1 /* $NetBSD: lfs_segment.c,v 1.287 2020/08/13 17:26:43 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /* 32 * Copyright (c) 1991, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 60 */ 61 62 #include <sys/cdefs.h> 63 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.287 2020/08/13 17:26:43 riastradh Exp $"); 64 65 #ifdef DEBUG 66 # define vndebug(vp, str) do { \ 67 if (VTOI(vp)->i_state & IN_CLEANING) \ 68 DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \ 69 VTOI(vp)->i_number, (str), op)); \ 70 } while(0) 71 #else 72 # define vndebug(vp, str) 73 #endif 74 #define ivndebug(vp, str) \ 75 DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str))) 76 77 #if defined(_KERNEL_OPT) 78 #include "opt_ddb.h" 79 #endif 80 81 #include <sys/param.h> 82 #include <sys/systm.h> 83 #include <sys/namei.h> 84 #include <sys/kernel.h> 85 #include <sys/resourcevar.h> 86 #include <sys/file.h> 87 #include <sys/stat.h> 88 #include <sys/buf.h> 89 #include <sys/proc.h> 90 #include <sys/vnode.h> 91 #include <sys/mount.h> 92 #include <sys/kauth.h> 93 #include <sys/syslog.h> 94 95 #include <miscfs/specfs/specdev.h> 96 #include <miscfs/fifofs/fifo.h> 97 98 #include <ufs/lfs/ulfs_inode.h> 99 #include <ufs/lfs/ulfsmount.h> 100 #include <ufs/lfs/ulfs_extern.h> 101 102 #include <ufs/lfs/lfs.h> 103 #include <ufs/lfs/lfs_accessors.h> 104 #include <ufs/lfs/lfs_kernel.h> 105 #include <ufs/lfs/lfs_extern.h> 106 107 #include <uvm/uvm.h> 108 #include <uvm/uvm_extern.h> 109 110 MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 111 112 static void lfs_super_aiodone(struct buf *); 113 static void lfs_cluster_aiodone(struct buf *); 114 115 /* 116 * Determine if it's OK to start a partial in this segment, or if we need 117 * to go on to a new segment. 118 */ 119 #define LFS_PARTIAL_FITS(fs) \ 120 (lfs_sb_getfsbpseg(fs) - \ 121 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs)) > \ 122 lfs_sb_getfrag(fs)) 123 124 /* 125 * Figure out whether we should do a checkpoint write or go ahead with 126 * an ordinary write. 127 */ 128 #define LFS_SHOULD_CHECKPOINT(fs, flags) \ 129 ((flags & SEGM_CLEAN) == 0 && \ 130 ((fs->lfs_nactive > LFS_MAX_ACTIVE || \ 131 (flags & SEGM_CKP) || \ 132 lfs_sb_getnclean(fs) < LFS_MAX_ACTIVE))) 133 134 int lfs_match_fake(struct lfs *, struct buf *); 135 void lfs_newseg(struct lfs *); 136 void lfs_updatemeta(struct segment *); 137 void lfs_writesuper(struct lfs *, daddr_t); 138 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 139 struct segment *sp, int dirops); 140 141 static void lfs_shellsort(struct lfs *, struct buf **, union lfs_blocks *, 142 int, int); 143 144 kcondvar_t lfs_allclean_wakeup; /* Cleaner wakeup address. */ 145 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 146 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 147 int lfs_dirvcount = 0; /* # active dirops */ 148 149 /* Statistics Counters */ 150 int lfs_dostats = 1; 151 struct lfs_stats lfs_stats; 152 153 /* op values to lfs_writevnodes */ 154 #define VN_REG 0 155 #define VN_DIROP 1 156 #define VN_EMPTY 2 157 #define VN_CLEAN 3 158 159 /* 160 * XXX KS - Set modification time on the Ifile, so the cleaner can 161 * read the fs mod time off of it. We don't set IN_UPDATE here, 162 * since we don't really need this to be flushed to disk (and in any 163 * case that wouldn't happen to the Ifile until we checkpoint). 164 */ 165 void 166 lfs_imtime(struct lfs *fs) 167 { 168 struct timespec ts; 169 struct inode *ip; 170 171 ASSERT_MAYBE_SEGLOCK(fs); 172 vfs_timestamp(&ts); 173 ip = VTOI(fs->lfs_ivnode); 174 lfs_dino_setmtime(fs, ip->i_din, ts.tv_sec); 175 lfs_dino_setmtimensec(fs, ip->i_din, ts.tv_nsec); 176 } 177 178 /* 179 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 180 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 181 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 182 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 183 */ 184 185 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 186 187 int 188 lfs_vflush(struct vnode *vp) 189 { 190 struct inode *ip; 191 struct lfs *fs; 192 struct segment *sp; 193 struct buf *bp, *nbp, *tbp, *tnbp; 194 int error; 195 int flushed; 196 int relock; 197 198 ip = VTOI(vp); 199 fs = VFSTOULFS(vp->v_mount)->um_lfs; 200 relock = 0; 201 202 top: 203 KASSERT(mutex_owned(vp->v_interlock) == false); 204 KASSERT(mutex_owned(&lfs_lock) == false); 205 KASSERT(mutex_owned(&bufcache_lock) == false); 206 ASSERT_NO_SEGLOCK(fs); 207 if (ip->i_state & IN_CLEANING) { 208 ivndebug(vp,"vflush/in_cleaning"); 209 mutex_enter(&lfs_lock); 210 LFS_CLR_UINO(ip, IN_CLEANING); 211 LFS_SET_UINO(ip, IN_MODIFIED); 212 mutex_exit(&lfs_lock); 213 214 /* 215 * Toss any cleaning buffers that have real counterparts 216 * to avoid losing new data. 217 */ 218 mutex_enter(vp->v_interlock); 219 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 220 nbp = LIST_NEXT(bp, b_vnbufs); 221 if (!LFS_IS_MALLOC_BUF(bp)) 222 continue; 223 /* 224 * Look for pages matching the range covered 225 * by cleaning blocks. It's okay if more dirty 226 * pages appear, so long as none disappear out 227 * from under us. 228 */ 229 if (bp->b_lblkno > 0 && vp->v_type == VREG && 230 vp != fs->lfs_ivnode) { 231 struct vm_page *pg; 232 voff_t off; 233 234 for (off = lfs_lblktosize(fs, bp->b_lblkno); 235 off < lfs_lblktosize(fs, bp->b_lblkno + 1); 236 off += PAGE_SIZE) { 237 pg = uvm_pagelookup(&vp->v_uobj, off); 238 if (pg == NULL) 239 continue; 240 if (uvm_pagegetdirty(pg) 241 == UVM_PAGE_STATUS_DIRTY || 242 pmap_is_modified(pg)) { 243 lfs_sb_addavail(fs, 244 lfs_btofsb(fs, 245 bp->b_bcount)); 246 wakeup(&fs->lfs_availsleep); 247 mutex_exit(vp->v_interlock); 248 lfs_freebuf(fs, bp); 249 mutex_enter(vp->v_interlock); 250 bp = NULL; 251 break; 252 } 253 } 254 } 255 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 256 tbp = tnbp) 257 { 258 tnbp = LIST_NEXT(tbp, b_vnbufs); 259 if (tbp->b_vp == bp->b_vp 260 && tbp->b_lblkno == bp->b_lblkno 261 && tbp != bp) 262 { 263 lfs_sb_addavail(fs, lfs_btofsb(fs, 264 bp->b_bcount)); 265 wakeup(&fs->lfs_availsleep); 266 mutex_exit(vp->v_interlock); 267 lfs_freebuf(fs, bp); 268 mutex_enter(vp->v_interlock); 269 bp = NULL; 270 break; 271 } 272 } 273 } 274 } else { 275 mutex_enter(vp->v_interlock); 276 } 277 278 /* If the node is being written, wait until that is done */ 279 while (WRITEINPROG(vp)) { 280 ivndebug(vp,"vflush/writeinprog"); 281 cv_wait(&vp->v_cv, vp->v_interlock); 282 } 283 error = vdead_check(vp, VDEAD_NOWAIT); 284 mutex_exit(vp->v_interlock); 285 286 /* Protect against deadlock in vinvalbuf() */ 287 lfs_seglock(fs, SEGM_SYNC | ((error != 0) ? SEGM_RECLAIM : 0)); 288 if (error != 0) { 289 fs->lfs_reclino = ip->i_number; 290 } 291 292 /* If we're supposed to flush a freed inode, just toss it */ 293 if (ip->i_lfs_iflags & LFSI_DELETED) { 294 DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n", 295 ip->i_number)); 296 /* Drain v_numoutput */ 297 mutex_enter(vp->v_interlock); 298 while (vp->v_numoutput > 0) { 299 cv_wait(&vp->v_cv, vp->v_interlock); 300 } 301 KASSERT(vp->v_numoutput == 0); 302 mutex_exit(vp->v_interlock); 303 304 mutex_enter(&bufcache_lock); 305 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 306 nbp = LIST_NEXT(bp, b_vnbufs); 307 308 KASSERT((bp->b_flags & B_GATHERED) == 0); 309 if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */ 310 lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount)); 311 wakeup(&fs->lfs_availsleep); 312 } 313 /* Copied from lfs_writeseg */ 314 if (bp->b_iodone != NULL) { 315 mutex_exit(&bufcache_lock); 316 biodone(bp); 317 mutex_enter(&bufcache_lock); 318 } else { 319 bremfree(bp); 320 LFS_UNLOCK_BUF(bp); 321 mutex_enter(vp->v_interlock); 322 bp->b_flags &= ~(B_READ | B_GATHERED); 323 bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE; 324 bp->b_error = 0; 325 reassignbuf(bp, vp); 326 mutex_exit(vp->v_interlock); 327 brelse(bp, 0); 328 } 329 } 330 mutex_exit(&bufcache_lock); 331 LFS_CLR_UINO(ip, IN_CLEANING); 332 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 333 ip->i_state &= ~IN_ALLMOD; 334 DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n", 335 ip->i_number)); 336 lfs_segunlock(fs); 337 338 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 339 340 return 0; 341 } 342 343 fs->lfs_flushvp = vp; 344 if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) { 345 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 346 fs->lfs_flushvp = NULL; 347 KASSERT(fs->lfs_flushvp_fakevref == 0); 348 lfs_segunlock(fs); 349 350 /* Make sure that any pending buffers get written */ 351 mutex_enter(vp->v_interlock); 352 while (vp->v_numoutput > 0) { 353 cv_wait(&vp->v_cv, vp->v_interlock); 354 } 355 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 356 KASSERT(vp->v_numoutput == 0); 357 mutex_exit(vp->v_interlock); 358 359 return error; 360 } 361 sp = fs->lfs_sp; 362 363 flushed = 0; 364 if (VPISEMPTY(vp)) { 365 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 366 ++flushed; 367 } else if ((ip->i_state & IN_CLEANING) && 368 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 369 ivndebug(vp,"vflush/clean"); 370 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 371 ++flushed; 372 } else if (lfs_dostats) { 373 if (!VPISEMPTY(vp) || (VTOI(vp)->i_state & IN_ALLMOD)) 374 ++lfs_stats.vflush_invoked; 375 ivndebug(vp,"vflush"); 376 } 377 378 #ifdef DIAGNOSTIC 379 if (vp->v_uflag & VU_DIROP) { 380 DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n")); 381 /* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */ 382 } 383 #endif 384 385 do { 386 #ifdef DEBUG 387 int loopcount = 0; 388 #endif 389 do { 390 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 391 relock = lfs_writefile(fs, sp, vp); 392 if (relock && vp != fs->lfs_ivnode) { 393 /* 394 * Might have to wait for the 395 * cleaner to run; but we're 396 * still not done with this vnode. 397 * XXX we can do better than this. 398 */ 399 KASSERT(ip->i_number != LFS_IFILE_INUM); 400 lfs_writeinode(fs, sp, ip); 401 mutex_enter(&lfs_lock); 402 LFS_SET_UINO(ip, IN_MODIFIED); 403 mutex_exit(&lfs_lock); 404 lfs_writeseg(fs, sp); 405 lfs_segunlock(fs); 406 lfs_segunlock_relock(fs); 407 goto top; 408 } 409 } 410 /* 411 * If we begin a new segment in the middle of writing 412 * the Ifile, it creates an inconsistent checkpoint, 413 * since the Ifile information for the new segment 414 * is not up-to-date. Take care of this here by 415 * sending the Ifile through again in case there 416 * are newly dirtied blocks. But wait, there's more! 417 * This second Ifile write could *also* cross a segment 418 * boundary, if the first one was large. The second 419 * one is guaranteed to be no more than 8 blocks, 420 * though (two segment blocks and supporting indirects) 421 * so the third write *will not* cross the boundary. 