1 /* $NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /* 39 * Copyright (c) 1991, 1993 40 * The Regents of the University of California. All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. Neither the name of the University nor the names of its contributors 51 * may be used to endorse or promote products derived from this software 52 * without specific prior written permission. 53 * 54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 64 * SUCH DAMAGE. 65 * 66 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 67 */ 68 69 #include <sys/cdefs.h> 70 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.159 2005/04/01 21:59:46 perseant Exp $"); 71 72 #ifdef DEBUG 73 # define vndebug(vp, str) do { \ 74 if (VTOI(vp)->i_flag & IN_CLEANING) \ 75 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ 76 VTOI(vp)->i_number, (str), op)); \ 77 } while(0) 78 #else 79 # define vndebug(vp, str) 80 #endif 81 #define ivndebug(vp, str) \ 82 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) 83 84 #if defined(_KERNEL_OPT) 85 #include "opt_ddb.h" 86 #endif 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/namei.h> 91 #include <sys/kernel.h> 92 #include <sys/resourcevar.h> 93 #include <sys/file.h> 94 #include <sys/stat.h> 95 #include <sys/buf.h> 96 #include <sys/proc.h> 97 #include <sys/vnode.h> 98 #include <sys/mount.h> 99 100 #include <miscfs/specfs/specdev.h> 101 #include <miscfs/fifofs/fifo.h> 102 103 #include <ufs/ufs/inode.h> 104 #include <ufs/ufs/dir.h> 105 #include <ufs/ufs/ufsmount.h> 106 #include <ufs/ufs/ufs_extern.h> 107 108 #include <ufs/lfs/lfs.h> 109 #include <ufs/lfs/lfs_extern.h> 110 111 #include <uvm/uvm.h> 112 #include <uvm/uvm_extern.h> 113 114 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 115 116 extern int count_lock_queue(void); 117 extern struct simplelock vnode_free_list_slock; /* XXX */ 118 extern struct simplelock bqueue_slock; /* XXX */ 119 120 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 121 static void lfs_super_aiodone(struct buf *); 122 static void lfs_cluster_aiodone(struct buf *); 123 static void lfs_cluster_callback(struct buf *); 124 125 /* 126 * Determine if it's OK to start a partial in this segment, or if we need 127 * to go on to a new segment. 128 */ 129 #define LFS_PARTIAL_FITS(fs) \ 130 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 131 fragstofsb((fs), (fs)->lfs_frag)) 132 133 int lfs_match_fake(struct lfs *, struct buf *); 134 void lfs_newseg(struct lfs *); 135 /* XXX ondisk32 */ 136 void lfs_shellsort(struct buf **, int32_t *, int, int); 137 void lfs_supercallback(struct buf *); 138 void lfs_updatemeta(struct segment *); 139 void lfs_writesuper(struct lfs *, daddr_t); 140 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 141 struct segment *sp, int dirops); 142 143 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 144 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 145 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 146 int lfs_dirvcount = 0; /* # active dirops */ 147 148 /* Statistics Counters */ 149 int lfs_dostats = 1; 150 struct lfs_stats lfs_stats; 151 152 /* op values to lfs_writevnodes */ 153 #define VN_REG 0 154 #define VN_DIROP 1 155 #define VN_EMPTY 2 156 #define VN_CLEAN 3 157 158 /* 159 * XXX KS - Set modification time on the Ifile, so the cleaner can 160 * read the fs mod time off of it. We don't set IN_UPDATE here, 161 * since we don't really need this to be flushed to disk (and in any 162 * case that wouldn't happen to the Ifile until we checkpoint). 163 */ 164 void 165 lfs_imtime(struct lfs *fs) 166 { 167 struct timespec ts; 168 struct inode *ip; 169 170 ASSERT_MAYBE_SEGLOCK(fs); 171 TIMEVAL_TO_TIMESPEC(&time, &ts); 172 ip = VTOI(fs->lfs_ivnode); 173 ip->i_ffs1_mtime = ts.tv_sec; 174 ip->i_ffs1_mtimensec = ts.tv_nsec; 175 } 176 177 /* 178 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 179 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 180 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 181 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 182 */ 183 184 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp) 185 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 186 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL 187 188 int 189 lfs_vflush(struct vnode *vp) 190 { 191 struct inode *ip; 192 struct lfs *fs; 193 struct segment *sp; 194 struct buf *bp, *nbp, *tbp, *tnbp; 195 int error, s; 196 int flushed; 197 #if 0 198 int redo; 199 #endif 200 201 ip = VTOI(vp); 202 fs = VFSTOUFS(vp->v_mount)->um_lfs; 203 204 ASSERT_NO_SEGLOCK(fs); 205 if (ip->i_flag & IN_CLEANING) { 206 ivndebug(vp,"vflush/in_cleaning"); 207 LFS_CLR_UINO(ip, IN_CLEANING); 208 LFS_SET_UINO(ip, IN_MODIFIED); 209 210 /* 211 * Toss any cleaning buffers that have real counterparts 212 * to avoid losing new data. 213 */ 214 s = splbio(); 215 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 216 nbp = LIST_NEXT(bp, b_vnbufs); 217 if (!LFS_IS_MALLOC_BUF(bp)) 218 continue; 219 /* 220 * Look for pages matching the range covered 221 * by cleaning blocks. It's okay if more dirty 222 * pages appear, so long as none disappear out 223 * from under us. 224 */ 225 if (bp->b_lblkno > 0 && vp->v_type == VREG && 226 vp != fs->lfs_ivnode) { 227 struct vm_page *pg; 228 voff_t off; 229 230 simple_lock(&vp->v_interlock); 231 for (off = lblktosize(fs, bp->b_lblkno); 232 off < lblktosize(fs, bp->b_lblkno + 1); 233 off += PAGE_SIZE) { 234 pg = uvm_pagelookup(&vp->v_uobj, off); 235 if (pg == NULL) 236 continue; 237 if ((pg->flags & PG_CLEAN) == 0 || 238 pmap_is_modified(pg)) { 239 fs->lfs_avail += btofsb(fs, 240 bp->b_bcount); 241 wakeup(&fs->lfs_avail); 242 lfs_freebuf(fs, bp); 243 bp = NULL; 244 goto nextbp; 245 } 246 } 247 simple_unlock(&vp->v_interlock); 248 } 249 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 250 tbp = tnbp) 251 { 252 tnbp = LIST_NEXT(tbp, b_vnbufs); 253 if (tbp->b_vp == bp->b_vp 254 && tbp->b_lblkno == bp->b_lblkno 255 && tbp != bp) 256 { 257 fs->lfs_avail += btofsb(fs, 258 bp->b_bcount); 259 wakeup(&fs->lfs_avail); 260 lfs_freebuf(fs, bp); 261 bp = NULL; 262 break; 263 } 264 } 265 nextbp: 266 ; 267 } 268 splx(s); 269 } 270 271 /* If the node is being written, wait until that is done */ 272 simple_lock(&vp->v_interlock); 273 s = splbio(); 274 if (WRITEINPROG(vp)) { 275 ivndebug(vp,"vflush/writeinprog"); 276 ltsleep(vp, (PRIBIO+1), "lfs_vw", 0, &vp->v_interlock); 277 } 278 splx(s); 279 simple_unlock(&vp->v_interlock); 280 281 /* Protect against VXLOCK deadlock in vinvalbuf() */ 282 lfs_seglock(fs, SEGM_SYNC); 283 284 /* If we're supposed to flush a freed inode, just toss it */ 285 /* XXX - seglock, so these buffers can't be gathered, right? */ 286 if (ip->i_mode == 0) { 287 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", 288 ip->i_number)); 289 s = splbio(); 290 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 291 nbp = LIST_NEXT(bp, b_vnbufs); 292 if (bp->b_flags & B_DELWRI) { /* XXX always true? */ 293 fs->lfs_avail += btofsb(fs, bp->b_bcount); 294 wakeup(&fs->lfs_avail); 295 } 296 /* Copied from lfs_writeseg */ 297 if (bp->b_flags & B_CALL) { 298 biodone(bp); 299 } else { 300 bremfree(bp); 301 LFS_UNLOCK_BUF(bp); 302 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | 303 B_GATHERED); 304 bp->b_flags |= B_DONE; 305 reassignbuf(bp, vp); 306 brelse(bp); 307 } 308 } 309 splx(s); 310 LFS_CLR_UINO(ip, IN_CLEANING); 311 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 312 ip->i_flag &= ~IN_ALLMOD; 313 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", 314 ip->i_number)); 315 lfs_segunlock(fs); 316 return 0; 317 } 318 319 SET_FLUSHING(fs,vp); 320 if (fs->lfs_nactive > LFS_MAX_ACTIVE || 321 (fs->lfs_sp->seg_flags & SEGM_CKP)) { 322 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 323 CLR_FLUSHING(fs,vp); 324 lfs_segunlock(fs); 325 return error; 326 } 327 sp = fs->lfs_sp; 328 329 flushed = 0; 330 if (VPISEMPTY(vp)) { 331 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 332 ++flushed; 333 } else if ((ip->i_flag & IN_CLEANING) && 334 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 335 ivndebug(vp,"vflush/clean"); 336 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 337 ++flushed; 338 } else if (lfs_dostats) { 339 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 340 ++lfs_stats.vflush_invoked; 341 ivndebug(vp,"vflush"); 342 } 343 344 #ifdef DIAGNOSTIC 345 if (vp->v_flag & VDIROP) { 346 DLOG((DLOG_VNODE, "lfs_vflush: flushing VDIROP\n")); 347 /* panic("lfs_vflush: VDIROP being flushed...this can\'t happen"); */ 348 } 349 if (vp->v_usecount < 0) { 350 printf("usecount=%ld\n", (long)vp->v_usecount); 351 panic("lfs_vflush: usecount<0"); 352 } 353 #endif 354 355 #if 1 356 do { 357 do { 358 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 359 lfs_writefile(fs, sp, vp); 360 } while (lfs_writeinode(fs, sp, ip)); 361 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 362 #else 363 if (flushed && vp != fs->lfs_ivnode) 364 lfs_writeseg(fs, sp); 365 else do { 366 simple_lock(&fs->lfs_interlock); 367 fs->lfs_flags &= ~LFS_IFDIRTY; 368 simple_unlock(&fs->lfs_interlock); 369 lfs_writefile(fs, sp, vp); 370 redo = lfs_writeinode(fs, sp, ip); 371 redo += lfs_writeseg(fs, sp); 372 simple_lock(&fs->lfs_interlock); 373 redo += (fs->lfs_flags & LFS_IFDIRTY); 374 simple_unlock(&fs->lfs_interlock); 375 } while (redo && vp == fs->lfs_ivnode); 376 #endif 377 if (lfs_dostats) { 378 ++lfs_stats.nwrites; 379 if (sp->seg_flags & SEGM_SYNC) 380 ++lfs_stats.nsync_writes; 381 if (sp->seg_flags & SEGM_CKP) 382 ++lfs_stats.ncheckpoints; 383 } 384 /* 385 * If we were called from somewhere that has already held the seglock 386 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 387 * the write to complete because we are still locked. 