xref: /netbsd-src/sys/ufs/ffs/ffs_alloc.c (revision ae9172d6cd9432a6a1a56760d86b32c57a66c39c)
1 /*	$NetBSD: ffs_alloc.c,v 1.6 1994/12/16 05:55:15 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/vnode.h>
43 #include <sys/mount.h>
44 #include <sys/kernel.h>
45 #include <sys/syslog.h>
46 
47 #include <vm/vm.h>
48 
49 #include <ufs/ufs/quota.h>
50 #include <ufs/ufs/inode.h>
51 
52 #include <ufs/ffs/fs.h>
53 #include <ufs/ffs/ffs_extern.h>
54 
55 extern u_long nextgennumber;
56 
57 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
58 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
59 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
60 static ino_t	ffs_dirpref __P((struct fs *));
61 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
62 static void	ffs_fserr __P((struct fs *, u_int, char *));
63 static u_long	ffs_hashalloc
64 		    __P((struct inode *, int, long, int, u_int32_t (*)()));
65 static ino_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
66 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
67 
68 /*
69  * Allocate a block in the file system.
70  *
71  * The size of the requested block is given, which must be some
72  * multiple of fs_fsize and <= fs_bsize.
73  * A preference may be optionally specified. If a preference is given
74  * the following hierarchy is used to allocate a block:
75  *   1) allocate the requested block.
76  *   2) allocate a rotationally optimal block in the same cylinder.
77  *   3) allocate a block in the same cylinder group.
78  *   4) quadradically rehash into other cylinder groups, until an
79  *      available block is located.
80  * If no block preference is given the following heirarchy is used
81  * to allocate a block:
82  *   1) allocate a block in the cylinder group that contains the
83  *      inode for the file.
84  *   2) quadradically rehash into other cylinder groups, until an
85  *      available block is located.
86  */
87 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
88 	register struct inode *ip;
89 	daddr_t lbn, bpref;
90 	int size;
91 	struct ucred *cred;
92 	daddr_t *bnp;
93 {
94 	register struct fs *fs;
95 	daddr_t bno;
96 	int cg, error;
97 
98 	*bnp = 0;
99 	fs = ip->i_fs;
100 #ifdef DIAGNOSTIC
101 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
102 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
103 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
104 		panic("ffs_alloc: bad size");
105 	}
106 	if (cred == NOCRED)
107 		panic("ffs_alloc: missing credential\n");
108 #endif /* DIAGNOSTIC */
109 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
110 		goto nospace;
111 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
112 		goto nospace;
113 #ifdef QUOTA
114 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
115 		return (error);
116 #endif
117 	if (bpref >= fs->fs_size)
118 		bpref = 0;
119 	if (bpref == 0)
120 		cg = ino_to_cg(fs, ip->i_number);
121 	else
122 		cg = dtog(fs, bpref);
123 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
124 	    (u_int32_t (*)())ffs_alloccg);
125 	if (bno > 0) {
126 		ip->i_blocks += btodb(size);
127 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
128 		*bnp = bno;
129 		return (0);
130 	}
131 #ifdef QUOTA
132 	/*
133 	 * Restore user's disk quota because allocation failed.
134 	 */
135 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
136 #endif
137 nospace:
138 	ffs_fserr(fs, cred->cr_uid, "file system full");
139 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
140 	return (ENOSPC);
141 }
142 
143 /*
144  * Reallocate a fragment to a bigger size
145  *
146  * The number and size of the old block is given, and a preference
147  * and new size is also specified. The allocator attempts to extend
148  * the original block. Failing that, the regular block allocator is
149  * invoked to get an appropriate block.