422 */ 423 if (vp == fs->lfs_ivnode) { 424 lfs_writefile(fs, sp, vp); 425 lfs_writefile(fs, sp, vp); 426 } 427 #ifdef DEBUG 428 if (++loopcount > 2) 429 log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount); 430 #endif 431 } while (lfs_writeinode(fs, sp, ip)); 432 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 433 434 if (lfs_dostats) { 435 ++lfs_stats.nwrites; 436 if (sp->seg_flags & SEGM_SYNC) 437 ++lfs_stats.nsync_writes; 438 if (sp->seg_flags & SEGM_CKP) 439 ++lfs_stats.ncheckpoints; 440 } 441 /* 442 * If we were called from somewhere that has already held the seglock 443 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 444 * the write to complete because we are still locked. 445 * Since lfs_vflush() must return the vnode with no dirty buffers, 446 * we must explicitly wait, if that is the case. 447 * 448 * We compare the iocount against 1, not 0, because it is 449 * artificially incremented by lfs_seglock(). 450 */ 451 mutex_enter(&lfs_lock); 452 if (fs->lfs_seglock > 1) { 453 while (fs->lfs_iocount > 1) 454 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, 455 "lfs_vflush", 0, &lfs_lock); 456 } 457 mutex_exit(&lfs_lock); 458 459 lfs_segunlock(fs); 460 461 /* Wait for these buffers to be recovered by aiodoned */ 462 mutex_enter(vp->v_interlock); 463 while (vp->v_numoutput > 0) { 464 cv_wait(&vp->v_cv, vp->v_interlock); 465 } 466 KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL); 467 KASSERT(vp->v_numoutput == 0); 468 mutex_exit(vp->v_interlock); 469 470 fs->lfs_flushvp = NULL; 471 KASSERT(fs->lfs_flushvp_fakevref == 0); 472 473 return (0); 474 } 475 476 struct lfs_writevnodes_ctx { 477 int op; 478 struct lfs *fs; 479 }; 480 static bool 481 lfs_writevnodes_selector(void *cl, struct vnode *vp) 482 { 483 struct lfs_writevnodes_ctx *c = cl; 484 struct inode *ip; 485 int op = c->op; 486 487 KASSERT(mutex_owned(vp->v_interlock)); 488 489 ip = VTOI(vp); 490 if (ip == NULL || vp->v_type == VNON || ip->i_nlink <= 0) 491 return false; 492 if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) || 493 (op != VN_DIROP && op != VN_CLEAN && (vp->v_uflag & VU_DIROP))) { 494 vndebug(vp, "dirop"); 495 return false; 496 } 497 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 498 vndebug(vp,"empty"); 499 return false; 500 } 501 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM && 502 vp != c->fs->lfs_flushvp && !(ip->i_state & IN_CLEANING)) { 503 vndebug(vp,"cleaning"); 504 return false; 505 } 506 mutex_enter(&lfs_lock); 507 if (vp == c->fs->lfs_unlockvp) { 508 mutex_exit(&lfs_lock); 509 return false; 510 } 511 mutex_exit(&lfs_lock); 512 513 return true; 514 } 515 516 int 517 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 518 { 519 struct inode *ip; 520 struct vnode *vp; 521 struct vnode_iterator *marker; 522 struct lfs_writevnodes_ctx ctx; 523 int inodes_written = 0; 524 int error = 0; 525 526 /* 527 * XXX This was TAILQ_FOREACH_REVERSE on &mp->mnt_vnodelist. 528 * XXX The rationale is unclear, the initial commit had no information. 529 * XXX If the order really matters we have to sort the vnodes first. 530 */ 531 532 ASSERT_SEGLOCK(fs); 533 vfs_vnode_iterator_init(mp, &marker); 534 ctx.op = op; 535 ctx.fs = fs; 536 while ((vp = vfs_vnode_iterator_next(marker, 537 lfs_writevnodes_selector, &ctx)) != NULL) { 538 ip = VTOI(vp); 539 540 /* 541 * Write the inode/file if dirty and it's not the IFILE. 542 */ 543 if (((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp)) && 544 ip->i_number != LFS_IFILE_INUM) { 545 error = lfs_writefile(fs, sp, vp); 546 if (error) { 547 vrele(vp); 548 if (error == EAGAIN) { 549 /* 550 * This error from lfs_putpages 551 * indicates we need to drop 552 * the segment lock and start 553 * over after the cleaner has 554 * had a chance to run. 555 */ 556 lfs_writeinode(fs, sp, ip); 557 lfs_writeseg(fs, sp); 558 if (!VPISEMPTY(vp) && 559 !WRITEINPROG(vp) && 560 !(ip->i_state & IN_ALLMOD)) { 561 mutex_enter(&lfs_lock); 562 LFS_SET_UINO(ip, IN_MODIFIED); 563 mutex_exit(&lfs_lock); 564 } 565 break; 566 } 567 error = 0; /* XXX not quite right */ 568 continue; 569 } 570 571 if (!VPISEMPTY(vp)) { 572 if (WRITEINPROG(vp)) { 573 ivndebug(vp,"writevnodes/write2"); 574 } else if (!(ip->i_state & IN_ALLMOD)) { 575 mutex_enter(&lfs_lock); 576 LFS_SET_UINO(ip, IN_MODIFIED); 577 mutex_exit(&lfs_lock); 578 } 579 } 580 (void) lfs_writeinode(fs, sp, ip); 581 inodes_written++; 582 } 583 vrele(vp); 584 } 585 vfs_vnode_iterator_destroy(marker); 586 return error; 587 } 588 589 /* 590 * Do a checkpoint. 591 */ 592 int 593 lfs_segwrite(struct mount *mp, int flags) 594 { 595 struct buf *bp; 596 struct inode *ip; 597 struct lfs *fs; 598 struct segment *sp; 599 struct vnode *vp; 600 SEGUSE *segusep; 601 int do_ckp, did_ckp, error; 602 unsigned n, segleft, maxseg, sn, i, curseg; 603 int writer_set = 0; 604 int dirty; 605 int redo; 606 SEGSUM *ssp; 607 int um_error; 608 609 fs = VFSTOULFS(mp)->um_lfs; 610 ASSERT_MAYBE_SEGLOCK(fs); 611 612 if (fs->lfs_ronly) 613 return EROFS; 614 615 lfs_imtime(fs); 616 617 /* 618 * Allocate a segment structure and enough space to hold pointers to 619 * the maximum possible number of buffers which can be described in a 620 * single summary block. 621 */ 622 do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags); 623 624 /* 625 * If we know we're gonna need the writer lock, take it now to 626 * preserve the lock order lfs_writer -> lfs_seglock. 627 */ 628 if (do_ckp) { 629 lfs_writer_enter(fs, "ckpwriter"); 630 writer_set = 1; 631 } 632 633 /* We can't do a partial write and checkpoint at the same time. */ 634 if (do_ckp) 635 flags &= ~SEGM_SINGLE; 636 637 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 638 sp = fs->lfs_sp; 639 if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP)) 640 do_ckp = 1; 641 642 /* 643 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 644 * in which case we have to flush *all* buffers off of this vnode. 645 * We don't care about other nodes, but write any non-dirop nodes 646 * anyway in anticipation of another getnewvnode(). 647 * 648 * If we're cleaning we only write cleaning and ifile blocks, and 649 * no dirops, since otherwise we'd risk corruption in a crash. 650 */ 651 if (sp->seg_flags & SEGM_CLEAN) 652 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 653 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 654 do { 655 um_error = lfs_writevnodes(fs, mp, sp, VN_REG); 656 if ((sp->seg_flags & SEGM_SINGLE) && 657 lfs_sb_getcurseg(fs) != fs->lfs_startseg) { 658 DLOG((DLOG_SEG, "lfs_segwrite: breaking out of segment write at daddr 0x%jx\n", (uintmax_t)lfs_sb_getoffset(fs))); 659 break; 660 } 661 662 if (do_ckp || 663 (writer_set = lfs_writer_tryenter(fs)) != 0) { 664 KASSERT(writer_set); 665 KASSERT(fs->lfs_writer); 666 error = lfs_writevnodes(fs, mp, sp, VN_DIROP); 667 if (um_error == 0) 668 um_error = error; 669 /* 670 * In case writevnodes errored out 671 * XXX why are we always doing this and not 672 * just on error? 673 */ 674 lfs_flush_dirops(fs); 675 ssp = (SEGSUM *)(sp->segsum); 676 lfs_ss_setflags(fs, ssp, 677 lfs_ss_getflags(fs, ssp) & ~(SS_CONT)); 678 lfs_finalize_fs_seguse(fs); 679 } 680 if (do_ckp && um_error) { 681 lfs_segunlock_relock(fs); 682 sp = fs->lfs_sp; 683 } 684 } while (do_ckp && um_error != 0); 685 } 686 687 /* 688 * If we are doing a checkpoint, mark everything since the 689 * last checkpoint as no longer ACTIVE. 690 */ 691 if (do_ckp || fs->lfs_doifile) { 692 segleft = lfs_sb_getnseg(fs); 693 curseg = 0; 694 for (n = 0; n < lfs_sb_getsegtabsz(fs); n++) { 695 int bread_error; 696 697 dirty = 0; 698 bread_error = bread(fs->lfs_ivnode, 699 lfs_sb_getcleansz(fs) + n, 700 lfs_sb_getbsize(fs), B_MODIFY, &bp); 701 if (bread_error) 702 panic("lfs_segwrite: ifile read: " 703 "seguse %u: error %d\n", 704 n, bread_error); 705 segusep = (SEGUSE *)bp->b_data; 706 maxseg = uimin(segleft, lfs_sb_getsepb(fs)); 707 for (i = 0; i < maxseg; i++) { 708 sn = curseg + i; 709 if (sn != lfs_dtosn(fs, lfs_sb_getcurseg(fs)) && 710 segusep->su_flags & SEGUSE_ACTIVE) { 711 segusep->su_flags &= ~SEGUSE_ACTIVE; 712 --fs->lfs_nactive; 713 ++dirty; 714 } 715 fs->lfs_suflags[fs->lfs_activesb][sn] = 716 segusep->su_flags; 717 if (lfs_sb_getversion(fs) > 1) 718 ++segusep; 719 else 720 segusep = (SEGUSE *) 721 ((SEGUSE_V1 *)segusep + 1); 722 } 723 724 if (dirty) 725 error = LFS_BWRITE_LOG(bp); /* Ifile */ 726 else 727 brelse(bp, 0); 728 segleft -= lfs_sb_getsepb(fs); 729 curseg += lfs_sb_getsepb(fs); 730 } 731 } 732 733 KASSERT(LFS_SEGLOCK_HELD(fs)); 734 735 did_ckp = 0; 736 if (do_ckp || fs->lfs_doifile) { 737 vp = fs->lfs_ivnode; 738 #ifdef DEBUG 739 int loopcount = 0; 740 #endif 741 do { 742 743 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid); 744 745 mutex_enter(&lfs_lock); 746 fs->lfs_flags &= ~LFS_IFDIRTY; 747 mutex_exit(&lfs_lock); 748 749 ip = VTOI(vp); 750 751 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) { 752 /* 753 * Ifile has no pages, so we don't need 754 * to check error return here. 755 */ 756 lfs_writefile(fs, sp, vp); 757 /* 758 * Ensure the Ifile takes the current segment 759 * into account. See comment in lfs_vflush. 760 */ 761 lfs_writefile(fs, sp, vp); 762 lfs_writefile(fs, sp, vp); 763 } 764 765 if (ip->i_state & IN_ALLMOD) 766 ++did_ckp; 767 #if 0 768 redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0); 769 #else 770 redo = lfs_writeinode(fs, sp, ip); 771 #endif 772 redo += lfs_writeseg(fs, sp); 773 mutex_enter(&lfs_lock); 774 redo += (fs->lfs_flags & LFS_IFDIRTY); 775 mutex_exit(&lfs_lock); 776 #ifdef DEBUG 777 if (++loopcount > 2) 778 log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n", 779 loopcount); 780 #endif 781 } while (redo && do_ckp); 782 783 /* 784 * Unless we are unmounting, the Ifile may continue to have 785 * dirty blocks even after a checkpoint, due to changes to 786 * inodes' atime. If we're checkpointing, it's "impossible" 787 * for other parts of the Ifile to be dirty after the loop 788 * above, since we hold the segment lock. 789 */ 790 mutex_enter(vp->v_interlock); 791 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 792 LFS_CLR_UINO(ip, IN_ALLMOD); 793 } 794 #ifdef DIAGNOSTIC 795 else if (do_ckp) { 796 int do_panic = 0; 797 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 798 if (bp->b_lblkno < lfs_sb_getcleansz(fs) + 799 lfs_sb_getsegtabsz(fs) && 800 !