1 /* $NetBSD: lfs_segment.c,v 1.126 2003/07/02 13:43:03 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 /* 39 * Copyright (c) 1991, 1993 40 * The Regents of the University of California. All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by the University of 53 * California, Berkeley and its contributors. 54 * 4. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.126 2003/07/02 13:43:03 yamt Exp $"); 75 76 #define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str)) 77 78 #if defined(_KERNEL_OPT) 79 #include "opt_ddb.h" 80 #endif 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/namei.h> 85 #include <sys/kernel.h> 86 #include <sys/resourcevar.h> 87 #include <sys/file.h> 88 #include <sys/stat.h> 89 #include <sys/buf.h> 90 #include <sys/proc.h> 91 #include <sys/vnode.h> 92 #include <sys/mount.h> 93 94 #include <miscfs/specfs/specdev.h> 95 #include <miscfs/fifofs/fifo.h> 96 97 #include <ufs/ufs/inode.h> 98 #include <ufs/ufs/dir.h> 99 #include <ufs/ufs/ufsmount.h> 100 #include <ufs/ufs/ufs_extern.h> 101 102 #include <ufs/lfs/lfs.h> 103 #include <ufs/lfs/lfs_extern.h> 104 105 #include <uvm/uvm.h> 106 #include <uvm/uvm_extern.h> 107 108 MALLOC_DEFINE(M_SEGMENT, "LFS segment", "Segment for LFS"); 109 110 extern int count_lock_queue(void); 111 extern struct simplelock vnode_free_list_slock; /* XXX */ 112 113 static void lfs_generic_callback(struct buf *, void (*)(struct buf *)); 114 static void lfs_super_aiodone(struct buf *); 115 static void lfs_cluster_aiodone(struct buf *); 116 static void lfs_cluster_callback(struct buf *); 117 118 /* 119 * Determine if it's OK to start a partial in this segment, or if we need 120 * to go on to a new segment. 121 */ 122 #define LFS_PARTIAL_FITS(fs) \ 123 ((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \ 124 fragstofsb((fs), (fs)->lfs_frag)) 125 126 void lfs_callback(struct buf *); 127 int lfs_gather(struct lfs *, struct segment *, 128 struct vnode *, int (*)(struct lfs *, struct buf *)); 129 int lfs_gatherblock(struct segment *, struct buf *, int *); 130 void lfs_iset(struct inode *, daddr_t, time_t); 131 int lfs_match_fake(struct lfs *, struct buf *); 132 int lfs_match_data(struct lfs *, struct buf *); 133 int lfs_match_dindir(struct lfs *, struct buf *); 134 int lfs_match_indir(struct lfs *, struct buf *); 135 int lfs_match_tindir(struct lfs *, struct buf *); 136 void lfs_newseg(struct lfs *); 137 /* XXX ondisk32 */ 138 void lfs_shellsort(struct buf **, int32_t *, int, int); 139 void lfs_supercallback(struct buf *); 140 void lfs_updatemeta(struct segment *); 141 int lfs_vref(struct vnode *); 142 void lfs_vunref(struct vnode *); 143 void lfs_writefile(struct lfs *, struct segment *, struct vnode *); 144 int lfs_writeinode(struct lfs *, struct segment *, struct inode *); 145 int lfs_writeseg(struct lfs *, struct segment *); 146 void lfs_writesuper(struct lfs *, daddr_t); 147 int lfs_writevnodes(struct lfs *fs, struct mount *mp, 148 struct segment *sp, int dirops); 149 150 int lfs_allclean_wakeup; /* Cleaner wakeup address. */ 151 int lfs_writeindir = 1; /* whether to flush indir on non-ckp */ 152 int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */ 153 int lfs_dirvcount = 0; /* # active dirops */ 154 155 /* Statistics Counters */ 156 int lfs_dostats = 1; 157 struct lfs_stats lfs_stats; 158 159 extern int locked_queue_count; 160 extern long locked_queue_bytes; 161 162 /* op values to lfs_writevnodes */ 163 #define VN_REG 0 164 #define VN_DIROP 1 165 #define VN_EMPTY 2 166 #define VN_CLEAN 3 167 168 #define LFS_MAX_ACTIVE 10 169 170 /* 171 * XXX KS - Set modification time on the Ifile, so the cleaner can 172 * read the fs mod time off of it. We don't set IN_UPDATE here, 173 * since we don't really need this to be flushed to disk (and in any 174 * case that wouldn't happen to the Ifile until we checkpoint). 175 */ 176 void 177 lfs_imtime(struct lfs *fs) 178 { 179 struct timespec ts; 180 struct inode *ip; 181 182 TIMEVAL_TO_TIMESPEC(&time, &ts); 183 ip = VTOI(fs->lfs_ivnode); 184 ip->i_ffs1_mtime = ts.tv_sec; 185 ip->i_ffs1_mtimensec = ts.tv_nsec; 186 } 187 188 /* 189 * Ifile and meta data blocks are not marked busy, so segment writes MUST be 190 * single threaded. Currently, there are two paths into lfs_segwrite, sync() 191 * and getnewbuf(). They both mark the file system busy. Lfs_vflush() 192 * explicitly marks the file system busy. So lfs_segwrite is safe. I think. 193 */ 194 195 #define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp) 196 #define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp)) 197 #define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL 198 199 int 200 lfs_vflush(struct vnode *vp) 201 { 202 struct inode *ip; 203 struct lfs *fs; 204 struct segment *sp; 205 struct buf *bp, *nbp, *tbp, *tnbp; 206 int error, s; 207 int flushed; 208 #if 0 209 int redo; 210 #endif 211 212 ip = VTOI(vp); 213 fs = VFSTOUFS(vp->v_mount)->um_lfs; 214 215 if (ip->i_flag & IN_CLEANING) { 216 #ifdef DEBUG_LFS 217 ivndebug(vp,"vflush/in_cleaning"); 218 #endif 219 LFS_CLR_UINO(ip, IN_CLEANING); 220 LFS_SET_UINO(ip, IN_MODIFIED); 221 222 /* 223 * Toss any cleaning buffers that have real counterparts 224 * to avoid losing new data. 225 */ 226 s = splbio(); 227 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 228 nbp = LIST_NEXT(bp, b_vnbufs); 229 if (!LFS_IS_MALLOC_BUF(bp)) 230 continue; 231 /* 232 * Look for pages matching the range covered 233 * by cleaning blocks. It's okay if more dirty 234 * pages appear, so long as none disappear out 235 * from under us. 236 */ 237 if (bp->b_lblkno > 0 && vp->v_type == VREG && 238 vp != fs->lfs_ivnode) { 239 struct vm_page *pg; 240 voff_t off; 241 242 simple_lock(&vp->v_interlock); 243 for (off = lblktosize(fs, bp->b_lblkno); 244 off < lblktosize(fs, bp->b_lblkno + 1); 245 off += PAGE_SIZE) { 246 pg = uvm_pagelookup(&vp->v_uobj, off); 247 if (pg == NULL) 248 continue; 249 if ((pg->flags & PG_CLEAN) == 0 || 250 pmap_is_modified(pg)) { 251 fs->lfs_avail += btofsb(fs, 252 bp->b_bcount); 253 wakeup(&fs->lfs_avail); 254 lfs_freebuf(fs, bp); 255 bp = NULL; 256 goto nextbp; 257 } 258 } 259 simple_unlock(&vp->v_interlock); 260 } 261 for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp; 262 tbp = tnbp) 263 { 264 tnbp = LIST_NEXT(tbp, b_vnbufs); 265 if (tbp->b_vp == bp->b_vp 266 && tbp->b_lblkno == bp->b_lblkno 267 && tbp != bp) 268 { 269 fs->lfs_avail += btofsb(fs, 270 bp->b_bcount); 271 wakeup(&fs->lfs_avail); 272 lfs_freebuf(fs, bp); 273 bp = NULL; 274 break; 275 } 276 } 277 nextbp: 278 ; 279 } 280 splx(s); 281 } 282 283 /* If the node is being written, wait until that is done */ 284 s = splbio(); 285 if (WRITEINPROG(vp)) { 286 #ifdef DEBUG_LFS 287 ivndebug(vp,"vflush/writeinprog"); 288 #endif 289 tsleep(vp, PRIBIO+1, "lfs_vw", 0); 290 } 291 splx(s); 292 293 /* Protect against VXLOCK deadlock in vinvalbuf() */ 294 lfs_seglock(fs, SEGM_SYNC); 295 296 /* If we're supposed to flush a freed inode, just toss it */ 297 /* XXX - seglock, so these buffers can't be gathered, right? */ 298 if (ip->i_mode == 0) { 299 printf("lfs_vflush: ino %d is freed, not flushing\n", 300 ip->i_number); 301 s = splbio(); 302 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 303 nbp = LIST_NEXT(bp, b_vnbufs); 304 if (bp->b_flags & B_DELWRI) { /* XXX always true? */ 305 fs->lfs_avail += btofsb(fs, bp->b_bcount); 306 wakeup(&fs->lfs_avail); 307 } 308 /* Copied from lfs_writeseg */ 309 if (bp->b_flags & B_CALL) { 310 biodone(bp); 311 } else { 312 bremfree(bp); 313 LFS_UNLOCK_BUF(bp); 314 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | 315 B_GATHERED); 316 bp->b_flags |= B_DONE; 317 reassignbuf(bp, vp); 318 brelse(bp); 319 } 320 } 321 splx(s); 322 LFS_CLR_UINO(ip, IN_CLEANING); 323 LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED); 324 ip->i_flag &= ~IN_ALLMOD; 325 printf("lfs_vflush: done not flushing ino %d\n", 326 ip->i_number); 327 lfs_segunlock(fs); 328 return 0; 329 } 330 331 SET_FLUSHING(fs,vp); 332 if (fs->lfs_nactive > LFS_MAX_ACTIVE || 333 (fs->lfs_sp->seg_flags & SEGM_CKP)) { 334 error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC); 335 CLR_FLUSHING(fs,vp); 336 lfs_segunlock(fs); 337 return error; 338 } 339 sp = fs->lfs_sp; 340 341 flushed = 0; 342 if (VPISEMPTY(vp)) { 343 lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY); 344 ++flushed; 345 } else if ((ip->i_flag & IN_CLEANING) && 346 (fs->lfs_sp->seg_flags & SEGM_CLEAN)) { 347 #ifdef DEBUG_LFS 348 ivndebug(vp,"vflush/clean"); 349 #endif 350 lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN); 351 ++flushed; 352 } else if (lfs_dostats) { 353 if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD)) 354 ++lfs_stats.vflush_invoked; 355 #ifdef DEBUG_LFS 356 ivndebug(vp,"vflush"); 357 #endif 358 } 359 360 #ifdef DIAGNOSTIC 361 /* XXX KS This actually can happen right now, though it shouldn't(?) */ 362 if (vp->v_flag & VDIROP) { 363 printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n"); 364 /* panic("VDIROP being flushed...this can\'t happen"); */ 365 } 366 if (vp->v_usecount < 0) { 367 printf("usecount=%ld\n", (long)vp->v_usecount); 368 panic("lfs_vflush: usecount<0"); 369 } 370 #endif 371 372 #if 1 373 do { 374 do { 375 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 376 lfs_writefile(fs, sp, vp); 377 } while (lfs_writeinode(fs, sp, ip)); 378 } while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM); 379 #else 380 if (flushed && vp != fs->lfs_ivnode) 381 lfs_writeseg(fs, sp); 382 else do { 383 fs->lfs_flags &= ~LFS_IFDIRTY; 384 lfs_writefile(fs, sp, vp); 385 redo = lfs_writeinode(fs, sp, ip); 386 redo += lfs_writeseg(fs, sp); 387 redo += (fs->lfs_flags & LFS_IFDIRTY); 388 } while (redo && vp == fs->lfs_ivnode); 389 #endif 390 if (lfs_dostats) { 391 ++lfs_stats.nwrites; 392 if (sp->seg_flags & SEGM_SYNC) 393 ++lfs_stats.nsync_writes; 394 if (sp->seg_flags & SEGM_CKP) 395 ++lfs_stats.ncheckpoints; 396 } 397 /* 398 * If we were called from somewhere that has already held the seglock 399 * (e.g., lfs_markv()), the lfs_segunlock will not wait for 400 * the write to complete because we are still locked. 