 1314 if (!(bp->b_flags & B_GATHERED)) 1315 fs->lfs_flags |= LFS_IFDIRTY; 1316 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1317 } 1318 /* 1319 * Now that this block has a new address, and its old 1320 * segment no longer owns it, we can forget about its 1321 * old size. 1322 */ 1323 if (lbn >= 0 && lbn < NDADDR) 1324 ip->i_lfs_fragsize[lbn] = size; 1325 } 1326 1327 /* 1328 * Update the metadata that points to the blocks listed in the FINFO 1329 * array. 1330 */ 1331 void 1332 lfs_updatemeta(struct segment *sp) 1333 { 1334 struct buf *sbp; 1335 struct lfs *fs; 1336 struct vnode *vp; 1337 daddr_t lbn; 1338 int i, nblocks, num; 1339 int bb; 1340 int bytesleft, size; 1341 1342 vp = sp->vp; 1343 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1344 KASSERT(nblocks >= 0); 1345 KASSERT(vp != NULL); 1346 if (nblocks == 0) 1347 return; 1348 1349 /* 1350 * This count may be high due to oversize blocks from lfs_gop_write. 1351 * Correct for this. (XXX we should be able to keep track of these.) 1352 */ 1353 fs = sp->fs; 1354 for (i = 0; i < nblocks; i++) { 1355 if (sp->start_bpp[i] == NULL) { 1356 printf("nblocks = %d, not %d\n", i, nblocks); 1357 nblocks = i; 1358 break; 1359 } 1360 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1361 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1362 nblocks -= num - 1; 1363 } 1364 1365 KASSERT(vp->v_type == VREG || 1366 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1367 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1368 1369 /* 1370 * Sort the blocks. 1371 * 1372 * We have to sort even if the blocks come from the 1373 * cleaner, because there might be other pending blocks on the 1374 * same inode...and if we don't sort, and there are fragments 1375 * present, blocks may be written in the wrong place. 1376 */ 1377 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1378 1379 /* 1380 * Record the length of the last block in case it's a fragment. 1381 * If there are indirect blocks present, they sort last. An 1382 * indirect block will be lfs_bsize and its presence indicates 1383 * that you cannot have fragments. 1384 * 1385 * XXX This last is a lie. A cleaned fragment can coexist with 1386 * XXX a later indirect block. This will continue to be 1387 * XXX true until lfs_markv is fixed to do everything with 1388 * XXX fake blocks (including fake inodes and fake indirect blocks). 1389 */ 1390 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1391 fs->lfs_bmask) + 1; 1392 1393 /* 1394 * Assign disk addresses, and update references to the logical 1395 * block and the segment usage information. 1396 */ 1397 for (i = nblocks; i--; ++sp->start_bpp) { 1398 sbp = *sp->start_bpp; 1399 lbn = *sp->start_lbp; 1400 KASSERT(sbp->b_lblkno == lbn); 1401 1402 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1403 1404 /* 1405 * If we write a frag in the wrong place, the cleaner won't 1406 * be able to correctly identify its size later, and the 1407 * segment will be uncleanable. (Even worse, it will assume 1408 * that the indirect block that actually ends the list 1409 * is of a smaller size!) 1410 */ 1411 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1412 panic("lfs_updatemeta: fragment is not last block"); 1413 1414 /* 1415 * For each subblock in this possibly oversized block, 1416 * update its address on disk. 1417 */ 1418 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1419 KASSERT(vp == sbp->b_vp); 1420 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1421 bytesleft -= fs->lfs_bsize) { 1422 size = MIN(bytesleft, fs->lfs_bsize); 1423 bb = fragstofsb(fs, numfrags(fs, size)); 1424 lbn = *sp->start_lbp++; 1425 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset, 1426 size); 1427 fs->lfs_offset += bb; 1428 } 1429 1430 } 1431 } 1432 1433 /* 1434 * Start a new partial segment. 1435 * 1436 * Return 1 when we entered to a new segment. 1437 * Otherwise, return 0. 