388 * Since lfs_vflush() must return the vnode with no dirty buffers, 389 * we must explicitly wait, if that is the case. 390 * 391 * We compare the iocount against 1, not 0, because it is 392 * artificially incremented by lfs_seglock(). 393 */ 394 simple_lock(&fs->lfs_interlock); 395 if (fs->lfs_seglock > 1) { 396 while (fs->lfs_iocount > 1) 397 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1, 398 "lfs_vflush", 0, &fs->lfs_interlock); 399 } 400 simple_unlock(&fs->lfs_interlock); 401 402 lfs_segunlock(fs); 403 404 /* Wait for these buffers to be recovered by aiodoned */ 405 s = splbio(); 406 simple_lock(&global_v_numoutput_slock); 407 while (vp->v_numoutput > 0) { 408 vp->v_flag |= VBWAIT; 409 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0, 410 &global_v_numoutput_slock); 411 } 412 simple_unlock(&global_v_numoutput_slock); 413 splx(s); 414 415 CLR_FLUSHING(fs,vp); 416 return (0); 417 } 418 419 int 420 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 421 { 422 struct inode *ip; 423 struct vnode *vp, *nvp; 424 int inodes_written = 0, only_cleaning; 425 426 ASSERT_SEGLOCK(fs); 427 #ifndef LFS_NO_BACKVP_HACK 428 /* BEGIN HACK */ 429 #define VN_OFFSET \ 430 (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp) 431 #define BACK_VP(VP) \ 432 ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET)) 433 #define BEG_OF_VLIST \ 434 ((struct vnode *)(((caddr_t)&LIST_FIRST(&mp->mnt_vnodelist)) \ 435 - VN_OFFSET)) 436 437 /* Find last vnode. */ 438 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); 439 vp && LIST_NEXT(vp, v_mntvnodes) != NULL; 440 vp = LIST_NEXT(vp, v_mntvnodes)); 441 for (; vp && vp != BEG_OF_VLIST; vp = nvp) { 442 nvp = BACK_VP(vp); 443 #else 444 loop: 445 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { 446 nvp = LIST_NEXT(vp, v_mntvnodes); 447 #endif 448 /* 449 * If the vnode that we are about to sync is no longer 450 * associated with this mount point, start over. 451 */ 452 if (vp->v_mount != mp) { 453 DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n")); 454 /* 455 * After this, pages might be busy 456 * due to our own previous putpages. 457 * Start actual segment write here to avoid deadlock. 458 */ 459 (void)lfs_writeseg(fs, sp); 460 goto loop; 461 } 462 463 if (vp->v_type == VNON) { 464 continue; 465 } 466 467 ip = VTOI(vp); 468 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) || 469 (op != VN_DIROP && op != VN_CLEAN && 470 (vp->v_flag & VDIROP))) { 471 vndebug(vp,"dirop"); 472 continue; 473 } 474 475 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 476 vndebug(vp,"empty"); 477 continue; 478 } 479 480 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 481 && vp != fs->lfs_flushvp 482 && !(ip->i_flag & IN_CLEANING)) { 483 vndebug(vp,"cleaning"); 484 continue; 485 } 486 487 if (lfs_vref(vp)) { 488 vndebug(vp,"vref"); 489 continue; 490 } 491 492 only_cleaning = 0; 493 /* 494 * Write the inode/file if dirty and it's not the IFILE. 495 */ 496 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 497 only_cleaning = 498 ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 499 500 if (ip->i_number != LFS_IFILE_INUM) { 501 lfs_writefile(fs, sp, vp); 502 if (!VPISEMPTY(vp)) { 503 if (WRITEINPROG(vp)) { 504 ivndebug(vp,"writevnodes/write2"); 505 } else if (!(ip->i_flag & IN_ALLMOD)) { 506 LFS_SET_UINO(ip, IN_MODIFIED); 507 } 508 } 509 (void) lfs_writeinode(fs, sp, ip); 510 inodes_written++; 511 } 512 } 513 514 if (lfs_clean_vnhead && only_cleaning) 515 lfs_vunref_head(vp); 516 else 517 lfs_vunref(vp); 518 } 519 return inodes_written; 520 } 521 522 /* 523 * Do a checkpoint. 524 */ 525 int 526 lfs_segwrite(struct mount *mp, int flags) 527 { 528 struct buf *bp; 529 struct inode *ip; 530 struct lfs *fs; 531 struct segment *sp; 532 struct vnode *vp; 533 SEGUSE *segusep; 534 int do_ckp, did_ckp, error, s; 535 unsigned n, segleft, maxseg, sn, i, curseg; 536 int writer_set = 0; 537 int dirty; 538 int redo; 539 540 fs = VFSTOUFS(mp)->um_lfs; 541 ASSERT_MAYBE_SEGLOCK(fs); 542 543 if (fs->lfs_ronly) 544 return EROFS; 545 546 lfs_imtime(fs); 547 548 /* 549 * Allocate a segment structure and enough space to hold pointers to 550 * the maximum possible number of buffers which can be described in a 551 * single summary block. 552 */ 553 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE; 554 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 555 sp = fs->lfs_sp; 556 557 /* 558 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 559 * in which case we have to flush *all* buffers off of this vnode. 560 * We don't care about other nodes, but write any non-dirop nodes 561 * anyway in anticipation of another getnewvnode(). 562 * 563 * If we're cleaning we only write cleaning and ifile blocks, and 564 * no dirops, since otherwise we'd risk corruption in a crash. 565 */ 566 if (sp->seg_flags & SEGM_CLEAN) 567 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 568 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 569 lfs_writevnodes(fs, mp, sp, VN_REG); 570 if (!fs->lfs_dirops || !fs->lfs_flushvp) { 571 error = lfs_writer_enter(fs, "lfs writer"); 572 if (error) { 573 DLOG((DLOG_SEG, "segwrite mysterious error\n")); 574 /* XXX why not segunlock? */ 575 pool_put(&fs->lfs_bpppool, sp->bpp); 576 sp->bpp = NULL; 577 pool_put(&fs->lfs_segpool, sp); 578 sp = fs->lfs_sp = NULL; 579 return (error); 580 } 581 writer_set = 1; 582 lfs_writevnodes(fs, mp, sp, VN_DIROP); 583 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 584 } 585 } 586 587 /* 588 * If we are doing a checkpoint, mark everything since the 589 * last checkpoint as no longer ACTIVE. 590 */ 591 if (do_ckp) { 592 segleft = fs->lfs_nseg; 593 curseg = 0; 594 for (n = 0; n < fs->lfs_segtabsz; n++) { 595 dirty = 0; 596 if (bread(fs->lfs_ivnode, 597 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp)) 598 panic("lfs_segwrite: ifile read"); 599 segusep = (SEGUSE *)bp->b_data; 600 maxseg = min(segleft, fs->lfs_sepb); 601 for (i = 0; i < maxseg; i++) { 602 sn = curseg + i; 603 if (sn != dtosn(fs, fs->lfs_curseg) && 604 segusep->su_flags & SEGUSE_ACTIVE) { 605 segusep->su_flags &= ~SEGUSE_ACTIVE; 606 --fs->lfs_nactive; 607 ++dirty; 608 } 609 fs->lfs_suflags[fs->lfs_activesb][sn] = 610 segusep->su_flags; 611 if (fs->lfs_version > 1) 612 ++segusep; 613 else 614 segusep = (SEGUSE *) 615 ((SEGUSE_V1 *)segusep + 1); 616 } 617 618 if (dirty) 619 error = LFS_BWRITE_LOG(bp); /* Ifile */ 620 else 621 brelse(bp); 622 segleft -= fs->lfs_sepb; 623 curseg += fs->lfs_sepb; 624 } 625 } 626 627 LOCK_ASSERT(LFS_SEGLOCK_HELD(fs)); 628 629 did_ckp = 0; 630 if (do_ckp || fs->lfs_doifile) { 631 vp = fs->lfs_ivnode; 632 vn_lock(vp, LK_EXCLUSIVE); 633 do { 634 #ifdef DEBUG 635 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); 636 #endif 637 simple_lock(&fs->lfs_interlock); 638 fs->lfs_flags &= ~LFS_IFDIRTY; 639 simple_unlock(&fs->lfs_interlock); 640 641 ip = VTOI(vp); 642 643 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 644 lfs_writefile(fs, sp, vp); 645 646 if (ip->i_flag & IN_ALLMOD) 647 ++did_ckp; 648 redo = lfs_writeinode(fs, sp, ip); 649 redo += lfs_writeseg(fs, sp); 650 simple_lock(&fs->lfs_interlock); 651 redo += (fs->lfs_flags & LFS_IFDIRTY); 652 simple_unlock(&fs->lfs_interlock); 653 } while (redo && do_ckp); 654 655 /* 656 * Unless we are unmounting, the Ifile may continue to have 657 * dirty blocks even after a checkpoint, due to changes to 658 * inodes' atime. If we're checkpointing, it's "impossible" 659 * for other parts of the Ifile to be dirty after the loop 660 * above, since we hold the segment lock. 661 */ 662 s = splbio(); 663 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 664 LFS_CLR_UINO(ip, IN_ALLMOD); 665 } 666 #ifdef DIAGNOSTIC 667 else if (do_ckp) { 668 int do_panic = 0; 669 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 670 if (bp->b_lblkno < fs->lfs_cleansz + 671 fs->lfs_segtabsz && 672 !