401 * Since lfs_vflush() must return the vnode with no dirty buffers, 402 * we must explicitly wait, if that is the case. 403 * 404 * We compare the iocount against 1, not 0, because it is 405 * artificially incremented by lfs_seglock(). 406 */ 407 simple_lock(&fs->lfs_interlock); 408 if (fs->lfs_seglock > 1) { 409 simple_unlock(&fs->lfs_interlock); 410 while (fs->lfs_iocount > 1) 411 (void)tsleep(&fs->lfs_iocount, PRIBIO + 1, 412 "lfs_vflush", 0); 413 } else 414 simple_unlock(&fs->lfs_interlock); 415 416 lfs_segunlock(fs); 417 418 /* Wait for these buffers to be recovered by aiodoned */ 419 s = splbio(); 420 simple_lock(&global_v_numoutput_slock); 421 while (vp->v_numoutput > 0) { 422 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vf2", 0, 423 &global_v_numoutput_slock); 424 } 425 simple_unlock(&global_v_numoutput_slock); 426 splx(s); 427 428 CLR_FLUSHING(fs,vp); 429 return (0); 430 } 431 432 #ifdef DEBUG_LFS_VERBOSE 433 # define vndebug(vp,str) if (VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op) 434 #else 435 # define vndebug(vp,str) 436 #endif 437 438 int 439 lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op) 440 { 441 struct inode *ip; 442 struct vnode *vp, *nvp; 443 int inodes_written = 0, only_cleaning; 444 445 #ifndef LFS_NO_BACKVP_HACK 446 /* BEGIN HACK */ 447 #define VN_OFFSET (((caddr_t)&LIST_NEXT(vp, v_mntvnodes)) - (caddr_t)vp) 448 #define BACK_VP(VP) ((struct vnode *)(((caddr_t)(VP)->v_mntvnodes.le_prev) - VN_OFFSET)) 449 #define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&(LIST_FIRST(&mp->mnt_vnodelist))) - VN_OFFSET)) 450 451 /* Find last vnode. */ 452 loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); 453 vp && LIST_NEXT(vp, v_mntvnodes) != NULL; 454 vp = LIST_NEXT(vp, v_mntvnodes)); 455 for (; vp && vp != BEG_OF_VLIST; vp = nvp) { 456 nvp = BACK_VP(vp); 457 #else 458 loop: 459 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { 460 nvp = LIST_NEXT(vp, v_mntvnodes); 461 #endif 462 /* 463 * If the vnode that we are about to sync is no longer 464 * associated with this mount point, start over. 465 */ 466 if (vp->v_mount != mp) { 467 printf("lfs_writevnodes: starting over\n"); 468 /* 469 * After this, pages might be busy 470 * due to our own previous putpages. 471 * Start actual segment write here to avoid deadlock. 472 */ 473 (void)lfs_writeseg(fs, sp); 474 goto loop; 475 } 476 477 if (vp->v_type == VNON) { 478 continue; 479 } 480 481 ip = VTOI(vp); 482 if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) || 483 (op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) { 484 vndebug(vp,"dirop"); 485 continue; 486 } 487 488 if (op == VN_EMPTY && !VPISEMPTY(vp)) { 489 vndebug(vp,"empty"); 490 continue; 491 } 492 493 if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM 494 && vp != fs->lfs_flushvp 495 && !(ip->i_flag & IN_CLEANING)) { 496 vndebug(vp,"cleaning"); 497 continue; 498 } 499 500 if (lfs_vref(vp)) { 501 vndebug(vp,"vref"); 502 continue; 503 } 504 505 only_cleaning = 0; 506 /* 507 * Write the inode/file if dirty and it's not the IFILE. 508 */ 509 if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) { 510 only_cleaning = ((ip->i_flag & IN_ALLMOD) == IN_CLEANING); 511 512 if (ip->i_number != LFS_IFILE_INUM) 513 lfs_writefile(fs, sp, vp); 514 if (!VPISEMPTY(vp)) { 515 if (WRITEINPROG(vp)) { 516 #ifdef DEBUG_LFS 517 ivndebug(vp,"writevnodes/write2"); 518 #endif 519 } else if (!(ip->i_flag & IN_ALLMOD)) { 520 #ifdef DEBUG_LFS 521 printf("<%d>",ip->i_number); 522 #endif 523 LFS_SET_UINO(ip, IN_MODIFIED); 524 } 525 } 526 (void) lfs_writeinode(fs, sp, ip); 527 inodes_written++; 528 } 529 530 if (lfs_clean_vnhead && only_cleaning) 531 lfs_vunref_head(vp); 532 else 533 lfs_vunref(vp); 534 } 535 return inodes_written; 536 } 537 538 /* 539 * Do a checkpoint. 540 */ 541 int 542 lfs_segwrite(struct mount *mp, int flags) 543 { 544 struct buf *bp; 545 struct inode *ip; 546 struct lfs *fs; 547 struct segment *sp; 548 struct vnode *vp; 549 SEGUSE *segusep; 550 int do_ckp, did_ckp, error, s; 551 unsigned n, segleft, maxseg, sn, i, curseg; 552 int writer_set = 0; 553 int dirty; 554 int redo; 555 556 fs = VFSTOUFS(mp)->um_lfs; 557 558 if (fs->lfs_ronly) 559 return EROFS; 560 561 lfs_imtime(fs); 562 563 /* 564 * Allocate a segment structure and enough space to hold pointers to 565 * the maximum possible number of buffers which can be described in a 566 * single summary block. 567 */ 568 do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE; 569 lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0)); 570 sp = fs->lfs_sp; 571 572 /* 573 * If lfs_flushvp is non-NULL, we are called from lfs_vflush, 574 * in which case we have to flush *all* buffers off of this vnode. 575 * We don't care about other nodes, but write any non-dirop nodes 576 * anyway in anticipation of another getnewvnode(). 577 * 578 * If we're cleaning we only write cleaning and ifile blocks, and 579 * no dirops, since otherwise we'd risk corruption in a crash. 580 */ 581 if (sp->seg_flags & SEGM_CLEAN) 582 lfs_writevnodes(fs, mp, sp, VN_CLEAN); 583 else if (!(sp->seg_flags & SEGM_FORCE_CKP)) { 584 lfs_writevnodes(fs, mp, sp, VN_REG); 585 if (!fs->lfs_dirops || !fs->lfs_flushvp) { 586 error = lfs_writer_enter(fs, "lfs writer"); 587 if (error) { 588 printf("segwrite mysterious error\n"); 589 /* XXX why not segunlock? */ 590 pool_put(&fs->lfs_bpppool, sp->bpp); 591 sp->bpp = NULL; 592 pool_put(&fs->lfs_segpool, sp); 593 sp = fs->lfs_sp = NULL; 594 return (error); 595 } 596 writer_set = 1; 597 lfs_writevnodes(fs, mp, sp, VN_DIROP); 598 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); 599 } 600 } 601 602 /* 603 * If we are doing a checkpoint, mark everything since the 604 * last checkpoint as no longer ACTIVE. 605 */ 606 if (do_ckp) { 607 segleft = fs->lfs_nseg; 608 curseg = 0; 609 for (n = 0; n < fs->lfs_segtabsz; n++) { 610 dirty = 0; 611 if (bread(fs->lfs_ivnode, 612 fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp)) 613 614 panic("lfs_segwrite: ifile read"); 615 segusep = (SEGUSE *)bp->b_data; 616 maxseg = min(segleft, fs->lfs_sepb); 617 for (i = 0; i < maxseg; i++) { 618 sn = curseg + i; 619 if (sn != fs->lfs_curseg && 620 segusep->su_flags & SEGUSE_ACTIVE) { 621 segusep->su_flags &= ~SEGUSE_ACTIVE; 622 --fs->lfs_nactive; 623 ++dirty; 624 } 625 fs->lfs_suflags[fs->lfs_activesb][sn] = 626 segusep->su_flags; 627 if (fs->lfs_version > 1) 628 ++segusep; 629 else 630 segusep = (SEGUSE *) 631 ((SEGUSE_V1 *)segusep + 1); 632 } 633 634 if (dirty) 635 error = LFS_BWRITE_LOG(bp); /* Ifile */ 636 else 637 brelse(bp); 638 segleft -= fs->lfs_sepb; 639 curseg += fs->lfs_sepb; 640 } 641 } 642 643 did_ckp = 0; 644 if (do_ckp || fs->lfs_doifile) { 645 do { 646 vp = fs->lfs_ivnode; 647 648 #ifdef DEBUG 649 LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0); 650 #endif 651 fs->lfs_flags &= ~LFS_IFDIRTY; 652 653 ip = VTOI(vp); 654 655 if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) 656 lfs_writefile(fs, sp, vp); 657 658 if (ip->i_flag & IN_ALLMOD) 659 ++did_ckp; 660 redo = lfs_writeinode(fs, sp, ip); 661 redo += lfs_writeseg(fs, sp); 662 redo += (fs->lfs_flags & LFS_IFDIRTY); 663 } while (redo && do_ckp); 664 665 /* 666 * Unless we are unmounting, the Ifile may continue to have 667 * dirty blocks even after a checkpoint, due to changes to 668 * inodes' atime. If we're checkpointing, it's "impossible" 669 * for other parts of the Ifile to be dirty after the loop 670 * above, since we hold the segment lock. 671 */ 672 s = splbio(); 673 if (LIST_EMPTY(&vp->v_dirtyblkhd)) { 674 LFS_CLR_UINO(ip, IN_ALLMOD); 675 } 676 #ifdef DIAGNOSTIC 677 else if (do_ckp) { 678 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 679 if (bp->b_lblkno < fs->lfs_cleansz + 680 fs->lfs_segtabsz && 681 !(bp->b_flags & B_GATHERED)) { 682 panic("dirty blocks"); 683 } 684 } 685 } 686 #endif 687 splx(s); 688 } else { 689 (void) lfs_writeseg(fs, sp); 690 } 691 692 /* Note Ifile no longer needs to be written */ 693 fs->lfs_doifile = 0; 694 if (writer_set) 695 lfs_writer_leave(fs); 696 697 /* 698 * If we didn't write the Ifile, we didn't really do anything. 