1 /* $NetBSD: lfs_segment.c,v 1.3 1994/08/21 03:15:32 cgd Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)lfs_segment.c 8.5 (Berkeley) 1/4/94 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/namei.h> 41 #include <sys/kernel.h> 42 #include <sys/resourcevar.h> 43 #include <sys/file.h> 44 #include <sys/stat.h> 45 #include <sys/buf.h> 46 #include <sys/proc.h> 47 #include <sys/conf.h> 48 #include <sys/vnode.h> 49 #include <sys/malloc.h> 50 #include <sys/mount.h> 51 52 #include <miscfs/specfs/specdev.h> 53 #include <miscfs/fifofs/fifo.h> 54 55 #include <ufs/ufs/quota.h> 56 #include <ufs/ufs/inode.h> 57 #include <ufs/ufs/dir.h> 58 #include <ufs/ufs/ufsmount.h> 59 #include <ufs/ufs/ufs_extern.h> 60 61 #include <ufs/lfs/lfs.h> 62 #include <ufs/lfs/lfs_extern.h> 63 64 extern int count_lock_queue __P((void)); 65 66 #define MAX_ACTIVE 10 67 /* 68 * Determine if it's OK to start a partial in this segment, or if we need 69 * to go on to a new segment. 70 */ 71 #define LFS_PARTIAL_FITS(fs) \ 72 ((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 73 1 << (fs)->lfs_fsbtodb) 74 75 void lfs_callback __P((struct buf *)); 76 void lfs_gather __P((struct lfs *, struct segment *, 77 struct vnode *, int (*) __P((struct lfs *, struct buf *)))); 78 int lfs_gatherblock __P((struct segment *, struct buf *, int *)); 79 void lfs_iset __P((struct inode *, daddr_t, time_t)); 80 int lfs_match_data __P((struct lfs *, struct buf *)); 81 int lfs_match_dindir __P((struct lfs *, struct buf *)); 82 int lfs_match_indir __P((struct lfs *, struct buf *)); 83 int lfs_match_tindir __P((struct lfs *, struct buf *)); 84 void lfs_newseg __P((struct lfs *)); 85 void lfs_shellsort __P((struct buf **, daddr_t *, register int)); 86 void lfs_supercallback __P((struct buf *)); 87 void lfs_updatemeta __P((struct segment *)); 88 int lfs_vref __P((struct vnode *)); 89 void lfs_vunref __P((struct vnode *)); 90 void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *)); 91 int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *)); 92 int lfs_writeseg __P((struct lfs *, struct segment *)); 93 void lfs_writesuper __P((struct lfs *)); 94 void lfs_writevnodes __P((struct lfs *fs, struct mount *mp, 95 struct segment *sp, int dirops)); 96 97 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 98 99 /* Statistics Counters */ 100 #define DOSTATS 101 struct lfs_stats lfs_stats; 102 103 /* op values to lfs_writevnodes */ 104 #define VN_REG 0 105 #define VN_DIROP 1 106 #define VN_EMPTY 2 107 108 /* 109 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 110 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 111 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 112 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 113 */ 114 115 int 116 lfs_vflush(vp) 117 struct vnode *vp; 118 { 119 struct inode *ip; 120 struct lfs *fs; 121 struct segment *sp; 122 123 fs = VFSTOUFS(vp->v_mount)->um_lfs; 124 if (fs->lfs_nactive > MAX_ACTIVE) 125 return(lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP)); 126 lfs_seglock(fs, SEGM_SYNC); 127 sp = fs->lfs_sp; 128 129 130 ip = VTOI(vp); 131 if (vp->v_dirtyblkhd.lh_first == NULL) 132 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 133 134 do { 135 do { 136 if (vp->v_dirtyblkhd.lh_first != NULL) 137 lfs_writefile(fs, sp, vp); 138 } while (lfs_writeinode(fs, sp, ip)); 139 140 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 141 142 #ifdef DOSTATS 143 ++lfs_stats.nwrites; 144 if (sp->seg_flags & SEGM_SYNC) 145 ++lfs_stats.nsync_writes; 146 if (sp->seg_flags & SEGM_CKP) 147 ++lfs_stats.ncheckpoints; 148 #endif 149 lfs_segunlock(fs); 150 return (0); 151 } 152 153 void 154 lfs_writevnodes(fs, mp, sp, op) 155 struct lfs *fs; 156 struct mount *mp; 157 struct segment *sp; 158 int op; 159 { 160 struct inode *ip; 161 struct vnode *vp; 162 163 loop: 164 for (vp = mp->mnt_vnodelist.lh_first; 165 vp != NULL; 166 vp = vp->v_mntvnodes.le_next) { 167 /* 168 * If the vnode that we are about to sync is no longer 169 * associated with this mount point, start over. 170 */ 171 if (vp->v_mount != mp) 172 goto loop; 173 174 /* XXX ignore dirops for now 175 if (op == VN_DIROP && !