(bp->b_flags & B_GATHERED)) { 673 printf("ifile lbn %ld still dirty (flags %lx)\n", 674 (long)bp->b_lblkno, 675 (long)bp->b_flags); 676 ++do_panic; 677 } 678 } 679 if (do_panic) 680 panic("dirty blocks"); 681 } 682 #endif 683 splx(s); 684 VOP_UNLOCK(vp, 0); 685 } else { 686 (void) lfs_writeseg(fs, sp); 687 } 688 689 /* Note Ifile no longer needs to be written */ 690 fs->lfs_doifile = 0; 691 if (writer_set) 692 lfs_writer_leave(fs); 693 694 /* 695 * If we didn't write the Ifile, we didn't really do anything. 696 * That means that (1) there is a checkpoint on disk and (2) 697 * nothing has changed since it was written. 698 * 699 * Take the flags off of the segment so that lfs_segunlock 700 * doesn't have to write the superblock either. 701 */ 702 if (do_ckp && !did_ckp) { 703 sp->seg_flags &= ~SEGM_CKP; 704 } 705 706 if (lfs_dostats) { 707 ++lfs_stats.nwrites; 708 if (sp->seg_flags & SEGM_SYNC) 709 ++lfs_stats.nsync_writes; 710 if (sp->seg_flags & SEGM_CKP) 711 ++lfs_stats.ncheckpoints; 712 } 713 lfs_segunlock(fs); 714 return (0); 715 } 716 717 /* 718 * Write the dirty blocks associated with a vnode. 719 */ 720 void 721 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 722 { 723 struct buf *bp; 724 struct finfo *fip; 725 struct inode *ip; 726 IFILE *ifp; 727 int i, frag; 728 729 ASSERT_SEGLOCK(fs); 730 ip = VTOI(vp); 731 732 if (sp->seg_bytes_left < fs->lfs_bsize || 733 sp->sum_bytes_left < sizeof(struct finfo)) 734 (void) lfs_writeseg(fs, sp); 735 736 sp->sum_bytes_left -= FINFOSIZE; 737 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 738 739 if (vp->v_flag & VDIROP) 740 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 741 742 fip = sp->fip; 743 fip->fi_nblocks = 0; 744 fip->fi_ino = ip->i_number; 745 LFS_IENTRY(ifp, fs, fip->fi_ino, bp); 746 fip->fi_version = ifp->if_version; 747 brelse(bp); 748 749 if (sp->seg_flags & SEGM_CLEAN) { 750 lfs_gather(fs, sp, vp, lfs_match_fake); 751 /* 752 * For a file being flushed, we need to write *all* blocks. 753 * This means writing the cleaning blocks first, and then 754 * immediately following with any non-cleaning blocks. 755 * The same is true of the Ifile since checkpoints assume 756 * that all valid Ifile blocks are written. 757 */ 758 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) { 759 lfs_gather(fs, sp, vp, lfs_match_data); 760 /* 761 * Don't call VOP_PUTPAGES: if we're flushing, 762 * we've already done it, and the Ifile doesn't 763 * use the page cache. 764 */ 765 } 766 } else { 767 lfs_gather(fs, sp, vp, lfs_match_data); 768 /* 769 * If we're flushing, we've already called VOP_PUTPAGES 770 * so don't do it again. Otherwise, we want to write 771 * everything we've got. 772 */ 773 if (!IS_FLUSHING(fs, vp)) { 774 simple_lock(&vp->v_interlock); 775 VOP_PUTPAGES(vp, 0, 0, 776 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 777 } 778 } 779 780 /* 781 * It may not be necessary to write the meta-data blocks at this point, 782 * as the roll-forward recovery code should be able to reconstruct the 783 * list. 784 * 785 * We have to write them anyway, though, under two conditions: (1) the 786 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 787 * checkpointing. 788 * 789 * BUT if we are cleaning, we might have indirect blocks that refer to 790 * new blocks not being written yet, in addition to fragments being 791 * moved out of a cleaned segment. If that is the case, don't 792 * write the indirect blocks, or the finfo will have a small block 793 * in the middle of it! 794 * XXX in this case isn't the inode size wrong too? 795 */ 796 frag = 0; 797 if (sp->seg_flags & SEGM_CLEAN) { 798 for (i = 0; i < NDADDR; i++) 799 if (ip->i_lfs_fragsize[i] > 0 && 800 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 801 ++frag; 802 } 803 #ifdef DIAGNOSTIC 804 if (frag > 1) 805 panic("lfs_writefile: more than one fragment!"); 806 #endif 807 if (IS_FLUSHING(fs, vp) || 808 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 809 lfs_gather(fs, sp, vp, lfs_match_indir); 810 lfs_gather(fs, sp, vp, lfs_match_dindir); 811 lfs_gather(fs, sp, vp, lfs_match_tindir); 812 } 813 fip = sp->fip; 814 if (fip->fi_nblocks != 0) { 815 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE + 816 sizeof(int32_t) * (fip->fi_nblocks)); 817 sp->start_lbp = &sp->fip->fi_blocks[0]; 818 } else { 819 sp->sum_bytes_left += FINFOSIZE; 820 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 821 } 822 } 823 824 int 825 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 826 { 827 struct buf *bp, *ibp; 828 struct ufs1_dinode *cdp; 829 IFILE *ifp; 830 SEGUSE *sup; 831 daddr_t daddr; 832 int32_t *daddrp; /* XXX ondisk32 */ 833 ino_t ino; 834 int error, i, ndx, fsb = 0; 835 int redo_ifile = 0; 836 struct timespec ts; 837 int gotblk = 0; 838 839 ASSERT_SEGLOCK(fs); 840 if (!(ip->i_flag & IN_ALLMOD)) 841 return (0); 842 843 /* Allocate a new inode block if necessary. */ 844 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 845 sp->ibp == NULL) { 846 /* Allocate a new segment if necessary. */ 847 if (sp->seg_bytes_left < fs->lfs_ibsize || 848 sp->sum_bytes_left < sizeof(int32_t)) 849 (void) lfs_writeseg(fs, sp); 850 851 /* Get next inode block. */ 852 daddr = fs->lfs_offset; 853 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 854 sp->ibp = *sp->cbpp++ = 855 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 856 fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0); 857 gotblk++; 858 859 /* Zero out inode numbers */ 860 for (i = 0; i < INOPB(fs); ++i) 861 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 862 0; 863 864 ++sp->start_bpp; 865 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 866 /* Set remaining space counters. */ 867 sp->seg_bytes_left -= fs->lfs_ibsize; 868 sp->sum_bytes_left -= sizeof(int32_t); 869 ndx = fs->lfs_sumsize / sizeof(int32_t) - 870 sp->ninodes / INOPB(fs) - 1; 871 ((int32_t *)(sp->segsum))[ndx] = daddr; 872 } 873 874 /* Update the inode times and copy the inode onto the inode page. */ 875 TIMEVAL_TO_TIMESPEC(&time, &ts); 876 /* XXX kludge --- don't redirty the ifile just to put times on it */ 877 if (ip->i_number != LFS_IFILE_INUM) 878 LFS_ITIMES(ip, &ts, &ts, &ts); 879 880 /* 881 * If this is the Ifile, and we've already written the Ifile in this 882 * partial segment, just overwrite it (it's not on disk yet) and 883 * continue. 884 * 885 * XXX we know that the bp that we get the second time around has 886 * already been gathered. 887 */ 888 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 889 *(sp->idp) = *ip->i_din.ffs1_din; 890 ip->i_lfs_osize = ip->i_size; 891 return 0; 892 } 893 894 bp = sp->ibp; 895 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 896 *cdp = *ip->i_din.ffs1_din; 897 898 /* 899 * If we are cleaning, ensure that we don't write UNWRITTEN disk 900 * addresses to disk; possibly revert the inode size. 901 * XXX By not writing these blocks, we are making the lfs_avail 902 * XXX count on disk wrong by the same amount. We should be 903 * XXX able to "borrow" from lfs_avail and return it after the 904 * XXX Ifile is written. See also in lfs_writeseg. 905 */ 906 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 907 cdp->di_size = ip->i_lfs_osize; 908 DLOG((DLOG_VNODE, "lfs_writeinode: cleansing ino %d (%d != %d)\n", 909 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks)); 910 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 911 daddrp++) { 912 if (*daddrp == UNWRITTEN) { 913 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 914 *daddrp = 0; 915 } 916 } 917 } else { 918 /* If all blocks are goig to disk, update the "size on disk" */ 919 ip->i_lfs_osize = ip->i_size; 920 } 921 922 if (ip->i_flag & IN_CLEANING) 923 LFS_CLR_UINO(ip, IN_CLEANING); 924 else { 925 /* XXX IN_ALLMOD */ 926 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 927 IN_UPDATE | IN_MODIFY); 928 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 929 LFS_CLR_UINO(ip, IN_MODIFIED); 930 else 931 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real blks=%d, " 932 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks, 933 ip->i_lfs_effnblks)); 934 } 935 936 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */ 937 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 938 (sp->ninodes % INOPB(fs)); 939 if (gotblk) { 940 LFS_LOCK_BUF(bp); 941 brelse(bp); 942 } 943 944 /* Increment inode count in segment summary block. */ 945 ++((SEGSUM *)(sp->segsum))->ss_ninos; 946 947 /* If this page is full, set flag to allocate a new page. */ 948 if (++sp->ninodes % INOPB(fs) == 0) 949 sp->ibp = NULL; 950 951 /* 952 * If updating the ifile, update the super-block. Update the disk 953 * address and access times for this inode in the ifile. 