699 * That means that (1) there is a checkpoint on disk and (2) 700 * nothing has changed since it was written. 701 * 702 * Take the flags off of the segment so that lfs_segunlock 703 * doesn't have to write the superblock either. 704 */ 705 if (do_ckp && !did_ckp) { 706 sp->seg_flags &= ~SEGM_CKP; 707 } 708 709 if (lfs_dostats) { 710 ++lfs_stats.nwrites; 711 if (sp->seg_flags & SEGM_SYNC) 712 ++lfs_stats.nsync_writes; 713 if (sp->seg_flags & SEGM_CKP) 714 ++lfs_stats.ncheckpoints; 715 } 716 lfs_segunlock(fs); 717 return (0); 718 } 719 720 /* 721 * Write the dirty blocks associated with a vnode. 722 */ 723 void 724 lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp) 725 { 726 struct buf *bp; 727 struct finfo *fip; 728 struct inode *ip; 729 IFILE *ifp; 730 int i, frag; 731 732 ip = VTOI(vp); 733 734 if (sp->seg_bytes_left < fs->lfs_bsize || 735 sp->sum_bytes_left < sizeof(struct finfo)) 736 (void) lfs_writeseg(fs, sp); 737 738 sp->sum_bytes_left -= FINFOSIZE; 739 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 740 741 if (vp->v_flag & VDIROP) 742 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); 743 744 fip = sp->fip; 745 fip->fi_nblocks = 0; 746 fip->fi_ino = ip->i_number; 747 LFS_IENTRY(ifp, fs, fip->fi_ino, bp); 748 fip->fi_version = ifp->if_version; 749 brelse(bp); 750 751 if (sp->seg_flags & SEGM_CLEAN) { 752 lfs_gather(fs, sp, vp, lfs_match_fake); 753 /* 754 * For a file being flushed, we need to write *all* blocks. 755 * This means writing the cleaning blocks first, and then 756 * immediately following with any non-cleaning blocks. 757 * The same is true of the Ifile since checkpoints assume 758 * that all valid Ifile blocks are written. 759 */ 760 if (IS_FLUSHING(fs,vp) || vp == fs->lfs_ivnode) { 761 lfs_gather(fs, sp, vp, lfs_match_data); 762 /* 763 * Don't call VOP_PUTPAGES: if we're flushing, 764 * we've already done it, and the Ifile doesn't 765 * use the page cache. 766 */ 767 } 768 } else { 769 lfs_gather(fs, sp, vp, lfs_match_data); 770 /* 771 * If we're flushing, we've already called VOP_PUTPAGES 772 * so don't do it again. Otherwise, we want to write 773 * everything we've got. 774 */ 775 if (!IS_FLUSHING(fs, vp)) { 776 simple_lock(&vp->v_interlock); 777 VOP_PUTPAGES(vp, 0, 0, 778 PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED); 779 } 780 } 781 782 /* 783 * It may not be necessary to write the meta-data blocks at this point, 784 * as the roll-forward recovery code should be able to reconstruct the 785 * list. 786 * 787 * We have to write them anyway, though, under two conditions: (1) the 788 * vnode is being flushed (for reuse by vinvalbuf); or (2) we are 789 * checkpointing. 790 * 791 * BUT if we are cleaning, we might have indirect blocks that refer to 792 * new blocks not being written yet, in addition to fragments being 793 * moved out of a cleaned segment. If that is the case, don't 794 * write the indirect blocks, or the finfo will have a small block 795 * in the middle of it! 796 * XXX in this case isn't the inode size wrong too? 797 */ 798 frag = 0; 799 if (sp->seg_flags & SEGM_CLEAN) { 800 for (i = 0; i < NDADDR; i++) 801 if (ip->i_lfs_fragsize[i] > 0 && 802 ip->i_lfs_fragsize[i] < fs->lfs_bsize) 803 ++frag; 804 } 805 #ifdef DIAGNOSTIC 806 if (frag > 1) 807 panic("lfs_writefile: more than one fragment!"); 808 #endif 809 if (IS_FLUSHING(fs, vp) || 810 (frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) { 811 lfs_gather(fs, sp, vp, lfs_match_indir); 812 lfs_gather(fs, sp, vp, lfs_match_dindir); 813 lfs_gather(fs, sp, vp, lfs_match_tindir); 814 } 815 fip = sp->fip; 816 if (fip->fi_nblocks != 0) { 817 sp->fip = (FINFO*)((caddr_t)fip + FINFOSIZE + 818 sizeof(int32_t) * (fip->fi_nblocks)); 819 sp->start_lbp = &sp->fip->fi_blocks[0]; 820 } else { 821 sp->sum_bytes_left += FINFOSIZE; 822 --((SEGSUM *)(sp->segsum))->ss_nfinfo; 823 } 824 } 825 826 int 827 lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip) 828 { 829 struct buf *bp, *ibp; 830 struct ufs1_dinode *cdp; 831 IFILE *ifp; 832 SEGUSE *sup; 833 daddr_t daddr; 834 int32_t *daddrp; /* XXX ondisk32 */ 835 ino_t ino; 836 int error, i, ndx, fsb = 0; 837 int redo_ifile = 0; 838 struct timespec ts; 839 int gotblk = 0; 840 841 if (!(ip->i_flag & IN_ALLMOD)) 842 return (0); 843 844 /* Allocate a new inode block if necessary. */ 845 if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) && sp->ibp == NULL) { 846 /* Allocate a new segment if necessary. */ 847 if (sp->seg_bytes_left < fs->lfs_ibsize || 848 sp->sum_bytes_left < sizeof(int32_t)) 849 (void) lfs_writeseg(fs, sp); 850 851 /* Get next inode block. */ 852 daddr = fs->lfs_offset; 853 fs->lfs_offset += btofsb(fs, fs->lfs_ibsize); 854 sp->ibp = *sp->cbpp++ = 855 getblk(VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), 856 fs->lfs_ibsize, 0, 0); 857 gotblk++; 858 859 /* Zero out inode numbers */ 860 for (i = 0; i < INOPB(fs); ++i) 861 ((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber = 0; 862 863 ++sp->start_bpp; 864 fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize); 865 /* Set remaining space counters. */ 866 sp->seg_bytes_left -= fs->lfs_ibsize; 867 sp->sum_bytes_left -= sizeof(int32_t); 868 ndx = fs->lfs_sumsize / sizeof(int32_t) - 869 sp->ninodes / INOPB(fs) - 1; 870 ((int32_t *)(sp->segsum))[ndx] = daddr; 871 } 872 873 /* Update the inode times and copy the inode onto the inode page. */ 874 TIMEVAL_TO_TIMESPEC(&time, &ts); 875 /* XXX kludge --- don't redirty the ifile just to put times on it */ 876 if (ip->i_number != LFS_IFILE_INUM) 877 LFS_ITIMES(ip, &ts, &ts, &ts); 878 879 /* 880 * If this is the Ifile, and we've already written the Ifile in this 881 * partial segment, just overwrite it (it's not on disk yet) and 882 * continue. 883 * 884 * XXX we know that the bp that we get the second time around has 885 * already been gathered. 886 */ 887 if (ip->i_number == LFS_IFILE_INUM && sp->idp) { 888 *(sp->idp) = *ip->i_din.ffs1_din; 889 ip->i_lfs_osize = ip->i_size; 890 return 0; 891 } 892 893 bp = sp->ibp; 894 cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs)); 895 *cdp = *ip->i_din.ffs1_din; 896 #ifdef LFS_IFILE_FRAG_ADDRESSING 897 if (fs->lfs_version > 1) 898 fsb = (sp->ninodes % INOPB(fs)) / INOPF(fs); 899 #endif 900 901 /* 902 * If we are cleaning, ensure that we don't write UNWRITTEN disk 903 * addresses to disk; possibly revert the inode size. 904 * XXX By not writing these blocks, we are making the lfs_avail 905 * XXX count on disk wrong by the same amount. We should be 906 * XXX able to "borrow" from lfs_avail and return it after the 907 * XXX Ifile is written. See also in lfs_writeseg. 908 */ 909 if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) { 910 cdp->di_size = ip->i_lfs_osize; 911 #ifdef DEBUG_LFS 912 printf("lfs_writeinode: cleansing ino %d (%d != %d)\n", 913 ip->i_number, ip->i_lfs_effnblks, ip->i_ffs1_blocks); 914 #endif 915 for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR; 916 daddrp++) { 917 if (*daddrp == UNWRITTEN) { 918 #ifdef DEBUG_LFS 919 printf("lfs_writeinode: wiping UNWRITTEN\n"); 920 #endif 921 *daddrp = 0; 922 } 923 } 924 } else { 925 /* If all blocks are goig to disk, update the "size on disk" */ 926 ip->i_lfs_osize = ip->i_size; 927 } 928 929 if (ip->i_flag & IN_CLEANING) 930 LFS_CLR_UINO(ip, IN_CLEANING); 931 else { 932 /* XXX IN_ALLMOD */ 933 LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE | 934 IN_UPDATE); 935 if (ip->i_lfs_effnblks == ip->i_ffs1_blocks) 936 LFS_CLR_UINO(ip, IN_MODIFIED); 937 #ifdef DEBUG_LFS 938 else 939 printf("lfs_writeinode: ino %d: real blks=%d, " 940 "eff=%d\n", ip->i_number, ip->i_ffs1_blocks, 941 ip->i_lfs_effnblks); 942 #endif 943 } 944 945 if (ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */ 946 sp->idp = ((struct ufs1_dinode *)bp->b_data) + 947 (sp->ninodes % INOPB(fs)); 948 if (gotblk) { 949 LFS_LOCK_BUF(bp); 950 brelse(bp); 951 } 952 953 /* Increment inode count in segment summary block. */ 954 ++((SEGSUM *)(sp->segsum))->ss_ninos; 955 956 /* If this page is full, set flag to allocate a new page. */ 957 if (++sp->ninodes % INOPB(fs) == 0) 958 sp->ibp = NULL; 959 960 /* 961 * If updating the ifile, update the super-block. Update the disk 962 * address and access times for this inode in the ifile. 963 */ 964 ino = ip->i_number; 965 if (ino == LFS_IFILE_INUM) { 966 daddr = fs->lfs_idaddr; 967 fs->lfs_idaddr = dbtofsb(fs, bp->b_blkno); 968 } else { 969 LFS_IENTRY(ifp, fs, ino, ibp); 970 daddr = ifp->if_daddr; 971 ifp->if_daddr = dbtofsb(fs, bp->b_blkno) + fsb; 972 #ifdef LFS_DEBUG_NEXTFREE 973 if (ino > 3 && ifp->if_nextfree) { 974 vprint("lfs_writeinode",ITOV(ip)); 975 printf("lfs_writeinode: updating free ino %d\n", 976 ip->i_number); 977 } 978 #endif 979 error = LFS_BWRITE_LOG(ibp); /* Ifile */ 980 } 981 982 /* 983 * The inode's last address should not be in the current partial 984 * segment, except under exceptional circumstances (lfs_writevnodes 985 * had to start over, and in the meantime more blocks were written 986 * to a vnode). Both inodes will be accounted to this segment 987 * in lfs_writeseg so we need to subtract the earlier version 988 * here anyway. The segment count can temporarily dip below 989 * zero here; keep track of how many duplicates we have in 990 * "dupino" so we don't panic below. 