(vp->v_flag & VDIROP) || 176 op != VN_DIROP && (vp->v_flag & VDIROP)) 177 continue; 178 */ 179 180 if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) 181 continue; 182 183 if (vp->v_type == VNON) 184 continue; 185 186 if (lfs_vref(vp)) 187 continue; 188 189 /* 190 * Write the inode/file if dirty and it's not the 191 * the IFILE. 192 */ 193 ip = VTOI(vp); 194 if ((ip->i_flag & 195 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) || 196 vp->v_dirtyblkhd.lh_first != NULL) && 197 ip->i_number != LFS_IFILE_INUM) { 198 if (vp->v_dirtyblkhd.lh_first != NULL) 199 lfs_writefile(fs, sp, vp); 200 (void) lfs_writeinode(fs, sp, ip); 201 } 202 vp->v_flag &= ~VDIROP; 203 lfs_vunref(vp); 204 } 205 } 206 207 int 208 lfs_segwrite(mp, flags) 209 struct mount *mp; 210 int flags; /* Do a checkpoint. */ 211 { 212 struct buf *bp; 213 struct inode *ip; 214 struct lfs *fs; 215 struct segment *sp; 216 struct vnode *vp; 217 SEGUSE *segusep; 218 daddr_t ibno; 219 CLEANERINFO *cip; 220 int clean, do_ckp, error, i; 221 222 fs = VFSTOUFS(mp)->um_lfs; 223 224 /* 225 * If we have fewer than 2 clean segments, wait until cleaner 226 * writes. 227 */ 228 do { 229 LFS_CLEANERINFO(cip, fs, bp); 230 clean = cip->clean; 231 brelse(bp); 232 if (clean <= 2) { 233 printf ("segs clean: %d\n", clean); 234 wakeup(&lfs_allclean_wakeup); 235 if (error = tsleep(&fs->lfs_avail, PRIBIO + 1, 236 "lfs writer", 0)) 237 return (error); 238 } 239 } while (clean <= 2 ); 240 241 /* 242 * Allocate a segment structure and enough space to hold pointers to 243 * the maximum possible number of buffers which can be described in a 244 * single summary block. 245 */ 246 do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE; 247 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 248 sp = fs->lfs_sp; 249 250 lfs_writevnodes(fs, mp, sp, VN_REG); 251 252 /* XXX ignore ordering of dirops for now */ 253 /* XXX 254 fs->lfs_writer = 1; 255 if (fs->lfs_dirops && (error = 256 tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) { 257 free(sp->bpp, M_SEGMENT); 258 free(sp, M_SEGMENT); 259 fs->lfs_writer = 0; 260 return (error); 261 } 262 263 lfs_writevnodes(fs, mp, sp, VN_DIROP); 264 */ 265 266 /* 267 * If we are doing a checkpoint, mark everything since the 268 * last checkpoint as no longer ACTIVE. 269 */ 270 if (do_ckp) 271 for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz; 272 --ibno >= fs->lfs_cleansz; ) { 273 if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, 274 NOCRED, &bp)) 275 276 panic("lfs: ifile read"); 277 segusep = (SEGUSE *)bp->b_data; 278 for (i = fs->lfs_sepb; i--; segusep++) 279 segusep->su_flags &= ~SEGUSE_ACTIVE; 280 281 error = VOP_BWRITE(bp); 282 } 283 284 if (do_ckp || fs->lfs_doifile) { 285 redo: 286 vp = fs->lfs_ivnode; 287 while (vget(vp, 1)); 288 ip = VTOI(vp); 289 if (vp->v_dirtyblkhd.lh_first != NULL) 290 lfs_writefile(fs, sp, vp); 291 (void)lfs_writeinode(fs, sp, ip); 292 vput(vp); 293 if (lfs_writeseg(fs, sp) && do_ckp) 294 goto redo; 295 } else 296 (void) lfs_writeseg(fs, sp); 297 298 /* 299 * If the I/O count is non-zero, sleep until it reaches zero. At the 300 * moment, the user's process hangs around so we can sleep. 301 */ 302 /* XXX ignore dirops for now 303 fs->lfs_writer = 0; 304 fs->lfs_doifile = 0; 305 wakeup(&fs->lfs_dirops); 306 */ 307 308 #ifdef DOSTATS 309 ++lfs_stats.nwrites; 310 if (sp->seg_flags & SEGM_SYNC) 311 ++lfs_stats.nsync_writes; 312 if (sp->seg_flags & SEGM_CKP) 313 ++lfs_stats.ncheckpoints; 314 #endif 315 lfs_segunlock(fs); 316 return (0); 317 } 318 319 /* 320 * Write the dirty blocks associated with a vnode. 