(bp->b_flags & B_GATHERED)) { 801 printf("ifile lbn %ld still dirty (flags %lx)\n", 802 (long)bp->b_lblkno, 803 (long)bp->b_flags); 804 ++do_panic; 805 } 806 } 807 if (do_panic) 808 panic("dirty blocks"); 809 } 810 #endif 811 mutex_exit(vp->v_interlock); 812 } else { 813 (void) lfs_writeseg(fs, sp); 814 } 815 816 /* Note Ifile no longer needs to be written */ 817 fs->lfs_doifile = 0; 818 if (writer_set) 819 lfs_writer_leave(fs); 820 821 /* 822 * If we didn't write the Ifile, we didn't really do anything. 823 * That means that (1) there is a checkpoint on disk and (2) 824 * nothing has changed since it was written. 825 * 826 * Take the flags off of the segment so that lfs_segunlock 827 * doesn't have to write the superblock either. 828 */ 829 if (do_ckp && !did_ckp) { 830 sp->seg_flags &= ~SEGM_CKP; 831 } 832 833 if (lfs_dostats) { 834 ++lfs_stats.nwrites; 835 if (sp->seg_flags & SEGM_SYNC) 836 ++lfs_stats.nsync_writes; 837 if (sp->seg_flags & SEGM_CKP) 838 ++lfs_stats.ncheckpoints; 839 } 840 lfs_segunlock(fs); 841 return (0); 842 } 843 844 /* 845 * Write the dirty blocks associated with a vnode. 846 */ 847 int 848 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 849 { 850 struct inode *ip; 851 int i, frag; 852 SEGSUM *ssp; 853 int error; 854 855 ASSERT_SEGLOCK(fs); 856 error = 0; 857 ip = VTOI(vp); 858 859 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 860 861 if (vp->v_uflag & VU_DIROP) { 862 ssp = (SEGSUM *)sp->segsum; 863 lfs_ss_setflags(fs, ssp, 864 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT)); 865 } 866 867 if (sp->seg_flags & SEGM_CLEAN) { 868 lfs_gather(fs, sp, vp, lfs_match_fake); 869 /* 870 * For a file being flushed, we need to write *all* blocks. 871 * This means writing the cleaning blocks first, and then 872 * immediately following with any non-cleaning blocks. 873 * The same is true of the Ifile since checkpoints assume 874 * that all valid Ifile blocks are written. 875 */ 876 if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) { 877 lfs_gather(fs, sp, vp, lfs_match_data); 878 /* 879 * Don't call VOP_PUTPAGES: if we're flushing, 880 * we've already done it, and the Ifile doesn't 881 * use the page cache. 882 */ 883 } 884 } else { 885 lfs_gather(fs, sp, vp, lfs_match_data); 886 /* 887 * If we're flushing, we've already called VOP_PUTPAGES 888 * so don't do it again. Otherwise, we want to write 889 * everything we've got. 890 */ 891 if (!IS_FLUSHING(fs, vp)) { 892 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER); 893 error = VOP_PUTPAGES(vp, 0, 0, 894 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 895 } 896 } 897 898 /* 899 * It may not be necessary to write the meta-data blocks at this point, 900 * as the roll-forward recovery code should be able to reconstruct the 901 * list. 902 * 903 * We have to write them anyway, though, under two conditions: (1) the 904 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 905 * checkpointing. 906 * 907 * BUT if we are cleaning, we might have indirect blocks that refer to 908 * new blocks not being written yet, in addition to fragments being 909 * moved out of a cleaned segment. If that is the case, don't 910 * write the indirect blocks, or the finfo will have a small block 911 * in the middle of it! 912 * XXX in this case isn't the inode size wrong too? 913 */ 914 frag = 0; 915 if (sp->seg_flags & SEGM_CLEAN) { 916 for (i = 0; i < ULFS_NDADDR; i++) 917 if (ip->i_lfs_fragsize[i] > 0 && 918 ip->i_lfs_fragsize[i] < lfs_sb_getbsize(fs)) 919 ++frag; 920 } 921 KASSERTMSG((frag <= 1), 922 "lfs_writefile: more than one fragment! frag=%d", frag); 923 if (IS_FLUSHING(fs, vp) || 924 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 925 lfs_gather(fs, sp, vp, lfs_match_indir); 926 lfs_gather(fs, sp, vp, lfs_match_dindir); 927 lfs_gather(fs, sp, vp, lfs_match_tindir); 928 } 929 lfs_release_finfo(fs); 930 931 return error; 932 } 933 934 /* 935 * Update segment accounting to reflect this inode's change of address. 936 */ 937 static int 938 lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr) 939 { 940 struct buf *bp; 941 daddr_t daddr; 942 IFILE *ifp; 943 SEGUSE *sup; 944 ino_t ino; 945 int redo_ifile; 946 u_int32_t sn; 947 948 redo_ifile = 0; 949 950 /* 951 * If updating the ifile, update the super-block. Update the disk 952 * address and access times for this inode in the ifile. 953 */ 954 ino = ip->i_number; 955 if (ino == LFS_IFILE_INUM) { 956 daddr = lfs_sb_getidaddr(fs); 957 lfs_sb_setidaddr(fs, LFS_DBTOFSB(fs, ndaddr)); 958 } else { 959 LFS_IENTRY(ifp, fs, ino, bp); 960 daddr = lfs_if_getdaddr(fs, ifp); 961 lfs_if_setdaddr(fs, ifp, LFS_DBTOFSB(fs, ndaddr)); 962 (void)LFS_BWRITE_LOG(bp); /* Ifile */ 963 } 964 965 /* 966 * If this is the Ifile and lfs_offset is set to the first block 967 * in the segment, dirty the new segment's accounting block 968 * (XXX should already be dirty?) and tell the caller to do it again. 969 */ 970 if (ip->i_number == LFS_IFILE_INUM) { 971 sn = lfs_dtosn(fs, lfs_sb_getoffset(fs)); 972 if (lfs_sntod(fs, sn) + lfs_btofsb(fs, lfs_sb_getsumsize(fs)) == 973 lfs_sb_getoffset(fs)) { 974 LFS_SEGENTRY(sup, fs, sn, bp); 975 KASSERT(bp->b_oflags & BO_DELWRI); 976 LFS_WRITESEGENTRY(sup, fs, sn, bp); 977 /* fs->lfs_flags |= LFS_IFDIRTY; */ 978 redo_ifile |= 1; 979 } 980 } 981 982 /* 983 * The inode's last address should not be in the current partial 984 * segment, except under exceptional circumstances (lfs_writevnodes 985 * had to start over, and in the meantime more blocks were written 986 * to a vnode). Both inodes will be accounted to this segment 987 * in lfs_writeseg so we need to subtract the earlier version 988 * here anyway. The segment count can temporarily dip below 989 * zero here; keep track of how many duplicates we have in 990 * "dupino" so we don't panic below. 991 */ 992 if (daddr >= lfs_sb_getlastpseg(fs) && daddr <= lfs_sb_getoffset(fs)) { 993 ++sp->ndupino; 994 DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg " 995 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 996 (long long)daddr, sp->ndupino)); 997 } 998 /* 999 * Account the inode: it no longer belongs to its former segment, 1000 * though it will not belong to the new segment until that segment 1001 * is actually written. 1002 */ 1003 if (daddr != LFS_UNUSED_DADDR) { 1004 u_int32_t oldsn = lfs_dtosn(fs, daddr); 1005 int ndupino __diagused = 1006 (sp->seg_number == oldsn) ? sp->ndupino : 0; 1007 LFS_SEGENTRY(sup, fs, oldsn, bp); 1008 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino) 1009 >= DINOSIZE(fs)), 1010 "lfs_writeinode: negative bytes " 1011 "(segment %" PRIu32 " short by %d, " 1012 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1013 ", daddr=%" PRId64 ", su_nbytes=%u, " 1014 "ndupino=%d)\n", 1015 lfs_dtosn(fs, daddr), 1016 (int)DINOSIZE(fs) * (1 - sp->ndupino) - sup->su_nbytes, 1017 oldsn, sp->seg_number, daddr, 1018 (unsigned int)sup->su_nbytes, 1019 sp->ndupino); 1020 DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n", 1021 lfs_dtosn(fs, daddr), DINOSIZE(fs), ino)); 1022 sup->su_nbytes -= DINOSIZE(fs); 1023 redo_ifile |= 1024 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1025 if (redo_ifile) { 1026 mutex_enter(&lfs_lock); 1027 fs->lfs_flags |= LFS_IFDIRTY; 1028 mutex_exit(&lfs_lock); 1029 /* Don't double-account */ 1030 lfs_sb_setidaddr(fs, 0x0); 1031 } 1032 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1033 } 1034 1035 return redo_ifile; 1036 } 1037 1038 int 1039 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 1040 { 1041 struct buf *bp; 1042 union lfs_dinode *cdp; 1043 struct vnode *vp = ITOV(ip); 1044 daddr_t daddr; 1045 IINFO *iip; 1046 int i; 1047 int redo_ifile = 0; 1048 int gotblk = 0; 1049 int count; 1050 SEGSUM *ssp; 1051 1052 ASSERT_SEGLOCK(fs); 1053 if (!(ip->i_state & IN_ALLMOD) && !(vp->v_uflag & VU_DIROP)) 1054 return (0); 1055 1056 /* Can't write ifile when writer is not set */ 1057 KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 || 1058 (sp->seg_flags & SEGM_CLEAN)); 1059 1060 /* 1061 * If this is the Ifile, see if writing it here will generate a 1062 * temporary misaccounting. If it will, do the accounting and write 1063 * the blocks, postponing the inode write until the accounting is 1064 * solid. 1065 */ 1066 count = 0; 1067 while (vp == fs->lfs_ivnode) { 1068 int redo = 0; 1069 1070 if (sp->idp == NULL && sp->ibp == NULL && 1071 (sp->seg_bytes_left < lfs_sb_getibsize(fs) || 1072 sp->sum_bytes_left < sizeof(int32_t))) { 1073 (void) lfs_writeseg(fs, sp); 1074 continue; 1075 } 1076 1077 /* Look for dirty Ifile blocks */ 1078 LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) { 1079 if (!(bp->b_flags & B_GATHERED)) { 1080 redo = 1; 1081 break; 1082 } 1083 } 1084 1085 if (redo == 0) 1086 redo = lfs_update_iaddr(fs, sp, ip, 0x0); 1087 if (redo == 0) 1088 break; 1089 1090 if (sp->idp) { 1091 lfs_dino_setinumber(fs, sp->idp, 0); 1092 sp->idp = NULL; 1093 } 1094 ++count; 1095 if (count > 2) 1096 log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count); 1097 lfs_writefile(fs, sp, fs->lfs_ivnode); 1098 } 1099 1100 /* Allocate a new inode block if necessary. */ 1101 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && 1102 sp->ibp == NULL) { 1103 /* Allocate a new segment if necessary. */ 1104 if (sp->seg_bytes_left < lfs_sb_getibsize(fs) || 1105 sp->sum_bytes_left < sizeof(int32_t)) 1106 (void) lfs_writeseg(fs, sp); 1107 1108 /* Get next inode block. */ 1109 daddr = lfs_sb_getoffset(fs); 1110 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs))); 1111 sp->ibp = *sp->cbpp++ = 1112 getblk(VTOI(fs->lfs_ivnode)->i_devvp, 1113 LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs), 0, 0); 1114 gotblk++; 1115 1116 /* Zero out inode numbers */ 1117 for (i = 0; i < LFS_INOPB(fs); ++i) { 1118 union lfs_dinode *tmpdi; 1119 1120 tmpdi = (union lfs_dinode *)((char *)sp->ibp->b_data + 1121 DINOSIZE(fs) * i); 1122 lfs_dino_setinumber(fs, tmpdi, 0); 1123 } 1124 1125 ++sp->start_bpp; 1126 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getibsize(fs))); 1127 /* Set remaining space counters. */ 1128 sp->seg_bytes_left -= lfs_sb_getibsize(fs); 1129 sp->sum_bytes_left -= sizeof(int32_t); 1130 1131 /* Store the address in the segment summary. */ 1132 iip = NTH_IINFO(fs, sp->segsum, sp->ninodes / LFS_INOPB(fs)); 1133 lfs_ii_setblock(fs, iip, daddr); 1134 } 1135 1136 /* Check VU_DIROP in case there is a new file with no data blocks */ 1137 if (vp->v_uflag & VU_DIROP) { 1138 ssp = (SEGSUM *)sp->segsum; 1139 lfs_ss_setflags(fs, ssp, 1140 lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT)); 1141 } 1142 1143 /* Update the inode times and copy the inode onto the inode page. */ 1144 /* XXX kludge --- don't redirty the ifile just to put times on it */ 1145 if (ip->i_number != LFS_IFILE_INUM) 1146 LFS_ITIMES(ip, NULL, NULL, NULL); 1147 1148 /* 1149 * If this is the Ifile, and we've already written the Ifile in this 1150 * partial segment, just overwrite it (it's not on disk yet) and 1151 * continue. 