991 */ 992 if (daddr >= fs->lfs_lastpseg && daddr <= dbtofsb(fs, bp->b_blkno)) { 993 ++sp->ndupino; 994 printf("lfs_writeinode: last inode addr in current pseg " 995 "(ino %d daddr 0x%llx) ndupino=%d\n", ino, 996 (long long)daddr, sp->ndupino); 997 } 998 /* 999 * Account the inode: it no longer belongs to its former segment, 1000 * though it will not belong to the new segment until that segment 1001 * is actually written. 1002 */ 1003 if (daddr != LFS_UNUSED_DADDR) { 1004 u_int32_t oldsn = dtosn(fs, daddr); 1005 #ifdef DIAGNOSTIC 1006 int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0; 1007 #endif 1008 LFS_SEGENTRY(sup, fs, oldsn, bp); 1009 #ifdef DIAGNOSTIC 1010 if (sup->su_nbytes + 1011 sizeof (struct ufs1_dinode) * ndupino 1012 < sizeof (struct ufs1_dinode)) { 1013 printf("lfs_writeinode: negative bytes " 1014 "(segment %" PRIu32 " short by %d, " 1015 "oldsn=%" PRIu32 ", cursn=%" PRIu32 1016 ", daddr=%" PRId64 ", su_nbytes=%u, " 1017 "ndupino=%d)\n", 1018 dtosn(fs, daddr), 1019 (int)sizeof (struct ufs1_dinode) * (1 - sp->ndupino) 1020 - sup->su_nbytes, 1021 oldsn, sp->seg_number, daddr, 1022 (unsigned int)sup->su_nbytes, 1023 sp->ndupino); 1024 panic("lfs_writeinode: negative bytes"); 1025 sup->su_nbytes = sizeof (struct ufs1_dinode); 1026 } 1027 #endif 1028 #ifdef DEBUG_SU_NBYTES 1029 printf("seg %d -= %d for ino %d inode\n", 1030 dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino); 1031 #endif 1032 sup->su_nbytes -= sizeof (struct ufs1_dinode); 1033 redo_ifile = 1034 (ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED)); 1035 if (redo_ifile) 1036 fs->lfs_flags |= LFS_IFDIRTY; 1037 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */ 1038 } 1039 return (redo_ifile); 1040 } 1041 1042 int 1043 lfs_gatherblock(struct segment *sp, struct buf *bp, int *sptr) 1044 { 1045 struct lfs *fs; 1046 int version; 1047 int j, blksinblk; 1048 1049 /* 1050 * If full, finish this segment. We may be doing I/O, so 1051 * release and reacquire the splbio(). 1052 */ 1053 #ifdef DIAGNOSTIC 1054 if (sp->vp == NULL) 1055 panic ("lfs_gatherblock: Null vp in segment"); 1056 #endif 1057 fs = sp->fs; 1058 blksinblk = howmany(bp->b_bcount, fs->lfs_bsize); 1059 if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk || 1060 sp->seg_bytes_left < bp->b_bcount) { 1061 if (sptr) 1062 splx(*sptr); 1063 lfs_updatemeta(sp); 1064 1065 version = sp->fip->fi_version; 1066 (void) lfs_writeseg(fs, sp); 1067 1068 sp->fip->fi_version = version; 1069 sp->fip->fi_ino = VTOI(sp->vp)->i_number; 1070 /* Add the current file to the segment summary. */ 1071 ++((SEGSUM *)(sp->segsum))->ss_nfinfo; 1072 sp->sum_bytes_left -= FINFOSIZE; 1073 1074 if (sptr) 1075 *sptr = splbio(); 1076 return (1); 1077 } 1078 1079 #ifdef DEBUG 1080 if (bp->b_flags & B_GATHERED) { 1081 printf("lfs_gatherblock: already gathered! Ino %d," 1082 " lbn %" PRId64 "\n", 1083 sp->fip->fi_ino, bp->b_lblkno); 1084 return (0); 1085 } 1086 #endif 1087 /* Insert into the buffer list, update the FINFO block. */ 1088 bp->b_flags |= B_GATHERED; 1089 1090 *sp->cbpp++ = bp; 1091 for (j = 0; j < blksinblk; j++) 1092 sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j; 1093 1094 sp->sum_bytes_left -= sizeof(int32_t) * blksinblk; 1095 sp->seg_bytes_left -= bp->b_bcount; 1096 return (0); 1097 } 1098 1099 int 1100 lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp, int (*match)(struct lfs *, struct buf *)) 1101 { 1102 struct buf *bp, *nbp; 1103 int s, count = 0; 1104 1105 sp->vp = vp; 1106 s = splbio(); 1107 1108 #ifndef LFS_NO_BACKBUF_HACK 1109 /* This is a hack to see if ordering the blocks in LFS makes a difference. */ 1110 # define BUF_OFFSET (((caddr_t)&LIST_NEXT(bp, b_vnbufs)) - (caddr_t)bp) 1111 # define BACK_BUF(BP) ((struct buf *)(((caddr_t)(BP)->b_vnbufs.le_prev) - BUF_OFFSET)) 1112 # define BEG_OF_LIST ((struct buf *)(((caddr_t)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET)) 1113 /* Find last buffer. */ 1114 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp && LIST_NEXT(bp, b_vnbufs) != NULL; 1115 bp = LIST_NEXT(bp, b_vnbufs)); 1116 for (; bp && bp != BEG_OF_LIST; bp = nbp) { 1117 nbp = BACK_BUF(bp); 1118 #else /* LFS_NO_BACKBUF_HACK */ 1119 loop: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 1120 nbp = LIST_NEXT(bp, b_vnbufs); 1121 #endif /* LFS_NO_BACKBUF_HACK */ 1122 if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp)) { 1123 #ifdef DEBUG_LFS 1124 if (vp == fs->lfs_ivnode && (bp->b_flags & (B_BUSY|B_GATHERED)) == B_BUSY) 1125 printf("(%" PRId64 ":%lx)", bp->b_lblkno, bp->b_flags); 1126 #endif 1127 continue; 1128 } 1129 if (vp->v_type == VBLK) { 1130 /* For block devices, just write the blocks. */ 1131 /* XXX Do we really need to even do this? */ 1132 #ifdef DEBUG_LFS 1133 if (count == 0) 1134 printf("BLK("); 1135 printf("."); 1136 #endif 1137 /* Get the block before bwrite, so we don't corrupt the free list */ 1138 bp->b_flags |= B_BUSY; 1139 bremfree(bp); 1140 bwrite(bp); 1141 } else { 1142 #ifdef DIAGNOSTIC 1143 # ifdef LFS_USE_B_INVAL 1144 if ((bp->b_flags & (B_CALL|B_INVAL)) == B_INVAL) { 1145 printf("lfs_gather: lbn %" PRId64 " is " 1146 "B_INVAL\n", bp->b_lblkno); 1147 VOP_PRINT(bp->b_vp); 1148 } 1149 # endif /* LFS_USE_B_INVAL */ 1150 if (!(bp->b_flags & B_DELWRI)) 1151 panic("lfs_gather: bp not B_DELWRI"); 1152 if (!(bp->b_flags & B_LOCKED)) { 1153 printf("lfs_gather: lbn %" PRId64 " blk " 1154 "%" PRId64 " not B_LOCKED\n", 1155 bp->b_lblkno, 1156 dbtofsb(fs, bp->b_blkno)); 1157 VOP_PRINT(bp->b_vp); 1158 panic("lfs_gather: bp not B_LOCKED"); 1159 } 1160 #endif 1161 if (lfs_gatherblock(sp, bp, &s)) { 1162 goto loop; 1163 } 1164 } 1165 count++; 1166 } 1167 splx(s); 1168 #ifdef DEBUG_LFS 1169 if (vp->v_type == VBLK && count) 1170 printf(")\n"); 1171 #endif 1172 lfs_updatemeta(sp); 1173 sp->vp = NULL; 1174 return count; 1175 } 1176 1177 #if DEBUG 1178 # define DEBUG_OOFF(n) do { \ 1179 if (ooff == 0) { \ 1180 printf("lfs_updatemeta[%d]: warning: writing " \ 1181 "ino %d lbn %" PRId64 " at 0x%" PRIx32 \ 1182 ", was 0x0 (or %" PRId64 ")\n", \ 1183 (n), ip->i_number, lbn, ndaddr, daddr); \ 1184 } \ 1185 } while (0) 1186 #else 1187 # define DEBUG_OOFF(n) 1188 #endif 1189 1190 /* 1191 * Change the given block's address to ndaddr, finding its previous 1192 * location using ufs_bmaparray(). 1193 * 1194 * Account for this change in the segment table. 1195 */ 1196 void 1197 lfs_update_single(struct lfs *fs, struct segment *sp, daddr_t lbn, 1198 int32_t ndaddr, int size) 1199 { 1200 SEGUSE *sup; 1201 struct buf *bp; 1202 struct indir a[NIADDR + 2], *ap; 1203 struct inode *ip; 1204 struct vnode *vp; 1205 daddr_t daddr, ooff; 1206 int num, error; 1207 int bb, osize, obb; 1208 1209 vp = sp->vp; 1210 ip = VTOI(vp); 1211 1212 error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL); 1213 if (error) 1214 panic("lfs_updatemeta: ufs_bmaparray returned %d", error); 1215 1216 KASSERT(daddr <= LFS_MAX_DADDR); 1217 if (daddr > 0) 1218 daddr = dbtofsb(fs, daddr); 1219 1220 bb = fragstofsb(fs, numfrags(fs, size)); 1221 switch (num) { 1222 case 0: 1223 ooff = ip->i_ffs1_db[lbn]; 1224 DEBUG_OOFF(0); 1225 if (ooff == UNWRITTEN) 1226 ip->i_ffs1_blocks += bb; 1227 else { 1228 /* possible fragment truncation or extension */ 1229 obb = btofsb(fs, ip->i_lfs_fragsize[lbn]); 1230 ip->i_ffs1_blocks += (bb - obb); 1231 } 1232 ip->i_ffs1_db[lbn] = ndaddr; 1233 break; 1234 case 1: 1235 ooff = ip->i_ffs1_ib[a[0].in_off]; 1236 DEBUG_OOFF(1); 1237 if (ooff == UNWRITTEN) 1238 ip->i_ffs1_blocks += bb; 1239 ip->i_ffs1_ib[a[0].in_off] = ndaddr; 1240 break; 1241 default: 1242 ap = &a[num - 1]; 1243 if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp)) 1244 panic("lfs_updatemeta: bread bno %" PRId64, 1245 ap->in_lbn); 1246 1247 /* XXX ondisk32 */ 1248 ooff = ((int32_t *)bp->b_data)[ap->in_off]; 1249 DEBUG_OOFF(num); 1250 if (ooff == UNWRITTEN) 1251 ip->i_ffs1_blocks += bb; 1252 /* XXX ondisk32 */ 1253 ((int32_t *)bp->b_data)[ap->in_off] = ndaddr; 1254 (void) VOP_BWRITE(bp); 1255 } 1256 1257 /* 1258 * Though we'd rather it couldn't, this *can* happen right now 1259 * if cleaning blocks and regular blocks coexist. 1260 */ 1261 /* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */ 1262 1263 /* 1264 * Update segment usage information, based on old size 1265 * and location. 1266 */ 1267 if (daddr > 0) { 1268 u_int32_t oldsn = dtosn(fs, daddr); 1269 #ifdef DIAGNOSTIC 1270 int ndupino = (sp->seg_number == oldsn) ? 