321 */ 322 void 323 lfs_writefile(fs, sp, vp) 324 struct lfs *fs; 325 struct segment *sp; 326 struct vnode *vp; 327 { 328 struct buf *bp; 329 struct finfo *fip; 330 IFILE *ifp; 331 332 if (sp->seg_bytes_left < fs->lfs_bsize || 333 sp->sum_bytes_left < sizeof(struct finfo)) 334 (void) lfs_writeseg(fs, sp); 335 336 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(daddr_t); 337 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 338 339 fip = sp->fip; 340 fip->fi_nblocks = 0; 341 fip->fi_ino = VTOI(vp)->i_number; 342 LFS_IENTRY(ifp, fs, fip->fi_ino, bp); 343 fip->fi_version = ifp->if_version; 344 brelse(bp); 345 346 /* 347 * It may not be necessary to write the meta-data blocks at this point, 348 * as the roll-forward recovery code should be able to reconstruct the 349 * list. 350 */ 351 lfs_gather(fs, sp, vp, lfs_match_data); 352 lfs_gather(fs, sp, vp, lfs_match_indir); 353 lfs_gather(fs, sp, vp, lfs_match_dindir); 354 #ifdef TRIPLE 355 lfs_gather(fs, sp, vp, lfs_match_tindir); 356 #endif 357 358 fip = sp->fip; 359 if (fip->fi_nblocks != 0) { 360 sp->fip = 361 (struct finfo *)((caddr_t)fip + sizeof(struct finfo) + 362 sizeof(daddr_t) * (fip->fi_nblocks - 1)); 363 sp->start_lbp = &sp->fip->fi_blocks[0]; 364 } else { 365 sp->sum_bytes_left += sizeof(struct finfo) - sizeof(daddr_t); 366 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 367 } 368 } 369 370 int 371 lfs_writeinode(fs, sp, ip) 372 struct lfs *fs; 373 struct segment *sp; 374 struct inode *ip; 375 { 376 struct buf *bp, *ibp; 377 IFILE *ifp; 378 SEGUSE *sup; 379 daddr_t daddr; 380 ino_t ino; 381 int error, i, ndx; 382 int redo_ifile = 0; 383 384 if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE))) 385 return(0); 386 387 /* Allocate a new inode block if necessary. */ 388 if (sp->ibp == NULL) { 389 /* Allocate a new segment if necessary. */ 390 if (sp->seg_bytes_left < fs->lfs_bsize || 391 sp->sum_bytes_left < sizeof(daddr_t)) 392 (void) lfs_writeseg(fs, sp); 393 394 /* Get next inode block. */ 395 daddr = fs->lfs_offset; 396 fs->lfs_offset += fsbtodb(fs, 1); 397 sp->ibp = *sp->cbpp++ = 398 lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, 399 fs->lfs_bsize); 400 /* Zero out inode numbers */ 401 for (i = 0; i < INOPB(fs); ++i) 402 ((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0; 403 ++sp->start_bpp; 404 fs->lfs_avail -= fsbtodb(fs, 1); 405 /* Set remaining space counters. */ 406 sp->seg_bytes_left -= fs->lfs_bsize; 407 sp->sum_bytes_left -= sizeof(daddr_t); 408 ndx = LFS_SUMMARY_SIZE / sizeof(daddr_t) - 409 sp->ninodes / INOPB(fs) - 1; 410 ((daddr_t *)(sp->segsum))[ndx] = daddr; 411 } 412 413 /* Update the inode times and copy the inode onto the inode page. */ 414 if (ip->i_flag & IN_MODIFIED) 415 --fs->lfs_uinodes; 416 ITIMES(ip, &time, &time); 417 ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE); 418 bp = sp->ibp; 419 ((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din; 420 /* Increment inode count in segment summary block. */ 421 ++((SEGSUM *)(sp->segsum))->ss_ninos; 422 423 /* If this page is full, set flag to allocate a new page. */ 424 if (++sp->ninodes % INOPB(fs) == 0) 425 sp->ibp = NULL; 426 427 /* 428 * If updating the ifile, update the super-block. Update the disk 429 * address and access times for this inode in the ifile. 430 */ 431 ino = ip->i_number; 432 if (ino == LFS_IFILE_INUM) { 433 daddr = fs->lfs_idaddr; 434 fs->lfs_idaddr = bp->b_blkno; 435 } else { 436 LFS_IENTRY(ifp, fs, ino, ibp); 437 daddr = ifp->if_daddr; 438 ifp->if_daddr = bp->b_blkno; 439 error = VOP_BWRITE(ibp); 440 } 441 442 /* 443 * No need to update segment usage if there was no former inode address 444 * or if the last inode address is in the current partial segment. 