1 /* $NetBSD: ffs_inode.c,v 1.41 2001/05/30 11:57:18 mrg Exp $ */ 2 3 /* 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by the University of 18 * California, Berkeley and its contributors. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 36 */ 37 38 #if defined(_KERNEL_OPT) 39 #include "opt_ffs.h" 40 #include "opt_quota.h" 41 #endif 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/mount.h> 46 #include <sys/proc.h> 47 #include <sys/file.h> 48 #include <sys/buf.h> 49 #include <sys/vnode.h> 50 #include <sys/kernel.h> 51 #include <sys/malloc.h> 52 #include <sys/trace.h> 53 #include <sys/resourcevar.h> 54 55 #include <ufs/ufs/quota.h> 56 #include <ufs/ufs/inode.h> 57 #include <ufs/ufs/ufsmount.h> 58 #include <ufs/ufs/ufs_extern.h> 59 #include <ufs/ufs/ufs_bswap.h> 60 61 #include <ufs/ffs/fs.h> 62 #include <ufs/ffs/ffs_extern.h> 63 64 static int ffs_indirtrunc __P((struct inode *, ufs_daddr_t, ufs_daddr_t, 65 ufs_daddr_t, int, long *)); 66 67 /* 68 * Update the access, modified, and inode change times as specified 69 * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. 70 * The IN_MODIFIED flag is used to specify that the inode needs to be 71 * updated but that the times have already been set. The access 72 * and modified times are taken from the second and third parameters; 73 * the inode change time is always taken from the current time. If 74 * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing 75 * softupdates, then wait for the disk write of the inode to complete. 76 */ 77 78 int 79 ffs_update(v) 80 void *v; 81 { 82 struct vop_update_args /* { 83 struct vnode *a_vp; 84 struct timespec *a_access; 85 struct timespec *a_modify; 86 int a_flags; 87 } */ *ap = v; 88 struct fs *fs; 89 struct buf *bp; 90 struct inode *ip; 91 int error; 92 struct timespec ts; 93 caddr_t cp; 94 int waitfor, flags; 95 96 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 97 return (0); 98 ip = VTOI(ap->a_vp); 99 TIMEVAL_TO_TIMESPEC(&time, &ts); 100 FFS_ITIMES(ip, 101 ap->a_access ? ap->a_access : &ts, 102 ap->a_modify ? ap->a_modify : &ts, &ts); 103 flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED); 104 if (flags == 0) 105 return (0); 106 fs = ip->i_fs; 107 108 if ((flags & IN_MODIFIED) != 0 && 109 (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) { 110 waitfor = ap->a_flags & UPDATE_WAIT; 111 if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp)) 112 waitfor |= UPDATE_WAIT; 113 } else 114 waitfor = 0; 115 116 /* 117 * Ensure that uid and gid are correct. This is a temporary 118 * fix until fsck has been changed to do the update. 119 */ 120 if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */ 121 ip->i_din.ffs_din.di_ouid = ip->i_ffs_uid; /* XXX */ 122 ip->i_din.ffs_din.di_ogid = ip->i_ffs_gid; /* XXX */ 123 } /* XXX */ 124 error = bread(ip->i_devvp, 125 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 126 (int)fs->fs_bsize, NOCRED, &bp); 127 if (error) { 128 brelse(bp); 129 return (error); 130 } 131 ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED); 132 if (DOINGSOFTDEP(ap->a_vp)) 133 softdep_update_inodeblock(ip, bp, waitfor); 134 else if (ip->i_ffs_effnlink != ip->i_ffs_nlink) 135 panic("ffs_update: bad link cnt"); 136 cp = (caddr_t)bp->b_data + 137 (ino_to_fsbo(fs, ip->i_number) * DINODE_SIZE); 138 #ifdef FFS_EI 139 if (UFS_FSNEEDSWAP(fs)) 140 ffs_dinode_swap(&ip->i_din.ffs_din, (struct dinode *)cp); 141 else 142 #endif 143 memcpy(cp, &ip->i_din.ffs_din, DINODE_SIZE); 144 if (waitfor) { 145 return (bwrite(bp)); 146 } else { 147 bdwrite(bp); 148 return (0); 149 } 150 } 151 152 #define SINGLE 0 /* index of single indirect block */ 153 #define DOUBLE 1 /* index of double indirect block */ 154 #define TRIPLE 2 /* index of triple indirect block */ 155 /* 156 * Truncate the inode oip to at most length size, freeing the 157 * disk blocks. 