1271 sp->ndupino : 0; 1272 #endif 1273 KASSERT(oldsn >= 0 && oldsn < fs->lfs_nseg); 1274 if (lbn >= 0 && lbn < NDADDR) 1275 osize = ip->i_lfs_fragsize[lbn]; 1276 else 1277 osize = fs->lfs_bsize; 1278 LFS_SEGENTRY(sup, fs, oldsn, bp); 1279 #ifdef DIAGNOSTIC 1280 if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino 1281 < osize) { 1282 printf("lfs_updatemeta: negative bytes " 1283 "(segment %" PRIu32 " short by %" PRId64 1284 ")\n", dtosn(fs, daddr), 1285 (int64_t)osize - 1286 (sizeof (struct ufs1_dinode) * sp->ndupino + 1287 sup->su_nbytes)); 1288 printf("lfs_updatemeta: ino %d, lbn %" PRId64 1289 ", addr = 0x%" PRIx64 "\n", 1290 VTOI(sp->vp)->i_number, lbn, daddr); 1291 printf("lfs_updatemeta: ndupino=%d\n", ndupino); 1292 panic("lfs_updatemeta: negative bytes"); 1293 sup->su_nbytes = osize - 1294 sizeof (struct ufs1_dinode) * sp->ndupino; 1295 } 1296 #endif 1297 #ifdef DEBUG_SU_NBYTES 1298 printf("seg %" PRIu32 " -= %d for ino %d lbn %" PRId64 1299 " db 0x%" PRIx64 "\n", 1300 dtosn(fs, daddr), osize, 1301 VTOI(sp->vp)->i_number, lbn, daddr); 1302 #endif 1303 sup->su_nbytes -= osize; 1304 if (!(bp->b_flags & B_GATHERED)) 1305 fs->lfs_flags |= LFS_IFDIRTY; 1306 LFS_WRITESEGENTRY(sup, fs, oldsn, bp); 1307 } 1308 /* 1309 * Now that this block has a new address, and its old 1310 * segment no longer owns it, we can forget about its 1311 * old size. 1312 */ 1313 if (lbn >= 0 && lbn < NDADDR) 1314 ip->i_lfs_fragsize[lbn] = size; 1315 } 1316 1317 /* 1318 * Update the metadata that points to the blocks listed in the FINFO 1319 * array. 1320 */ 1321 void 1322 lfs_updatemeta(struct segment *sp) 1323 { 1324 struct buf *sbp; 1325 struct lfs *fs; 1326 struct vnode *vp; 1327 daddr_t lbn; 1328 int i, nblocks, num; 1329 int bb; 1330 int bytesleft, size; 1331 1332 vp = sp->vp; 1333 nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp; 1334 KASSERT(nblocks >= 0); 1335 if (vp == NULL || nblocks == 0) 1336 return; 1337 1338 /* 1339 * This count may be high due to oversize blocks from lfs_gop_write. 1340 * Correct for this. (XXX we should be able to keep track of these.) 1341 */ 1342 fs = sp->fs; 1343 for (i = 0; i < nblocks; i++) { 1344 if (sp->start_bpp[i] == NULL) { 1345 printf("nblocks = %d, not %d\n", i, nblocks); 1346 nblocks = i; 1347 break; 1348 } 1349 num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize); 1350 KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1); 1351 nblocks -= num - 1; 1352 } 1353 1354 KASSERT(vp->v_type == VREG || 1355 nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp); 1356 KASSERT(nblocks == sp->cbpp - sp->start_bpp); 1357 1358 /* 1359 * Sort the blocks. 1360 * 1361 * We have to sort even if the blocks come from the 1362 * cleaner, because there might be other pending blocks on the 1363 * same inode...and if we don't sort, and there are fragments 1364 * present, blocks may be written in the wrong place. 1365 */ 1366 lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize); 1367 1368 /* 1369 * Record the length of the last block in case it's a fragment. 1370 * If there are indirect blocks present, they sort last. An 1371 * indirect block will be lfs_bsize and its presence indicates 1372 * that you cannot have fragments. 1373 * 1374 * XXX This last is a lie. A cleaned fragment can coexist with 1375 * XXX a later indirect block. This will continue to be 1376 * XXX true until lfs_markv is fixed to do everything with 1377 * XXX fake blocks (including fake inodes and fake indirect blocks). 1378 */ 1379 sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) & 1380 fs->lfs_bmask) + 1; 1381 1382 /* 1383 * Assign disk addresses, and update references to the logical 1384 * block and the segment usage information. 1385 */ 1386 for (i = nblocks; i--; ++sp->start_bpp) { 1387 sbp = *sp->start_bpp; 1388 lbn = *sp->start_lbp; 1389 KASSERT(sbp->b_lblkno == lbn); 1390 1391 sbp->b_blkno = fsbtodb(fs, fs->lfs_offset); 1392 1393 /* 1394 * If we write a frag in the wrong place, the cleaner won't 1395 * be able to correctly identify its size later, and the 1396 * segment will be uncleanable. (Even worse, it will assume 1397 * that the indirect block that actually ends the list 1398 * is of a smaller size!) 1399 */ 1400 if ((sbp->b_bcount & fs->lfs_bmask) && i != 0) 1401 panic("lfs_updatemeta: fragment is not last block"); 1402 1403 /* 1404 * For each subblock in this possibly oversized block, 1405 * update its address on disk. 1406 */ 1407 KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize); 1408 for (bytesleft = sbp->b_bcount; bytesleft > 0; 1409 bytesleft -= fs->lfs_bsize) { 1410 size = MIN(bytesleft, fs->lfs_bsize); 1411 bb = fragstofsb(fs, numfrags(fs, size)); 1412 lbn = *sp->start_lbp++; 1413 lfs_update_single(fs, sp, lbn, fs->lfs_offset, size); 1414 fs->lfs_offset += bb; 1415 } 1416 1417 } 1418 } 1419 1420 /* 1421 * Start a new segment. 1422 */ 1423 int 1424 lfs_initseg(struct lfs *fs) 1425 { 1426 struct segment *sp; 1427 SEGUSE *sup; 1428 SEGSUM *ssp; 1429 struct buf *bp, *sbp; 1430 int repeat; 1431 1432 sp = fs->lfs_sp; 1433 1434 repeat = 0; 1435 1436 /* Advance to the next segment. */ 1437 if (!LFS_PARTIAL_FITS(fs)) { 1438 /* lfs_avail eats the remaining space */ 1439 fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - 1440 fs->lfs_curseg); 1441 /* Wake up any cleaning procs waiting on this file system. */ 1442 wakeup(&lfs_allclean_wakeup); 1443 wakeup(&fs->lfs_nextseg); 1444 lfs_newseg(fs); 1445 repeat = 1; 1446 fs->lfs_offset = fs->lfs_curseg; 1447 1448 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1449 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg); 1450 1451 /* 1452 * If the segment contains a superblock, update the offset 1453 * and summary address to skip over it. 1454 */ 1455 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1456 if (sup->su_flags & SEGUSE_SUPERBLOCK) { 1457 fs->lfs_offset += btofsb(fs, LFS_SBPAD); 1458 sp->seg_bytes_left -= LFS_SBPAD; 1459 } 1460 brelse(bp); 1461 /* Segment zero could also contain the labelpad */ 1462 if (fs->lfs_version > 1 && sp->seg_number == 0 && 1463 fs->lfs_start < btofsb(fs, LFS_LABELPAD)) { 1464 fs->lfs_offset += btofsb(fs, LFS_LABELPAD) - fs->lfs_start; 1465 sp->seg_bytes_left -= LFS_LABELPAD - fsbtob(fs, fs->lfs_start); 1466 } 1467 } else { 1468 sp->seg_number = dtosn(fs, fs->lfs_curseg); 1469 sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg - 1470 (fs->lfs_offset - fs->lfs_curseg)); 1471 } 1472 fs->lfs_lastpseg = fs->lfs_offset; 1473 1474 /* Record first address of this partial segment */ 1475 if (sp->seg_flags & SEGM_CLEAN) { 1476 fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset; 1477 if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) { 1478 /* "1" is the artificial inc in lfs_seglock */ 1479 while (fs->lfs_iocount > 1) { 1480 tsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_initseg", 0); 1481 } 1482 fs->lfs_cleanind = 0; 1483 } 1484 } 1485 1486 sp->fs = fs; 1487 sp->ibp = NULL; 1488 sp->idp = NULL; 1489 sp->ninodes = 0; 1490 sp->ndupino = 0; 1491 1492 /* Get a new buffer for SEGSUM and enter it into the buffer list. */ 1493 sp->cbpp = sp->bpp; 1494 sbp = *sp->cbpp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, 1495 fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY); 1496 sp->segsum = (*sp->cbpp)->b_data; 1497 memset(sp->segsum, 0, fs->lfs_sumsize); 1498 sp->start_bpp = ++sp->cbpp; 1499 fs->lfs_offset += btofsb(fs, fs->lfs_sumsize); 1500 1501 /* Set point to SEGSUM, initialize it. */ 1502 ssp = sp->segsum; 1503 ssp->ss_next = fs->lfs_nextseg; 1504 ssp->ss_nfinfo = ssp->ss_ninos = 0; 1505 ssp->ss_magic = SS_MAGIC; 1506 1507 /* Set pointer to first FINFO, initialize it. */ 1508 sp->fip = (struct finfo *)((caddr_t)sp->segsum + SEGSUM_SIZE(fs)); 1509 sp->fip->fi_nblocks = 0; 1510 sp->start_lbp = &sp->fip->fi_blocks[0]; 1511 sp->fip->fi_lastlength = 0; 1512 1513 sp->seg_bytes_left -= fs->lfs_sumsize; 1514 sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs); 1515 1516 return (repeat); 1517 } 1518 1519 /* 1520 * Return the next segment to write. 1521 */ 1522 void 1523 lfs_newseg(struct lfs *fs) 1524 { 1525 CLEANERINFO *cip; 1526 SEGUSE *sup; 1527 struct buf *bp; 1528 int curseg, isdirty, sn; 1529 1530 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1531 #ifdef DEBUG_SU_NBYTES 1532 printf("lfs_newseg: seg %d := 0 in newseg\n", /* XXXDEBUG */ 1533 dtosn(fs, fs->lfs_nextseg)); /* XXXDEBUG */ 1534 #endif 1535 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1536 sup->su_nbytes = 0; 1537 sup->su_nsums = 0; 1538 sup->su_ninos = 0; 1539 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp); 1540 1541 LFS_CLEANERINFO(cip, fs, bp); 1542 --cip->clean; 1543 ++cip->dirty; 1544 fs->lfs_nclean = cip->clean; 1545 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); 1546 1547 fs->lfs_lastseg = fs->lfs_curseg; 1548 fs->lfs_curseg = fs->lfs_nextseg; 1549 for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) { 1550 sn = (sn + 1) % fs->lfs_nseg; 1551 if (sn == curseg) 1552 panic("lfs_nextseg: no clean segments"); 1553 LFS_SEGENTRY(sup, fs, sn, bp); 1554 isdirty = sup->su_flags & SEGUSE_DIRTY; 1555 /* Check SEGUSE_EMPTY as we go along */ 1556 if (isdirty && sup->su_nbytes == 0 && !