1438 */ 1439 int 1440 lfs_initseg(struct lfs *fs) 1441 { 1442 struct segment *sp = fs->lfs_sp; 1443 SEGSUM *ssp; 1444 struct buf *sbp; /* buffer for SEGSUM */ 1445 int repeat = 0; /* return value */ 1446 1447 /* Advance to the next segment. */ 1448 if (!LFS_PARTIAL_FITS(fs)) { 1449 SEGUSE *sup; 1450 struct buf *bp; 1451 1452 /* lfs_avail eats the remaining space */ 1453 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1454 fs->lfs_curseg); 1455 /* Wake up any cleaning procs waiting on this file system. */ 1456 wakeup(&lfs_allclean_wakeup); 1457 wakeup(&fs->lfs_nextseg); 1458 lfs_newseg(fs); 1459 repeat = 1; 1460 fs->lfs_offset = fs->lfs_curseg; 1461 1462 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1463 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1464 1465 /* 1466 * If the segment contains a superblock, update the offset 1467 * and summary address to skip over it. 1468 */ 1469 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1470 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1471 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1472 sp->seg_bytes_left -= LFS_SBPAD; 1473 } 1474 brelse(bp); 1475 /* Segment zero could also contain the labelpad */ 1476 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1477 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1478 fs->lfs_offset += 1479 btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1480 sp->seg_bytes_left -= 1481 LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1482 } 1483 } else { 1484 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1485 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1486 (fs->lfs_offset - fs->lfs_curseg)); 1487 } 1488 fs->lfs_lastpseg = fs->lfs_offset; 1489 1490 /* Record first address of this partial segment */ 1491 if (sp->seg_flags & SEGM_CLEAN) { 1492 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1493 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1494 /* "1" is the artificial inc in lfs_seglock */ 1495 while (fs->lfs_iocount > 1) { 1496 tsleep(&fs->lfs_iocount, PRIBIO + 1, 1497 "lfs_initseg", 0); 1498 } 1499 fs->lfs_cleanind = 0; 1500 } 1501 } 1502 1503 sp->fs = fs; 1504 sp->ibp = NULL; 1505 sp->idp = NULL; 1506 sp->ninodes = 0; 1507 sp->ndupino = 0; 1508 1509 sp->cbpp = sp->bpp; 1510 1511 /* Get a new buffer for SEGSUM */ 1512 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1513 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1514 1515 /* ... and enter it into the buffer list. */ 1516 *sp->cbpp = sbp; 1517 sp->cbpp++; 1518 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1519 1520 sp->start_bpp = sp->cbpp; 1521 1522 /* Set point to SEGSUM, initialize it. */ 1523 ssp = sp->segsum = sbp->b_data; 1524 memset(ssp, 0, fs->lfs_sumsize); 1525 ssp->ss_next = fs->lfs_nextseg; 1526 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1527 ssp->ss_magic = SS_MAGIC; 1528 1529 /* Set pointer to first FINFO, initialize it. */ 1530 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs)); 1531 sp->fip->fi_nblocks = 0; 1532 sp->start_lbp = &sp->fip->fi_blocks[0]; 1533 sp->fip->fi_lastlength = 0; 1534 1535 sp->seg_bytes_left -= fs->lfs_sumsize; 1536 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1537 1538 return (repeat); 1539 } 1540 1541 /* 1542 * Return the next segment to write. 1543 */ 1544 void 1545 lfs_newseg(struct lfs *fs) 1546 { 1547 CLEANERINFO *cip; 1548 SEGUSE *sup; 1549 struct buf *bp; 1550 int curseg, isdirty, sn; 1551 1552 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1553 #ifdef DEBUG_SU_NBYTES 1554 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */ 1555 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */ 1556 #endif 1557 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1558 sup->su_nbytes = 0; 1559 sup->su_nsums = 0; 1560 sup->su_ninos = 0; 1561 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1562 1563 LFS_CLEANERINFO(cip, fs, bp); 1564 --cip->clean; 1565 ++cip->dirty; 1566 fs->lfs_nclean = cip->clean; 1567 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1568 1569 fs->lfs_lastseg = fs->lfs_curseg; 1570 fs->lfs_curseg = fs->lfs_nextseg; 1571 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1572 sn = (sn + 1) % fs->lfs_nseg; 1573 if (sn == curseg) 1574 panic("lfs_nextseg: no clean segments"); 1575 LFS_SEGENTRY(sup, fs, sn, bp); 1576 isdirty = sup->su_flags & SEGUSE_DIRTY; 1577 /* Check SEGUSE_EMPTY as we go along */ 1578 if (isdirty && sup->su_nbytes == 0 && 1579 !