954 */ 955 ino = ip->i_number; 956 if (ino == LFS_IFILE_INUM) { 957 daddr = fs->lfs_idaddr; 958 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno); 959 } else { 960 LFS_IENTRY(ifp, fs, ino, ibp); 961 daddr = ifp->if_daddr; 962 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb; 963 error = LFS_BWRITE_LOG(ibp); /* Ifile */ 964 } 965 966 /* 967 * The inode's last address should not be in the current partial 968 * segment, except under exceptional circumstances (lfs_writevnodes 969 * had to start over, and in the meantime more blocks were written 970 * to a vnode). Both inodes will be accounted to this segment 971 * in lfs_writeseg so we need to subtract the earlier version 972 * here anyway. The segment count can temporarily dip below 973 * zero here; keep track of how many duplicates we have in 974 * "dupino" so we don't panic below. 975 */ 976 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) { 977 ++sp->ndupino; 978 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " 979 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 980 (long long)daddr, sp->ndupino)); 981 } 982 /* 983 * Account the inode: it no longer belongs to its former segment, 984 * though it will not belong to the new segment until that segment 985 * is actually written. 986 */ 987 if (daddr != LFS_UNUSED_DADDR) { 988 u_int32_t oldsn = dtosn(fs, daddr); 989 #ifdef DIAGNOSTIC 990 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 991 #endif 992 LFS_SEGENTRY(sup, fs, oldsn, bp); 993 #ifdef DIAGNOSTIC 994 if (sup->su_nbytes + 995 sizeof (struct ufs1_dinode) * ndupino 996 < sizeof (struct ufs1_dinode)) { 997 printf("lfs_writeinode: negative bytes " 998 "(segment %" PRIu32 " short by %d, " 999 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1000 ", daddr=%" PRId64 ", su_nbytes=%u, " 1001 "ndupino=%d)\n", 1002 dtosn(fs, daddr), 1003 (int)sizeof (struct ufs1_dinode) * 1004 (1 - sp->ndupino) - sup->su_nbytes, 1005 oldsn, sp->seg_number, daddr, 1006 (unsigned int)sup->su_nbytes, 1007 sp->ndupino); 1008 panic("lfs_writeinode: negative bytes"); 1009 sup->su_nbytes = sizeof (struct ufs1_dinode); 1010 } 1011 #endif 1012 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", 1013 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino)); 1014 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1015 redo_ifile = 1016 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1017 if (redo_ifile) { 1018 simple_lock(&fs->lfs_interlock); 1019 fs->lfs_flags |= LFS_IFDIRTY; 1020 simple_unlock(&fs->lfs_interlock); 1021 } 1022 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1023 } 1024 return (redo_ifile); 1025 } 1026 1027 int 1028 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr) 1029 { 1030 struct lfs *fs; 1031 int version; 1032 int j, blksinblk; 1033 1034 ASSERT_SEGLOCK(sp->fs); 1035 /* 1036 * If full, finish this segment. We may be doing I/O, so 1037 * release and reacquire the splbio(). 1038 */ 1039 #ifdef DIAGNOSTIC 1040 if (sp->vp == NULL) 1041 panic ("lfs_gatherblock: Null vp in segment"); 1042 #endif 1043 fs = sp->fs; 1044 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1045 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1046 sp->seg_bytes_left < bp->b_bcount) { 1047 if (sptr) 1048 splx(*sptr); 1049 lfs_updatemeta(sp); 1050 1051 version = sp->fip->fi_version; 1052 (void) lfs_writeseg(fs, sp); 1053 1054 sp->fip->fi_version = version; 1055 sp->fip->fi_ino = VTOI(sp->vp)->i_number; 1056 /* Add the current file to the segment summary. */ 1057 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 1058 sp->sum_bytes_left -= FINFOSIZE; 1059 1060 if (sptr) 1061 *sptr = splbio(); 1062 return (1); 1063 } 1064 1065 if (bp->b_flags & B_GATHERED) { 1066 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d," 1067 " lbn %" PRId64 "\n", 1068 sp->fip->fi_ino, bp->b_lblkno)); 1069 return (0); 1070 } 1071 1072 /* Insert into the buffer list, update the FINFO block. */ 1073 bp->b_flags |= B_GATHERED; 1074 1075 /* This block's accounting moves from lfs_favail to lfs_avail */ 1076 lfs_deregister_block(sp->vp, bp->b_lblkno); 1077 1078 *sp->cbpp++ = bp; 1079 for (j = 0; j < blksinblk; j++) 1080 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1081 1082 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1083 sp->seg_bytes_left -= bp->b_bcount; 1084 return (0); 1085 } 1086 1087 int 1088 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1089 int (*match)(struct lfs *, struct buf *)) 1090 { 1091 struct buf *bp, *nbp; 1092 int s, count = 0; 1093 1094 ASSERT_SEGLOCK(fs); 1095 KASSERT(sp->vp == NULL); 1096 sp->vp = vp; 1097 s = splbio(); 1098 1099 #ifndef LFS_NO_BACKBUF_HACK 1100 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1101 # define BUF_OFFSET \ 1102 (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp) 1103 # define BACK_BUF(BP) \ 1104 ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1105 # define BEG_OF_LIST \ 1106 ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1107 1108 loop: 1109 /* Find last buffer. */ 1110 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1111 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1112 bp = LIST_NEXT(bp, b_vnbufs)) 1113 /* nothing */; 1114 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1115 nbp = BACK_BUF(bp); 1116 #else /* LFS_NO_BACKBUF_HACK */ 1117 loop: 1118 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1119 nbp = LIST_NEXT(bp, b_vnbufs); 1120 #endif /* LFS_NO_BACKBUF_HACK */ 1121 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) { 1122 #ifdef DEBUG 1123 if (vp == fs->lfs_ivnode && 1124 (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY) 1125 DLOG((DLOG_SEG, "lfs_gather: ifile lbn %" 1126 PRId64 " busy (%x)", 1127 bp->b_lblkno, bp->b_flags)); 1128 #endif 1129 continue; 1130 } 1131 if (vp->v_type == VBLK) { 1132 /* For block devices, just write the blocks. */ 1133 /* XXX Do we even need to do this? */ 1134 /* 1135 * Get the block before bwrite, 1136 * so we don't corrupt the free list 1137 */ 1138 bp->b_flags |= B_BUSY; 1139 bremfree(bp); 1140 bwrite(bp); 1141 } else { 1142 #ifdef DIAGNOSTIC 1143 # ifdef LFS_USE_B_INVAL 1144 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) { 1145 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1146 " is B_INVAL\n", bp->b_lblkno)); 1147 VOP_PRINT(bp->b_vp); 1148 } 1149 # endif /* LFS_USE_B_INVAL */ 1150 if (!(bp->b_flags & B_DELWRI)) 1151 panic("lfs_gather: bp not B_DELWRI"); 1152 if (!(bp->b_flags & B_LOCKED)) { 1153 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1154 " blk %" PRId64 " not B_LOCKED\n", 1155 bp->b_lblkno, 1156 dbtofsb(fs, bp->b_blkno))); 1157 VOP_PRINT(bp->b_vp); 1158 panic("lfs_gather: bp not B_LOCKED"); 1159 } 1160 #endif 1161 if (lfs_gatherblock(sp, bp, &s)) { 1162 goto loop; 1163 } 1164 } 1165 count++; 1166 } 1167 splx(s); 1168 lfs_updatemeta(sp); 1169 KASSERT(sp->vp == vp); 1170 sp->vp = NULL; 1171 return count; 1172 } 1173 1174 #if DEBUG 1175 # define DEBUG_OOFF(n) do { \ 1176 if (ooff == 0) { \ 1177 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ 1178 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1179 ", was 0x0 (or %" PRId64 ")\n", \ 1180 (n), ip->i_number, lbn, ndaddr, daddr)); \ 1181 } \ 1182 } while (0) 1183 #else 1184 # define DEBUG_OOFF(n) 1185 #endif 1186 1187 /* 1188 * Change the given block's address to ndaddr, finding its previous 1189 * location using ufs_bmaparray(). 1190 * 1191 * Account for this change in the segment table. 1192 * 1193 * called with sp == NULL by roll-forwarding code. 1194 */ 1195 void 1196 lfs_update_single(struct lfs *fs, struct segment *sp, struct vnode *vp, 1197 daddr_t lbn, int32_t ndaddr, int size) 1198 { 1199 SEGUSE *sup; 1200 struct buf *bp; 1201 struct indir a[NIADDR + 2], *ap; 1202 struct inode *ip; 1203 daddr_t daddr, ooff; 1204 int num, error; 1205 int bb, osize, obb; 1206 1207 ASSERT_SEGLOCK(fs); 1208 KASSERT(sp == NULL || sp->vp == vp); 1209 ip = VTOI(vp); 1210 1211 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1212 if (error) 1213 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1214 1215 daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */ 1216 KASSERT(daddr <= LFS_MAX_DADDR); 1217 if (daddr > 0) 1218 daddr = dbtofsb(fs, daddr); 1219 1220 bb = fragstofsb(fs, numfrags(fs, size)); 1221 switch (num) { 1222 case 0: 1223 ooff = ip->i_ffs1_db[lbn]; 1224 DEBUG_OOFF(0); 1225 if (ooff == UNWRITTEN) 1226 ip->i_ffs1_blocks += bb; 1227 else { 1228 /* possible fragment truncation or extension */ 1229 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1230 ip->i_ffs1_blocks += (bb - obb); 1231 } 1232 ip->i_ffs1_db[lbn] = ndaddr; 1233 break; 1234 case 1: 1235 ooff = ip->i_ffs1_ib[a[0].in_off]; 1236 DEBUG_OOFF(1); 1237 if (ooff == UNWRITTEN) 1238 ip->i_ffs1_blocks += bb; 1239 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1240 break; 1241 default: 1242 ap = &a[num - 1]; 1243 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 1244 panic("lfs_updatemeta: bread bno %" PRId64, 1245 ap->in_lbn); 1246 1247 /* XXX ondisk32 */ 1248 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1249 DEBUG_OOFF(num); 1250 if (ooff == UNWRITTEN) 1251 ip->i_ffs1_blocks += bb; 1252 /* XXX ondisk32 */ 1253 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1254 (void) VOP_BWRITE(bp); 1255 } 1256 1257 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1258 1259 /* 1260 * Though we'd rather it couldn't, this *can* happen right now 1261 * if cleaning blocks and regular blocks coexist. 