150  */
151 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
152 	register struct inode *ip;
153 	daddr_t lbprev;
154 	daddr_t bpref;
155 	int osize, nsize;
156 	struct ucred *cred;
157 	struct buf **bpp;
158 {
159 	register struct fs *fs;
160 	struct buf *bp;
161 	int cg, request, error;
162 	daddr_t bprev, bno;
163 
164 	*bpp = 0;
165 	fs = ip->i_fs;
166 #ifdef DIAGNOSTIC
167 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
168 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
169 		printf(
170 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
171 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
172 		panic("ffs_realloccg: bad size");
173 	}
174 	if (cred == NOCRED)
175 		panic("ffs_realloccg: missing credential\n");
176 #endif /* DIAGNOSTIC */
177 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
178 		goto nospace;
179 	if ((bprev = ip->i_db[lbprev]) == 0) {
180 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
181 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
182 		panic("ffs_realloccg: bad bprev");
183 	}
184 	/*
185 	 * Allocate the extra space in the buffer.
186 	 */
187 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
188 		brelse(bp);
189 		return (error);
190 	}
191 #ifdef QUOTA
192 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
193 		brelse(bp);
194 		return (error);
195 	}
196 #endif
197 	/*
198 	 * Check for extension in the existing location.
199 	 */
200 	cg = dtog(fs, bprev);
201 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
202 		if (bp->b_blkno != fsbtodb(fs, bno))
203 			panic("bad blockno");
204 		ip->i_blocks += btodb(nsize - osize);
205 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
206 		allocbuf(bp, nsize);
207 		bp->b_flags |= B_DONE;
208 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
209 		*bpp = bp;
210 		return (0);
211 	}
212 	/*
213 	 * Allocate a new disk location.
214 	 */
215 	if (bpref >= fs->fs_size)
216 		bpref = 0;
217 	switch ((int)fs->fs_optim) {
218 	case FS_OPTSPACE:
219 		/*
220 		 * Allocate an exact sized fragment. Although this makes
221 		 * best use of space, we will waste time relocating it if
222 		 * the file continues to grow. If the fragmentation is
223 		 * less than half of the minimum free reserve, we choose
224 		 * to begin optimizing for time.
225 		 */
226 		request = nsize;
227 		if (fs->fs_minfree < 5 ||
228 		    fs->fs_cstotal.cs_nffree >
229 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
230 			break;
231 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
232 			fs->fs_fsmnt);
233 		fs->fs_optim = FS_OPTTIME;
234 		break;
235 	case FS_OPTTIME:
236 		/*
237 		 * At this point we have discovered a file that is trying to
238 		 * grow a small fragment to a larger fragment. To save time,
239 		 * we allocate a full sized block, then free the unused portion.
240 		 * If the file continues to grow, the `ffs_fragextend' call
241 		 * above will be able to grow it in place without further
242 		 * copying. If aberrant programs cause disk fragmentation to
243 		 * grow within 2% of the free reserve, we choose to begin
244 		 * optimizing for space.
245 		 */
246 		request = fs->fs_bsize;
247 		if (fs->fs_cstotal.cs_nffree <
248 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
249 			break;
250 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
251 			fs->fs_fsmnt);
252 		fs->fs_optim = FS_OPTSPACE;
253 		break;
254 	default:
255 		printf("dev = 0x%x, optim = %d, fs = %s\n",
256 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
257 		panic("ffs_realloccg: bad optim");
258 		/* NOTREACHED */
259 	}
260 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
261 	    (u_int32_t (*)())ffs_alloccg);
262 	if (bno > 0) {
263 		bp->b_blkno = fsbtodb(fs, bno);
264 		(void) vnode_pager_uncache(ITOV(ip));
265 		ffs_blkfree(ip, bprev, (long)osize);
266 		if (nsize < request)
267 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
268 			    (long)(request - nsize));
269 		ip->i_blocks += btodb(nsize - osize);
270 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
271 		allocbuf(bp, nsize);
272 		bp->b_flags |= B_DONE;
273 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
274 		*bpp = bp;
275 		return (0);
276 	}
277 #ifdef QUOTA
278 	/*
279 	 * Restore user's disk quota because allocation failed.