1152 * 1153 * XXX we know that the bp that we get the second time around has 1154 * already been gathered. 1155 */ 1156 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 1157 lfs_copy_dinode(fs, sp->idp, ip->i_din); 1158 ip->i_lfs_osize = ip->i_size; 1159 return 0; 1160 } 1161 1162 bp = sp->ibp; 1163 cdp = DINO_IN_BLOCK(fs, bp->b_data, sp->ninodes % LFS_INOPB(fs)); 1164 lfs_copy_dinode(fs, cdp, ip->i_din); 1165 1166 /* 1167 * This inode is on its way to disk; clear its VU_DIROP status when 1168 * the write is complete. 1169 */ 1170 if (vp->v_uflag & VU_DIROP) { 1171 if (!(sp->seg_flags & SEGM_CLEAN)) 1172 ip->i_state |= IN_CDIROP; 1173 else { 1174 DLOG((DLOG_DIROP, "lfs_writeinode: not clearing dirop for cleaned ino %d\n", (int)ip->i_number)); 1175 } 1176 } 1177 1178 /* 1179 * If cleaning, link counts and directory file sizes cannot change, 1180 * since those would be directory operations---even if the file 1181 * we are writing is marked VU_DIROP we should write the old values. 1182 * If we're not cleaning, of course, update the values so we get 1183 * current values the next time we clean. 1184 */ 1185 if (sp->seg_flags & SEGM_CLEAN) { 1186 if (vp->v_uflag & VU_DIROP) { 1187 lfs_dino_setnlink(fs, cdp, ip->i_lfs_odnlink); 1188 /* if (vp->v_type == VDIR) */ 1189 lfs_dino_setsize(fs, cdp, ip->i_lfs_osize); 1190 } 1191 } else { 1192 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, cdp); 1193 ip->i_lfs_osize = ip->i_size; 1194 } 1195 1196 1197 /* We can finish the segment accounting for truncations now */ 1198 lfs_finalize_ino_seguse(fs, ip); 1199 1200 /* 1201 * If we are cleaning, ensure that we don't write UNWRITTEN disk 1202 * addresses to disk; possibly change the on-disk record of 1203 * the inode size, either by reverting to the previous size 1204 * (in the case of cleaning) or by verifying the inode's block 1205 * holdings (in the case of files being allocated as they are being 1206 * written). 1207 * XXX By not writing UNWRITTEN blocks, we are making the lfs_avail 1208 * XXX count on disk wrong by the same amount. We should be 1209 * XXX able to "borrow" from lfs_avail and return it after the 1210 * XXX Ifile is written. See also in lfs_writeseg. 1211 */ 1212 1213 /* Check file size based on highest allocated block */ 1214 if (((lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFREG || 1215 (lfs_dino_getmode(fs, ip->i_din) & LFS_IFMT) == LFS_IFDIR) && 1216 ip->i_size > ((ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs))) { 1217 lfs_dino_setsize(fs, cdp, (ip->i_lfs_hiblk + 1) << lfs_sb_getbshift(fs)); 1218 DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %" 1219 PRId64 "\n", (int)ip->i_number, ip->i_size, lfs_dino_getsize(fs, cdp))); 1220 } 1221 if (ip->i_lfs_effnblks != lfs_dino_getblocks(fs, ip->i_din)) { 1222 DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %jd != nblk %d)" 1223 " at %jx\n", ip->i_number, (intmax_t)ip->i_lfs_effnblks, 1224 lfs_dino_getblocks(fs, ip->i_din), (uintmax_t)lfs_sb_getoffset(fs))); 1225 for (i=0; i<ULFS_NDADDR; i++) { 1226 if (lfs_dino_getdb(fs, cdp, i) == UNWRITTEN) { 1227 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1228 lfs_dino_setdb(fs, cdp, i, 0); 1229 } 1230 } 1231 for (i=0; i<ULFS_NIADDR; i++) { 1232 if (lfs_dino_getib(fs, cdp, i) == UNWRITTEN) { 1233 DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n")); 1234 lfs_dino_setib(fs, cdp, i, 0); 1235 } 1236 } 1237 } 1238 1239 #ifdef DIAGNOSTIC 1240 /* 1241 * Check dinode held blocks against dinode size. 1242 * This should be identical to the check in lfs_vget(). 1243 */ 1244 for (i = (lfs_dino_getsize(fs, cdp) + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs); 1245 i < ULFS_NDADDR; i++) { 1246 KASSERT(i >= 0); 1247 if ((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFLNK) 1248 continue; 1249 if (((lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFBLK || 1250 (lfs_dino_getmode(fs, cdp) & LFS_IFMT) == LFS_IFCHR) && i == 0) 1251 continue; 1252 if (lfs_dino_getdb(fs, cdp, i) != 0) { 1253 # ifdef DEBUG 1254 lfs_dump_dinode(fs, cdp); 1255 # endif 1256 panic("writing inconsistent inode"); 1257 } 1258 } 1259 #endif /* DIAGNOSTIC */ 1260 1261 if (ip->i_state & IN_CLEANING) 1262 LFS_CLR_UINO(ip, IN_CLEANING); 1263 else { 1264 /* XXX IN_ALLMOD */ 1265 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 1266 IN_UPDATE | IN_MODIFY); 1267 if (ip->i_lfs_effnblks == lfs_dino_getblocks(fs, ip->i_din)) 1268 LFS_CLR_UINO(ip, IN_MODIFIED); 1269 else { 1270 DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real " 1271 "blks=%d, eff=%jd\n", ip->i_number, 1272 lfs_dino_getblocks(fs, ip->i_din), (intmax_t)ip->i_lfs_effnblks)); 1273 } 1274 } 1275 1276 if (ip->i_number == LFS_IFILE_INUM) { 1277 /* We know sp->idp == NULL */ 1278 sp->idp = DINO_IN_BLOCK(fs, bp, sp->ninodes % LFS_INOPB(fs)); 1279 1280 /* Not dirty any more */ 1281 mutex_enter(&lfs_lock); 1282 fs->lfs_flags &= ~LFS_IFDIRTY; 1283 mutex_exit(&lfs_lock); 1284 } 1285 1286 if (gotblk) { 1287 mutex_enter(&bufcache_lock); 1288 LFS_LOCK_BUF(bp); 1289 brelsel(bp, 0); 1290 mutex_exit(&bufcache_lock); 1291 } 1292 1293 /* Increment inode count in segment summary block. */ 1294 1295 ssp = (SEGSUM *)sp->segsum; 1296 lfs_ss_setninos(fs, ssp, lfs_ss_getninos(fs, ssp) + 1); 1297 1298 /* If this page is full, set flag to allocate a new page. */ 1299 if (++sp->ninodes % LFS_INOPB(fs) == 0) 1300 sp->ibp = NULL; 1301 1302 redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno); 1303 1304 KASSERT(redo_ifile == 0); 1305 return (redo_ifile); 1306 } 1307 1308 int 1309 lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr) 1310 { 1311 struct lfs *fs; 1312 int vers; 1313 int j, blksinblk; 1314 1315 ASSERT_SEGLOCK(sp->fs); 1316 KASSERTMSG((sp->vp != NULL), 1317 "lfs_gatherblock: Null vp in segment"); 1318 1319 /* If full, finish this segment. */ 1320 fs = sp->fs; 1321 blksinblk = howmany(bp->b_bcount, lfs_sb_getbsize(fs)); 1322 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1323 sp->seg_bytes_left < bp->b_bcount) { 1324 if (mptr) 1325 mutex_exit(mptr); 1326 lfs_updatemeta(sp); 1327 1328 vers = lfs_fi_getversion(fs, sp->fip); 1329 (void) lfs_writeseg(fs, sp); 1330 1331 /* Add the current file to the segment summary. */ 1332 lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers); 1333 1334 if (mptr) 1335 mutex_enter(mptr); 1336 return (1); 1337 } 1338 1339 if (bp->b_flags & B_GATHERED) { 1340 DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %ju," 1341 " lbn %" PRId64 "\n", 1342 (uintmax_t)lfs_fi_getino(fs, sp->fip), bp->b_lblkno)); 1343 return (0); 1344 } 1345 1346 /* Insert into the buffer list, update the FINFO block. */ 1347 bp->b_flags |= B_GATHERED; 1348 1349 *sp->cbpp++ = bp; 1350 for (j = 0; j < blksinblk; j++) { 1351 unsigned bn; 1352 1353 bn = lfs_fi_getnblocks(fs, sp->fip); 1354 lfs_fi_setnblocks(fs, sp->fip, bn+1); 1355 lfs_fi_setblock(fs, sp->fip, bn, bp->b_lblkno + j); 1356 /* This block's accounting moves from lfs_favail to lfs_avail */ 1357 lfs_deregister_block(sp->vp, bp->b_lblkno + j); 1358 } 1359 1360 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1361 sp->seg_bytes_left -= bp->b_bcount; 1362 return (0); 1363 } 1364 1365 int 1366 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, 1367 int (*match)(struct lfs *, struct buf *)) 1368 { 1369 struct buf *bp, *nbp; 1370 int count = 0; 1371 1372 ASSERT_SEGLOCK(fs); 1373 if (vp->v_type == VBLK) 1374 return 0; 1375 KASSERT(sp->vp == NULL); 1376 sp->vp = vp; 1377 mutex_enter(&bufcache_lock); 1378 1379 #ifndef LFS_NO_BACKBUF_HACK 1380 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1381 # define BUF_OFFSET \ 1382 (((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp) 1383 # define BACK_BUF(BP) \ 1384 ((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1385 # define BEG_OF_LIST \ 1386 ((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1387 1388 loop: 1389 /* Find last buffer. */ 1390 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); 1391 bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1392 bp = LIST_NEXT(bp, b_vnbufs)) 1393 continue; 1394 1395 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1396 nbp = BACK_BUF(bp); 1397 #else /* LFS_NO_BACKBUF_HACK */ 1398 loop: 1399 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1400 nbp = LIST_NEXT(bp, b_vnbufs); 1401 #endif /* LFS_NO_BACKBUF_HACK */ 1402 if ((bp->b_cflags & BC_BUSY) != 0 || 1403 (bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) { 1404 #ifdef DEBUG 1405 if (vp == fs->lfs_ivnode && 1406 (bp->b_cflags & BC_BUSY) != 0 && 1407 (bp->b_flags & B_GATHERED) == 0) 1408 log(LOG_NOTICE, "lfs_gather: ifile lbn %" 1409 PRId64 " busy (%x) at 0x%jx", 1410 bp->b_lblkno, bp->b_flags, 1411 (uintmax_t)lfs_sb_getoffset(fs)); 1412 #endif 1413 continue; 1414 } 1415 #ifdef DIAGNOSTIC 1416 # ifdef LFS_USE_BC_INVAL 1417 if ((bp->b_cflags & BC_INVAL) != 0 && bp->b_iodone == NULL) { 1418 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1419 " is BC_INVAL\n", bp->b_lblkno)); 1420 VOP_PRINT(bp->b_vp); 1421 } 1422 # endif /* LFS_USE_BC_INVAL */ 1423 if (!(bp->b_oflags & BO_DELWRI)) 1424 panic("lfs_gather: bp not BO_DELWRI"); 1425 if (!