445 */ 446 if (daddr != LFS_UNUSED_DADDR && 447 !(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) { 448 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp); 449 #ifdef DIAGNOSTIC 450 if (sup->su_nbytes < sizeof(struct dinode)) { 451 /* XXX -- Change to a panic. */ 452 printf("lfs: negative bytes (segment %d)\n", 453 datosn(fs, daddr)); 454 panic("negative bytes"); 455 } 456 #endif 457 sup->su_nbytes -= sizeof(struct dinode); 458 redo_ifile = 459 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 460 error = VOP_BWRITE(bp); 461 } 462 return (redo_ifile); 463 } 464 465 int 466 lfs_gatherblock(sp, bp, sptr) 467 struct segment *sp; 468 struct buf *bp; 469 int *sptr; 470 { 471 struct lfs *fs; 472 int version; 473 474 /* 475 * If full, finish this segment. We may be doing I/O, so 476 * release and reacquire the splbio(). 477 */ 478 #ifdef DIAGNOSTIC 479 if (sp->vp == NULL) 480 panic ("lfs_gatherblock: Null vp in segment"); 481 #endif 482 fs = sp->fs; 483 if (sp->sum_bytes_left < sizeof(daddr_t) || 484 sp->seg_bytes_left < fs->lfs_bsize) { 485 if (sptr) 486 splx(*sptr); 487 lfs_updatemeta(sp); 488 489 version = sp->fip->fi_version; 490 (void) lfs_writeseg(fs, sp); 491 492 sp->fip->fi_version = version; 493 sp->fip->fi_ino = VTOI(sp->vp)->i_number; 494 /* Add the current file to the segment summary. */ 495 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 496 sp->sum_bytes_left -= 497 sizeof(struct finfo) - sizeof(daddr_t); 498 499 if (sptr) 500 *sptr = splbio(); 501 return(1); 502 } 503 504 /* Insert into the buffer list, update the FINFO block. */ 505 bp->b_flags |= B_GATHERED; 506 *sp->cbpp++ = bp; 507 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno; 508 509 sp->sum_bytes_left -= sizeof(daddr_t); 510 sp->seg_bytes_left -= fs->lfs_bsize; 511 return(0); 512 } 513 514 void 515 lfs_gather(fs, sp, vp, match) 516 struct lfs *fs; 517 struct segment *sp; 518 struct vnode *vp; 519 int (*match) __P((struct lfs *, struct buf *)); 520 { 521 struct buf *bp; 522 int s; 523 524 sp->vp = vp; 525 s = splbio(); 526 loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) { 527 if (bp->b_flags & B_BUSY || !match(fs, bp) || 528 bp->b_flags & B_GATHERED) 529 continue; 530 #ifdef DIAGNOSTIC 531 if (!(bp->b_flags & B_DELWRI)) 532 panic("lfs_gather: bp not B_DELWRI"); 533 if (!(bp->b_flags & B_LOCKED)) 534 panic("lfs_gather: bp not B_LOCKED"); 535 #endif 536 if (lfs_gatherblock(sp, bp, &s)) 537 goto loop; 538 } 539 splx(s); 540 lfs_updatemeta(sp); 541 sp->vp = NULL; 542 } 543 544 545 /* 546 * Update the metadata that points to the blocks listed in the FINFO 547 * array. 548 */ 549 void 550 lfs_updatemeta(sp) 551 struct segment *sp; 552 { 553 SEGUSE *sup; 554 struct buf *bp; 555 struct lfs *fs; 556 struct vnode *vp; 557 struct indir a[NIADDR + 2], *ap; 558 struct inode *ip; 559 daddr_t daddr, lbn, off; 560 int db_per_fsb, error, i, nblocks, num; 561 562 vp = sp->vp; 563 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 564 if (vp == NULL || nblocks == 0) 565 return; 566 567 /* Sort the blocks. */ 568 if (!(sp->seg_flags & SEGM_CLEAN)) 569 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks); 570 571 /* 572 * Assign disk addresses, and update references to the logical 573 * block and the segment usage information. 