280 	 */
281 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
282 #endif
283 	brelse(bp);
284 nospace:
285 	/*
286 	 * no space available
287 	 */
288 	ffs_fserr(fs, cred->cr_uid, "file system full");
289 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
290 	return (ENOSPC);
291 }
292 
293 /*
294  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
295  *
296  * The vnode and an array of buffer pointers for a range of sequential
297  * logical blocks to be made contiguous is given. The allocator attempts
298  * to find a range of sequential blocks starting as close as possible to
299  * an fs_rotdelay offset from the end of the allocation for the logical
300  * block immediately preceeding the current range. If successful, the
301  * physical block numbers in the buffer pointers and in the inode are
302  * changed to reflect the new allocation. If unsuccessful, the allocation
303  * is left unchanged. The success in doing the reallocation is returned.
304  * Note that the error return is not reflected back to the user. Rather
305  * the previous block allocation will be used.
306  */
307 #ifdef DEBUG
308 #include <sys/sysctl.h>
309 int doasyncfree = 1;
310 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
311 int prtrealloc = 0;
312 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
313 #else
314 #define doasyncfree 1
315 #endif
316 
317 int
318 ffs_reallocblks(ap)
319 	struct vop_reallocblks_args /* {
320 		struct vnode *a_vp;
321 		struct cluster_save *a_buflist;
322 	} */ *ap;
323 {
324 	struct fs *fs;
325 	struct inode *ip;
326 	struct vnode *vp;
327 	struct buf *sbp, *ebp;
328 	daddr_t *bap, *sbap, *ebap;
329 	struct cluster_save *buflist;
330 	daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
331 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
332 	int i, len, start_lvl, end_lvl, pref, ssize;
333 
334 	vp = ap->a_vp;
335 	ip = VTOI(vp);
336 	fs = ip->i_fs;
337 	if (fs->fs_contigsumsize <= 0)
338 		return (ENOSPC);
339 	buflist = ap->a_buflist;
340 	len = buflist->bs_nchildren;
341 	start_lbn = buflist->bs_children[0]->b_lblkno;
342 	end_lbn = start_lbn + len - 1;
343 #ifdef DIAGNOSTIC
344 	for (i = 1; i < len; i++)
345 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
346 			panic("ffs_reallocblks: non-cluster");
347 #endif
348 	/*
349 	 * If the latest allocation is in a new cylinder group, assume that
350 	 * the filesystem has decided to move and do not force it back to
351 	 * the previous cylinder group.
352 	 */
353 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
354 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
355 		return (ENOSPC);
356 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
357 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
358 		return (ENOSPC);
359 	/*
360 	 * Get the starting offset and block map for the first block.
361 	 */
362 	if (start_lvl == 0) {
363 		sbap = &ip->i_db[0];
364 		soff = start_lbn;
365 	} else {
366 		idp = &start_ap[start_lvl - 1];
367 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
368 			brelse(sbp);
369 			return (ENOSPC);
370 		}
371 		sbap = (daddr_t *)sbp->b_data;
372 		soff = idp->in_off;
373 	}
374 	/*
375 	 * Find the preferred location for the cluster.
376 	 */
377 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
378 	/*
379 	 * If the block range spans two block maps, get the second map.
380 	 */
381 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
382 		ssize = len;
383 	} else {
384 #ifdef DIAGNOSTIC
385 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
386 			panic("ffs_reallocblk: start == end");
387 #endif
388 		ssize = len - (idp->in_off + 1);
389 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
390 			goto fail;
391 		ebap = (daddr_t *)ebp->b_data;
392 	}
393 	/*
394 	 * Search the block map looking for an allocation of the desired size.
395 	 */
396 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
397 	    len, (u_int32_t (*)())ffs_clusteralloc)) == 0)
398 		goto fail;
399 	/*
400 	 * We have found a new contiguous block.