(bp->b_flags & B_LOCKED)) { 1426 DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64 1427 " blk %" PRId64 " not B_LOCKED\n", 1428 bp->b_lblkno, 1429 LFS_DBTOFSB(fs, bp->b_blkno))); 1430 VOP_PRINT(bp->b_vp); 1431 panic("lfs_gather: bp not B_LOCKED"); 1432 } 1433 #endif 1434 if (lfs_gatherblock(sp, bp, &bufcache_lock)) { 1435 goto loop; 1436 } 1437 count++; 1438 } 1439 mutex_exit(&bufcache_lock); 1440 lfs_updatemeta(sp); 1441 KASSERT(sp->vp == vp); 1442 sp->vp = NULL; 1443 return count; 1444 } 1445 1446 #if DEBUG 1447 # define DEBUG_OOFF(n) do { \ 1448 if (ooff == 0) { \ 1449 DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \ 1450 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1451 ", was 0x0 (or %" PRId64 ")\n", \ 1452 (n), ip->i_number, lbn, ndaddr, daddr)); \ 1453 } \ 1454 } while (0) 1455 #else 1456 # define DEBUG_OOFF(n) 1457 #endif 1458 1459 /* 1460 * Change the given block's address to ndaddr, finding its previous 1461 * location using ulfs_bmaparray(). 1462 * 1463 * Account for this change in the segment table. 1464 * 1465 * called with sp == NULL by roll-forwarding code. 1466 */ 1467 void 1468 lfs_update_single(struct lfs *fs, struct segment *sp, 1469 struct vnode *vp, daddr_t lbn, daddr_t ndaddr, int size) 1470 { 1471 SEGUSE *sup; 1472 struct buf *bp; 1473 struct indir a[ULFS_NIADDR + 2], *ap; 1474 struct inode *ip; 1475 daddr_t daddr, ooff; 1476 int num, error; 1477 int bb, osize, obb; 1478 1479 ASSERT_SEGLOCK(fs); 1480 KASSERT(sp == NULL || sp->vp == vp); 1481 ip = VTOI(vp); 1482 1483 error = ulfs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1484 if (error) 1485 panic("lfs_updatemeta: ulfs_bmaparray returned %d", error); 1486 1487 KASSERT(daddr <= LFS_MAX_DADDR(fs)); 1488 if (daddr > 0) 1489 daddr = LFS_DBTOFSB(fs, daddr); 1490 1491 bb = lfs_numfrags(fs, size); 1492 switch (num) { 1493 case 0: 1494 ooff = lfs_dino_getdb(fs, ip->i_din, lbn); 1495 DEBUG_OOFF(0); 1496 if (ooff == UNWRITTEN) 1497 lfs_dino_setblocks(fs, ip->i_din, 1498 lfs_dino_getblocks(fs, ip->i_din) + bb); 1499 else { 1500 /* possible fragment truncation or extension */ 1501 obb = lfs_btofsb(fs, ip->i_lfs_fragsize[lbn]); 1502 lfs_dino_setblocks(fs, ip->i_din, 1503 lfs_dino_getblocks(fs, ip->i_din) + (bb-obb)); 1504 } 1505 lfs_dino_setdb(fs, ip->i_din, lbn, ndaddr); 1506 break; 1507 case 1: 1508 ooff = lfs_dino_getib(fs, ip->i_din, a[0].in_off); 1509 DEBUG_OOFF(1); 1510 if (ooff == UNWRITTEN) 1511 lfs_dino_setblocks(fs, ip->i_din, 1512 lfs_dino_getblocks(fs, ip->i_din) + bb); 1513 lfs_dino_setib(fs, ip->i_din, a[0].in_off, ndaddr); 1514 break; 1515 default: 1516 ap = &a[num - 1]; 1517 if (bread(vp, ap->in_lbn, lfs_sb_getbsize(fs), 1518 B_MODIFY, &bp)) 1519 panic("lfs_updatemeta: bread bno %" PRId64, 1520 ap->in_lbn); 1521 1522 ooff = lfs_iblock_get(fs, bp->b_data, ap->in_off); 1523 DEBUG_OOFF(num); 1524 if (ooff == UNWRITTEN) 1525 lfs_dino_setblocks(fs, ip->i_din, 1526 lfs_dino_getblocks(fs, ip->i_din) + bb); 1527 lfs_iblock_set(fs, bp->b_data, ap->in_off, ndaddr); 1528 (void) VOP_BWRITE(bp->b_vp, bp); 1529 } 1530 1531 KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr); 1532 1533 /* Update hiblk when extending the file */ 1534 if (lbn > ip->i_lfs_hiblk) 1535 ip->i_lfs_hiblk = lbn; 1536 1537 /* 1538 * Though we'd rather it couldn't, this *can* happen right now 1539 * if cleaning blocks and regular blocks coexist. 1540 */ 1541 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1542 1543 /* 1544 * Update segment usage information, based on old size 1545 * and location. 1546 */ 1547 if (daddr > 0) { 1548 u_int32_t oldsn = lfs_dtosn(fs, daddr); 1549 int ndupino __diagused = (sp && sp->seg_number == oldsn ? 1550 sp->ndupino : 0); 1551 1552 KASSERT(oldsn < lfs_sb_getnseg(fs)); 1553 if (lbn >= 0 && lbn < ULFS_NDADDR) 1554 osize = ip->i_lfs_fragsize[lbn]; 1555 else 1556 osize = lfs_sb_getbsize(fs); 1557 LFS_SEGENTRY(sup, fs, oldsn, bp); 1558 KASSERTMSG(((sup->su_nbytes + DINOSIZE(fs)*ndupino) >= osize), 1559 "lfs_updatemeta: negative bytes " 1560 "(segment %" PRIu32 " short by %" PRId64 1561 ")\n" 1562 "lfs_updatemeta: ino %llu, lbn %" PRId64 1563 ", addr = 0x%" PRIx64 "\n" 1564 "lfs_updatemeta: ndupino=%d", 1565 lfs_dtosn(fs, daddr), 1566 (int64_t)osize - (DINOSIZE(fs) * ndupino + sup->su_nbytes), 1567 (unsigned long long)ip->i_number, lbn, daddr, 1568 ndupino); 1569 DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1570 " db 0x%" PRIx64 "\n", 1571 lfs_dtosn(fs, daddr), osize, 1572 ip->i_number, lbn, daddr)); 1573 sup->su_nbytes -= osize; 1574 if (!(bp->b_flags & B_GATHERED)) { 1575 mutex_enter(&lfs_lock); 1576 fs->lfs_flags |= LFS_IFDIRTY; 1577 mutex_exit(&lfs_lock); 1578 } 1579 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1580 } 1581 /* 1582 * Now that this block has a new address, and its old 1583 * segment no longer owns it, we can forget about its 1584 * old size. 1585 */ 1586 if (lbn >= 0 && lbn < ULFS_NDADDR) 1587 ip->i_lfs_fragsize[lbn] = size; 1588 } 1589 1590 /* 1591 * Update the metadata that points to the blocks listed in the FINFO 1592 * array. 1593 */ 1594 void 1595 lfs_updatemeta(struct segment *sp) 1596 { 1597 struct buf *sbp; 1598 struct lfs *fs; 1599 struct vnode *vp; 1600 daddr_t lbn; 1601 int i, nblocks, num; 1602 int __diagused nblocks_orig; 1603 int bb; 1604 int bytesleft, size; 1605 unsigned lastlength; 1606 union lfs_blocks tmpptr; 1607 1608 fs = sp->fs; 1609 vp = sp->vp; 1610 ASSERT_SEGLOCK(fs); 1611 1612 /* 1613 * This used to be: 1614 * 1615 * nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1616 * 1617 * that is, it allowed for the possibility that start_lbp did 1618 * not point to the beginning of the finfo block pointer area. 1619 * This particular formulation is six kinds of painful in the 1620 * lfs64 world where we have two sizes of block pointer, so 1621 * unless/until everything can be cleaned up to not move 1622 * start_lbp around but instead use an offset, we do the 1623 * following: 1624 * 1. Get NEXT_FINFO(sp->fip). This is the same pointer as 1625 * &sp->fip->fi_blocks[sp->fip->fi_nblocks], just the wrong 1626 * type. (Ugh.) 1627 * 2. Cast it to void *, then assign it to a temporary 1628 * union lfs_blocks. 1629 * 3. Subtract start_lbp from that. 1630 * 4. Save the value of nblocks in blocks_orig so we can 1631 * assert below that it hasn't changed without repeating this 1632 * rubbish. 1633 * 1634 * XXX. 1635 */ 1636 lfs_blocks_fromvoid(fs, &tmpptr, (void *)NEXT_FINFO(fs, sp->fip)); 1637 nblocks = lfs_blocks_sub(fs, &tmpptr, &sp->start_lbp); 1638 nblocks_orig = nblocks; 1639 1640 KASSERT(nblocks >= 0); 1641 KASSERT(vp != NULL); 1642 if (nblocks == 0) 1643 return; 1644 1645 /* 1646 * This count may be high due to oversize blocks from lfs_gop_write. 1647 * Correct for this. (XXX we should be able to keep track of these.) 1648 */ 1649 for (i = 0; i < nblocks; i++) { 1650 if (sp->start_bpp[i] == NULL) { 1651 DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks)); 1652 nblocks = i; 1653 break; 1654 } 1655 num = howmany(sp->start_bpp[i]->b_bcount, lfs_sb_getbsize(fs)); 1656 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1657 nblocks -= num - 1; 1658 } 1659 1660 #if 0 1661 /* pre-lfs64 assertion */ 1662 KASSERT(vp->v_type == VREG || 1663 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1664 #else 1665 KASSERT(vp->v_type == VREG || nblocks == nblocks_orig); 1666 #endif 1667 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1668 1669 /* 1670 * Sort the blocks. 1671 * 1672 * We have to sort even if the blocks come from the 1673 * cleaner, because there might be other pending blocks on the 1674 * same inode...and if we don't sort, and there are fragments 1675 * present, blocks may be written in the wrong place. 1676 */ 1677 lfs_shellsort(fs, sp->start_bpp, &sp->start_lbp, nblocks, lfs_sb_getbsize(fs)); 1678 1679 /* 1680 * Record the length of the last block in case it's a fragment. 1681 * If there are indirect blocks present, they sort last. An 1682 * indirect block will be lfs_bsize and its presence indicates 1683 * that you cannot have fragments. 1684 * 1685 * XXX This last is a lie. A cleaned fragment can coexist with 1686 * XXX a later indirect block. This will continue to be 1687 * XXX true until lfs_markv is fixed to do everything with 1688 * XXX fake blocks (including fake inodes and fake indirect blocks). 1689 */ 1690 lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1691 lfs_sb_getbmask(fs)) + 1; 1692 lfs_fi_setlastlength(fs, sp->fip, lastlength); 1693 1694 /* 1695 * Assign disk addresses, and update references to the logical 1696 * block and the segment usage information. 1697 */ 1698 for (i = nblocks; i--; ++sp->start_bpp) { 1699 sbp = *sp->start_bpp; 1700 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0); 1701 KASSERT(sbp->b_lblkno == lbn); 1702 1703 sbp->b_blkno = LFS_FSBTODB(fs, lfs_sb_getoffset(fs)); 1704 1705 /* 1706 * If we write a frag in the wrong place, the cleaner won't 1707 * be able to correctly identify its size later, and the 1708 * segment will be uncleanable. (Even worse, it will assume 1709 * that the indirect block that actually ends the list 1710 * is of a smaller size!) 1711 */ 1712 if ((sbp->b_bcount & lfs_sb_getbmask(fs)) && i != 0) 1713 panic("lfs_updatemeta: fragment is not last block"); 1714 1715 /* 1716 * For each subblock in this possibly oversized block, 1717 * update its address on disk. 1718 */ 1719 KASSERT(lbn >= 0 || sbp->b_bcount == lfs_sb_getbsize(fs)); 1720 KASSERT(vp == sbp->b_vp); 1721 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1722 bytesleft -= lfs_sb_getbsize(fs)) { 1723 size = MIN(bytesleft, lfs_sb_getbsize(fs)); 1724 bb = lfs_numfrags(fs, size); 1725 lbn = lfs_blocks_get(fs, &sp->start_lbp, 0); 1726 lfs_blocks_inc(fs, &sp->start_lbp); 1727 lfs_update_single(fs, sp, sp->vp, lbn, lfs_sb_getoffset(fs), 1728 size); 1729 lfs_sb_addoffset(fs, bb); 1730 } 1731 1732 } 1733 1734 /* This inode has been modified */ 1735 LFS_SET_UINO(VTOI(vp), IN_MODIFIED); 1736 } 1737 1738 /* 1739 * Move lfs_offset to a segment earlier than newsn. 1740 */ 1741 int 1742 lfs_rewind(struct lfs *fs, int newsn) 1743 { 1744 int sn, osn, isdirty; 1745 struct buf *bp; 1746 SEGUSE *sup; 1747 1748 ASSERT_SEGLOCK(fs); 1749 1750 osn = lfs_dtosn(fs, lfs_sb_getoffset(fs)); 1751 if (osn < newsn) 1752 return 0; 1753 1754 /* lfs_avail eats the remaining space in this segment */ 1755 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs))); 1756 1757 /* Find a low-numbered segment */ 1758 for (sn = 0; sn < lfs_sb_getnseg(fs); ++sn) { 1759 LFS_SEGENTRY(sup, fs, sn, bp); 1760 isdirty = sup->su_flags & SEGUSE_DIRTY; 1761 brelse(bp, 0); 1762 1763 if (!isdirty) 1764 break; 1765 } 1766 if (sn == lfs_sb_getnseg(fs)) 1767 panic("lfs_rewind: no clean segments"); 1768 if (newsn >= 0 && sn >= newsn) 1769 return ENOENT; 1770 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn)); 1771 lfs_newseg(fs); 1772 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs)); 1773 1774 return 0; 1775 } 1776 1777 /* 1778 * Start a new partial segment. 