158 */ 159 int 160 ffs_truncate(v) 161 void *v; 162 { 163 struct vop_truncate_args /* { 164 struct vnode *a_vp; 165 off_t a_length; 166 int a_flags; 167 struct ucred *a_cred; 168 struct proc *a_p; 169 } */ *ap = v; 170 struct vnode *ovp = ap->a_vp; 171 ufs_daddr_t lastblock; 172 struct inode *oip; 173 ufs_daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR]; 174 ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR]; 175 off_t length = ap->a_length; 176 struct fs *fs; 177 int offset, size, level; 178 long count, nblocks, blocksreleased = 0; 179 int i; 180 int error, allerror = 0; 181 off_t osize; 182 183 if (length < 0) 184 return (EINVAL); 185 oip = VTOI(ovp); 186 if (ovp->v_type == VLNK && 187 (oip->i_ffs_size < ovp->v_mount->mnt_maxsymlinklen || 188 (ovp->v_mount->mnt_maxsymlinklen == 0 && 189 oip->i_din.ffs_din.di_blocks == 0))) { 190 KDASSERT(length == 0); 191 memset(&oip->i_ffs_shortlink, 0, (size_t)oip->i_ffs_size); 192 oip->i_ffs_size = 0; 193 oip->i_flag |= IN_CHANGE | IN_UPDATE; 194 return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT)); 195 } 196 if (oip->i_ffs_size == length) { 197 oip->i_flag |= IN_CHANGE | IN_UPDATE; 198 return (VOP_UPDATE(ovp, NULL, NULL, 0)); 199 } 200 #ifdef QUOTA 201 if ((error = getinoquota(oip)) != 0) 202 return (error); 203 #endif 204 fs = oip->i_fs; 205 if (length > fs->fs_maxfilesize) 206 return (EFBIG); 207 208 osize = oip->i_ffs_size; 209 ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0; 210 211 /* 212 * Lengthen the size of the file. We must ensure that the 213 * last byte of the file is allocated. Since the smallest 214 * value of osize is 0, length will be at least 1. 215 */ 216 217 if (osize < length) { 218 ufs_balloc_range(ovp, length - 1, 1, ap->a_cred, 219 ap->a_flags & IO_SYNC ? B_SYNC : 0); 220 oip->i_flag |= IN_CHANGE | IN_UPDATE; 221 return (VOP_UPDATE(ovp, NULL, NULL, 1)); 222 } 223 224 /* 225 * When truncating a regular file down to a non-block-aligned size, 226 * we must zero the part of last block which is past the new EOF. 227 * We must synchronously flush the zeroed pages to disk 228 * since the new pages will be invalidated as soon as we 229 * inform the VM system of the new, smaller size. 230 * We must to this before acquiring the GLOCK, since fetching 231 * the pages will acquire the GLOCK internally. 232 * So there is a window where another thread could see a whole 233 * zeroed page past EOF, but that's life. 234 */ 235 236 offset = blkoff(fs, length); 237 if (ovp->v_type == VREG && length < osize && offset != 0) { 238 struct uvm_object *uobj; 239 voff_t eoz; 240 241 size = blksize(fs, oip, lblkno(fs, length)); 242 eoz = min(lblktosize(fs, lblkno(fs, length)) + size, osize); 243 uvm_vnp_zerorange(ovp, length, eoz - length); 244 uobj = &ovp->v_uvm.u_obj; 245 simple_lock(&uobj->vmobjlock); 246 uobj->pgops->pgo_flush(uobj, length, eoz, 247 PGO_CLEANIT|PGO_DEACTIVATE|PGO_SYNCIO); 248 simple_unlock(&ovp->v_uvm.u_obj.vmobjlock); 249 } 250 251 lockmgr(&ovp->v_glock, LK_EXCLUSIVE, NULL); 252 253 if (DOINGSOFTDEP(ovp)) { 254 if (length > 0) { 255 /* 256 * If a file is only partially truncated, then 257 * we have to clean up the data structures 258 * describing the allocation past the truncation 259 * point. Finding and deallocating those structures 260 * is a lot of work. Since partial truncation occurs 261 * rarely, we solve the problem by syncing the file 262 * so that it will have no data structures left. 263 */ 264 if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT, 265 0, 0, ap->a_p)) != 0) { 266 lockmgr(&ovp->v_glock, LK_RELEASE, NULL); 267 return (error); 268 } 269 } else { 270 uvm_vnp_setsize(ovp, length); 271 #ifdef QUOTA 272 (void) chkdq(oip, -oip->i_ffs_blocks, NOCRED, 0); 273 #endif 274 softdep_setup_freeblocks(oip, length); 275 (void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0); 276 lockmgr(&ovp->v_glock, LK_RELEASE, NULL); 277 oip->i_flag |= IN_CHANGE | IN_UPDATE; 278 return (VOP_UPDATE(ovp, NULL, NULL, 0)); 279 } 280 } 281 282 /* 283 * Reduce the size of the file. 284 */ 285 oip->i_ffs_size = length; 286 uvm_vnp_setsize(ovp, length); 287 /* 288 * Calculate index into inode's block list of 289 * last direct and indirect blocks (if any) 290 * which we want to keep. Lastblock is -1 when 291 * the file is truncated to 0. 