401 	 *
402 	 * First we have to replace the old block pointers with the new
403 	 * block pointers in the inode and indirect blocks associated
404 	 * with the file.
405 	 */
406 #ifdef DEBUG
407 	if (prtrealloc)
408 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
409 		    start_lbn, end_lbn);
410 #endif
411 	blkno = newblk;
412 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
413 		if (i == ssize)
414 			bap = ebap;
415 #ifdef DIAGNOSTIC
416 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
417 			panic("ffs_reallocblks: alloc mismatch");
418 #endif
419 #ifdef DEBUG
420 		if (prtrealloc)
421 			printf(" %d,", *bap);
422 #endif
423 		*bap++ = blkno;
424 	}
425 	/*
426 	 * Next we must write out the modified inode and indirect blocks.
427 	 * For strict correctness, the writes should be synchronous since
428 	 * the old block values may have been written to disk. In practise
429 	 * they are almost never written, but if we are concerned about
430 	 * strict correctness, the `doasyncfree' flag should be set to zero.
431 	 *
432 	 * The test on `doasyncfree' should be changed to test a flag
433 	 * that shows whether the associated buffers and inodes have
434 	 * been written. The flag should be set when the cluster is
435 	 * started and cleared whenever the buffer or inode is flushed.
436 	 * We can then check below to see if it is set, and do the
437 	 * synchronous write only when it has been cleared.
438 	 */
439 	if (sbap != &ip->i_db[0]) {
440 		if (doasyncfree)
441 			bdwrite(sbp);
442 		else
443 			bwrite(sbp);
444 	} else {
445 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
446 		if (!doasyncfree)
447 			VOP_UPDATE(vp, &time, &time, MNT_WAIT);
448 	}
449 	if (ssize < len)
450 		if (doasyncfree)
451 			bdwrite(ebp);
452 		else
453 			bwrite(ebp);
454 	/*
455 	 * Last, free the old blocks and assign the new blocks to the buffers.
456 	 */
457 #ifdef DEBUG
458 	if (prtrealloc)
459 		printf("\n\tnew:");
460 #endif
461 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
462 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
463 		    fs->fs_bsize);
464 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
465 #ifdef DEBUG
466 		if (prtrealloc)
467 			printf(" %d,", blkno);
468 #endif
469 	}
470 #ifdef DEBUG
471 	if (prtrealloc) {
472 		prtrealloc--;
473 		printf("\n");
474 	}
475 #endif
476 	return (0);
477 
478 fail:
479 	if (ssize < len)
480 		brelse(ebp);
481 	if (sbap != &ip->i_db[0])
482 		brelse(sbp);
483 	return (ENOSPC);
484 }
485 
486 /*
487  * Allocate an inode in the file system.
488  *
489  * If allocating a directory, use ffs_dirpref to select the inode.
490  * If allocating in a directory, the following hierarchy is followed:
491  *   1) allocate the preferred inode.
492  *   2) allocate an inode in the same cylinder group.
493  *   3) quadradically rehash into other cylinder groups, until an
494  *      available inode is located.
495  * If no inode preference is given the following heirarchy is used
496  * to allocate an inode:
497  *   1) allocate an inode in cylinder group 0.
498  *   2) quadradically rehash into other cylinder groups, until an
499  *      available inode is located.