(sup->su_flags & SEGUSE_EMPTY)) 1580 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1581 else 1582 brelse(bp); 1583 1584 if (!isdirty) 1585 break; 1586 } 1587 1588 ++fs->lfs_nactive; 1589 fs->lfs_nextseg = sntod(fs, sn); 1590 if (lfs_dostats) { 1591 ++lfs_stats.segsused; 1592 } 1593 } 1594 1595 static struct buf * 1596 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n) 1597 { 1598 struct lfs_cluster *cl; 1599 struct buf **bpp, *bp; 1600 int s; 1601 1602 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1603 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1604 memset(cl, 0, sizeof(*cl)); 1605 cl->fs = fs; 1606 cl->bpp = bpp; 1607 cl->bufcount = 0; 1608 cl->bufsize = 0; 1609 1610 /* If this segment is being written synchronously, note that */ 1611 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1612 cl->flags |= LFS_CL_SYNC; 1613 cl->seg = fs->lfs_sp; 1614 ++cl->seg->seg_iocount; 1615 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */ 1616 } 1617 1618 /* Get an empty buffer header, or maybe one with something on it */ 1619 s = splbio(); 1620 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */ 1621 splx(s); 1622 memset(bp, 0, sizeof(*bp)); 1623 BUF_INIT(bp); 1624 1625 bp->b_flags = B_BUSY | B_CALL; 1626 bp->b_dev = NODEV; 1627 bp->b_blkno = bp->b_lblkno = addr; 1628 bp->b_iodone = lfs_cluster_callback; 1629 bp->b_private = cl; 1630 bp->b_vp = vp; 1631 1632 return bp; 1633 } 1634 1635 int 1636 lfs_writeseg(struct lfs *fs, struct segment *sp) 1637 { 1638 struct buf **bpp, *bp, *cbp, *newbp; 1639 SEGUSE *sup; 1640 SEGSUM *ssp; 1641 int i, s; 1642 int do_again, nblocks, byteoffset; 1643 size_t el_size; 1644 struct lfs_cluster *cl; 1645 u_short ninos; 1646 struct vnode *devvp; 1647 char *p = NULL; 1648 struct vnode *vp; 1649 int32_t *daddrp; /* XXX ondisk32 */ 1650 int changed; 1651 u_int32_t sum; 1652 #if defined(DEBUG) && defined(LFS_PROPELLER) 1653 static int propeller; 1654 char propstring[4] = "-\\|/"; 1655 1656 printf("%c\b",propstring[propeller++]); 1657 if (propeller == 4) 1658 propeller = 0; 1659 #endif 1660 1661 /* 1662 * If there are no buffers other than the segment summary to write 1663 * and it is not a checkpoint, don't do anything. On a checkpoint, 1664 * even if there aren't any buffers, you need to write the superblock. 1665 */ 1666 if ((nblocks = sp->cbpp - sp->bpp) == 1) 1667 return (0); 1668 1669 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1670 1671 /* Update the segment usage information. */ 1672 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1673 1674 /* Loop through all blocks, except the segment summary. */ 1675 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 1676 if ((*bpp)->b_vp != devvp) { 1677 sup->su_nbytes += (*bpp)->b_bcount; 1678 #ifdef DEBUG_SU_NBYTES 1679 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64 1680 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount, 1681 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 1682 (*bpp)->b_blkno); 1683 #endif 1684 } 1685 } 1686 1687 ssp = (SEGSUM *)sp->segsum; 1688 1689 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 1690 #ifdef DEBUG_SU_NBYTES 1691 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */ 1692 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 1693 ssp->ss_ninos); 1694 #endif 1695 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 1696 /* sup->su_nbytes += fs->lfs_sumsize; */ 1697 if (fs->lfs_version == 1) 1698 sup->su_olastmod = time.tv_sec; 1699 else 1700 sup->su_lastmod = time.tv_sec; 1701 sup->su_ninos += ninos; 1702 ++sup->su_nsums; 1703 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos * 1704 fs->lfs_ibsize)); 1705 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 1706 1707 do_again = !(bp->b_flags & B_GATHERED); 1708 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 1709 1710 /* 1711 * Mark blocks B_BUSY, to prevent then from being changed between 1712 * the checksum computation and the actual write. 1713 * 1714 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 1715 * there are any, replace them with copies that have UNASSIGNED 1716 * instead. 