1779 * 1780 * Return 1 when we entered to a new segment. 1781 * Otherwise, return 0. 1782 */ 1783 int 1784 lfs_initseg(struct lfs *fs) 1785 { 1786 struct segment *sp = fs->lfs_sp; 1787 SEGSUM *ssp; 1788 struct buf *sbp; /* buffer for SEGSUM */ 1789 int repeat = 0; /* return value */ 1790 1791 ASSERT_SEGLOCK(fs); 1792 /* Advance to the next segment. */ 1793 if (!LFS_PARTIAL_FITS(fs)) { 1794 SEGUSE *sup; 1795 struct buf *bp; 1796 1797 /* lfs_avail eats the remaining space */ 1798 lfs_sb_subavail(fs, lfs_sb_getfsbpseg(fs) - (lfs_sb_getoffset(fs) - 1799 lfs_sb_getcurseg(fs))); 1800 /* Wake up any cleaning procs waiting on this file system. */ 1801 lfs_wakeup_cleaner(fs); 1802 lfs_newseg(fs); 1803 repeat = 1; 1804 lfs_sb_setoffset(fs, lfs_sb_getcurseg(fs)); 1805 1806 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs)); 1807 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs)); 1808 1809 /* 1810 * If the segment contains a superblock, update the offset 1811 * and summary address to skip over it. 1812 */ 1813 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1814 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1815 lfs_sb_addoffset(fs, lfs_btofsb(fs, LFS_SBPAD)); 1816 sp->seg_bytes_left -= LFS_SBPAD; 1817 } 1818 brelse(bp, 0); 1819 /* Segment zero could also contain the labelpad */ 1820 if (lfs_sb_getversion(fs) > 1 && sp->seg_number == 0 && 1821 lfs_sb_gets0addr(fs) < lfs_btofsb(fs, LFS_LABELPAD)) { 1822 lfs_sb_addoffset(fs, 1823 lfs_btofsb(fs, LFS_LABELPAD) - lfs_sb_gets0addr(fs)); 1824 sp->seg_bytes_left -= 1825 LFS_LABELPAD - lfs_fsbtob(fs, lfs_sb_gets0addr(fs)); 1826 } 1827 } else { 1828 sp->seg_number = lfs_dtosn(fs, lfs_sb_getcurseg(fs)); 1829 sp->seg_bytes_left = lfs_fsbtob(fs, lfs_sb_getfsbpseg(fs) - 1830 (lfs_sb_getoffset(fs) - lfs_sb_getcurseg(fs))); 1831 } 1832 lfs_sb_setlastpseg(fs, lfs_sb_getoffset(fs)); 1833 1834 /* Record first address of this partial segment */ 1835 if (sp->seg_flags & SEGM_CLEAN) { 1836 fs->lfs_cleanint[fs->lfs_cleanind] = lfs_sb_getoffset(fs); 1837 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1838 /* "1" is the artificial inc in lfs_seglock */ 1839 mutex_enter(&lfs_lock); 1840 while (fs->lfs_iocount > 1) { 1841 mtsleep(&fs->lfs_iocount, PRIBIO + 1, 1842 "lfs_initseg", 0, &lfs_lock); 1843 } 1844 mutex_exit(&lfs_lock); 1845 fs->lfs_cleanind = 0; 1846 } 1847 } 1848 1849 sp->fs = fs; 1850 sp->ibp = NULL; 1851 sp->idp = NULL; 1852 sp->ninodes = 0; 1853 sp->ndupino = 0; 1854 1855 sp->cbpp = sp->bpp; 1856 1857 /* Get a new buffer for SEGSUM */ 1858 sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1859 LFS_FSBTODB(fs, lfs_sb_getoffset(fs)), lfs_sb_getsumsize(fs), LFS_NB_SUMMARY); 1860 1861 /* ... and enter it into the buffer list. */ 1862 *sp->cbpp = sbp; 1863 sp->cbpp++; 1864 lfs_sb_addoffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs))); 1865 1866 sp->start_bpp = sp->cbpp; 1867 1868 /* Set point to SEGSUM, initialize it. */ 1869 ssp = sp->segsum = sbp->b_data; 1870 memset(ssp, 0, lfs_sb_getsumsize(fs)); 1871 lfs_ss_setnext(fs, ssp, lfs_sb_getnextseg(fs)); 1872 lfs_ss_setnfinfo(fs, ssp, 0); 1873 lfs_ss_setninos(fs, ssp, 0); 1874 lfs_ss_setmagic(fs, ssp, SS_MAGIC); 1875 1876 /* Set pointer to first FINFO, initialize it. */ 1877 sp->fip = SEGSUM_FINFOBASE(fs, sp->segsum); 1878 lfs_fi_setnblocks(fs, sp->fip, 0); 1879 lfs_fi_setlastlength(fs, sp->fip, 0); 1880 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip); 1881 1882 sp->seg_bytes_left -= lfs_sb_getsumsize(fs); 1883 sp->sum_bytes_left = lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs); 1884 1885 return (repeat); 1886 } 1887 1888 /* 1889 * Remove SEGUSE_INVAL from all segments. 1890 */ 1891 void 1892 lfs_unset_inval_all(struct lfs *fs) 1893 { 1894 SEGUSE *sup; 1895 struct buf *bp; 1896 int i; 1897 1898 for (i = 0; i < lfs_sb_getnseg(fs); i++) { 1899 LFS_SEGENTRY(sup, fs, i, bp); 1900 if (sup->su_flags & SEGUSE_INVAL) { 1901 sup->su_flags &= ~SEGUSE_INVAL; 1902 LFS_WRITESEGENTRY(sup, fs, i, bp); 1903 } else 1904 brelse(bp, 0); 1905 } 1906 } 1907 1908 /* 1909 * Return the next segment to write. 1910 */ 1911 void 1912 lfs_newseg(struct lfs *fs) 1913 { 1914 CLEANERINFO *cip; 1915 SEGUSE *sup; 1916 struct buf *bp; 1917 int curseg, isdirty, sn, skip_inval; 1918 1919 ASSERT_SEGLOCK(fs); 1920 1921 /* Honor LFCNWRAPSTOP */ 1922 mutex_enter(&lfs_lock); 1923 while (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) { 1924 if (fs->lfs_wrappass) { 1925 log(LOG_NOTICE, "%s: wrappass=%d\n", 1926 lfs_sb_getfsmnt(fs), fs->lfs_wrappass); 1927 fs->lfs_wrappass = 0; 1928 break; 1929 } 1930 fs->lfs_wrapstatus = LFS_WRAP_WAITING; 1931 wakeup(&fs->lfs_nowrap); 1932 log(LOG_NOTICE, "%s: waiting at log wrap\n", lfs_sb_getfsmnt(fs)); 1933 mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz, 1934 &lfs_lock); 1935 } 1936 fs->lfs_wrapstatus = LFS_WRAP_GOING; 1937 mutex_exit(&lfs_lock); 1938 1939 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp); 1940 DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n", 1941 lfs_dtosn(fs, lfs_sb_getnextseg(fs)))); 1942 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1943 sup->su_nbytes = 0; 1944 sup->su_nsums = 0; 1945 sup->su_ninos = 0; 1946 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getnextseg(fs)), bp); 1947 1948 LFS_CLEANERINFO(cip, fs, bp); 1949 lfs_ci_shiftcleantodirty(fs, cip, 1); 1950 lfs_sb_setnclean(fs, lfs_ci_getclean(fs, cip)); 1951 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1952 1953 lfs_sb_setlastseg(fs, lfs_sb_getcurseg(fs)); 1954 lfs_sb_setcurseg(fs, lfs_sb_getnextseg(fs)); 1955 skip_inval = 1; 1956 for (sn = curseg = lfs_dtosn(fs, lfs_sb_getcurseg(fs)) + lfs_sb_getinterleave(fs);;) { 1957 sn = (sn + 1) % lfs_sb_getnseg(fs); 1958 1959 if (sn == curseg) { 1960 if (skip_inval) 1961 skip_inval = 0; 1962 else 1963 panic("lfs_nextseg: no clean segments"); 1964 } 1965 LFS_SEGENTRY(sup, fs, sn, bp); 1966 isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0)); 1967 /* Check SEGUSE_EMPTY as we go along */ 1968 if (isdirty && sup->su_nbytes == 0 && 1969 !(sup->su_flags & SEGUSE_EMPTY)) 1970 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1971 else 1972 brelse(bp, 0); 1973 1974 if (!isdirty) 1975 break; 1976 } 1977 if (skip_inval == 0) 1978 lfs_unset_inval_all(fs); 1979 1980 ++fs->lfs_nactive; 1981 lfs_sb_setnextseg(fs, lfs_sntod(fs, sn)); 1982 if (lfs_dostats) { 1983 ++lfs_stats.segsused; 1984 } 1985 } 1986 1987 static struct buf * 1988 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, 1989 int n) 1990 { 1991 struct lfs_cluster *cl; 1992 struct buf **bpp, *bp; 1993 1994 ASSERT_SEGLOCK(fs); 1995 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1996 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1997 memset(cl, 0, sizeof(*cl)); 1998 cl->fs = fs; 1999 cl->bpp = bpp; 2000 cl->bufcount = 0; 2001 cl->bufsize = 0; 2002 2003 /* If this segment is being written synchronously, note that */ 2004 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 2005 cl->flags |= LFS_CL_SYNC; 2006 cl->seg = fs->lfs_sp; 2007 ++cl->seg->seg_iocount; 2008 } 2009 2010 /* Get an empty buffer header, or maybe one with something on it */ 2011 bp = getiobuf(vp, true); 2012 bp->b_dev = NODEV; 2013 bp->b_blkno = bp->b_lblkno = addr; 2014 bp->b_iodone = lfs_cluster_aiodone; 2015 bp->b_private = cl; 2016 2017 return bp; 2018 } 2019 2020 int 2021 lfs_writeseg(struct lfs *fs, struct segment *sp) 2022 { 2023 struct buf **bpp, *bp, *cbp, *newbp, *unbusybp; 2024 SEGUSE *sup; 2025 SEGSUM *ssp; 2026 int i; 2027 int do_again, nblocks, byteoffset; 2028 size_t el_size; 2029 struct lfs_cluster *cl; 2030 u_short ninos; 2031 struct vnode *devvp; 2032 char *p = NULL; 2033 struct vnode *vp; 2034 unsigned ibindex, iblimit; 2035 int changed; 2036 u_int32_t sum; 2037 size_t sumstart; 2038 #ifdef DEBUG 2039 FINFO *fip; 2040 int findex; 2041 #endif 2042 2043 ASSERT_SEGLOCK(fs); 2044 2045 ssp = (SEGSUM *)sp->segsum; 2046 2047 /* 2048 * If there are no buffers other than the segment summary to write, 2049 * don't do anything. If we are the end of a dirop sequence, however, 2050 * write the empty segment summary anyway, to help out the 2051 * roll-forward agent. 2052 */ 2053 if ((nblocks = sp->cbpp - sp->bpp) == 1) { 2054 if ((lfs_ss_getflags(fs, ssp) & (SS_DIROP | SS_CONT)) != SS_DIROP) 2055 return 0; 2056 } 2057 2058 /* Note if partial segment is being written by the cleaner */ 2059 if (sp->seg_flags & SEGM_CLEAN) 2060 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_CLEAN); 2061 2062 /* Note if we are writing to reclaim */ 2063 if (sp->seg_flags & SEGM_RECLAIM) { 2064 lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) | SS_RECLAIM); 2065 lfs_ss_setreclino(fs, ssp, fs->lfs_reclino); 2066 } 2067 2068 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2069 2070 /* Update the segment usage information. */ 2071 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 2072 2073 /* Loop through all blocks, except the segment summary. */ 2074 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 2075 if ((*bpp)->b_vp != devvp) { 2076 sup->su_nbytes += (*bpp)->b_bcount; 2077 DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d" 2078 " lbn %" PRId64 " db 0x%" PRIx64 "\n", 2079 sp->seg_number, (*bpp)->b_bcount, 2080 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 2081 (*bpp)->b_blkno)); 2082 } 2083 } 2084 2085 #ifdef DEBUG 2086 /* Check for zero-length and zero-version FINFO entries. */ 2087 fip = SEGSUM_FINFOBASE(fs, ssp); 2088 for (findex = 0; findex < lfs_ss_getnfinfo(fs, ssp); findex++) { 2089 KDASSERT(lfs_fi_getnblocks(fs, fip) > 0); 2090 KDASSERT(lfs_fi_getversion(fs, fip) > 0); 2091 fip = NEXT_FINFO(fs, fip); 2092 } 2093 #endif /* DEBUG */ 2094 2095 ninos = (lfs_ss_getninos(fs, ssp) + LFS_INOPB(fs) - 1) / LFS_INOPB(fs); 2096 DLOG((DLOG_SU, "seg %d += %d for %d inodes\n", 2097 sp->seg_number, 2098 lfs_ss_getninos(fs, ssp) * DINOSIZE(fs), 2099 lfs_ss_getninos(fs, ssp))); 2100 sup->su_nbytes += lfs_ss_getninos(fs, ssp) * DINOSIZE(fs); 2101 /* sup->su_nbytes += lfs_sb_getsumsize(fs); */ 2102 if (lfs_sb_getversion(fs) == 1) 2103 sup->su_olastmod = time_second; 2104 else 2105 sup->su_lastmod = time_second; 2106 sup->su_ninos += ninos; 2107 ++sup->su_nsums; 2108 lfs_sb_subavail(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs))); 2109 2110 do_again = !