500  */
501 ffs_valloc(ap)
502 	struct vop_valloc_args /* {
503 		struct vnode *a_pvp;
504 		int a_mode;
505 		struct ucred *a_cred;
506 		struct vnode **a_vpp;
507 	} */ *ap;
508 {
509 	register struct vnode *pvp = ap->a_pvp;
510 	register struct inode *pip;
511 	register struct fs *fs;
512 	register struct inode *ip;
513 	mode_t mode = ap->a_mode;
514 	ino_t ino, ipref;
515 	int cg, error;
516 
517 	*ap->a_vpp = NULL;
518 	pip = VTOI(pvp);
519 	fs = pip->i_fs;
520 	if (fs->fs_cstotal.cs_nifree == 0)
521 		goto noinodes;
522 
523 	if ((mode & IFMT) == IFDIR)
524 		ipref = ffs_dirpref(fs);
525 	else
526 		ipref = pip->i_number;
527 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
528 		ipref = 0;
529 	cg = ino_to_cg(fs, ipref);
530 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
531 	if (ino == 0)
532 		goto noinodes;
533 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
534 	if (error) {
535 		VOP_VFREE(pvp, ino, mode);
536 		return (error);
537 	}
538 	ip = VTOI(*ap->a_vpp);
539 	if (ip->i_mode) {
540 		printf("mode = 0%o, inum = %d, fs = %s\n",
541 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
542 		panic("ffs_valloc: dup alloc");
543 	}
544 	if (ip->i_blocks) {				/* XXX */
545 		printf("free inode %s/%d had %d blocks\n",
546 		    fs->fs_fsmnt, ino, ip->i_blocks);
547 		ip->i_blocks = 0;
548 	}
549 	ip->i_flags = 0;
550 	/*
551 	 * Set up a new generation number for this inode.
552 	 */
553 	if (++nextgennumber < (u_long)time.tv_sec)
554 		nextgennumber = time.tv_sec;
555 	ip->i_gen = nextgennumber;
556 	return (0);
557 noinodes:
558 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
559 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
560 	return (ENOSPC);
561 }
562 
563 /*
564  * Find a cylinder to place a directory.
565  *
566  * The policy implemented by this algorithm is to select from
567  * among those cylinder groups with above the average number of
568  * free inodes, the one with the smallest number of directories.
569  */
570 static ino_t
571 ffs_dirpref(fs)
572 	register struct fs *fs;
573 {
574 	int cg, minndir, mincg, avgifree;
575 
576 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
577 	minndir = fs->fs_ipg;
578 	mincg = 0;
579 	for (cg = 0; cg < fs->fs_ncg; cg++)
580 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
581 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
582 			mincg = cg;
583 			minndir = fs->fs_cs(fs, cg).cs_ndir;
584 		}
585 	return ((ino_t)(fs->fs_ipg * mincg));
586 }
587 
588 /*
589  * Select the desired position for the next block in a file.  The file is
590  * logically divided into sections. The first section is composed of the
591  * direct blocks. Each additional section contains fs_maxbpg blocks.
592  *
593  * If no blocks have been allocated in the first section, the policy is to
594  * request a block in the same cylinder group as the inode that describes
595  * the file. If no blocks have been allocated in any other section, the
596  * policy is to place the section in a cylinder group with a greater than
597  * average number of free blocks.  An appropriate cylinder group is found
598  * by using a rotor that sweeps the cylinder groups. When a new group of
599  * blocks is needed, the sweep begins in the cylinder group following the
600  * cylinder group from which the previous allocation was made. The sweep
601  * continues until a cylinder group with greater than the average number
602  * of free blocks is found. If the allocation is for the first block in an
603  * indirect block, the information on the previous allocation is unavailable;
604  * here a best guess is made based upon the logical block number being
605  * allocated.
606  *
607  * If a section is already partially allocated, the policy is to
608  * contiguously allocate fs_maxcontig blocks.  The end of one of these
609  * contiguous blocks and the beginning of the next is physically separated
610  * so that the disk head will be in transit between them for at least
611  * fs_rotdelay milliseconds.  This is to allow time for the processor to
612  * schedule another I/O transfer.
613  */
614 daddr_t
615 ffs_blkpref(ip, lbn, indx, bap)
616 	struct inode *ip;
617 	daddr_t lbn;
618 	int indx;
619 	daddr_t *bap;
620 {
621 	register struct fs *fs;
622 	register int cg;
623 	int avgbfree, startcg;
624 	daddr_t nextblk;
625 
626 	fs = ip->i_fs;
627 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
628 		if (lbn < NDADDR) {
629 			cg = ino_to_cg(fs, ip->i_number);
630 			return (fs->fs_fpg * cg + fs->fs_frag);
631 		}
632 		/*
633 		 * Find a cylinder with greater than average number of
634 		 * unused data blocks.