1262 */ 1263 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1264 1265 /* 1266 * Update segment usage information, based on old size 1267 * and location. 1268 */ 1269 if (daddr > 0) { 1270 u_int32_t oldsn = dtosn(fs, daddr); 1271 #ifdef DIAGNOSTIC 1272 int ndupino; 1273 1274 if (sp && sp->seg_number == oldsn) { 1275 ndupino = sp->ndupino; 1276 } else { 1277 ndupino = 0; 1278 } 1279 #endif 1280 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg); 1281 if (lbn >= 0 && lbn < NDADDR) 1282 osize = ip->i_lfs_fragsize[lbn]; 1283 else 1284 osize = fs->lfs_bsize; 1285 LFS_SEGENTRY(sup, fs, oldsn, bp); 1286 #ifdef DIAGNOSTIC 1287 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1288 < osize) { 1289 printf("lfs_updatemeta: negative bytes " 1290 "(segment %" PRIu32 " short by %" PRId64 1291 ")\n", dtosn(fs, daddr), 1292 (int64_t)osize - 1293 (sizeof (struct ufs1_dinode) * ndupino + 1294 sup->su_nbytes)); 1295 printf("lfs_updatemeta: ino %d, lbn %" PRId64 1296 ", addr = 0x%" PRIx64 "\n", 1297 ip->i_number, lbn, daddr); 1298 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1299 panic("lfs_updatemeta: negative bytes"); 1300 sup->su_nbytes = osize - 1301 sizeof (struct ufs1_dinode) * ndupino; 1302 } 1303 #endif 1304 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1305 " db 0x%" PRIx64 "\n", 1306 dtosn(fs, daddr), osize, 1307 ip->i_number, lbn, daddr)); 1308 sup->su_nbytes -= osize; 1309 if (!(bp->b_flags & B_GATHERED)) { 1310 simple_lock(&fs->lfs_interlock); 1311 fs->lfs_flags |= LFS_IFDIRTY; 1312 simple_unlock(&fs->lfs_interlock); 1313 } 1314 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1315 } 1316 /* 1317 * Now that this block has a new address, and its old 1318 * segment no longer owns it, we can forget about its 1319 * old size. 1320 */ 1321 if (lbn >= 0 && lbn < NDADDR) 1322 ip->i_lfs_fragsize[lbn] = size; 1323 } 1324 1325 /* 1326 * Update the metadata that points to the blocks listed in the FINFO 1327 * array. 1328 */ 1329 void 1330 lfs_updatemeta(struct segment *sp) 1331 { 1332 struct buf *sbp; 1333 struct lfs *fs; 1334 struct vnode *vp; 1335 daddr_t lbn; 1336 int i, nblocks, num; 1337 int bb; 1338 int bytesleft, size; 1339 1340 ASSERT_SEGLOCK(sp->fs); 1341 vp = sp->vp; 1342 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1343 KASSERT(nblocks >= 0); 1344 KASSERT(vp != NULL); 1345 if (nblocks == 0) 1346 return; 1347 1348 /* 1349 * This count may be high due to oversize blocks from lfs_gop_write. 1350 * Correct for this. (XXX we should be able to keep track of these.) 1351 */ 1352 fs = sp->fs; 1353 for (i = 0; i < nblocks; i++) { 1354 if (sp->start_bpp[i] == NULL) { 1355 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); 1356 nblocks = i; 1357 break; 1358 } 1359 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1360 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1361 nblocks -= num - 1; 1362 } 1363 1364 KASSERT(vp->v_type == VREG || 1365 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1366 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1367 1368 /* 1369 * Sort the blocks. 1370 * 1371 * We have to sort even if the blocks come from the 1372 * cleaner, because there might be other pending blocks on the 1373 * same inode...and if we don't sort, and there are fragments 1374 * present, blocks may be written in the wrong place. 1375 */ 1376 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1377 1378 /* 1379 * Record the length of the last block in case it's a fragment. 1380 * If there are indirect blocks present, they sort last. An 1381 * indirect block will be lfs_bsize and its presence indicates 1382 * that you cannot have fragments. 1383 * 1384 * XXX This last is a lie. A cleaned fragment can coexist with 1385 * XXX a later indirect block. This will continue to be 1386 * XXX true until lfs_markv is fixed to do everything with 1387 * XXX fake blocks (including fake inodes and fake indirect blocks). 1388 */ 1389 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1390 fs->lfs_bmask) + 1; 1391 1392 /* 1393 * Assign disk addresses, and update references to the logical 1394 * block and the segment usage information. 1395 */ 1396 for (i = nblocks; i--; ++sp->start_bpp) { 1397 sbp = *sp->start_bpp; 1398 lbn = *sp->start_lbp; 1399 KASSERT(sbp->b_lblkno == lbn); 1400 1401 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1402 1403 /* 1404 * If we write a frag in the wrong place, the cleaner won't 1405 * be able to correctly identify its size later, and the 1406 * segment will be uncleanable. (Even worse, it will assume 1407 * that the indirect block that actually ends the list 1408 * is of a smaller size!) 1409 */ 1410 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1411 panic("lfs_updatemeta: fragment is not last block"); 1412 1413 /* 1414 * For each subblock in this possibly oversized block, 1415 * update its address on disk. 1416 */ 1417 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1418 KASSERT(vp == sbp->b_vp); 1419 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1420 bytesleft -= fs->lfs_bsize) { 1421 size = MIN(bytesleft, fs->lfs_bsize); 1422 bb = fragstofsb(fs, numfrags(fs, size)); 1423 lbn = *sp->start_lbp++; 1424 lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset, 1425 size); 1426 fs->lfs_offset += bb; 1427 } 1428 1429 } 1430 } 1431 1432 /* 1433 * Start a new partial segment. 1434 * 1435 * Return 1 when we entered to a new segment. 1436 * Otherwise, return 0. 1437 */ 1438 int 1439 lfs_initseg(struct lfs *fs) 1440 { 1441 struct segment *sp = fs->lfs_sp; 1442 SEGSUM *ssp; 1443 struct buf *sbp; /* buffer for SEGSUM */ 1444 int repeat = 0; /* return value */ 1445 1446 ASSERT_SEGLOCK(fs); 1447 /* Advance to the next segment. */ 1448 if (!LFS_PARTIAL_FITS(fs)) { 1449 SEGUSE *sup; 1450 struct buf *bp; 1451 1452 /* lfs_avail eats the remaining space */ 1453 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1454 fs->lfs_curseg); 1455 /* Wake up any cleaning procs waiting on this file system. */ 1456 wakeup(&lfs_allclean_wakeup); 1457 wakeup(&fs->lfs_nextseg); 1458 lfs_newseg(fs); 1459 repeat = 1; 1460 fs->lfs_offset = fs->lfs_curseg; 1461 1462 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1463 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1464 1465 /* 1466 * If the segment contains a superblock, update the offset 1467 * and summary address to skip over it. 1468 */ 1469 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1470 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1471 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1472 sp->seg_bytes_left -= LFS_SBPAD; 1473 } 1474 brelse(bp); 1475 /* Segment zero could also contain the labelpad */ 1476 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1477 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1478 fs->lfs_offset += 1479 btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1480 sp->seg_bytes_left -= 1481 LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1482 } 1483 } else { 1484 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1485 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1486 (fs->lfs_offset - fs->lfs_curseg)); 1487 } 1488 fs->lfs_lastpseg = fs->lfs_offset; 1489 1490 /* Record first address of this partial segment */ 1491 if (sp->seg_flags & SEGM_CLEAN) { 1492 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1493 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1494 /* "1" is the artificial inc in lfs_seglock */ 1495 simple_lock(&fs->lfs_interlock); 1496 while (fs->lfs_iocount > 1) { 1497 ltsleep(&fs->lfs_iocount, PRIBIO + 1, 1498 "lfs_initseg", 0, &fs->lfs_interlock); 1499 } 1500 simple_unlock(&fs->lfs_interlock); 1501 fs->lfs_cleanind = 0; 1502 } 1503 } 1504 1505 sp->fs = fs; 1506 sp->ibp = NULL; 1507 sp->idp = NULL; 1508 sp->ninodes = 0; 1509 sp->ndupino = 0; 1510 1511 sp->cbpp = sp->bpp; 1512 1513 /* Get a new buffer for SEGSUM */ 1514 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1515 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1516 1517 /* ... and enter it into the buffer list. */ 1518 *sp->cbpp = sbp; 1519 sp->cbpp++; 1520 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1521 1522 sp->start_bpp = sp->cbpp; 1523 1524 /* Set point to SEGSUM, initialize it. */ 1525 ssp = sp->segsum = sbp->b_data; 1526 memset(ssp, 0, fs->lfs_sumsize); 1527 ssp->ss_next = fs->lfs_nextseg; 1528 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1529 ssp->ss_magic = SS_MAGIC; 1530 1531 /* Set pointer to first FINFO, initialize it. */ 1532 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs)); 1533 sp->fip->fi_nblocks = 0; 1534 sp->start_lbp = &sp->fip->fi_blocks[0]; 1535 sp->fip->fi_lastlength = 0; 1536 1537 sp->seg_bytes_left -= fs->lfs_sumsize; 1538 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1539 1540 return (repeat); 1541 } 1542 1543 /* 1544 * Return the next segment to write. 