574 */ 575 fs = sp->fs; 576 db_per_fsb = fsbtodb(fs, 1); 577 for (i = nblocks; i--; ++sp->start_bpp) { 578 lbn = *sp->start_lbp++; 579 (*sp->start_bpp)->b_blkno = off = fs->lfs_offset; 580 fs->lfs_offset += db_per_fsb; 581 582 if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL)) 583 panic("lfs_updatemeta: ufs_bmaparray %d", error); 584 ip = VTOI(vp); 585 switch (num) { 586 case 0: 587 ip->i_db[lbn] = off; 588 break; 589 case 1: 590 ip->i_ib[a[0].in_off] = off; 591 break; 592 default: 593 ap = &a[num - 1]; 594 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 595 panic("lfs_updatemeta: bread bno %d", 596 ap->in_lbn); 597 /* 598 * Bread may create a new indirect block which needs 599 * to get counted for the inode. 600 */ 601 if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) { 602 printf ("Updatemeta allocating indirect block: shouldn't happen\n"); 603 ip->i_blocks += btodb(fs->lfs_bsize); 604 fs->lfs_bfree -= btodb(fs->lfs_bsize); 605 } 606 ((daddr_t *)bp->b_data)[ap->in_off] = off; 607 VOP_BWRITE(bp); 608 } 609 610 /* Update segment usage information. */ 611 if (daddr != UNASSIGNED && 612 !(daddr >= fs->lfs_lastpseg && daddr <= off)) { 613 LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp); 614 #ifdef DIAGNOSTIC 615 if (sup->su_nbytes < fs->lfs_bsize) { 616 /* XXX -- Change to a panic. */ 617 printf("lfs: negative bytes (segment %d)\n", 618 datosn(fs, daddr)); 619 panic ("Negative Bytes"); 620 } 621 #endif 622 sup->su_nbytes -= fs->lfs_bsize; 623 error = VOP_BWRITE(bp); 624 } 625 } 626 } 627 628 /* 629 * Start a new segment. 630 */ 631 int 632 lfs_initseg(fs) 633 struct lfs *fs; 634 { 635 struct segment *sp; 636 SEGUSE *sup; 637 SEGSUM *ssp; 638 struct buf *bp; 639 int repeat; 640 641 sp = fs->lfs_sp; 642 643 repeat = 0; 644 /* Advance to the next segment. */ 645 if (!LFS_PARTIAL_FITS(fs)) { 646 /* Wake up any cleaning procs waiting on this file system. */ 647 wakeup(&lfs_allclean_wakeup); 648 649 lfs_newseg(fs); 650 repeat = 1; 651 fs->lfs_offset = fs->lfs_curseg; 652 sp->seg_number = datosn(fs, fs->lfs_curseg); 653 sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE; 654 655 /* 656 * If the segment contains a superblock, update the offset 657 * and summary address to skip over it. 658 */ 659 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 660 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 661 fs->lfs_offset += LFS_SBPAD / DEV_BSIZE; 662 sp->seg_bytes_left -= LFS_SBPAD; 663 } 664 brelse(bp); 665 } else { 666 sp->seg_number = datosn(fs, fs->lfs_curseg); 667 sp->seg_bytes_left = (fs->lfs_dbpseg - 668 (fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE; 669 } 670 fs->lfs_lastpseg = fs->lfs_offset; 671 672 sp->fs = fs; 673 sp->ibp = NULL; 674 sp->ninodes = 0; 675 676 /* Get a new buffer for SEGSUM and enter it into the buffer list. */ 677 sp->cbpp = sp->bpp; 678 *sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset, 679 LFS_SUMMARY_SIZE); 680 sp->segsum = (*sp->cbpp)->b_data; 681 bzero(sp->segsum, LFS_SUMMARY_SIZE); 682 sp->start_bpp = ++sp->cbpp; 683 fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE; 684 685 /* Set point to SEGSUM, initialize it. */ 686 ssp = sp->segsum; 687 ssp->ss_next = fs->lfs_nextseg; 688 ssp->ss_nfinfo = ssp->ss_ninos = 0; 689 690 /* Set pointer to first FINFO, initialize it. */ 691 sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM)); 692 sp->fip->fi_nblocks = 0; 693 sp->start_lbp = &sp->fip->fi_blocks[0]; 694 695 sp->seg_bytes_left -= LFS_SUMMARY_SIZE; 696 sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM); 697 698 return(repeat); 699 } 700 701 /* 702 * Return the next segment to write. 