1717 */ 1718 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 1719 ++bpp; 1720 bp = *bpp; 1721 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */ 1722 bp->b_flags |= B_BUSY; 1723 continue; 1724 } 1725 again: 1726 s = splbio(); 1727 if (bp->b_flags & B_BUSY) { 1728 #ifdef DEBUG 1729 printf("lfs_writeseg: avoiding potential data summary " 1730 "corruption for ino %d, lbn %" PRId64 "\n", 1731 VTOI(bp->b_vp)->i_number, bp->b_lblkno); 1732 #endif 1733 bp->b_flags |= B_WANTED; 1734 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0); 1735 splx(s); 1736 goto again; 1737 } 1738 bp->b_flags |= B_BUSY; 1739 splx(s); 1740 /* 1741 * Check and replace indirect block UNWRITTEN bogosity. 1742 * XXX See comment in lfs_writefile. 1743 */ 1744 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 1745 VTOI(bp->b_vp)->i_ffs1_blocks != 1746 VTOI(bp->b_vp)->i_lfs_effnblks) { 1747 #ifdef DEBUG_LFS 1748 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n", 1749 VTOI(bp->b_vp)->i_number, 1750 VTOI(bp->b_vp)->i_lfs_effnblks, 1751 VTOI(bp->b_vp)->i_ffs1_blocks); 1752 #endif 1753 /* Make a copy we'll make changes to */ 1754 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 1755 bp->b_bcount, LFS_NB_IBLOCK); 1756 newbp->b_blkno = bp->b_blkno; 1757 memcpy(newbp->b_data, bp->b_data, 1758 newbp->b_bcount); 1759 1760 changed = 0; 1761 /* XXX ondisk32 */ 1762 for (daddrp = (int32_t *)(newbp->b_data); 1763 daddrp < (int32_t *)(newbp->b_data + 1764 newbp->b_bcount); daddrp++) { 1765 if (*daddrp == UNWRITTEN) { 1766 #ifdef DEBUG_LFS 1767 off_t doff; 1768 int32_t ioff; 1769 1770 ioff = 1771 daddrp - (int32_t *)(newbp->b_data); 1772 doff = 1773 (-bp->b_lblkno + ioff) * fs->lfs_bsize; 1774 printf("ino %d lbn %" PRId64 1775 " entry %d off %" PRIx64 "\n", 1776 VTOI(bp->b_vp)->i_number, 1777 bp->b_lblkno, ioff, doff); 1778 if (bp->b_vp->v_type == VREG) { 1779 /* 1780 * What is up with this page? 1781 */ 1782 struct vm_page *pg; 1783 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); 1784 doff += PAGE_SIZE) { 1785 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff); 1786 if (pg == NULL) 1787 printf(" page at %" PRIx64 " is NULL\n", doff); 1788 else 1789 printf(" page at %" PRIx64 1790 " flags 0x%x pqflags 0x%x\n", 1791 doff, pg->flags, pg->pqflags); 1792 } 1793 } 1794 #endif /* DEBUG_LFS */ 1795 ++changed; 1796 *daddrp = 0; 1797 } 1798 } 1799 /* 1800 * Get rid of the old buffer. Don't mark it clean, 1801 * though, if it still has dirty data on it. 1802 */ 1803 if (changed) { 1804 #ifdef DEBUG_LFS 1805 printf("lfs_writeseg: replacing UNWRITTEN(%d):" 1806 " bp = %p newbp = %p\n", changed, bp, 1807 newbp); 1808 #endif 1809 *bpp = newbp; 1810 bp->b_flags &= ~(B_ERROR | B_GATHERED); 1811 if (bp->b_flags & B_CALL) { 1812 printf("lfs_writeseg: " 1813 "indir bp should not be B_CALL\n"); 1814 s = splbio(); 1815 biodone(bp); 1816 splx(s); 1817 bp = NULL; 1818 } else { 1819 /* Still on free list, leave it there */ 1820 s = splbio(); 1821 bp->b_flags &= ~B_BUSY; 1822 if (bp->b_flags & B_WANTED) 1823 wakeup(bp); 1824 splx(s); 1825 /* 1826 * We have to re-decrement lfs_avail 1827 * since this block is going to come 1828 * back around to us in the next 1829 * segment. 1830 */ 1831 fs->lfs_avail -= 1832 btofsb(fs, bp->b_bcount); 1833 } 1834 } else { 1835 lfs_freebuf(fs, newbp); 1836 } 1837 } 1838 } 1839 /* 1840 * Compute checksum across data and then across summary; the first 1841 * block (the summary block) is skipped. Set the create time here 1842 * so that it's guaranteed to be later than the inode mod times. 1843 */ 1844 sum = 0; 1845 if (fs->lfs_version == 1) 1846 el_size = sizeof(u_long); 1847 else 1848 el_size = sizeof(u_int32_t); 1849 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 1850 ++bpp; 1851 /* Loop through gop_write cluster blocks */ 1852 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 1853 byteoffset += fs->lfs_bsize) { 1854 #ifdef LFS_USE_B_INVAL 1855 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) == 1856 (B_CALL | B_INVAL)) { 1857 if (copyin((caddr_t)(*bpp)->b_saveaddr + 1858 byteoffset, dp, el_size)) { 1859 panic("lfs_writeseg: copyin failed [1]:" 1860 " ino %d blk %" PRId64, 1861 VTOI((*bpp)->b_vp)->i_number, 1862 (*bpp)->b_lblkno); 1863 } 1864 } else 1865 #endif /* LFS_USE_B_INVAL */ 1866 { 1867 sum = lfs_cksum_part( 1868 (*bpp)->b_data + byteoffset, el_size, sum); 1869 } 1870 } 1871 } 1872 if (fs->lfs_version == 1) 1873 ssp->ss_ocreate = time.tv_sec; 1874 else { 1875 ssp->ss_create = time.tv_sec; 1876 