1545 */ 1546 void 1547 lfs_newseg(struct lfs *fs) 1548 { 1549 CLEANERINFO *cip; 1550 SEGUSE *sup; 1551 struct buf *bp; 1552 int curseg, isdirty, sn; 1553 1554 ASSERT_SEGLOCK(fs); 1555 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1556 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", 1557 dtosn(fs, fs->lfs_nextseg))); 1558 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1559 sup->su_nbytes = 0; 1560 sup->su_nsums = 0; 1561 sup->su_ninos = 0; 1562 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1563 1564 LFS_CLEANERINFO(cip, fs, bp); 1565 --cip->clean; 1566 ++cip->dirty; 1567 fs->lfs_nclean = cip->clean; 1568 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1569 1570 fs->lfs_lastseg = fs->lfs_curseg; 1571 fs->lfs_curseg = fs->lfs_nextseg; 1572 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1573 sn = (sn + 1) % fs->lfs_nseg; 1574 if (sn == curseg) 1575 panic("lfs_nextseg: no clean segments"); 1576 LFS_SEGENTRY(sup, fs, sn, bp); 1577 isdirty = sup->su_flags & SEGUSE_DIRTY; 1578 /* Check SEGUSE_EMPTY as we go along */ 1579 if (isdirty && sup->su_nbytes == 0 && 1580 !(sup->su_flags & SEGUSE_EMPTY)) 1581 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1582 else 1583 brelse(bp); 1584 1585 if (!isdirty) 1586 break; 1587 } 1588 1589 ++fs->lfs_nactive; 1590 fs->lfs_nextseg = sntod(fs, sn); 1591 if (lfs_dostats) { 1592 ++lfs_stats.segsused; 1593 } 1594 } 1595 1596 static struct buf * 1597 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n) 1598 { 1599 struct lfs_cluster *cl; 1600 struct buf **bpp, *bp; 1601 int s; 1602 1603 ASSERT_SEGLOCK(fs); 1604 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1605 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1606 memset(cl, 0, sizeof(*cl)); 1607 cl->fs = fs; 1608 cl->bpp = bpp; 1609 cl->bufcount = 0; 1610 cl->bufsize = 0; 1611 1612 /* If this segment is being written synchronously, note that */ 1613 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1614 cl->flags |= LFS_CL_SYNC; 1615 cl->seg = fs->lfs_sp; 1616 ++cl->seg->seg_iocount; 1617 } 1618 1619 /* Get an empty buffer header, or maybe one with something on it */ 1620 s = splbio(); 1621 bp = pool_get(&bufpool, PR_WAITOK); /* XXX should use lfs_malloc? */ 1622 splx(s); 1623 memset(bp, 0, sizeof(*bp)); 1624 BUF_INIT(bp); 1625 1626 bp->b_flags = B_BUSY | B_CALL; 1627 bp->b_dev = NODEV; 1628 bp->b_blkno = bp->b_lblkno = addr; 1629 bp->b_iodone = lfs_cluster_callback; 1630 bp->b_private = cl; 1631 bp->b_vp = vp; 1632 1633 return bp; 1634 } 1635 1636 int 1637 lfs_writeseg(struct lfs *fs, struct segment *sp) 1638 { 1639 struct buf **bpp, *bp, *cbp, *newbp; 1640 SEGUSE *sup; 1641 SEGSUM *ssp; 1642 int i, s; 1643 int do_again, nblocks, byteoffset; 1644 size_t el_size; 1645 struct lfs_cluster *cl; 1646 u_short ninos; 1647 struct vnode *devvp; 1648 char *p = NULL; 1649 struct vnode *vp; 1650 int32_t *daddrp; /* XXX ondisk32 */ 1651 int changed; 1652 u_int32_t sum; 1653 1654 ASSERT_SEGLOCK(fs); 1655 /* 1656 * If there are no buffers other than the segment summary to write 1657 * and it is not a checkpoint, don't do anything. On a checkpoint, 1658 * even if there aren't any buffers, you need to write the superblock. 1659 */ 1660 if ((nblocks = sp->cbpp - sp->bpp) == 1) 1661 return (0); 1662 1663 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1664 1665 /* Update the segment usage information. */ 1666 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1667 1668 /* Loop through all blocks, except the segment summary. */ 1669 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 1670 if ((*bpp)->b_vp != devvp) { 1671 sup->su_nbytes += (*bpp)->b_bcount; 1672 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" 1673 " lbn %" PRId64 " db 0x%" PRIx64 "\n", 1674 sp->seg_number, (*bpp)->b_bcount, 1675 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 1676 (*bpp)->b_blkno)); 1677 } 1678 } 1679 1680 ssp = (SEGSUM *)sp->segsum; 1681 1682 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 1683 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", 1684 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 1685 ssp->ss_ninos)); 1686 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 1687 /* sup->su_nbytes += fs->lfs_sumsize; */ 1688 if (fs->lfs_version == 1) 1689 sup->su_olastmod = time.tv_sec; 1690 else 1691 sup->su_lastmod = time.tv_sec; 1692 sup->su_ninos += ninos; 1693 ++sup->su_nsums; 1694 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos * 1695 fs->lfs_ibsize)); 1696 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 1697 1698 do_again = !(bp->b_flags & B_GATHERED); 1699 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 1700 1701 /* 1702 * Mark blocks B_BUSY, to prevent then from being changed between 1703 * the checksum computation and the actual write. 1704 * 1705 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 1706 * there are any, replace them with copies that have UNASSIGNED 1707 * instead. 1708 */ 1709 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 1710 ++bpp; 1711 bp = *bpp; 1712 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */ 1713 bp->b_flags |= B_BUSY; 1714 continue; 1715 } 1716 1717 simple_lock(&bp->b_interlock); 1718 s = splbio(); 1719 while (bp->b_flags & B_BUSY) { 1720 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" 1721 " data summary corruption for ino %d, lbn %" 1722 PRId64 "\n", 1723 VTOI(bp->b_vp)->i_number, bp->b_lblkno)); 1724 bp->b_flags |= B_WANTED; 1725 ltsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0, 1726 &bp->b_interlock); 1727 splx(s); 1728 s = splbio(); 1729 } 1730 bp->b_flags |= B_BUSY; 1731 splx(s); 1732 simple_unlock(&bp->b_interlock); 1733 1734 /* 1735 * Check and replace indirect block UNWRITTEN bogosity. 1736 * XXX See comment in lfs_writefile. 1737 */ 1738 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 1739 VTOI(bp->b_vp)->i_ffs1_blocks != 1740 VTOI(bp->b_vp)->i_lfs_effnblks) { 1741 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n", 1742 VTOI(bp->b_vp)->i_number, 1743 VTOI(bp->b_vp)->i_lfs_effnblks, 1744 VTOI(bp->b_vp)->i_ffs1_blocks)); 1745 /* Make a copy we'll make changes to */ 1746 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 1747 bp->b_bcount, LFS_NB_IBLOCK); 1748 newbp->b_blkno = bp->b_blkno; 1749 memcpy(newbp->b_data, bp->b_data, 1750 newbp->b_bcount); 1751 1752 changed = 0; 1753 /* XXX ondisk32 */ 1754 for (daddrp = (int32_t *)(newbp->b_data); 1755 daddrp < (int32_t *)(newbp->b_data + 1756 newbp->b_bcount); daddrp++) { 1757 if (*daddrp == UNWRITTEN) { 1758 ++changed; 1759 *daddrp = 0; 1760 } 1761 } 1762 /* 1763 * Get rid of the old buffer. Don't mark it clean, 1764 * though, if it still has dirty data on it. 1765 */ 1766 if (changed) { 1767 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" 1768 " bp = %p newbp = %p\n", changed, bp, 1769 newbp)); 1770 *bpp = newbp; 1771 bp->b_flags &= ~(B_ERROR | B_GATHERED); 1772 if (bp->b_flags & B_CALL) { 1773 DLOG((DLOG_SEG, "lfs_writeseg: " 1774 "indir bp should not be B_CALL\n")); 1775 s = splbio(); 1776 biodone(bp); 1777 splx(s); 1778 bp = NULL; 1779 } else { 1780 /* Still on free list, leave it there */ 1781 s = splbio(); 1782 bp->b_flags &= ~B_BUSY; 1783 if (bp->b_flags & B_WANTED) 1784 wakeup(bp); 1785 splx(s); 1786 /* 1787 * We have to re-decrement lfs_avail 1788 * since this block is going to come 1789 * back around to us in the next 1790 * segment. 1791 */ 1792 fs->lfs_avail -= 1793 btofsb(fs, bp->b_bcount); 1794 } 1795 } else { 1796 lfs_freebuf(fs, newbp); 1797 } 1798 } 1799 } 1800 /* 1801 * Compute checksum across data and then across summary; the first 1802 * block (the summary block) is skipped. Set the create time here 1803 * so that it's guaranteed to be later than the inode mod times. 1804 */ 1805 sum = 0; 1806 if (fs->lfs_version == 1) 1807 el_size = sizeof(u_long); 1808 else 1809 el_size = sizeof(u_int32_t); 1810 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 1811 ++bpp; 1812 /* Loop through gop_write cluster blocks */ 1813 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 1814 byteoffset += fs->lfs_bsize) { 1815 #ifdef LFS_USE_B_INVAL 1816 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) == 1817 (B_CALL | B_INVAL)) { 1818 if (copyin((caddr_t)(*bpp)->b_saveaddr + 1819 byteoffset, dp, el_size)) { 1820 panic("lfs_writeseg: copyin failed [1]:" 1821 " ino %d blk %" PRId64, 1822 VTOI((*bpp)->b_vp)->i_number, 1823 (*bpp)->b_lblkno); 1824 } 1825 } else 1826 #endif /* LFS_USE_B_INVAL */ 1827 { 1828 sum = lfs_cksum_part( 1829 (*bpp)->b_data + byteoffset, el_size, sum); 1830 } 1831 } 1832 } 1833 if (fs->lfs_version == 1) 1834 ssp->ss_ocreate = time.tv_sec; 1835 else { 1836 ssp->ss_create = time.tv_sec; 1837 ssp->ss_serial = ++fs->lfs_serial; 1838 ssp->ss_ident = fs->lfs_ident; 1839 } 1840 ssp->ss_datasum = lfs_cksum_fold(sum); 1841 ssp->ss_sumsum = cksum(&ssp->ss_datasum, 1842 fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 1843 1844 simple_lock(&fs->lfs_interlock); 1845 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 1846 btofsb(fs, fs->lfs_sumsize)); 1847 simple_unlock(&fs->lfs_interlock); 1848 1849 /* 1850 * When we simply write the blocks we lose a rotation for every block 1851 * written. To avoid this problem, we cluster the buffers into a 1852 * chunk and write the chunk. MAXPHYS is the largest size I/O 1853 * devices can handle, use that for the size of the chunks. 