635 		 */
636 		if (indx == 0 || bap[indx - 1] == 0)
637 			startcg =
638 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
639 		else
640 			startcg = dtog(fs, bap[indx - 1]) + 1;
641 		startcg %= fs->fs_ncg;
642 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
643 		for (cg = startcg; cg < fs->fs_ncg; cg++)
644 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
645 				fs->fs_cgrotor = cg;
646 				return (fs->fs_fpg * cg + fs->fs_frag);
647 			}
648 		for (cg = 0; cg <= startcg; cg++)
649 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
650 				fs->fs_cgrotor = cg;
651 				return (fs->fs_fpg * cg + fs->fs_frag);
652 			}
653 		return (NULL);
654 	}
655 	/*
656 	 * One or more previous blocks have been laid out. If less
657 	 * than fs_maxcontig previous blocks are contiguous, the
658 	 * next block is requested contiguously, otherwise it is
659 	 * requested rotationally delayed by fs_rotdelay milliseconds.
660 	 */
661 	nextblk = bap[indx - 1] + fs->fs_frag;
662 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
663 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
664 		return (nextblk);
665 	if (fs->fs_rotdelay != 0)
666 		/*
667 		 * Here we convert ms of delay to frags as:
668 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
669 		 *	((sect/frag) * (ms/sec))
670 		 * then round up to the next block.
671 		 */
672 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
673 		    (NSPF(fs) * 1000), fs->fs_frag);
674 	return (nextblk);
675 }
676 
677 /*
678  * Implement the cylinder overflow algorithm.
679  *
680  * The policy implemented by this algorithm is:
681  *   1) allocate the block in its requested cylinder group.
682  *   2) quadradically rehash on the cylinder group number.
683  *   3) brute force search for a free block.
684  */
685 /*VARARGS5*/
686 static u_long
687 ffs_hashalloc(ip, cg, pref, size, allocator)
688 	struct inode *ip;
689 	int cg;
690 	long pref;
691 	int size;	/* size for data blocks, mode for inodes */
692 	u_int32_t (*allocator)();
693 {
694 	register struct fs *fs;
695 	long result;
696 	int i, icg = cg;
697 
698 	fs = ip->i_fs;
699 	/*
700 	 * 1: preferred cylinder group
701 	 */
702 	result = (*allocator)(ip, cg, pref, size);
703 	if (result)
704 		return (result);
705 	/*
706 	 * 2: quadratic rehash
707 	 */
708 	for (i = 1; i < fs->fs_ncg; i *= 2) {
709 		cg += i;
710 		if (cg >= fs->fs_ncg)
711 			cg -= fs->fs_ncg;
712 		result = (*allocator)(ip, cg, 0, size);
713 		if (result)
714 			return (result);
715 	}
716 	/*
717 	 * 3: brute force search
718 	 * Note that we start at i == 2, since 0 was checked initially,
719 	 * and 1 is always checked in the quadratic rehash.
720 	 */
721 	cg = (icg + 2) % fs->fs_ncg;
722 	for (i = 2; i < fs->fs_ncg; i++) {
723 		result = (*allocator)(ip, cg, 0, size);
724 		if (result)
725 			return (result);
726 		cg++;
727 		if (cg == fs->fs_ncg)
728 			cg = 0;
729 	}
730 	return (NULL);
731 }
732 
733 /*
734  * Determine whether a fragment can be extended.
735  *
736  * Check to see if the necessary fragments are available, and
737  * if they are, allocate them.