ssp->ss_serial = ++fs->lfs_serial; 1877 ssp->ss_ident = fs->lfs_ident; 1878 } 1879 ssp->ss_datasum = lfs_cksum_fold(sum); 1880 ssp->ss_sumsum = cksum(&ssp->ss_datasum, 1881 fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 1882 #ifdef DIAGNOSTIC 1883 if (fs->lfs_bfree < 1884 btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize)) 1885 panic("lfs_writeseg: No diskspace for summary"); 1886 #endif 1887 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 1888 btofsb(fs, fs->lfs_sumsize)); 1889 1890 /* 1891 * When we simply write the blocks we lose a rotation for every block 1892 * written. To avoid this problem, we cluster the buffers into a 1893 * chunk and write the chunk. MAXPHYS is the largest size I/O 1894 * devices can handle, use that for the size of the chunks. 1895 * 1896 * Blocks that are already clusters (from GOP_WRITE), however, we 1897 * don't bother to copy into other clusters. 1898 */ 1899 1900 #define CHUNKSIZE MAXPHYS 1901 1902 if (devvp == NULL) 1903 panic("devvp is NULL"); 1904 for (bpp = sp->bpp, i = nblocks; i;) { 1905 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 1906 cl = cbp->b_private; 1907 1908 cbp->b_flags |= B_ASYNC | B_BUSY; 1909 cbp->b_bcount = 0; 1910 1911 #if defined(DEBUG) && defined(DIAGNOSTIC) 1912 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 1913 / sizeof(int32_t)) { 1914 panic("lfs_writeseg: real bpp overwrite"); 1915 } 1916 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) { 1917 panic("lfs_writeseg: theoretical bpp overwrite"); 1918 } 1919 #endif 1920 1921 /* 1922 * Construct the cluster. 1923 */ 1924 ++fs->lfs_iocount; 1925 while (i && cbp->b_bcount < CHUNKSIZE) { 1926 bp = *bpp; 1927 1928 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 1929 break; 1930 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 1931 break; 1932 1933 /* Clusters from GOP_WRITE are expedited */ 1934 if (bp->b_bcount > fs->lfs_bsize) { 1935 if (cbp->b_bcount > 0) 1936 /* Put in its own buffer */ 1937 break; 1938 else { 1939 cbp->b_data = bp->b_data; 1940 } 1941 } else if (cbp->b_bcount == 0) { 1942 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 1943 LFS_NB_CLUSTER); 1944 cl->flags |= LFS_CL_MALLOC; 1945 } 1946 #ifdef DIAGNOSTIC 1947 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 1948 btodb(bp->b_bcount - 1))) != 1949 sp->seg_number) { 1950 printf("blk size %ld daddr %" PRIx64 1951 " not in seg %d\n", 1952 bp->b_bcount, bp->b_blkno, 1953 sp->seg_number); 1954 panic("segment overwrite"); 1955 } 1956 #endif 1957 1958 #ifdef LFS_USE_B_INVAL 1959 /* 1960 * Fake buffers from the cleaner are marked as B_INVAL. 1961 * We need to copy the data from user space rather than 1962 * from the buffer indicated. 1963 * XXX == what do I do on an error? 1964 */ 1965 if ((bp->b_flags & (B_CALL|B_INVAL)) == 1966 (B_CALL|B_INVAL)) { 1967 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 1968 panic("lfs_writeseg: " 1969 "copyin failed [2]"); 1970 } else 1971 #endif /* LFS_USE_B_INVAL */ 1972 if (cl->flags & LFS_CL_MALLOC) { 1973 /* copy data into our cluster. */ 1974 memcpy(p, bp->b_data, bp->b_bcount); 1975 p += bp->b_bcount; 1976 } 1977 1978 cbp->b_bcount += bp->b_bcount; 1979 cl->bufsize += bp->b_bcount; 1980 1981 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE); 1982 cl->bpp[cl->bufcount++] = bp; 1983 vp = bp->b_vp; 1984 s = splbio(); 1985 reassignbuf(bp, vp); 1986 V_INCR_NUMOUTPUT(vp); 1987 splx(s); 1988 1989 bpp++; 1990 i--; 1991 } 1992 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 1993 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 1994 else 1995 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 1996 s = splbio(); 1997 V_INCR_NUMOUTPUT(devvp); 1998 splx(s); 1999 VOP_STRATEGY(devvp, cbp); 2000 curproc->p_stats->p_ru.ru_oublock++; 2001 } 2002 2003 if (lfs_dostats) { 2004 ++lfs_stats.psegwrites; 2005 lfs_stats.blocktot += nblocks - 1; 2006 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2007 ++lfs_stats.psyncwrites; 2008 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2009 ++lfs_stats.pcleanwrites; 2010 lfs_stats.cleanblocks += nblocks - 1; 2011 } 2012 } 2013 return (lfs_initseg(fs) || do_again); 2014 } 2015 2016 void 2017 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2018 { 2019 struct buf *bp; 2020 int s; 2021 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2022 2023 /* 2024 * If we can write one superblock while another is in 2025 * progress, we risk not having a complete checkpoint if we crash. 