703 */ 704 void 705 lfs_newseg(fs) 706 struct lfs *fs; 707 { 708 CLEANERINFO *cip; 709 SEGUSE *sup; 710 struct buf *bp; 711 int curseg, isdirty, sn; 712 713 LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp); 714 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 715 sup->su_nbytes = 0; 716 sup->su_nsums = 0; 717 sup->su_ninos = 0; 718 (void) VOP_BWRITE(bp); 719 720 LFS_CLEANERINFO(cip, fs, bp); 721 --cip->clean; 722 ++cip->dirty; 723 (void) VOP_BWRITE(bp); 724 725 fs->lfs_lastseg = fs->lfs_curseg; 726 fs->lfs_curseg = fs->lfs_nextseg; 727 for (sn = curseg = datosn(fs, fs->lfs_curseg);;) { 728 sn = (sn + 1) % fs->lfs_nseg; 729 if (sn == curseg) 730 panic("lfs_nextseg: no clean segments"); 731 LFS_SEGENTRY(sup, fs, sn, bp); 732 isdirty = sup->su_flags & SEGUSE_DIRTY; 733 brelse(bp); 734 if (!isdirty) 735 break; 736 } 737 738 ++fs->lfs_nactive; 739 fs->lfs_nextseg = sntoda(fs, sn); 740 #ifdef DOSTATS 741 ++lfs_stats.segsused; 742 #endif 743 } 744 745 int 746 lfs_writeseg(fs, sp) 747 struct lfs *fs; 748 struct segment *sp; 749 { 750 extern int locked_queue_count; 751 struct buf **bpp, *bp, *cbp; 752 SEGUSE *sup; 753 SEGSUM *ssp; 754 dev_t i_dev; 755 size_t size; 756 u_long *datap, *dp; 757 int ch_per_blk, do_again, i, nblocks, num, s; 758 int (*strategy)__P((struct vop_strategy_args *)); 759 struct vop_strategy_args vop_strategy_a; 760 u_short ninos; 761 char *p; 762 763 /* 764 * If there are no buffers other than the segment summary to write 765 * and it is not a checkpoint, don't do anything. On a checkpoint, 766 * even if there aren't any buffers, you need to write the superblock. 767 */ 768 if ((nblocks = sp->cbpp - sp->bpp) == 1) 769 return (0); 770 771 ssp = (SEGSUM *)sp->segsum; 772 773 /* Update the segment usage information. */ 774 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 775 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 776 sup->su_nbytes += nblocks - 1 - ninos << fs->lfs_bshift; 777 sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode); 778 sup->su_nbytes += LFS_SUMMARY_SIZE; 779 sup->su_lastmod = time.tv_sec; 780 sup->su_ninos += ninos; 781 ++sup->su_nsums; 782 do_again = !(bp->b_flags & B_GATHERED); 783 (void)VOP_BWRITE(bp); 784 /* 785 * Compute checksum across data and then across summary; the first 786 * block (the summary block) is skipped. Set the create time here 787 * so that it's guaranteed to be later than the inode mod times. 788 * 789 * XXX 790 * Fix this to do it inline, instead of malloc/copy. 791 */ 792 datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK); 793 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 794 if ((*++bpp)->b_flags & B_INVAL) { 795 if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long))) 796 panic("lfs_writeseg: copyin failed"); 797 } else 798 *dp++ = ((u_long *)(*bpp)->b_data)[0]; 799 } 800 ssp->ss_create = time.tv_sec; 801 ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long)); 802 ssp->ss_sumsum = 803 cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum)); 804 free(datap, M_SEGMENT); 805 #ifdef DIAGNOSTIC 806 if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE) 807 panic("lfs_writeseg: No diskspace for summary"); 808 #endif 809 fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE); 810 811 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 812 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; 813 814 /* 815 * When we simply write the blocks we lose a rotation for every block 816 * written. To avoid this problem, we allocate memory in chunks, copy 817 * the buffers into the chunk and write the chunk. MAXPHYS is the 818 * largest size I/O devices can handle. 819 * When the data is copied to the chunk, turn off the the B_LOCKED bit 820 * and brelse the buffer (which will move them to the LRU list). Add 821 * the B_CALL flag to the buffer header so we can count I/O's for the 822 * checkpoints and so we can release the allocated memory. 823 * 824 * XXX 825 * This should be removed if the new virtual memory system allows us to 826 * easily make the buffers contiguous in kernel memory and if that's 827 * fast enough. 