(bp->b_flags & B_GATHERED); 2111 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 2112 2113 /* 2114 * Mark blocks BC_BUSY, to prevent then from being changed between 2115 * the checksum computation and the actual write. 2116 * 2117 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 2118 * there are any, replace them with copies that have UNASSIGNED 2119 * instead. 2120 */ 2121 mutex_enter(&bufcache_lock); 2122 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 2123 ++bpp; 2124 bp = *bpp; 2125 if (bp->b_iodone != NULL) { /* UBC or malloced buffer */ 2126 bp->b_cflags |= BC_BUSY; 2127 continue; 2128 } 2129 2130 while (bp->b_cflags & BC_BUSY) { 2131 DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential" 2132 " data summary corruption for ino %d, lbn %" 2133 PRId64 "\n", 2134 VTOI(bp->b_vp)->i_number, bp->b_lblkno)); 2135 bp->b_cflags |= BC_WANTED; 2136 cv_wait(&bp->b_busy, &bufcache_lock); 2137 } 2138 bp->b_cflags |= BC_BUSY; 2139 mutex_exit(&bufcache_lock); 2140 unbusybp = NULL; 2141 2142 /* 2143 * Check and replace indirect block UNWRITTEN bogosity. 2144 * XXX See comment in lfs_writefile. 2145 */ 2146 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 2147 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din) != 2148 VTOI(bp->b_vp)->i_lfs_effnblks) { 2149 DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%jd != %d)\n", 2150 VTOI(bp->b_vp)->i_number, 2151 (intmax_t)VTOI(bp->b_vp)->i_lfs_effnblks, 2152 lfs_dino_getblocks(fs, VTOI(bp->b_vp)->i_din))); 2153 /* Make a copy we'll make changes to */ 2154 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 2155 bp->b_bcount, LFS_NB_IBLOCK); 2156 newbp->b_blkno = bp->b_blkno; 2157 memcpy(newbp->b_data, bp->b_data, 2158 newbp->b_bcount); 2159 2160 changed = 0; 2161 iblimit = newbp->b_bcount / LFS_BLKPTRSIZE(fs); 2162 for (ibindex = 0; ibindex < iblimit; ibindex++) { 2163 if (lfs_iblock_get(fs, newbp->b_data, ibindex) == UNWRITTEN) { 2164 ++changed; 2165 lfs_iblock_set(fs, newbp->b_data, 2166 ibindex, 0); 2167 } 2168 } 2169 /* 2170 * Get rid of the old buffer. Don't mark it clean, 2171 * though, if it still has dirty data on it. 2172 */ 2173 if (changed) { 2174 DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):" 2175 " bp = %p newbp = %p\n", changed, bp, 2176 newbp)); 2177 *bpp = newbp; 2178 bp->b_flags &= ~B_GATHERED; 2179 bp->b_error = 0; 2180 if (bp->b_iodone != NULL) { 2181 DLOG((DLOG_SEG, "lfs_writeseg: " 2182 "indir bp should not be B_CALL\n")); 2183 biodone(bp); 2184 bp = NULL; 2185 } else { 2186 /* Still on free list, leave it there */ 2187 unbusybp = bp; 2188 /* 2189 * We have to re-decrement lfs_avail 2190 * since this block is going to come 2191 * back around to us in the next 2192 * segment. 2193 */ 2194 lfs_sb_subavail(fs, 2195 lfs_btofsb(fs, bp->b_bcount)); 2196 } 2197 } else { 2198 lfs_freebuf(fs, newbp); 2199 } 2200 } 2201 mutex_enter(&bufcache_lock); 2202 if (unbusybp != NULL) { 2203 unbusybp->b_cflags &= ~BC_BUSY; 2204 if (unbusybp->b_cflags & BC_WANTED) 2205 cv_broadcast(&bp->b_busy); 2206 } 2207 } 2208 mutex_exit(&bufcache_lock); 2209 2210 /* 2211 * Compute checksum across data and then across summary; the first 2212 * block (the summary block) is skipped. Set the create time here 2213 * so that it's guaranteed to be later than the inode mod times. 2214 */ 2215 sum = 0; 2216 if (lfs_sb_getversion(fs) == 1) 2217 el_size = sizeof(u_long); 2218 else 2219 el_size = sizeof(u_int32_t); 2220 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 2221 ++bpp; 2222 /* Loop through gop_write cluster blocks */ 2223 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 2224 byteoffset += lfs_sb_getbsize(fs)) { 2225 #ifdef LFS_USE_BC_INVAL 2226 if (((*bpp)->b_cflags & BC_INVAL) != 0 && 2227 (*bpp)->b_iodone != NULL) { 2228 if (copyin((void *)(*bpp)->b_saveaddr + 2229 byteoffset, dp, el_size)) { 2230 panic("lfs_writeseg: copyin failed [1]:" 2231 " ino %" PRIu64 " blk %" PRId64, 2232 VTOI((*bpp)->b_vp)->i_number, 2233 (*bpp)->b_lblkno); 2234 } 2235 } else 2236 #endif /* LFS_USE_BC_INVAL */ 2237 { 2238 sum = lfs_cksum_part((char *) 2239 (*bpp)->b_data + byteoffset, el_size, sum); 2240 } 2241 } 2242 } 2243 if (lfs_sb_getversion(fs) == 1) 2244 lfs_ss_setocreate(fs, ssp, time_second); 2245 else { 2246 lfs_ss_setcreate(fs, ssp, time_second); 2247 lfs_sb_addserial(fs, 1); 2248 lfs_ss_setserial(fs, ssp, lfs_sb_getserial(fs)); 2249 lfs_ss_setident(fs, ssp, lfs_sb_getident(fs)); 2250 } 2251 lfs_ss_setdatasum(fs, ssp, lfs_cksum_fold(sum)); 2252 sumstart = lfs_ss_getsumstart(fs); 2253 lfs_ss_setsumsum(fs, ssp, cksum((char *)ssp + sumstart, 2254 lfs_sb_getsumsize(fs) - sumstart)); 2255 2256 mutex_enter(&lfs_lock); 2257 lfs_sb_subbfree(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) + 2258 lfs_btofsb(fs, lfs_sb_getsumsize(fs)))); 2259 lfs_sb_adddmeta(fs, (lfs_btofsb(fs, ninos * lfs_sb_getibsize(fs)) + 2260 lfs_btofsb(fs, lfs_sb_getsumsize(fs)))); 2261 mutex_exit(&lfs_lock); 2262 2263 /* 2264 * When we simply write the blocks we lose a rotation for every block 2265 * written. To avoid this problem, we cluster the buffers into a 2266 * chunk and write the chunk. MAXPHYS is the largest size I/O 2267 * devices can handle, use that for the size of the chunks. 2268 * 2269 * Blocks that are already clusters (from GOP_WRITE), however, we 2270 * don't bother to copy into other clusters. 2271 */ 2272 2273 #define CHUNKSIZE MAXPHYS 2274 2275 if (devvp == NULL) 2276 panic("devvp is NULL"); 2277 for (bpp = sp->bpp, i = nblocks; i;) { 2278 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 2279 cl = cbp->b_private; 2280 2281 cbp->b_flags |= B_ASYNC; 2282 cbp->b_cflags |= BC_BUSY; 2283 cbp->b_bcount = 0; 2284 2285 KASSERTMSG((bpp - sp->bpp <= 2286 (lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs)) 2287 / sizeof(int32_t)), 2288 "lfs_writeseg: real bpp overwrite"); 2289 KASSERTMSG((bpp - sp->bpp <= 2290 lfs_segsize(fs) / lfs_sb_getfsize(fs)), 2291 "lfs_writeseg: theoretical bpp overwrite"); 2292 2293 /* 2294 * Construct the cluster. 2295 */ 2296 mutex_enter(&lfs_lock); 2297 ++fs->lfs_iocount; 2298 mutex_exit(&lfs_lock); 2299 while (i && cbp->b_bcount < CHUNKSIZE) { 2300 bp = *bpp; 2301 2302 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 2303 break; 2304 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 2305 break; 2306 2307 /* Clusters from GOP_WRITE are expedited */ 2308 if (bp->b_bcount > lfs_sb_getbsize(fs)) { 2309 if (cbp->b_bcount > 0) 2310 /* Put in its own buffer */ 2311 break; 2312 else { 2313 cbp->b_data = bp->b_data; 2314 } 2315 } else if (cbp->b_bcount == 0) { 2316 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 2317 LFS_NB_CLUSTER); 2318 cl->flags |= LFS_CL_MALLOC; 2319 } 2320 KASSERTMSG((lfs_dtosn(fs, LFS_DBTOFSB(fs, bp->b_blkno + 2321 btodb(bp->b_bcount - 1))) == 2322 sp->seg_number), 2323 "segment overwrite: blk size %d daddr %" PRIx64 2324 " not in seg %d\n", 2325 bp->b_bcount, bp->b_blkno, 2326 sp->seg_number); 2327 2328 #ifdef LFS_USE_BC_INVAL 2329 /* 2330 * Fake buffers from the cleaner are marked as BC_INVAL. 2331 * We need to copy the data from user space rather than 2332 * from the buffer indicated. 2333 * XXX == what do I do on an error? 2334 */ 2335 if ((bp->b_cflags & BC_INVAL) != 0 && 2336 bp->b_iodone != NULL) { 2337 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 2338 panic("lfs_writeseg: " 2339 "copyin failed [2]"); 2340 } else 2341 #endif /* LFS_USE_BC_INVAL */ 2342 if (cl->flags & LFS_CL_MALLOC) { 2343 /* copy data into our cluster. */ 2344 memcpy(p, bp->b_data, bp->b_bcount); 2345 p += bp->b_bcount; 2346 } 2347 2348 cbp->b_bcount += bp->b_bcount; 2349 cl->bufsize += bp->b_bcount; 2350 2351 bp->b_flags &= ~B_READ; 2352 bp->b_error = 0; 2353 cl->bpp[cl->bufcount++] = bp; 2354 2355 vp = bp->b_vp; 2356 mutex_enter(&bufcache_lock); 2357 mutex_enter(vp->v_interlock); 2358 bp->b_oflags &= ~(BO_DELWRI | BO_DONE); 2359 reassignbuf(bp, vp); 2360 vp->v_numoutput++; 2361 mutex_exit(vp->v_interlock); 2362 mutex_exit(&bufcache_lock); 2363 2364 bpp++; 2365 i--; 2366 } 2367 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2368 BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL); 2369 else 2370 BIO_SETPRIO(cbp, BPRIO_TIMELIMITED); 2371 mutex_enter(devvp->v_interlock); 2372 devvp->v_numoutput++; 2373 mutex_exit(devvp->v_interlock); 2374 VOP_STRATEGY(devvp, cbp); 2375 curlwp->l_ru.ru_oublock++; 2376 } 2377 2378 if (lfs_dostats) { 2379 ++lfs_stats.psegwrites; 2380 lfs_stats.blocktot += nblocks - 1; 2381 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2382 ++lfs_stats.psyncwrites; 2383 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2384 ++lfs_stats.pcleanwrites; 2385 lfs_stats.cleanblocks += nblocks - 1; 2386 } 2387 } 2388 2389 return (lfs_initseg(fs) || do_again); 2390 } 2391 2392 void 2393 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2394 { 2395 struct buf *bp; 2396 struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2397 2398 ASSERT_MAYBE_SEGLOCK(fs); 2399 if (fs->lfs_is64) { 2400 KASSERT(fs->lfs_dlfs_u.u_64.dlfs_magic == LFS64_MAGIC); 2401 } else { 2402 KASSERT(fs->lfs_dlfs_u.u_32.dlfs_magic == LFS_MAGIC); 2403 } 2404 /* 2405 * If we can write one superblock while another is in 2406 * progress, we risk not having a complete checkpoint if we crash. 2407 * So, block here if a superblock write is in progress. 