292 */ 293 lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; 294 lastiblock[SINGLE] = lastblock - NDADDR; 295 lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); 296 lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); 297 nblocks = btodb(fs->fs_bsize); 298 /* 299 * Update file and block pointers on disk before we start freeing 300 * blocks. If we crash before free'ing blocks below, the blocks 301 * will be returned to the free list. lastiblock values are also 302 * normalized to -1 for calls to ffs_indirtrunc below. 303 */ 304 memcpy((caddr_t)oldblks, (caddr_t)&oip->i_ffs_db[0], sizeof oldblks); 305 for (level = TRIPLE; level >= SINGLE; level--) 306 if (lastiblock[level] < 0) { 307 oip->i_ffs_ib[level] = 0; 308 lastiblock[level] = -1; 309 } 310 for (i = NDADDR - 1; i > lastblock; i--) 311 oip->i_ffs_db[i] = 0; 312 oip->i_flag |= IN_CHANGE | IN_UPDATE; 313 error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT); 314 if (error && !allerror) 315 allerror = error; 316 317 /* 318 * Having written the new inode to disk, save its new configuration 319 * and put back the old block pointers long enough to process them. 320 * Note that we save the new block configuration so we can check it 321 * when we are done. 322 */ 323 memcpy((caddr_t)newblks, (caddr_t)&oip->i_ffs_db[0], sizeof newblks); 324 memcpy((caddr_t)&oip->i_ffs_db[0], (caddr_t)oldblks, sizeof oldblks); 325 oip->i_ffs_size = osize; 326 error = vtruncbuf(ovp, lastblock + 1, 0, 0); 327 if (error && !allerror) 328 allerror = error; 329 330 /* 331 * Indirect blocks first. 332 */ 333 indir_lbn[SINGLE] = -NDADDR; 334 indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; 335 indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; 336 for (level = TRIPLE; level >= SINGLE; level--) { 337 bn = ufs_rw32(oip->i_ffs_ib[level], UFS_FSNEEDSWAP(fs)); 338 if (bn != 0) { 339 error = ffs_indirtrunc(oip, indir_lbn[level], 340 fsbtodb(fs, bn), lastiblock[level], level, &count); 341 if (error) 342 allerror = error; 343 blocksreleased += count; 344 if (lastiblock[level] < 0) { 345 oip->i_ffs_ib[level] = 0; 346 ffs_blkfree(oip, bn, fs->fs_bsize); 347 blocksreleased += nblocks; 348 } 349 } 350 if (lastiblock[level] >= 0) 351 goto done; 352 } 353 354 /* 355 * All whole direct blocks or frags. 356 */ 357 for (i = NDADDR - 1; i > lastblock; i--) { 358 long bsize; 359 360 bn = ufs_rw32(oip->i_ffs_db[i], UFS_FSNEEDSWAP(fs)); 361 if (bn == 0) 362 continue; 363 oip->i_ffs_db[i] = 0; 364 bsize = blksize(fs, oip, i); 365 ffs_blkfree(oip, bn, bsize); 366 blocksreleased += btodb(bsize); 367 } 368 if (lastblock < 0) 369 goto done; 370 371 /* 372 * Finally, look for a change in size of the 373 * last direct block; release any frags. 374 */ 375 bn = ufs_rw32(oip->i_ffs_db[lastblock], UFS_FSNEEDSWAP(fs)); 376 if (bn != 0) { 377 long oldspace, newspace; 378 379 /* 380 * Calculate amount of space we're giving 381 * back as old block size minus new block size. 382 */ 383 oldspace = blksize(fs, oip, lastblock); 384 oip->i_ffs_size = length; 385 newspace = blksize(fs, oip, lastblock); 386 if (newspace == 0) 387 panic("itrunc: newspace"); 388 if (oldspace - newspace > 0) { 389 /* 390 * Block number of space to be free'd is 391 * the old block # plus the number of frags 392 * required for the storage we're keeping. 393 */ 394 bn += numfrags(fs, newspace); 395 ffs_blkfree(oip, bn, oldspace - newspace); 396 blocksreleased += btodb(oldspace - newspace); 397 } 398 } 399 400 done: 401 #ifdef DIAGNOSTIC 402 for (level = SINGLE; level <= TRIPLE; level++) 403 if (newblks[NDADDR + level] != oip->i_ffs_ib[level]) 404 panic("itrunc1"); 405 for (i = 0; i < NDADDR; i++) 406 if (newblks[i] != oip->i_ffs_db[i]) 407 panic("itrunc2"); 408 if (length == 0 && 409 (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd))) 410 panic("itrunc3"); 411 #endif /* DIAGNOSTIC */ 412 /* 413 * Put back the real size. 414 */ 415 oip->i_ffs_size = length; 416 oip->i_ffs_blocks -= blocksreleased; 417 if (oip->i_ffs_blocks < 0) /* sanity */ 418 oip->i_ffs_blocks = 0; 419 lockmgr(&ovp->v_glock, LK_RELEASE, NULL); 420 oip->i_flag |= IN_CHANGE; 421 #ifdef QUOTA 422 (void) chkdq(oip, -blocksreleased, NOCRED, 0); 423 #endif 424 return (allerror); 425 } 426 427 /* 428 * Release blocks associated with the inode ip and stored in the indirect 429 * block bn. Blocks are free'd in LIFO order up to (but not including) 430 * lastbn. If level is greater than SINGLE, the block is an indirect block 431 * and recursive calls to indirtrunc must be used to cleanse other indirect 432 * blocks. 433 * 434 * NB: triple indirect blocks are untested. 435 */ 436 static int 437 ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) 438 struct inode *ip; 439 ufs_daddr_t lbn, lastbn; 440 ufs_daddr_t dbn; 441 int level; 442 long *countp; 443 { 444 int i; 445 struct buf *bp; 446 struct fs *fs = ip->i_fs; 447 ufs_daddr_t *bap; 448 struct vnode *vp; 449 ufs_daddr_t *copy = NULL, nb, nlbn, last; 450 long blkcount, factor; 451 int nblocks, blocksreleased = 0; 452 int error = 0, allerror = 0; 453 454 /* 455 * Calculate index in current block of last 456 * block to be kept. -1 indicates the entire 457 * block so we need not calculate the index. 458 */ 459 factor = 1; 460 for (i = SINGLE; i < level; i++) 461 factor *= NINDIR(fs); 462 last = lastbn; 463 if (lastbn > 0) 464 last /= factor; 465 nblocks = btodb(fs->fs_bsize); 466 /* 467 * Get buffer of block pointers, zero those entries corresponding 468 * to blocks to be free'd, and update on disk copy first. Since 469 * double(triple) indirect before single(double) indirect, calls 470 * to bmap on these blocks will fail. However, we already have 471 * the on disk address, so we have to set the b_blkno field 472 * explicitly instead of letting bread do everything for us. 473 */ 474 vp = ITOV(ip); 475 bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0); 476 if (bp->b_flags & (B_DONE | B_DELWRI)) { 477 /* Braces must be here in case trace evaluates to nothing. */ 478 trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn); 479 } else { 480 trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn); 481 curproc->p_stats->p_ru.ru_inblock++; /* pay for read */ 482 bp->b_flags |= B_READ; 483 if (bp->b_bcount > bp->b_bufsize) 484 panic("ffs_indirtrunc: bad buffer size"); 485 bp->b_blkno = dbn; 486 VOP_STRATEGY(bp); 487 error = biowait(bp); 488 } 489 if (error) { 490 brelse(bp); 491 *countp = 0; 492 return (error); 493 } 494 495 bap = (ufs_daddr_t *)bp->b_data; 496 if (lastbn >= 0) { 497 copy = (ufs_daddr_t *) malloc(fs->fs_bsize, M_TEMP, M_WAITOK); 498 memcpy((caddr_t)copy, (caddr_t)bap, (u_int)fs->fs_bsize); 499 memset((caddr_t)&bap[last + 1], 0, 500 (u_int)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t)); 501 error = bwrite(bp); 502 if (error) 503 allerror = error; 504 bap = copy; 505 } 506 507 /* 508 * Recursively free totally unused blocks. 509 */ 510 for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; 511 i--, nlbn += factor) { 512 nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs)); 513 if (nb == 0) 514 continue; 515 if (level > SINGLE) { 516 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 517 (ufs_daddr_t)-1, level - 1, 518 &blkcount); 519 if (error) 520 allerror = error; 521 blocksreleased += blkcount; 522 } 523 ffs_blkfree(ip, nb, fs->fs_bsize); 524 blocksreleased += nblocks; 525 } 526 527 /* 528 * Recursively free last partial block. 529 */ 530 if (level > SINGLE && lastbn >= 0) { 531 last = lastbn % factor; 532 nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs)); 533 if (nb != 0) { 534 error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), 535 last, level - 1, &blkcount); 536 if (error) 537 allerror = error; 538 blocksreleased += blkcount; 539 } 540 } 541 542 if (copy != NULL) { 543 FREE(copy, M_TEMP); 544 } else { 545 bp->b_flags |= B_INVAL; 546 brelse(bp); 547 } 548 549 *countp = blocksreleased; 550 return (allerror); 551 } 552