2026 * So, block here if a superblock write is in progress. 2027 */ 2028 s = splbio(); 2029 while (fs->lfs_sbactive) { 2030 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0); 2031 } 2032 fs->lfs_sbactive = daddr; 2033 splx(s); 2034 2035 /* Set timestamp of this version of the superblock */ 2036 if (fs->lfs_version == 1) 2037 fs->lfs_otstamp = time.tv_sec; 2038 fs->lfs_tstamp = time.tv_sec; 2039 2040 /* Checksum the superblock and copy it into a buffer. */ 2041 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2042 bp = lfs_newbuf(fs, devvp, 2043 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2044 memset(bp->b_data + sizeof(struct dlfs), 0, 2045 LFS_SBPAD - sizeof(struct dlfs)); 2046 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2047 2048 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; 2049 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); 2050 bp->b_iodone = lfs_supercallback; 2051 2052 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2053 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2054 else 2055 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2056 curproc->p_stats->p_ru.ru_oublock++; 2057 s = splbio(); 2058 V_INCR_NUMOUTPUT(bp->b_vp); 2059 splx(s); 2060 ++fs->lfs_iocount; 2061 VOP_STRATEGY(devvp, bp); 2062 } 2063 2064 /* 2065 * Logical block number match routines used when traversing the dirty block 2066 * chain. 2067 */ 2068 int 2069 lfs_match_fake(struct lfs *fs, struct buf *bp) 2070 { 2071 2072 return LFS_IS_MALLOC_BUF(bp); 2073 } 2074 2075 #if 0 2076 int 2077 lfs_match_real(struct lfs *fs, struct buf *bp) 2078 { 2079 2080 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2081 } 2082 #endif 2083 2084 int 2085 lfs_match_data(struct lfs *fs, struct buf *bp) 2086 { 2087 2088 return (bp->b_lblkno >= 0); 2089 } 2090 2091 int 2092 lfs_match_indir(struct lfs *fs, struct buf *bp) 2093 { 2094 daddr_t lbn; 2095 2096 lbn = bp->b_lblkno; 2097 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2098 } 2099 2100 int 2101 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2102 { 2103 daddr_t lbn; 2104 2105 lbn = bp->b_lblkno; 2106 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2107 } 2108 2109 int 2110 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2111 { 2112 daddr_t lbn; 2113 2114 lbn = bp->b_lblkno; 2115 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2116 } 2117 2118 /* 2119 * XXX - The only buffers that are going to hit these functions are the 2120 * segment write blocks, or the segment summaries, or the superblocks. 2121 * 2122 * All of the above are created by lfs_newbuf, and so do not need to be 2123 * released via brelse. 2124 */ 2125 void 2126 lfs_callback(struct buf *bp) 2127 { 2128 struct lfs *fs; 2129 2130 fs = bp->b_private; 2131 lfs_freebuf(fs, bp); 2132 } 2133 2134 static void 2135 lfs_super_aiodone(struct buf *bp) 2136 { 2137 struct lfs *fs; 2138 2139 fs = bp->b_private; 2140 fs->lfs_sbactive = 0; 2141 wakeup(&fs->lfs_sbactive); 2142 if (--fs->lfs_iocount <= 1) 2143 wakeup(&fs->lfs_iocount); 2144 lfs_freebuf(fs, bp); 2145 } 2146 2147 static void 2148 lfs_cluster_aiodone(struct buf *bp) 2149 { 2150 struct lfs_cluster *cl; 2151 struct lfs *fs; 2152 struct buf *tbp, *fbp; 2153 struct vnode *vp, *devvp; 2154 struct inode *ip; 2155 int s, error=0; 2156 2157 if (bp->b_flags & B_ERROR) 2158 error = bp->b_error; 2159 2160 cl = bp->b_private; 2161 fs = cl->fs; 2162 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2163 2164 /* Put the pages back, and release the buffer */ 2165 while (cl->bufcount--) { 2166 tbp = cl->bpp[cl->bufcount]; 2167 KASSERT(tbp->b_flags & B_BUSY); 2168 if (error) { 2169 tbp->b_flags |= B_ERROR; 2170 tbp->b_error = error; 2171 } 2172 2173 /* 2174 * We're done with tbp. If it has not been re-dirtied since 2175 * the cluster was written, free it. Otherwise, keep it on 2176 * the locked list to be written again. 2177 */ 2178 vp = tbp->b_vp; 2179 2180 tbp->b_flags &= ~B_GATHERED; 2181 2182 LFS_BCLEAN_LOG(fs, tbp); 2183 2184 if (!