1854 * 1855 * Blocks that are already clusters (from GOP_WRITE), however, we 1856 * don't bother to copy into other clusters. 1857 */ 1858 1859 #define CHUNKSIZE MAXPHYS 1860 1861 if (devvp == NULL) 1862 panic("devvp is NULL"); 1863 for (bpp = sp->bpp, i = nblocks; i;) { 1864 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 1865 cl = cbp->b_private; 1866 1867 cbp->b_flags |= B_ASYNC | B_BUSY; 1868 cbp->b_bcount = 0; 1869 1870 #if defined(DEBUG) && defined(DIAGNOSTIC) 1871 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 1872 / sizeof(int32_t)) { 1873 panic("lfs_writeseg: real bpp overwrite"); 1874 } 1875 if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) { 1876 panic("lfs_writeseg: theoretical bpp overwrite"); 1877 } 1878 #endif 1879 1880 /* 1881 * Construct the cluster. 1882 */ 1883 simple_lock(&fs->lfs_interlock); 1884 ++fs->lfs_iocount; 1885 simple_unlock(&fs->lfs_interlock); 1886 while (i && cbp->b_bcount < CHUNKSIZE) { 1887 bp = *bpp; 1888 1889 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 1890 break; 1891 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 1892 break; 1893 1894 /* Clusters from GOP_WRITE are expedited */ 1895 if (bp->b_bcount > fs->lfs_bsize) { 1896 if (cbp->b_bcount > 0) 1897 /* Put in its own buffer */ 1898 break; 1899 else { 1900 cbp->b_data = bp->b_data; 1901 } 1902 } else if (cbp->b_bcount == 0) { 1903 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 1904 LFS_NB_CLUSTER); 1905 cl->flags |= LFS_CL_MALLOC; 1906 } 1907 #ifdef DIAGNOSTIC 1908 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 1909 btodb(bp->b_bcount - 1))) != 1910 sp->seg_number) { 1911 printf("blk size %d daddr %" PRIx64 1912 " not in seg %d\n", 1913 bp->b_bcount, bp->b_blkno, 1914 sp->seg_number); 1915 panic("segment overwrite"); 1916 } 1917 #endif 1918 1919 #ifdef LFS_USE_B_INVAL 1920 /* 1921 * Fake buffers from the cleaner are marked as B_INVAL. 1922 * We need to copy the data from user space rather than 1923 * from the buffer indicated. 1924 * XXX == what do I do on an error? 1925 */ 1926 if ((bp->b_flags & (B_CALL|B_INVAL)) == 1927 (B_CALL|B_INVAL)) { 1928 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 1929 panic("lfs_writeseg: " 1930 "copyin failed [2]"); 1931 } else 1932 #endif /* LFS_USE_B_INVAL */ 1933 if (cl->flags & LFS_CL_MALLOC) { 1934 /* copy data into our cluster. */ 1935 memcpy(p, bp->b_data, bp->b_bcount); 1936 p += bp->b_bcount; 1937 } 1938 1939 cbp->b_bcount += bp->b_bcount; 1940 cl->bufsize += bp->b_bcount; 1941 1942 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE); 1943 cl->bpp[cl->bufcount++] = bp; 1944 vp = bp->b_vp; 1945 s = splbio(); 1946 reassignbuf(bp, vp); 1947 V_INCR_NUMOUTPUT(vp); 1948 splx(s); 1949 1950 bpp++; 1951 i--; 1952 } 1953 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 1954 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 1955 else 1956 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 1957 s = splbio(); 1958 V_INCR_NUMOUTPUT(devvp); 1959 splx(s); 1960 VOP_STRATEGY(devvp, cbp); 1961 curproc->p_stats->p_ru.ru_oublock++; 1962 } 1963 1964 if (lfs_dostats) { 1965 ++lfs_stats.psegwrites; 1966 lfs_stats.blocktot += nblocks - 1; 1967 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 1968 ++lfs_stats.psyncwrites; 1969 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 1970 ++lfs_stats.pcleanwrites; 1971 lfs_stats.cleanblocks += nblocks - 1; 1972 } 1973 } 1974 return (lfs_initseg(fs) || do_again); 1975 } 1976 1977 void 1978 lfs_writesuper(struct lfs *fs, daddr_t daddr) 1979 { 1980 struct buf *bp; 1981 int s; 1982 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1983 1984 ASSERT_MAYBE_SEGLOCK(fs); 1985 #ifdef DIAGNOSTIC 1986 KASSERT(fs->lfs_magic == LFS_MAGIC); 1987 #endif 1988 /* 1989 * If we can write one superblock while another is in 1990 * progress, we risk not having a complete checkpoint if we crash. 1991 * So, block here if a superblock write is in progress. 1992 */ 1993 simple_lock(&fs->lfs_interlock); 1994 s = splbio(); 1995 while (fs->lfs_sbactive) { 1996 ltsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, 1997 &fs->lfs_interlock); 1998 } 1999 fs->lfs_sbactive = daddr; 2000 splx(s); 2001 simple_unlock(&fs->lfs_interlock); 2002 2003 /* Set timestamp of this version of the superblock */ 2004 if (fs->lfs_version == 1) 2005 fs->lfs_otstamp = time.tv_sec; 2006 fs->lfs_tstamp = time.tv_sec; 2007 2008 /* Checksum the superblock and copy it into a buffer. */ 2009 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2010 bp = lfs_newbuf(fs, devvp, 2011 fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2012 memset(bp->b_data + sizeof(struct dlfs), 0, 2013 LFS_SBPAD - sizeof(struct dlfs)); 2014 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2015 2016 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; 2017 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); 2018 bp->b_iodone = lfs_supercallback; 2019 2020 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2021 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2022 else 2023 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2024 curproc->p_stats->p_ru.ru_oublock++; 2025 s = splbio(); 2026 V_INCR_NUMOUTPUT(bp->b_vp); 2027 splx(s); 2028 simple_lock(&fs->lfs_interlock); 2029 ++fs->lfs_iocount; 2030 simple_unlock(&fs->lfs_interlock); 2031 VOP_STRATEGY(devvp, bp); 2032 } 2033 2034 /* 2035 * Logical block number match routines used when traversing the dirty block 2036 * chain. 2037 */ 2038 int 2039 lfs_match_fake(struct lfs *fs, struct buf *bp) 2040 { 2041 2042 ASSERT_SEGLOCK(fs); 2043 return LFS_IS_MALLOC_BUF(bp); 2044 } 2045 2046 #if 0 2047 int 2048 lfs_match_real(struct lfs *fs, struct buf *bp) 2049 { 2050 2051 ASSERT_SEGLOCK(fs); 2052 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2053 } 2054 #endif 2055 2056 int 2057 lfs_match_data(struct lfs *fs, struct buf *bp) 2058 { 2059 2060 ASSERT_SEGLOCK(fs); 2061 return (bp->b_lblkno >= 0); 2062 } 2063 2064 int 2065 lfs_match_indir(struct lfs *fs, struct buf *bp) 2066 { 2067 daddr_t lbn; 2068 2069 ASSERT_SEGLOCK(fs); 2070 lbn = bp->b_lblkno; 2071 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2072 } 2073 2074 int 2075 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2076 { 2077 daddr_t lbn; 2078 2079 ASSERT_SEGLOCK(fs); 2080 lbn = bp->b_lblkno; 2081 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2082 } 2083 2084 int 2085 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2086 { 2087 daddr_t lbn; 2088 2089 ASSERT_SEGLOCK(fs); 2090 lbn = bp->b_lblkno; 2091 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2092 } 2093 2094 /* 2095 * XXX - The only buffers that are going to hit these functions are the 2096 * segment write blocks, or the segment summaries, or the superblocks. 2097 * 2098 * All of the above are created by lfs_newbuf, and so do not need to be 2099 * released via brelse. 2100 */ 2101 void 2102 lfs_callback(struct buf *bp) 2103 { 2104 struct lfs *fs; 2105 2106 fs = bp->b_private; 2107 ASSERT_NO_SEGLOCK(fs); 2108 lfs_freebuf(fs, bp); 2109 } 2110 2111 static void 2112 lfs_super_aiodone(struct buf *bp) 2113 { 2114 struct lfs *fs; 2115 2116 fs = bp->b_private; 2117 ASSERT_NO_SEGLOCK(fs); 2118 simple_lock(&fs->lfs_interlock); 2119 fs->lfs_sbactive = 0; 2120 if (--fs->lfs_iocount <= 1) 2121 wakeup(&fs->lfs_iocount); 2122 simple_unlock(&fs->lfs_interlock); 2123 wakeup(&fs->lfs_sbactive); 2124 lfs_freebuf(fs, bp); 2125 } 2126 2127 static void 2128 lfs_cluster_aiodone(struct buf *bp) 2129 { 2130 struct lfs_cluster *cl; 2131 struct lfs *fs; 2132 struct buf *tbp, *fbp; 2133 struct vnode *vp, *devvp; 2134 struct inode *ip; 2135 int s, error=0; 2136 2137 if (bp->b_flags & B_ERROR) 2138 error = bp->b_error; 2139 2140 cl = bp->b_private; 2141 fs = cl->fs; 2142 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2143 ASSERT_NO_SEGLOCK(fs); 2144 2145 /* Put the pages back, and release the buffer */ 2146 while (cl->bufcount--) { 2147 tbp = cl->bpp[cl->bufcount]; 2148 KASSERT(tbp->b_flags & B_BUSY); 2149 if (error) { 2150 tbp->b_flags |= B_ERROR; 2151 tbp->b_error = error; 2152 } 2153 2154 /* 2155 * We're done with tbp. If it has not been re-dirtied since 2156 * the cluster was written, free it. Otherwise, keep it on 2157 * the locked list to be written again. 