2408 */ 2409 mutex_enter(&lfs_lock); 2410 while (fs->lfs_sbactive) { 2411 mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0, 2412 &lfs_lock); 2413 } 2414 fs->lfs_sbactive = daddr; 2415 mutex_exit(&lfs_lock); 2416 2417 /* Set timestamp of this version of the superblock */ 2418 if (lfs_sb_getversion(fs) == 1) 2419 lfs_sb_setotstamp(fs, time_second); 2420 lfs_sb_settstamp(fs, time_second); 2421 2422 /* The next chunk of code relies on this assumption */ 2423 CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64)); 2424 2425 /* Checksum the superblock and copy it into a buffer. */ 2426 lfs_sb_setcksum(fs, lfs_sb_cksum(fs)); 2427 bp = lfs_newbuf(fs, devvp, 2428 LFS_FSBTODB(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2429 memcpy(bp->b_data, &fs->lfs_dlfs_u, sizeof(struct dlfs)); 2430 memset((char *)bp->b_data + sizeof(struct dlfs), 0, 2431 LFS_SBPAD - sizeof(struct dlfs)); 2432 2433 bp->b_cflags |= BC_BUSY; 2434 bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC; 2435 bp->b_oflags &= ~(BO_DONE | BO_DELWRI); 2436 bp->b_error = 0; 2437 bp->b_iodone = lfs_super_aiodone; 2438 2439 if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC) 2440 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 2441 else 2442 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 2443 curlwp->l_ru.ru_oublock++; 2444 2445 mutex_enter(devvp->v_interlock); 2446 devvp->v_numoutput++; 2447 mutex_exit(devvp->v_interlock); 2448 2449 mutex_enter(&lfs_lock); 2450 ++fs->lfs_iocount; 2451 mutex_exit(&lfs_lock); 2452 VOP_STRATEGY(devvp, bp); 2453 } 2454 2455 /* 2456 * Logical block number match routines used when traversing the dirty block 2457 * chain. 2458 */ 2459 int 2460 lfs_match_fake(struct lfs *fs, struct buf *bp) 2461 { 2462 2463 ASSERT_SEGLOCK(fs); 2464 return LFS_IS_MALLOC_BUF(bp); 2465 } 2466 2467 #if 0 2468 int 2469 lfs_match_real(struct lfs *fs, struct buf *bp) 2470 { 2471 2472 ASSERT_SEGLOCK(fs); 2473 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2474 } 2475 #endif 2476 2477 int 2478 lfs_match_data(struct lfs *fs, struct buf *bp) 2479 { 2480 2481 ASSERT_SEGLOCK(fs); 2482 return (bp->b_lblkno >= 0); 2483 } 2484 2485 int 2486 lfs_match_indir(struct lfs *fs, struct buf *bp) 2487 { 2488 daddr_t lbn; 2489 2490 ASSERT_SEGLOCK(fs); 2491 lbn = bp->b_lblkno; 2492 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 0); 2493 } 2494 2495 int 2496 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2497 { 2498 daddr_t lbn; 2499 2500 ASSERT_SEGLOCK(fs); 2501 lbn = bp->b_lblkno; 2502 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 1); 2503 } 2504 2505 int 2506 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2507 { 2508 daddr_t lbn; 2509 2510 ASSERT_SEGLOCK(fs); 2511 lbn = bp->b_lblkno; 2512 return (lbn < 0 && (-lbn - ULFS_NDADDR) % LFS_NINDIR(fs) == 2); 2513 } 2514 2515 void 2516 lfs_free_aiodone(struct buf *bp) 2517 { 2518 struct lfs *fs; 2519 2520 KERNEL_LOCK(1, curlwp); 2521 fs = bp->b_private; 2522 ASSERT_NO_SEGLOCK(fs); 2523 lfs_freebuf(fs, bp); 2524 KERNEL_UNLOCK_ONE(curlwp); 2525 } 2526 2527 static void 2528 lfs_super_aiodone(struct buf *bp) 2529 { 2530 struct lfs *fs; 2531 2532 KERNEL_LOCK(1, curlwp); 2533 fs = bp->b_private; 2534 ASSERT_NO_SEGLOCK(fs); 2535 mutex_enter(&lfs_lock); 2536 fs->lfs_sbactive = 0; 2537 if (--fs->lfs_iocount <= 1) 2538 wakeup(&fs->lfs_iocount); 2539 wakeup(&fs->lfs_sbactive); 2540 mutex_exit(&lfs_lock); 2541 lfs_freebuf(fs, bp); 2542 KERNEL_UNLOCK_ONE(curlwp); 2543 } 2544 2545 static void 2546 lfs_cluster_aiodone(struct buf *bp) 2547 { 2548 struct lfs_cluster *cl; 2549 struct lfs *fs; 2550 struct buf *tbp, *fbp; 2551 struct vnode *vp, *devvp, *ovp; 2552 struct inode *ip; 2553 int error; 2554 2555 KERNEL_LOCK(1, curlwp); 2556 2557 error = bp->b_error; 2558 cl = bp->b_private; 2559 fs = cl->fs; 2560 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2561 ASSERT_NO_SEGLOCK(fs); 2562 2563 /* Put the pages back, and release the buffer */ 2564 while (cl->bufcount--) { 2565 tbp = cl->bpp[cl->bufcount]; 2566 KASSERT(tbp->b_cflags & BC_BUSY); 2567 if (error) { 2568 tbp->b_error = error; 2569 } 2570 2571 /* 2572 * We're done with tbp. If it has not been re-dirtied since 2573 * the cluster was written, free it. Otherwise, keep it on 2574 * the locked list to be written again. 2575 */ 2576 vp = tbp->b_vp; 2577 2578 tbp->b_flags &= ~B_GATHERED; 2579 2580 #ifdef DEBUG 2581 if ((tbp)->b_vp == (fs)->lfs_ivnode) 2582 LFS_ENTER_LOG("clear", __FILE__, __LINE__, 2583 tbp->b_lblkno, tbp->b_flags, curproc->p_pid); 2584 #endif 2585 2586 mutex_enter(&bufcache_lock); 2587 if (tbp->b_iodone == NULL) { 2588 KASSERT(tbp->b_flags & B_LOCKED); 2589 bremfree(tbp); 2590 if (vp) { 2591 mutex_enter(vp->v_interlock); 2592 reassignbuf(tbp, vp); 2593 mutex_exit(vp->v_interlock); 2594 } 2595 tbp->b_flags |= B_ASYNC; /* for biodone */ 2596 } 2597 2598 if ((tbp->b_flags & B_LOCKED) && !(tbp->b_oflags & BO_DELWRI)) 2599 LFS_UNLOCK_BUF(tbp); 2600 2601 if (tbp->b_oflags & BO_DONE) { 2602 DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n", 2603 cl->bufcount, (long)tbp->b_flags)); 2604 } 2605 2606 if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) { 2607 /* 2608 * A buffer from the page daemon. 2609 * We use the same iodone as it does, 2610 * so we must manually disassociate its 2611 * buffers from the vp. 2612 */ 2613 if ((ovp = tbp->b_vp) != NULL) { 2614 /* This is just silly */ 2615 mutex_enter(ovp->v_interlock); 2616 brelvp(tbp); 2617 mutex_exit(ovp->v_interlock); 2618 tbp->b_vp = vp; 2619 tbp->b_objlock = vp->v_interlock; 2620 } 2621 /* Put it back the way it was */ 2622 tbp->b_flags |= B_ASYNC; 2623 /* Master buffers have BC_AGE */ 2624 if (tbp->b_private == tbp) 2625 tbp->b_cflags |= BC_AGE; 2626 } 2627 mutex_exit(&bufcache_lock); 2628 2629 biodone(tbp); 2630 2631 /* 2632 * If this is the last block for this vnode, but 2633 * there are other blocks on its dirty list, 2634 * set IN_MODIFIED/IN_CLEANING depending on what 2635 * sort of block. Only do this for our mount point, 2636 * not for, e.g., inode blocks that are attached to 2637 * the devvp. 2638 * XXX KS - Shouldn't we set *both* if both types 2639 * of blocks are present (traverse the dirty list?) 2640 */ 2641 mutex_enter(vp->v_interlock); 2642 mutex_enter(&lfs_lock); 2643 if (vp != devvp && vp->v_numoutput == 0 && 2644 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2645 ip = VTOI(vp); 2646 DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n", 2647 ip->i_number)); 2648 if (LFS_IS_MALLOC_BUF(fbp)) 2649 LFS_SET_UINO(ip, IN_CLEANING); 2650 else 2651 LFS_SET_UINO(ip, IN_MODIFIED); 2652 } 2653 cv_broadcast(&vp->v_cv); 2654 mutex_exit(&lfs_lock); 2655 mutex_exit(vp->v_interlock); 2656 } 2657 2658 /* Fix up the cluster buffer, and release it */ 2659 if (cl->flags & LFS_CL_MALLOC) 2660 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2661 putiobuf(bp); 2662 2663 /* Note i/o done */ 2664 if (cl->flags & LFS_CL_SYNC) { 2665 if (--cl->seg->seg_iocount == 0) 2666 wakeup(&cl->seg->seg_iocount); 2667 } 2668 mutex_enter(&lfs_lock); 2669 KASSERTMSG((fs->lfs_iocount != 0), 2670 "lfs_cluster_aiodone: zero iocount"); 2671 if (--fs->lfs_iocount <= 1) 2672 wakeup(&fs->lfs_iocount); 2673 mutex_exit(&lfs_lock); 2674 2675 KERNEL_UNLOCK_ONE(curlwp); 2676 2677 pool_put(&fs->lfs_bpppool, cl->bpp); 2678 cl->bpp = NULL; 2679 pool_put(&fs->lfs_clpool, cl); 2680 } 2681 2682 /* 2683 * Shellsort (diminishing increment sort) from Data Structures and 2684 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2685 * see also Knuth Vol. 3, page 84. The increments are selected from 2686 * formula (8), page 95. Roughly O(N^3/2). 2687 */ 2688 /* 2689 * This is our own private copy of shellsort because we want to sort 2690 * two parallel arrays (the array of buffer pointers and the array of 2691 * logical block numbers) simultaneously. Note that we cast the array 2692 * of logical block numbers to a unsigned in this routine so that the 2693 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2694 */ 2695 2696 static void 2697 lfs_shellsort(struct lfs *fs, 2698 struct buf **bp_array, union lfs_blocks *lb_array, 2699 int nmemb, int size) 2700 { 2701 static int __rsshell_increments[] = { 4, 1, 0 }; 2702 int incr, *incrp, t1, t2; 2703 struct buf *bp_temp; 2704 2705 #ifdef DEBUG 2706 incr = 0; 2707 for (t1 = 0; t1 < nmemb; t1++) { 2708 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2709 if (lfs_blocks_get(fs, lb_array, incr++) != bp_array[t1]->b_lblkno + t2) { 2710 /* dump before panic */ 2711 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2712 nmemb, size); 2713 incr = 0; 2714 for (t1 = 0; t1 < nmemb; t1++) { 2715 const struct buf *bp = bp_array[t1]; 2716 2717 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2718 PRIu64 "\n", t1, 2719 (uint64_t)bp->b_bcount, 2720 (uint64_t)bp->b_lblkno); 2721 printf("lbns:"); 2722 for (t2 = 0; t2 * size < bp->b_bcount; 2723 t2++) { 2724 printf(" %jd", 2725 (intmax_t)lfs_blocks_get(fs, lb_array, incr++)); 2726 } 2727 printf("\n"); 2728 } 2729 panic("lfs_shellsort: inconsistent input"); 2730 } 2731 } 2732 } 2733 #endif 2734 2735 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2736 for (t1 = incr; t1 < nmemb; ++t1) 2737 for (t2 = t1 - incr; t2 >= 0;) 2738 if ((u_int64_t)bp_array[t2]->b_lblkno > 2739 (u_int64_t)bp_array[t2 + incr]->b_lblkno) { 2740 bp_temp = bp_array[t2]; 2741 bp_array[t2] = bp_array[t2 + incr]; 2742 bp_array[t2 + incr] = bp_temp; 2743 t2 -= incr; 2744 } else 2745 break; 2746 2747 /* Reform the list of logical blocks */ 2748 incr = 0; 2749 for (t1 = 0; t1 < nmemb; t1++) { 2750 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2751 lfs_blocks_set(fs, lb_array, incr++, 2752 bp_array[t1]->b_lblkno + t2); 2753 } 2754 } 2755 } 2756 2757 /* 2758 * Set up an FINFO entry for a new file. The fip pointer is assumed to 2759 * point at uninitialized space. 2760 */ 2761 void 2762 lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers) 2763 { 2764 struct segment *sp = fs->lfs_sp; 2765 SEGSUM *ssp; 2766 2767 KASSERT(vers > 0); 2768 2769 if (sp->seg_bytes_left < lfs_sb_getbsize(fs) || 2770 sp->sum_bytes_left < FINFOSIZE(fs) + LFS_BLKPTRSIZE(fs)) 2771 (void) lfs_writeseg(fs, fs->lfs_sp); 2772 2773 sp->sum_bytes_left -= FINFOSIZE(fs); 2774 ssp = (SEGSUM *)sp->segsum; 2775 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) + 1); 2776 lfs_fi_setnblocks(fs, sp->fip, 0); 2777 lfs_fi_setino(fs, sp->fip, ino); 2778 lfs_fi_setversion(fs, sp->fip, vers); 2779 } 2780 2781 /* 2782 * Release the FINFO entry, either clearing out an unused entry or 2783 * advancing us to the next available entry. 2784 */ 2785 void 2786 lfs_release_finfo(struct lfs *fs) 2787 { 2788 struct segment *sp = fs->lfs_sp; 2789 SEGSUM *ssp; 2790 2791 if (lfs_fi_getnblocks(fs, sp->fip) != 0) { 2792 sp->fip = NEXT_FINFO(fs, sp->fip); 2793 lfs_blocks_fromfinfo(fs, &sp->start_lbp, sp->fip); 2794 } else { 2795 /* XXX shouldn't this update sp->fip? */ 2796 sp->sum_bytes_left += FINFOSIZE(fs); 2797 ssp = (SEGSUM *)sp->segsum; 2798 lfs_ss_setnfinfo(fs, ssp, lfs_ss_getnfinfo(fs, ssp) - 1); 2799 } 2800 } 2801