(tbp->b_flags & B_CALL)) { 2185 KASSERT(tbp->b_flags & B_LOCKED); 2186 s = splbio(); 2187 simple_lock(&bqueue_slock); 2188 bremfree(tbp); 2189 simple_unlock(&bqueue_slock); 2190 if (vp) 2191 reassignbuf(tbp, vp); 2192 splx(s); 2193 tbp->b_flags |= B_ASYNC; /* for biodone */ 2194 } 2195 2196 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED) 2197 LFS_UNLOCK_BUF(tbp); 2198 2199 #ifdef DIAGNOSTIC 2200 if (tbp->b_flags & B_DONE) { 2201 printf("blk %d biodone already (flags %lx)\n", 2202 cl->bufcount, (long)tbp->b_flags); 2203 } 2204 #endif 2205 2206 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) { 2207 /* printf("flags 0x%lx\n", tbp->b_flags); */ 2208 /* 2209 * A buffer from the page daemon. 2210 * We use the same iodone as it does, 2211 * so we must manually disassociate its 2212 * buffers from the vp. 2213 */ 2214 if (tbp->b_vp) { 2215 /* This is just silly */ 2216 s = splbio(); 2217 brelvp(tbp); 2218 tbp->b_vp = vp; 2219 splx(s); 2220 } 2221 /* Put it back the way it was */ 2222 tbp->b_flags |= B_ASYNC; 2223 /* Master buffers have B_AGE */ 2224 if (tbp->b_private == tbp) 2225 tbp->b_flags |= B_AGE; 2226 } 2227 s = splbio(); 2228 biodone(tbp); 2229 2230 /* 2231 * If this is the last block for this vnode, but 2232 * there are other blocks on its dirty list, 2233 * set IN_MODIFIED/IN_CLEANING depending on what 2234 * sort of block. Only do this for our mount point, 2235 * not for, e.g., inode blocks that are attached to 2236 * the devvp. 2237 * XXX KS - Shouldn't we set *both* if both types 2238 * of blocks are present (traverse the dirty list?) 2239 */ 2240 simple_lock(&global_v_numoutput_slock); 2241 if (vp != devvp && vp->v_numoutput == 0 && 2242 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2243 ip = VTOI(vp); 2244 #ifdef DEBUG_LFS 2245 printf("lfs_cluster_aiodone: marking ino %d\n", 2246 ip->i_number); 2247 #endif 2248 if (LFS_IS_MALLOC_BUF(fbp)) 2249 LFS_SET_UINO(ip, IN_CLEANING); 2250 else 2251 LFS_SET_UINO(ip, IN_MODIFIED); 2252 } 2253 simple_unlock(&global_v_numoutput_slock); 2254 splx(s); 2255 wakeup(vp); 2256 } 2257 2258 /* Fix up the cluster buffer, and release it */ 2259 if (cl->flags & LFS_CL_MALLOC) 2260 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2261 s = splbio(); 2262 pool_put(&bufpool, bp); /* XXX should use lfs_free? */ 2263 splx(s); 2264 2265 /* Note i/o done */ 2266 if (cl->flags & LFS_CL_SYNC) { 2267 if (--cl->seg->seg_iocount == 0) 2268 wakeup(&cl->seg->seg_iocount); 2269 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */ 2270 } 2271 #ifdef DIAGNOSTIC 2272 if (fs->lfs_iocount == 0) 2273 panic("lfs_cluster_aiodone: zero iocount"); 2274 #endif 2275 if (--fs->lfs_iocount <= 1) 2276 wakeup(&fs->lfs_iocount); 2277 2278 pool_put(&fs->lfs_bpppool, cl->bpp); 2279 cl->bpp = NULL; 2280 pool_put(&fs->lfs_clpool, cl); 2281 } 2282 2283 static void 2284 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2285 { 2286 /* reset b_iodone for when this is a single-buf i/o. */ 2287 bp->b_iodone = aiodone; 2288 2289 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */ 2290 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist); 2291 wakeup(&uvm.aiodoned); 2292 simple_unlock(&uvm.aiodoned_lock); 2293 } 2294 2295 static void 2296 lfs_cluster_callback(struct buf *bp) 2297 { 2298 2299 lfs_generic_callback(bp, lfs_cluster_aiodone); 2300 } 2301 2302 void 2303 lfs_supercallback(struct buf *bp) 2304 { 2305 2306 lfs_generic_callback(bp, lfs_super_aiodone); 2307 } 2308 2309 /* 2310 * Shellsort (diminishing increment sort) from Data Structures and 2311 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2312 * see also Knuth Vol. 3, page 84. The increments are selected from 2313 * formula (8), page 95. Roughly O(N^3/2). 