828 */ 829 ch_per_blk = MAXPHYS / fs->lfs_bsize; 830 for (bpp = sp->bpp, i = nblocks; i;) { 831 num = ch_per_blk; 832 if (num > i) 833 num = i; 834 i -= num; 835 size = num * fs->lfs_bsize; 836 837 cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, 838 (*bpp)->b_blkno, size); 839 cbp->b_dev = i_dev; 840 cbp->b_flags |= B_ASYNC | B_BUSY; 841 842 s = splbio(); 843 ++fs->lfs_iocount; 844 for (p = cbp->b_data; num--;) { 845 bp = *bpp++; 846 /* 847 * Fake buffers from the cleaner are marked as B_INVAL. 848 * We need to copy the data from user space rather than 849 * from the buffer indicated. 850 * XXX == what do I do on an error? 851 */ 852 if (bp->b_flags & B_INVAL) { 853 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 854 panic("lfs_writeseg: copyin failed"); 855 } else 856 bcopy(bp->b_data, p, bp->b_bcount); 857 p += bp->b_bcount; 858 if (bp->b_flags & B_LOCKED) 859 --locked_queue_count; 860 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | 861 B_LOCKED | B_GATHERED); 862 if (bp->b_flags & B_CALL) { 863 /* if B_CALL, it was created with newbuf */ 864 brelvp(bp); 865 if (!(bp->b_flags & B_INVAL)) 866 free(bp->b_data, M_SEGMENT); 867 free(bp, M_SEGMENT); 868 } else { 869 bremfree(bp); 870 bp->b_flags |= B_DONE; 871 reassignbuf(bp, bp->b_vp); 872 brelse(bp); 873 } 874 } 875 ++cbp->b_vp->v_numoutput; 876 splx(s); 877 cbp->b_bcount = p - (char *)cbp->b_data; 878 /* 879 * XXXX This is a gross and disgusting hack. Since these 880 * buffers are physically addressed, they hang off the 881 * device vnode (devvp). As a result, they have no way 882 * of getting to the LFS superblock or lfs structure to 883 * keep track of the number of I/O's pending. So, I am 884 * going to stuff the fs into the saveaddr field of 885 * the buffer (yuk). 886 */ 887 cbp->b_saveaddr = (caddr_t)fs; 888 vop_strategy_a.a_desc = VDESC(vop_strategy); 889 vop_strategy_a.a_bp = cbp; 890 (strategy)(&vop_strategy_a); 891 } 892 /* 893 * XXX 894 * Vinvalbuf can move locked buffers off the locked queue 895 * and we have no way of knowing about this. So, after 896 * doing a big write, we recalculate how many bufers are 897 * really still left on the locked queue. 898 */ 899 locked_queue_count = count_lock_queue(); 900 wakeup(&locked_queue_count); 901 #ifdef DOSTATS 902 ++lfs_stats.psegwrites; 903 lfs_stats.blocktot += nblocks - 1; 904 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 905 ++lfs_stats.psyncwrites; 906 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 907 ++lfs_stats.pcleanwrites; 908 lfs_stats.cleanblocks += nblocks - 1; 909 } 910 #endif 911 return (lfs_initseg(fs) || do_again); 912 } 913 914 void 915 lfs_writesuper(fs) 916 struct lfs *fs; 917 { 918 struct buf *bp; 919 dev_t i_dev; 920 int (*strategy) __P((struct vop_strategy_args *)); 921 int s; 922 struct vop_strategy_args vop_strategy_a; 923 924 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 925 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; 926 927 /* Checksum the superblock and copy it into a buffer. */ 928 fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum)); 929 bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0], 930 LFS_SBPAD); 931 *(struct lfs *)bp->b_data = *fs; 932 933 /* XXX Toggle between first two superblocks; for now just write first */ 934 bp->b_dev = i_dev; 935 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; 936 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); 937 bp->b_iodone = lfs_supercallback; 938 vop_strategy_a.a_desc = VDESC(vop_strategy); 939 vop_strategy_a.a_bp = bp; 940 s = splbio(); 941 ++bp->b_vp->v_numoutput; 942 splx(s); 943 (strategy)(&vop_strategy_a); 944 } 945 946 /* 947 * Logical block number match routines used when traversing the dirty block 948 * chain. 