(sup->su_flags & SEGUSE_EMPTY)) 1557 LFS_WRITESEGENTRY(sup, fs, sn, bp); 1558 else 1559 brelse(bp); 1560 1561 if (!isdirty) 1562 break; 1563 } 1564 1565 ++fs->lfs_nactive; 1566 fs->lfs_nextseg = sntod(fs, sn); 1567 if (lfs_dostats) { 1568 ++lfs_stats.segsused; 1569 } 1570 } 1571 1572 #define BQUEUES 4 /* XXX */ 1573 #define BQ_EMPTY 3 /* XXX */ 1574 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 1575 extern struct simplelock bqueue_slock; 1576 1577 #define BUFHASH(dvp, lbn) \ 1578 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash]) 1579 extern LIST_HEAD(bufhashhdr, buf) invalhash; 1580 /* 1581 * Insq/Remq for the buffer hash lists. 1582 */ 1583 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 1584 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 1585 1586 static struct buf * 1587 lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr, int n) 1588 { 1589 struct lfs_cluster *cl; 1590 struct buf **bpp, *bp; 1591 int s; 1592 1593 cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK); 1594 bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK); 1595 memset(cl, 0, sizeof(*cl)); 1596 cl->fs = fs; 1597 cl->bpp = bpp; 1598 cl->bufcount = 0; 1599 cl->bufsize = 0; 1600 1601 /* If this segment is being written synchronously, note that */ 1602 if (fs->lfs_sp->seg_flags & SEGM_SYNC) { 1603 cl->flags |= LFS_CL_SYNC; 1604 cl->seg = fs->lfs_sp; 1605 ++cl->seg->seg_iocount; 1606 /* printf("+ %x => %d\n", cl->seg, cl->seg->seg_iocount); */ 1607 } 1608 1609 /* Get an empty buffer header, or maybe one with something on it */ 1610 s = splbio(); 1611 simple_lock(&bqueue_slock); 1612 if ((bp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) != NULL) { 1613 simple_lock(&bp->b_interlock); 1614 bremfree(bp); 1615 /* clear out various other fields */ 1616 bp->b_flags = B_BUSY; 1617 bp->b_dev = NODEV; 1618 bp->b_blkno = bp->b_lblkno = 0; 1619 bp->b_error = 0; 1620 bp->b_resid = 0; 1621 bp->b_bcount = 0; 1622 1623 /* nuke any credentials we were holding */ 1624 /* XXXXXX */ 1625 1626 bremhash(bp); 1627 1628 /* disassociate us from our vnode, if we had one... */ 1629 if (bp->b_vp) 1630 brelvp(bp); 1631 } 1632 while (!bp) 1633 bp = getnewbuf(0, 0); 1634 bgetvp(vp, bp); 1635 binshash(bp,&invalhash); 1636 simple_unlock(&bp->b_interlock); 1637 simple_unlock(&bqueue_slock); 1638 splx(s); 1639 bp->b_bcount = 0; 1640 bp->b_blkno = bp->b_lblkno = addr; 1641 1642 bp->b_flags |= B_CALL; 1643 bp->b_iodone = lfs_cluster_callback; 1644 cl->saveaddr = bp->b_saveaddr; /* XXX is this ever used? */ 1645 bp->b_saveaddr = (caddr_t)cl; 1646 1647 return bp; 1648 } 1649 1650 int 1651 lfs_writeseg(struct lfs *fs, struct segment *sp) 1652 { 1653 struct buf **bpp, *bp, *cbp, *newbp; 1654 SEGUSE *sup; 1655 SEGSUM *ssp; 1656 dev_t i_dev; 1657 char *datap, *dp; 1658 int i, s; 1659 int do_again, nblocks, byteoffset; 1660 size_t el_size; 1661 struct lfs_cluster *cl; 1662 int (*strategy)(void *); 1663 struct vop_strategy_args vop_strategy_a; 1664 u_short ninos; 1665 struct vnode *devvp; 1666 char *p; 1667 struct vnode *vp; 1668 int32_t *daddrp; /* XXX ondisk32 */ 1669 int changed; 1670 #if defined(DEBUG) && defined(LFS_PROPELLER) 1671 static int propeller; 1672 char propstring[4] = "-\\|/"; 1673 1674 printf("%c\b",propstring[propeller++]); 1675 if (propeller == 4) 1676 propeller = 0; 1677 #endif 1678 1679 /* 1680 * If there are no buffers other than the segment summary to write 1681 * and it is not a checkpoint, don't do anything. On a checkpoint, 1682 * even if there aren't any buffers, you need to write the superblock. 1683 */ 1684 if ((nblocks = sp->cbpp - sp->bpp) == 1) 1685 return (0); 1686 1687 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 1688 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 1689 1690 /* Update the segment usage information. */ 1691 LFS_SEGENTRY(sup, fs, sp->seg_number, bp); 1692 1693 /* Loop through all blocks, except the segment summary. */ 1694 for (bpp = sp->bpp; ++bpp < sp->cbpp; ) { 1695 if ((*bpp)->b_vp != devvp) { 1696 sup->su_nbytes += (*bpp)->b_bcount; 1697 #ifdef DEBUG_SU_NBYTES 1698 printf("seg %" PRIu32 " += %ld for ino %d lbn %" PRId64 1699 " db 0x%" PRIx64 "\n", sp->seg_number, (*bpp)->b_bcount, 1700 VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno, 1701 (*bpp)->b_blkno); 1702 #endif 1703 } 1704 } 1705 1706 ssp = (SEGSUM *)sp->segsum; 1707 1708 ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs); 1709 #ifdef DEBUG_SU_NBYTES 1710 printf("seg %d += %d for %d inodes\n", /* XXXDEBUG */ 1711 sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode), 1712 ssp->ss_ninos); 1713 #endif 1714 sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode); 1715 /* sup->su_nbytes += fs->lfs_sumsize; */ 1716 if (fs->lfs_version == 1) 1717 sup->su_olastmod = time.tv_sec; 1718 else 1719 sup->su_lastmod = time.tv_sec; 1720 sup->su_ninos += ninos; 1721 ++sup->su_nsums; 1722 fs->lfs_dmeta += (btofsb(fs, fs->lfs_sumsize) + btofsb(fs, ninos * 1723 fs->lfs_ibsize)); 1724 fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize); 1725 1726 do_again = !(bp->b_flags & B_GATHERED); 1727 LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */ 1728 1729 /* 1730 * Mark blocks B_BUSY, to prevent then from being changed between 1731 * the checksum computation and the actual write. 1732 * 1733 * If we are cleaning, check indirect blocks for UNWRITTEN, and if 1734 * there are any, replace them with copies that have UNASSIGNED 1735 * instead. 1736 */ 1737 for (bpp = sp->bpp, i = nblocks - 1; i--;) { 1738 ++bpp; 1739 bp = *bpp; 1740 if (bp->b_flags & B_CALL) { /* UBC or malloced buffer */ 1741 bp->b_flags |= B_BUSY; 1742 continue; 1743 } 1744 again: 1745 s = splbio(); 1746 if (bp->b_flags & B_BUSY) { 1747 #ifdef DEBUG 1748 printf("lfs_writeseg: avoiding potential data summary " 1749 "corruption for ino %d, lbn %" PRId64 "\n", 1750 VTOI(bp->b_vp)->i_number, bp->b_lblkno); 1751 #endif 1752 bp->b_flags |= B_WANTED; 1753 tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0); 1754 splx(s); 1755 goto again; 1756 } 1757 bp->b_flags |= B_BUSY; 1758 splx(s); 1759 /* 1760 * Check and replace indirect block UNWRITTEN bogosity. 1761 * XXX See comment in lfs_writefile. 1762 */ 1763 if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp && 1764 VTOI(bp->b_vp)->i_ffs1_blocks != 1765 VTOI(bp->b_vp)->i_lfs_effnblks) { 1766 #ifdef DEBUG_LFS 1767 printf("lfs_writeseg: cleansing ino %d (%d != %d)\n", 1768 VTOI(bp->b_vp)->i_number, 1769 VTOI(bp->b_vp)->i_lfs_effnblks, 1770 VTOI(bp->b_vp)->i_ffs1_blocks); 1771 #endif 1772 /* Make a copy we'll make changes to */ 1773 newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno, 1774 bp->b_bcount, LFS_NB_IBLOCK); 1775 newbp->b_blkno = bp->b_blkno; 1776 memcpy(newbp->b_data, bp->b_data, 1777 newbp->b_bcount); 1778 1779 changed = 0; 1780 /* XXX ondisk32 */ 1781 for (daddrp = (int32_t *)(newbp->b_data); 1782 daddrp < (int32_t *)(newbp->b_data + 1783 newbp->b_bcount); daddrp++) { 1784 if (*daddrp == UNWRITTEN) { 1785 #ifdef DEBUG_LFS 1786 off_t doff; 1787 int32_t ioff; 1788 1789 ioff = daddrp - (int32_t *)(newbp->b_data); 1790 doff = (-bp->b_lblkno + ioff) * fs->lfs_bsize; 1791 printf("ino %d lbn %" PRId64 " entry %d off %" PRIx64 "\n", 1792 VTOI(bp->b_vp)->i_number, 1793 bp->b_lblkno, ioff, doff); 1794 if (bp->b_vp->v_type == VREG) { 1795 /* 1796 * What is up with this page? 1797 */ 1798 struct vm_page *pg; 1799 for (; doff / fs->lfs_bsize == (-bp->b_lblkno + ioff); doff += PAGE_SIZE) { 1800 pg = uvm_pagelookup(&bp->b_vp->v_uobj, doff); 1801 if (pg == NULL) 1802 printf(" page at %" PRIx64 " is NULL\n", doff); 1803 else 1804 printf(" page at %" PRIx64 " flags 0x%x pqflags 0x%x\n", doff, pg->flags, pg->pqflags); 1805 } 1806 } 1807 #endif /* DEBUG_LFS */ 1808 ++changed; 1809 *daddrp = 0; 1810 } 1811 } 1812 /* 1813 * Get rid of the old buffer. Don't mark it clean, 1814 * though, if it still has dirty data on it. 1815 */ 1816 if (changed) { 1817 #ifdef DEBUG_LFS 1818 printf("lfs_writeseg: replacing UNWRITTEN(%d):" 1819 " bp = %p newbp = %p\n", changed, bp, 1820 newbp); 1821 #endif 1822 *bpp = newbp; 1823 bp->b_flags &= ~(B_ERROR | B_GATHERED); 1824 if (bp->b_flags & B_CALL) { 1825 printf("lfs_writeseg: indir bp should not be B_CALL\n"); 1826 s = splbio(); 1827 biodone(bp); 1828 splx(s); 1829 bp = NULL; 1830 } else { 1831 /* Still on free list, leave it there */ 1832 s = splbio(); 1833 bp->b_flags &= ~B_BUSY; 1834 if (bp->b_flags & B_WANTED) 1835 wakeup(bp); 1836 splx(s); 1837 /* 1838 * We have to re-decrement lfs_avail 1839 * since this block is going to come 1840 * back around to us in the next 1841 * segment. 1842 */ 1843 fs->lfs_avail -= btofsb(fs, bp->b_bcount); 1844 } 1845 } else { 1846 lfs_freebuf(fs, newbp); 1847 } 1848 } 1849 } 1850 /* 1851 * Compute checksum across data and then across summary; the first 1852 * block (the summary block) is skipped. Set the create time here 1853 * so that it's guaranteed to be later than the inode mod times. 