2314 */ 2315 /* 2316 * This is our own private copy of shellsort because we want to sort 2317 * two parallel arrays (the array of buffer pointers and the array of 2318 * logical block numbers) simultaneously. Note that we cast the array 2319 * of logical block numbers to a unsigned in this routine so that the 2320 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2321 */ 2322 2323 void 2324 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2325 { 2326 static int __rsshell_increments[] = { 4, 1, 0 }; 2327 int incr, *incrp, t1, t2; 2328 struct buf *bp_temp; 2329 2330 #ifdef DEBUG 2331 incr = 0; 2332 for (t1 = 0; t1 < nmemb; t1++) { 2333 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2334 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2335 /* dump before panic */ 2336 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2337 nmemb, size); 2338 incr = 0; 2339 for (t1 = 0; t1 < nmemb; t1++) { 2340 const struct buf *bp = bp_array[t1]; 2341 2342 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2343 PRIu64 "\n", t1, 2344 (uint64_t)bp->b_bcount, 2345 (uint64_t)bp->b_lblkno); 2346 printf("lbns:"); 2347 for (t2 = 0; t2 * size < bp->b_bcount; 2348 t2++) { 2349 printf(" %" PRId32, 2350 lb_array[incr++]); 2351 } 2352 printf("\n"); 2353 } 2354 panic("lfs_shellsort: inconsistent input"); 2355 } 2356 } 2357 } 2358 #endif 2359 2360 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2361 for (t1 = incr; t1 < nmemb; ++t1) 2362 for (t2 = t1 - incr; t2 >= 0;) 2363 if ((u_int32_t)bp_array[t2]->b_lblkno > 2364 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2365 bp_temp = bp_array[t2]; 2366 bp_array[t2] = bp_array[t2 + incr]; 2367 bp_array[t2 + incr] = bp_temp; 2368 t2 -= incr; 2369 } else 2370 break; 2371 2372 /* Reform the list of logical blocks */ 2373 incr = 0; 2374 for (t1 = 0; t1 < nmemb; t1++) { 2375 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2376 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2377 } 2378 } 2379 } 2380 2381 /* 2382 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. 2383 */ 2384 int 2385 lfs_vref(struct vnode *vp) 2386 { 2387 /* 2388 * If we return 1 here during a flush, we risk vinvalbuf() not 2389 * being able to flush all of the pages from this vnode, which 2390 * will cause it to panic. So, return 0 if a flush is in progress. 2391 */ 2392 if (vp->v_flag & VXLOCK) { 2393 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) { 2394 return 0; 2395 } 2396 return (1); 2397 } 2398 return (vget(vp, 0)); 2399 } 2400 2401 /* 2402 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2403 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2404 */ 2405 void 2406 lfs_vunref(struct vnode *vp) 2407 { 2408 /* 2409 * Analogous to lfs_vref, if the node is flushing, fake it. 2410 */ 2411 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) { 2412 return; 2413 } 2414 2415 simple_lock(&vp->v_interlock); 2416 #ifdef DIAGNOSTIC 2417 if (vp->v_usecount <= 0) { 2418 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number); 2419 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag); 2420 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount); 2421 panic("lfs_vunref: v_usecount<0"); 2422 } 2423 #endif 2424 vp->v_usecount--; 2425 if (vp->v_usecount > 0) { 2426 simple_unlock(&vp->v_interlock); 2427 return; 2428 } 2429 /* 2430 * insert at tail of LRU list 2431 */ 2432 simple_lock(&vnode_free_list_slock); 2433 if (vp->v_holdcnt > 0) 2434 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2435 else 2436 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 2437 simple_unlock(&vnode_free_list_slock); 2438 simple_unlock(&vp->v_interlock); 2439 } 2440 2441 /* 2442 * We use this when we have vnodes that were loaded in solely for cleaning. 2443 * There is no reason to believe that these vnodes will be referenced again 2444 * soon, since the cleaning process is unrelated to normal filesystem 2445 * activity. Putting cleaned vnodes at the tail of the list has the effect 2446 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2447 * cleaning at the head of the list, instead. 2448 */ 2449 void 2450 lfs_vunref_head(struct vnode *vp) 2451 { 2452 2453 simple_lock(&vp->v_interlock); 2454 #ifdef DIAGNOSTIC 2455 if (vp->v_usecount == 0) { 2456 panic("lfs_vunref: v_usecount<0"); 2457 } 2458 #endif 2459 vp->v_usecount--; 2460 if (vp->v_usecount > 0) { 2461 simple_unlock(&vp->v_interlock); 2462 return; 2463 } 2464 /* 2465 * insert at head of LRU list 2466 */ 2467 simple_lock(&vnode_free_list_slock); 2468 if (vp->v_holdcnt > 0) 2469 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2470 else 2471 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2472 simple_unlock(&vnode_free_list_slock); 2473 simple_unlock(&vp->v_interlock); 2474 } 2475 2476