949 */ 950 int 951 lfs_match_data(fs, bp) 952 struct lfs *fs; 953 struct buf *bp; 954 { 955 return (bp->b_lblkno >= 0); 956 } 957 958 int 959 lfs_match_indir(fs, bp) 960 struct lfs *fs; 961 struct buf *bp; 962 { 963 int lbn; 964 965 lbn = bp->b_lblkno; 966 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 967 } 968 969 int 970 lfs_match_dindir(fs, bp) 971 struct lfs *fs; 972 struct buf *bp; 973 { 974 int lbn; 975 976 lbn = bp->b_lblkno; 977 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 978 } 979 980 int 981 lfs_match_tindir(fs, bp) 982 struct lfs *fs; 983 struct buf *bp; 984 { 985 int lbn; 986 987 lbn = bp->b_lblkno; 988 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 989 } 990 991 /* 992 * Allocate a new buffer header. 993 */ 994 struct buf * 995 lfs_newbuf(vp, daddr, size) 996 struct vnode *vp; 997 daddr_t daddr; 998 size_t size; 999 { 1000 struct buf *bp; 1001 size_t nbytes; 1002 1003 nbytes = roundup(size, DEV_BSIZE); 1004 bp = malloc(sizeof(struct buf), M_SEGMENT, M_WAITOK); 1005 bzero(bp, sizeof(struct buf)); 1006 if (nbytes) 1007 bp->b_data = malloc(nbytes, M_SEGMENT, M_WAITOK); 1008 bgetvp(vp, bp); 1009 bp->b_bufsize = size; 1010 bp->b_bcount = size; 1011 bp->b_lblkno = daddr; 1012 bp->b_blkno = daddr; 1013 bp->b_error = 0; 1014 bp->b_resid = 0; 1015 bp->b_iodone = lfs_callback; 1016 bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE; 1017 return (bp); 1018 } 1019 1020 void 1021 lfs_callback(bp) 1022 struct buf *bp; 1023 { 1024 struct lfs *fs; 1025 1026 fs = (struct lfs *)bp->b_saveaddr; 1027 #ifdef DIAGNOSTIC 1028 if (fs->lfs_iocount == 0) 1029 panic("lfs_callback: zero iocount\n"); 1030 #endif 1031 if (--fs->lfs_iocount == 0) 1032 wakeup(&fs->lfs_iocount); 1033 1034 brelvp(bp); 1035 free(bp->b_data, M_SEGMENT); 1036 free(bp, M_SEGMENT); 1037 } 1038 1039 void 1040 lfs_supercallback(bp) 1041 struct buf *bp; 1042 { 1043 brelvp(bp); 1044 free(bp->b_data, M_SEGMENT); 1045 free(bp, M_SEGMENT); 1046 } 1047 1048 /* 1049 * Shellsort (diminishing increment sort) from Data Structures and 1050 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 1051 * see also Knuth Vol. 3, page 84. The increments are selected from 1052 * formula (8), page 95. Roughly O(N^3/2). 1053 */ 1054 /* 1055 * This is our own private copy of shellsort because we want to sort 1056 * two parallel arrays (the array of buffer pointers and the array of 1057 * logical block numbers) simultaneously. Note that we cast the array 1058 * of logical block numbers to a unsigned in this routine so that the 1059 * negative block numbers (meta data blocks) sort AFTER the data blocks. 1060 */ 1061 void 1062 lfs_shellsort(bp_array, lb_array, nmemb) 1063 struct buf **bp_array; 1064 daddr_t *lb_array; 1065 register int nmemb; 1066 { 1067 static int __rsshell_increments[] = { 4, 1, 0 }; 1068 register int incr, *incrp, t1, t2; 1069 struct buf *bp_temp; 1070 u_long lb_temp; 1071 1072 for (incrp = __rsshell_increments; incr = *incrp++;) 1073 for (t1 = incr; t1 < nmemb; ++t1) 1074 for (t2 = t1 - incr; t2 >= 0;) 1075 if (lb_array[t2] > lb_array[t2 + incr]) { 1076 lb_temp = lb_array[t2]; 1077 lb_array[t2] = lb_array[t2 + incr]; 1078 lb_array[t2 + incr] = lb_temp; 1079 bp_temp = bp_array[t2]; 1080 bp_array[t2] = bp_array[t2 + incr]; 1081 bp_array[t2 + incr] = bp_temp; 1082 t2 -= incr; 1083 } else 1084 break; 1085 } 1086 1087 /* 1088 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. 1089 */ 1090 lfs_vref(vp) 1091 register struct vnode *vp; 1092 { 1093 1094 if (vp->v_flag & VXLOCK) 1095 return(1); 1096 return (vget(vp, 0)); 1097 } 1098 1099 void 1100 lfs_vunref(vp) 1101 register struct vnode *vp; 1102 { 1103 extern int lfs_no_inactive; 1104 1105 /* 1106 * This is vrele except that we do not want to VOP_INACTIVE 1107 * this vnode. Rather than inline vrele here, we use a global 1108 * flag to tell lfs_inactive not to run. Yes, its gross. 1109 */ 1110 lfs_no_inactive = 1; 1111 vrele(vp); 1112 lfs_no_inactive = 0; 1113 } 1114