1854 * 1855 * XXX 1856 * Fix this to do it inline, instead of malloc/copy. 1857 */ 1858 datap = dp = pool_get(&fs->lfs_bpppool, PR_WAITOK); 1859 if (fs->lfs_version == 1) 1860 el_size = sizeof(u_long); 1861 else 1862 el_size = sizeof(u_int32_t); 1863 for (bpp = sp->bpp, i = nblocks - 1; i--; ) { 1864 ++bpp; 1865 /* Loop through gop_write cluster blocks */ 1866 for (byteoffset = 0; byteoffset < (*bpp)->b_bcount; 1867 byteoffset += fs->lfs_bsize) { 1868 #ifdef LFS_USE_B_INVAL 1869 if (((*bpp)->b_flags & (B_CALL | B_INVAL)) == 1870 (B_CALL | B_INVAL)) { 1871 if (copyin((caddr_t)(*bpp)->b_saveaddr + 1872 byteoffset, dp, el_size)) { 1873 panic("lfs_writeseg: copyin failed [1]: " 1874 "ino %d blk %" PRId64, 1875 VTOI((*bpp)->b_vp)->i_number, 1876 (*bpp)->b_lblkno); 1877 } 1878 } else 1879 #endif /* LFS_USE_B_INVAL */ 1880 { 1881 memcpy(dp, (*bpp)->b_data + byteoffset, 1882 el_size); 1883 } 1884 dp += el_size; 1885 } 1886 } 1887 if (fs->lfs_version == 1) 1888 ssp->ss_ocreate = time.tv_sec; 1889 else { 1890 ssp->ss_create = time.tv_sec; 1891 ssp->ss_serial = ++fs->lfs_serial; 1892 ssp->ss_ident = fs->lfs_ident; 1893 } 1894 ssp->ss_datasum = cksum(datap, dp - datap); 1895 ssp->ss_sumsum = 1896 cksum(&ssp->ss_datasum, fs->lfs_sumsize - sizeof(ssp->ss_sumsum)); 1897 pool_put(&fs->lfs_bpppool, datap); 1898 datap = dp = NULL; 1899 #ifdef DIAGNOSTIC 1900 if (fs->lfs_bfree < btofsb(fs, ninos * fs->lfs_ibsize) + btofsb(fs, fs->lfs_sumsize)) 1901 panic("lfs_writeseg: No diskspace for summary"); 1902 #endif 1903 fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) + 1904 btofsb(fs, fs->lfs_sumsize)); 1905 1906 strategy = devvp->v_op[VOFFSET(vop_strategy)]; 1907 1908 /* 1909 * When we simply write the blocks we lose a rotation for every block 1910 * written. To avoid this problem, we cluster the buffers into a 1911 * chunk and write the chunk. MAXPHYS is the largest size I/O 1912 * devices can handle, use that for the size of the chunks. 1913 * 1914 * Blocks that are already clusters (from GOP_WRITE), however, we 1915 * don't bother to copy into other clusters. 1916 */ 1917 1918 #define CHUNKSIZE MAXPHYS 1919 1920 if (devvp == NULL) 1921 panic("devvp is NULL"); 1922 for (bpp = sp->bpp, i = nblocks; i;) { 1923 cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i); 1924 cl = (struct lfs_cluster *)cbp->b_saveaddr; 1925 1926 cbp->b_dev = i_dev; 1927 cbp->b_flags |= B_ASYNC | B_BUSY; 1928 cbp->b_bcount = 0; 1929 1930 cl->olddata = cbp->b_data; 1931 #if defined(DEBUG) && defined(DIAGNOSTIC) 1932 if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs)) 1933 / sizeof(int32_t)) { 1934 panic("lfs_writeseg: real bpp overwrite"); 1935 } 1936 if (bpp - sp->bpp > fs->lfs_ssize / fs->lfs_fsize) { 1937 panic("lfs_writeseg: theoretical bpp overwrite"); 1938 } 1939 #endif 1940 1941 /* 1942 * Construct the cluster. 1943 */ 1944 ++fs->lfs_iocount; 1945 while (i && cbp->b_bcount < CHUNKSIZE) { 1946 bp = *bpp; 1947 1948 if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount)) 1949 break; 1950 if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC)) 1951 break; 1952 1953 /* Clusters from GOP_WRITE are expedited */ 1954 if (bp->b_bcount > fs->lfs_bsize) { 1955 if (cbp->b_bcount > 0) 1956 /* Put in its own buffer */ 1957 break; 1958 else { 1959 cbp->b_data = bp->b_data; 1960 } 1961 } else if (cbp->b_bcount == 0) { 1962 p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE, 1963 LFS_NB_CLUSTER); 1964 cl->flags |= LFS_CL_MALLOC; 1965 } 1966 #ifdef DIAGNOSTIC 1967 if (dtosn(fs, dbtofsb(fs, bp->b_blkno + 1968 btodb(bp->b_bcount - 1))) != 1969 sp->seg_number) { 1970 printf("blk size %ld daddr %" PRIx64 " not in seg %d\n", 1971 bp->b_bcount, bp->b_blkno, 1972 sp->seg_number); 1973 panic("segment overwrite"); 1974 } 1975 #endif 1976 1977 #ifdef LFS_USE_B_INVAL 1978 /* 1979 * Fake buffers from the cleaner are marked as B_INVAL. 1980 * We need to copy the data from user space rather than 1981 * from the buffer indicated. 1982 * XXX == what do I do on an error? 1983 */ 1984 if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) { 1985 if (copyin(bp->b_saveaddr, p, bp->b_bcount)) 1986 panic("lfs_writeseg: copyin failed [2]"); 1987 } else 1988 #endif /* LFS_USE_B_INVAL */ 1989 if (cl->flags & LFS_CL_MALLOC) { 1990 bcopy(bp->b_data, p, bp->b_bcount); 1991 } 1992 1993 p += bp->b_bcount; 1994 cbp->b_bcount += bp->b_bcount; 1995 cl->bufsize += bp->b_bcount; 1996 1997 bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI | B_DONE); 1998 cl->bpp[cl->bufcount++] = bp; 1999 vp = bp->b_vp; 2000 s = splbio(); 2001 V_INCR_NUMOUTPUT(vp); 2002 splx(s); 2003 2004 bpp++; 2005 i--; 2006 } 2007 s = splbio(); 2008 V_INCR_NUMOUTPUT(devvp); 2009 splx(s); 2010 vop_strategy_a.a_desc = VDESC(vop_strategy); 2011 vop_strategy_a.a_bp = cbp; 2012 (strategy)(&vop_strategy_a); 2013 curproc->p_stats->p_ru.ru_oublock++; 2014 } 2015 2016 if (lfs_dostats) { 2017 ++lfs_stats.psegwrites; 2018 lfs_stats.blocktot += nblocks - 1; 2019 if (fs->lfs_sp->seg_flags & SEGM_SYNC) 2020 ++lfs_stats.psyncwrites; 2021 if (fs->lfs_sp->seg_flags & SEGM_CLEAN) { 2022 ++lfs_stats.pcleanwrites; 2023 lfs_stats.cleanblocks += nblocks - 1; 2024 } 2025 } 2026 return (lfs_initseg(fs) || do_again); 2027 } 2028 2029 void 2030 lfs_writesuper(struct lfs *fs, daddr_t daddr) 2031 { 2032 struct buf *bp; 2033 dev_t i_dev; 2034 int (*strategy)(void *); 2035 int s; 2036 struct vop_strategy_args vop_strategy_a; 2037 2038 /* 2039 * If we can write one superblock while another is in 2040 * progress, we risk not having a complete checkpoint if we crash. 2041 * So, block here if a superblock write is in progress. 2042 */ 2043 s = splbio(); 2044 while (fs->lfs_sbactive) { 2045 tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0); 2046 } 2047 fs->lfs_sbactive = daddr; 2048 splx(s); 2049 i_dev = VTOI(fs->lfs_ivnode)->i_dev; 2050 strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)]; 2051 2052 /* Set timestamp of this version of the superblock */ 2053 if (fs->lfs_version == 1) 2054 fs->lfs_otstamp = time.tv_sec; 2055 fs->lfs_tstamp = time.tv_sec; 2056 2057 /* Checksum the superblock and copy it into a buffer. */ 2058 fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs)); 2059 bp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp, fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK); 2060 memset(bp->b_data + sizeof(struct dlfs), 0, LFS_SBPAD - sizeof(struct dlfs)); 2061 *(struct dlfs *)bp->b_data = fs->lfs_dlfs; 2062 2063 bp->b_dev = i_dev; 2064 bp->b_flags |= B_BUSY | B_CALL | B_ASYNC; 2065 bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI); 2066 bp->b_iodone = lfs_supercallback; 2067 /* XXX KS - same nasty hack as above */ 2068 bp->b_saveaddr = (caddr_t)fs; 2069 2070 vop_strategy_a.a_desc = VDESC(vop_strategy); 2071 vop_strategy_a.a_bp = bp; 2072 curproc->p_stats->p_ru.ru_oublock++; 2073 s = splbio(); 2074 V_INCR_NUMOUTPUT(bp->b_vp); 2075 splx(s); 2076 ++fs->lfs_iocount; 2077 (strategy)(&vop_strategy_a); 2078 } 2079 2080 /* 2081 * Logical block number match routines used when traversing the dirty block 2082 * chain. 2083 */ 2084 int 2085 lfs_match_fake(struct lfs *fs, struct buf *bp) 2086 { 2087 return LFS_IS_MALLOC_BUF(bp); 2088 } 2089 2090 #if 0 2091 int 2092 lfs_match_real(struct lfs *fs, struct buf *bp) 2093 { 2094 return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp)); 2095 } 2096 #endif 2097 2098 int 2099 lfs_match_data(struct lfs *fs, struct buf *bp) 2100 { 2101 return (bp->b_lblkno >= 0); 2102 } 2103 2104 int 2105 lfs_match_indir(struct lfs *fs, struct buf *bp) 2106 { 2107 daddr_t lbn; 2108 2109 lbn = bp->b_lblkno; 2110 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0); 2111 } 2112 2113 int 2114 lfs_match_dindir(struct lfs *fs, struct buf *bp) 2115 { 2116 daddr_t lbn; 2117 2118 lbn = bp->b_lblkno; 2119 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1); 2120 } 2121 2122 int 2123 lfs_match_tindir(struct lfs *fs, struct buf *bp) 2124 { 2125 daddr_t lbn; 2126 2127 lbn = bp->b_lblkno; 2128 return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2); 2129 } 2130 2131 /* 2132 * XXX - The only buffers that are going to hit these functions are the 2133 * segment write blocks, or the segment summaries, or the superblocks. 2134 * 2135 * All of the above are created by lfs_newbuf, and so do not need to be 2136 * released via brelse. 2137 */ 2138 void 2139 lfs_callback(struct buf *bp) 2140 { 2141 struct lfs *fs; 2142 2143 fs = (struct lfs *)bp->b_saveaddr; 2144 lfs_freebuf(fs, bp); 2145 } 2146 2147 static void 2148 lfs_super_aiodone(struct buf *bp) 2149 { 2150 struct lfs *fs; 2151 2152 fs = (struct lfs *)bp->b_saveaddr; 2153 fs->lfs_sbactive = 0; 2154 wakeup(&fs->lfs_sbactive); 2155 if (--fs->lfs_iocount <= 1) 2156 wakeup(&fs->lfs_iocount); 2157 lfs_freebuf(fs, bp); 2158 } 2159 2160 static void 2161 lfs_cluster_aiodone(struct buf *bp) 2162 { 2163 struct lfs_cluster *cl; 2164 struct lfs *fs; 2165 struct buf *tbp, *fbp; 2166 struct vnode *vp, *devvp; 2167 struct inode *ip; 2168 int s, error=0; 2169 char *cp; 2170 extern int locked_queue_count; 2171 extern long locked_queue_bytes; 2172 2173 if (bp->b_flags & B_ERROR) 2174 error = bp->b_error; 2175 2176 cl = (struct lfs_cluster *)bp->b_saveaddr; 2177 fs = cl->fs; 2178 devvp = VTOI(fs->lfs_ivnode)->i_devvp; 2179 bp->b_saveaddr = cl->saveaddr; 2180 2181 cp = (char *)bp->b_data + cl->bufsize; 2182 /* Put the pages back, and release the buffer */ 2183 while (cl->bufcount--) { 2184 tbp = cl->bpp[cl->bufcount]; 2185 if (error) { 2186 tbp->b_flags |= B_ERROR; 2187 tbp->b_error = error; 2188 } 2189 2190 /* 2191 * We're done with tbp. If it has not been re-dirtied since 2192 * the cluster was written, free it. Otherwise, keep it on 2193 * the locked list to be written again. 