2158 */ 2159 vp = tbp->b_vp; 2160 2161 tbp->b_flags &= ~B_GATHERED; 2162 2163 LFS_BCLEAN_LOG(fs, tbp); 2164 2165 if (!(tbp->b_flags & B_CALL)) { 2166 KASSERT(tbp->b_flags & B_LOCKED); 2167 s = splbio(); 2168 simple_lock(&bqueue_slock); 2169 bremfree(tbp); 2170 simple_unlock(&bqueue_slock); 2171 if (vp) 2172 reassignbuf(tbp, vp); 2173 splx(s); 2174 tbp->b_flags |= B_ASYNC; /* for biodone */ 2175 } 2176 2177 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED) 2178 LFS_UNLOCK_BUF(tbp); 2179 2180 if (tbp->b_flags & B_DONE) { 2181 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", 2182 cl->bufcount, (long)tbp->b_flags)); 2183 } 2184 2185 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) { 2186 /* 2187 * A buffer from the page daemon. 2188 * We use the same iodone as it does, 2189 * so we must manually disassociate its 2190 * buffers from the vp. 2191 */ 2192 if (tbp->b_vp) { 2193 /* This is just silly */ 2194 s = splbio(); 2195 brelvp(tbp); 2196 tbp->b_vp = vp; 2197 splx(s); 2198 } 2199 /* Put it back the way it was */ 2200 tbp->b_flags |= B_ASYNC; 2201 /* Master buffers have B_AGE */ 2202 if (tbp->b_private == tbp) 2203 tbp->b_flags |= B_AGE; 2204 } 2205 s = splbio(); 2206 biodone(tbp); 2207 2208 /* 2209 * If this is the last block for this vnode, but 2210 * there are other blocks on its dirty list, 2211 * set IN_MODIFIED/IN_CLEANING depending on what 2212 * sort of block. Only do this for our mount point, 2213 * not for, e.g., inode blocks that are attached to 2214 * the devvp. 2215 * XXX KS - Shouldn't we set *both* if both types 2216 * of blocks are present (traverse the dirty list?) 2217 */ 2218 simple_lock(&global_v_numoutput_slock); 2219 if (vp != devvp && vp->v_numoutput == 0 && 2220 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2221 ip = VTOI(vp); 2222 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", 2223 ip->i_number)); 2224 if (LFS_IS_MALLOC_BUF(fbp)) 2225 LFS_SET_UINO(ip, IN_CLEANING); 2226 else 2227 LFS_SET_UINO(ip, IN_MODIFIED); 2228 } 2229 simple_unlock(&global_v_numoutput_slock); 2230 splx(s); 2231 wakeup(vp); 2232 } 2233 2234 /* Fix up the cluster buffer, and release it */ 2235 if (cl->flags & LFS_CL_MALLOC) 2236 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2237 s = splbio(); 2238 pool_put(&bufpool, bp); /* XXX should use lfs_free? */ 2239 splx(s); 2240 2241 /* Note i/o done */ 2242 if (cl->flags & LFS_CL_SYNC) { 2243 if (--cl->seg->seg_iocount == 0) 2244 wakeup(&cl->seg->seg_iocount); 2245 } 2246 simple_lock(&fs->lfs_interlock); 2247 #ifdef DIAGNOSTIC 2248 if (fs->lfs_iocount == 0) 2249 panic("lfs_cluster_aiodone: zero iocount"); 2250 #endif 2251 if (--fs->lfs_iocount <= 1) 2252 wakeup(&fs->lfs_iocount); 2253 simple_unlock(&fs->lfs_interlock); 2254 2255 pool_put(&fs->lfs_bpppool, cl->bpp); 2256 cl->bpp = NULL; 2257 pool_put(&fs->lfs_clpool, cl); 2258 } 2259 2260 static void 2261 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2262 { 2263 /* reset b_iodone for when this is a single-buf i/o. */ 2264 bp->b_iodone = aiodone; 2265 2266 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */ 2267 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist); 2268 wakeup(&uvm.aiodoned); 2269 simple_unlock(&uvm.aiodoned_lock); 2270 } 2271 2272 static void 2273 lfs_cluster_callback(struct buf *bp) 2274 { 2275 2276 lfs_generic_callback(bp, lfs_cluster_aiodone); 2277 } 2278 2279 void 2280 lfs_supercallback(struct buf *bp) 2281 { 2282 2283 lfs_generic_callback(bp, lfs_super_aiodone); 2284 } 2285 2286 /* 2287 * Shellsort (diminishing increment sort) from Data Structures and 2288 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2289 * see also Knuth Vol. 3, page 84. The increments are selected from 2290 * formula (8), page 95. Roughly O(N^3/2). 2291 */ 2292 /* 2293 * This is our own private copy of shellsort because we want to sort 2294 * two parallel arrays (the array of buffer pointers and the array of 2295 * logical block numbers) simultaneously. Note that we cast the array 2296 * of logical block numbers to a unsigned in this routine so that the 2297 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2298 */ 2299 2300 void 2301 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2302 { 2303 static int __rsshell_increments[] = { 4, 1, 0 }; 2304 int incr, *incrp, t1, t2; 2305 struct buf *bp_temp; 2306 2307 #ifdef DEBUG 2308 incr = 0; 2309 for (t1 = 0; t1 < nmemb; t1++) { 2310 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2311 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2312 /* dump before panic */ 2313 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2314 nmemb, size); 2315 incr = 0; 2316 for (t1 = 0; t1 < nmemb; t1++) { 2317 const struct buf *bp = bp_array[t1]; 2318 2319 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2320 PRIu64 "\n", t1, 2321 (uint64_t)bp->b_bcount, 2322 (uint64_t)bp->b_lblkno); 2323 printf("lbns:"); 2324 for (t2 = 0; t2 * size < bp->b_bcount; 2325 t2++) { 2326 printf(" %" PRId32, 2327 lb_array[incr++]); 2328 } 2329 printf("\n"); 2330 } 2331 panic("lfs_shellsort: inconsistent input"); 2332 } 2333 } 2334 } 2335 #endif 2336 2337 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2338 for (t1 = incr; t1 < nmemb; ++t1) 2339 for (t2 = t1 - incr; t2 >= 0;) 2340 if ((u_int32_t)bp_array[t2]->b_lblkno > 2341 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2342 bp_temp = bp_array[t2]; 2343 bp_array[t2] = bp_array[t2 + incr]; 2344 bp_array[t2 + incr] = bp_temp; 2345 t2 -= incr; 2346 } else 2347 break; 2348 2349 /* Reform the list of logical blocks */ 2350 incr = 0; 2351 for (t1 = 0; t1 < nmemb; t1++) { 2352 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2353 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2354 } 2355 } 2356 } 2357 2358 /* 2359 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. 2360 */ 2361 int 2362 lfs_vref(struct vnode *vp) 2363 { 2364 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs); 2365 /* 2366 * If we return 1 here during a flush, we risk vinvalbuf() not 2367 * being able to flush all of the pages from this vnode, which 2368 * will cause it to panic. So, return 0 if a flush is in progress. 2369 */ 2370 if (vp->v_flag & VXLOCK) { 2371 if (IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { 2372 return 0; 2373 } 2374 return (1); 2375 } 2376 return (vget(vp, 0)); 2377 } 2378 2379 /* 2380 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2381 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2382 */ 2383 void 2384 lfs_vunref(struct vnode *vp) 2385 { 2386 ASSERT_MAYBE_SEGLOCK(VTOI(vp)->i_lfs); 2387 /* 2388 * Analogous to lfs_vref, if the node is flushing, fake it. 2389 */ 2390 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) { 2391 return; 2392 } 2393 2394 simple_lock(&vp->v_interlock); 2395 #ifdef DIAGNOSTIC 2396 if (vp->v_usecount <= 0) { 2397 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number); 2398 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag); 2399 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount); 2400 panic("lfs_vunref: v_usecount < 0"); 2401 } 2402 #endif 2403 vp->v_usecount--; 2404 if (vp->v_usecount > 0) { 2405 simple_unlock(&vp->v_interlock); 2406 return; 2407 } 2408 /* 2409 * insert at tail of LRU list 2410 */ 2411 simple_lock(&vnode_free_list_slock); 2412 if (vp->v_holdcnt > 0) 2413 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2414 else 2415 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 2416 simple_unlock(&vnode_free_list_slock); 2417 simple_unlock(&vp->v_interlock); 2418 } 2419 2420 /* 2421 * We use this when we have vnodes that were loaded in solely for cleaning. 2422 * There is no reason to believe that these vnodes will be referenced again 2423 * soon, since the cleaning process is unrelated to normal filesystem 2424 * activity. Putting cleaned vnodes at the tail of the list has the effect 2425 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2426 * cleaning at the head of the list, instead. 2427 */ 2428 void 2429 lfs_vunref_head(struct vnode *vp) 2430 { 2431 2432 ASSERT_SEGLOCK(VTOI(vp)->i_lfs); 2433 simple_lock(&vp->v_interlock); 2434 #ifdef DIAGNOSTIC 2435 if (vp->v_usecount == 0) { 2436 panic("lfs_vunref: v_usecount<0"); 2437 } 2438 #endif 2439 vp->v_usecount--; 2440 if (vp->v_usecount > 0) { 2441 simple_unlock(&vp->v_interlock); 2442 return; 2443 } 2444 /* 2445 * insert at head of LRU list 2446 */ 2447 simple_lock(&vnode_free_list_slock); 2448 if (vp->v_holdcnt > 0) 2449 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2450 else 2451 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2452 simple_unlock(&vnode_free_list_slock); 2453 simple_unlock(&vp->v_interlock); 2454 } 2455 2456