2194 */ 2195 vp = tbp->b_vp; 2196 2197 if ((tbp->b_flags & (B_LOCKED | B_DELWRI)) == B_LOCKED) 2198 LFS_UNLOCK_BUF(tbp); 2199 2200 tbp->b_flags &= ~B_GATHERED; 2201 2202 LFS_BCLEAN_LOG(fs, tbp); 2203 2204 if (!(tbp->b_flags & B_CALL)) { 2205 bremfree(tbp); 2206 s = splbio(); 2207 if (vp) 2208 reassignbuf(tbp, vp); 2209 splx(s); 2210 tbp->b_flags |= B_ASYNC; /* for biodone */ 2211 } 2212 #ifdef DIAGNOSTIC 2213 if (tbp->b_flags & B_DONE) { 2214 printf("blk %d biodone already (flags %lx)\n", 2215 cl->bufcount, (long)tbp->b_flags); 2216 } 2217 #endif 2218 if (tbp->b_flags & (B_BUSY | B_CALL)) { 2219 if ((tbp->b_flags & B_CALL) && !LFS_IS_MALLOC_BUF(tbp)) { 2220 /* printf("flags 0x%lx\n", tbp->b_flags); */ 2221 /* 2222 * A buffer from the page daemon. 2223 * We use the same iodone as it does, 2224 * so we must manually disassociate its 2225 * buffers from the vp. 2226 */ 2227 if (tbp->b_vp) { 2228 /* This is just silly */ 2229 s = splbio(); 2230 brelvp(tbp); 2231 tbp->b_vp = vp; 2232 splx(s); 2233 } 2234 /* Put it back the way it was */ 2235 tbp->b_flags |= B_ASYNC; 2236 /* Master buffers have B_AGE */ 2237 if (tbp->b_private == tbp) 2238 tbp->b_flags |= B_AGE; 2239 } 2240 s = splbio(); 2241 biodone(tbp); 2242 2243 /* 2244 * If this is the last block for this vnode, but 2245 * there are other blocks on its dirty list, 2246 * set IN_MODIFIED/IN_CLEANING depending on what 2247 * sort of block. Only do this for our mount point, 2248 * not for, e.g., inode blocks that are attached to 2249 * the devvp. 2250 * XXX KS - Shouldn't we set *both* if both types 2251 * of blocks are present (traverse the dirty list?) 2252 */ 2253 simple_lock(&global_v_numoutput_slock); 2254 if (vp != devvp && vp->v_numoutput == 0 && 2255 (fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) { 2256 ip = VTOI(vp); 2257 #ifdef DEBUG_LFS 2258 printf("lfs_cluster_aiodone: marking ino %d\n", 2259 ip->i_number); 2260 #endif 2261 if (LFS_IS_MALLOC_BUF(fbp)) 2262 LFS_SET_UINO(ip, IN_CLEANING); 2263 else 2264 LFS_SET_UINO(ip, IN_MODIFIED); 2265 } 2266 simple_unlock(&global_v_numoutput_slock); 2267 splx(s); 2268 wakeup(vp); 2269 } 2270 } 2271 2272 /* Fix up the cluster buffer, and release it */ 2273 if (cl->flags & LFS_CL_MALLOC) 2274 lfs_free(fs, bp->b_data, LFS_NB_CLUSTER); 2275 bp->b_data = cl->olddata; 2276 bp->b_bcount = 0; 2277 bp->b_iodone = NULL; 2278 bp->b_flags &= ~B_DELWRI; 2279 bp->b_flags |= B_DONE; 2280 s = splbio(); 2281 reassignbuf(bp, bp->b_vp); 2282 splx(s); 2283 brelse(bp); 2284 2285 /* Note i/o done */ 2286 if (cl->flags & LFS_CL_SYNC) { 2287 if (--cl->seg->seg_iocount == 0) 2288 wakeup(&cl->seg->seg_iocount); 2289 /* printf("- %x => %d\n", cl->seg, cl->seg->seg_iocount); */ 2290 } 2291 #ifdef DIAGNOSTIC 2292 if (fs->lfs_iocount == 0) 2293 panic("lfs_cluster_aiodone: zero iocount"); 2294 #endif 2295 if (--fs->lfs_iocount <= 1) 2296 wakeup(&fs->lfs_iocount); 2297 2298 pool_put(&fs->lfs_bpppool, cl->bpp); 2299 cl->bpp = NULL; 2300 pool_put(&fs->lfs_clpool, cl); 2301 } 2302 2303 static void 2304 lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *)) 2305 { 2306 /* reset b_iodone for when this is a single-buf i/o. */ 2307 bp->b_iodone = aiodone; 2308 2309 simple_lock(&uvm.aiodoned_lock); /* locks uvm.aio_done */ 2310 TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist); 2311 wakeup(&uvm.aiodoned); 2312 simple_unlock(&uvm.aiodoned_lock); 2313 } 2314 2315 static void 2316 lfs_cluster_callback(struct buf *bp) 2317 { 2318 lfs_generic_callback(bp, lfs_cluster_aiodone); 2319 } 2320 2321 void 2322 lfs_supercallback(struct buf *bp) 2323 { 2324 lfs_generic_callback(bp, lfs_super_aiodone); 2325 } 2326 2327 /* 2328 * Shellsort (diminishing increment sort) from Data Structures and 2329 * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290; 2330 * see also Knuth Vol. 3, page 84. The increments are selected from 2331 * formula (8), page 95. Roughly O(N^3/2). 2332 */ 2333 /* 2334 * This is our own private copy of shellsort because we want to sort 2335 * two parallel arrays (the array of buffer pointers and the array of 2336 * logical block numbers) simultaneously. Note that we cast the array 2337 * of logical block numbers to a unsigned in this routine so that the 2338 * negative block numbers (meta data blocks) sort AFTER the data blocks. 2339 */ 2340 2341 void 2342 lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size) 2343 { 2344 static int __rsshell_increments[] = { 4, 1, 0 }; 2345 int incr, *incrp, t1, t2; 2346 struct buf *bp_temp; 2347 2348 #ifdef DEBUG 2349 incr = 0; 2350 for (t1 = 0; t1 < nmemb; t1++) { 2351 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2352 if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) { 2353 /* dump before panic */ 2354 printf("lfs_shellsort: nmemb=%d, size=%d\n", 2355 nmemb, size); 2356 incr = 0; 2357 for (t1 = 0; t1 < nmemb; t1++) { 2358 const struct buf *bp = bp_array[t1]; 2359 2360 printf("bp[%d]: lbn=%" PRIu64 ", size=%" 2361 PRIu64 "\n", t1, 2362 (uint64_t)bp->b_bcount, 2363 (uint64_t)bp->b_lblkno); 2364 printf("lbns:"); 2365 for (t2 = 0; t2 * size < bp->b_bcount; 2366 t2++) { 2367 printf(" %" PRId32, 2368 lb_array[incr++]); 2369 } 2370 printf("\n"); 2371 } 2372 panic("lfs_shellsort: inconsistent input"); 2373 } 2374 } 2375 } 2376 #endif 2377 2378 for (incrp = __rsshell_increments; (incr = *incrp++) != 0;) 2379 for (t1 = incr; t1 < nmemb; ++t1) 2380 for (t2 = t1 - incr; t2 >= 0;) 2381 if ((u_int32_t)bp_array[t2]->b_lblkno > 2382 (u_int32_t)bp_array[t2 + incr]->b_lblkno) { 2383 bp_temp = bp_array[t2]; 2384 bp_array[t2] = bp_array[t2 + incr]; 2385 bp_array[t2 + incr] = bp_temp; 2386 t2 -= incr; 2387 } else 2388 break; 2389 2390 /* Reform the list of logical blocks */ 2391 incr = 0; 2392 for (t1 = 0; t1 < nmemb; t1++) { 2393 for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) { 2394 lb_array[incr++] = bp_array[t1]->b_lblkno + t2; 2395 } 2396 } 2397 } 2398 2399 /* 2400 * Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it. 2401 */ 2402 int 2403 lfs_vref(struct vnode *vp) 2404 { 2405 /* 2406 * If we return 1 here during a flush, we risk vinvalbuf() not 2407 * being able to flush all of the pages from this vnode, which 2408 * will cause it to panic. So, return 0 if a flush is in progress. 2409 */ 2410 if (vp->v_flag & VXLOCK) { 2411 if (IS_FLUSHING(VTOI(vp)->i_lfs,vp)) { 2412 return 0; 2413 } 2414 return (1); 2415 } 2416 return (vget(vp, 0)); 2417 } 2418 2419 /* 2420 * This is vrele except that we do not want to VOP_INACTIVE this vnode. We 2421 * inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end. 2422 */ 2423 void 2424 lfs_vunref(struct vnode *vp) 2425 { 2426 /* 2427 * Analogous to lfs_vref, if the node is flushing, fake it. 2428 */ 2429 if ((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) { 2430 return; 2431 } 2432 2433 simple_lock(&vp->v_interlock); 2434 #ifdef DIAGNOSTIC 2435 if (vp->v_usecount <= 0) { 2436 printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number); 2437 printf("lfs_vunref: flags are 0x%lx\n", (u_long)vp->v_flag); 2438 printf("lfs_vunref: usecount = %ld\n", (long)vp->v_usecount); 2439 panic("lfs_vunref: v_usecount<0"); 2440 } 2441 #endif 2442 vp->v_usecount--; 2443 if (vp->v_usecount > 0) { 2444 simple_unlock(&vp->v_interlock); 2445 return; 2446 } 2447 /* 2448 * insert at tail of LRU list 2449 */ 2450 simple_lock(&vnode_free_list_slock); 2451 if (vp->v_holdcnt > 0) 2452 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2453 else 2454 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 2455 simple_unlock(&vnode_free_list_slock); 2456 simple_unlock(&vp->v_interlock); 2457 } 2458 2459 /* 2460 * We use this when we have vnodes that were loaded in solely for cleaning. 2461 * There is no reason to believe that these vnodes will be referenced again 2462 * soon, since the cleaning process is unrelated to normal filesystem 2463 * activity. Putting cleaned vnodes at the tail of the list has the effect 2464 * of flushing the vnode LRU. So, put vnodes that were loaded only for 2465 * cleaning at the head of the list, instead. 2466 */ 2467 void 2468 lfs_vunref_head(struct vnode *vp) 2469 { 2470 simple_lock(&vp->v_interlock); 2471 #ifdef DIAGNOSTIC 2472 if (vp->v_usecount == 0) { 2473 panic("lfs_vunref: v_usecount<0"); 2474 } 2475 #endif 2476 vp->v_usecount--; 2477 if (vp->v_usecount > 0) { 2478 simple_unlock(&vp->v_interlock); 2479 return; 2480 } 2481 /* 2482 * insert at head of LRU list 2483 */ 2484 simple_lock(&vnode_free_list_slock); 2485 if (vp->v_holdcnt > 0) 2486 TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); 2487 else 2488 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2489 simple_unlock(&vnode_free_list_slock); 2490 simple_unlock(&vp->v_interlock); 2491 } 2492 2493