738  */
739 static daddr_t
740 ffs_fragextend(ip, cg, bprev, osize, nsize)
741 	struct inode *ip;
742 	int cg;
743 	long bprev;
744 	int osize, nsize;
745 {
746 	register struct fs *fs;
747 	register struct cg *cgp;
748 	struct buf *bp;
749 	long bno;
750 	int frags, bbase;
751 	int i, error;
752 
753 	fs = ip->i_fs;
754 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
755 		return (NULL);
756 	frags = numfrags(fs, nsize);
757 	bbase = fragnum(fs, bprev);
758 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
759 		/* cannot extend across a block boundary */
760 		return (NULL);
761 	}
762 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
763 		(int)fs->fs_cgsize, NOCRED, &bp);
764 	if (error) {
765 		brelse(bp);
766 		return (NULL);
767 	}
768 	cgp = (struct cg *)bp->b_data;
769 	if (!cg_chkmagic(cgp)) {
770 		brelse(bp);
771 		return (NULL);
772 	}
773 	cgp->cg_time = time.tv_sec;
774 	bno = dtogd(fs, bprev);
775 	for (i = numfrags(fs, osize); i < frags; i++)
776 		if (isclr(cg_blksfree(cgp), bno + i)) {
777 			brelse(bp);
778 			return (NULL);
779 		}
780 	/*
781 	 * the current fragment can be extended
782 	 * deduct the count on fragment being extended into
783 	 * increase the count on the remaining fragment (if any)
784 	 * allocate the extended piece
785 	 */
786 	for (i = frags; i < fs->fs_frag - bbase; i++)
787 		if (isclr(cg_blksfree(cgp), bno + i))
788 			break;
789 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
790 	if (i != frags)
791 		cgp->cg_frsum[i - frags]++;
792 	for (i = numfrags(fs, osize); i < frags; i++) {
793 		clrbit(cg_blksfree(cgp), bno + i);
794 		cgp->cg_cs.cs_nffree--;
795 		fs->fs_cstotal.cs_nffree--;
796 		fs->fs_cs(fs, cg).cs_nffree--;
797 	}
798 	fs->fs_fmod = 1;
799 	bdwrite(bp);
800 	return (bprev);
801 }
802 
803 /*
804  * Determine whether a block can be allocated.
805  *
806  * Check to see if a block of the appropriate size is available,
807  * and if it is, allocate it.
808  */
809 static daddr_t
810 ffs_alloccg(ip, cg, bpref, size)
811 	struct inode *ip;
812 	int cg;
813 	daddr_t bpref;
814 	int size;
815 {
816 	register struct fs *fs;
817 	register struct cg *cgp;
818 	struct buf *bp;
819 	register int i;
820 	int error, bno, frags, allocsiz;
821 
822 	fs = ip->i_fs;
823 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
824 		return (NULL);
825 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
826 		(int)fs->fs_cgsize, NOCRED, &bp);
827 	if (error) {
828 		brelse(bp);
829 		return (NULL);
830 	}
831 	cgp = (struct cg *)bp->b_data;
832 	if (!cg_chkmagic(cgp) ||
833 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
834 		brelse(bp);
835 		return (NULL);
836 	}
837 	cgp->cg_time = time.tv_sec;
838 	if (size == fs->fs_bsize) {
839 		bno = ffs_alloccgblk(fs, cgp, bpref);
840 		bdwrite(bp);
841 		return (bno);
842 	}
843 	/*
844 	 * check to see if any fragments are already available
845 	 * allocsiz is the size which will be allocated, hacking
846 	 * it down to a smaller size if necessary
847 	 */
848 	frags = numfrags(fs, size);
849 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
850 		if (cgp->cg_frsum[allocsiz] != 0)
851 			break;
852 	if (allocsiz == fs->fs_frag) {
853 		/*
854 		 * no fragments were available, so a block will be
855 		 * allocated, and hacked up
856 		 */
857 		if (cgp->cg_cs.cs_nbfree == 0) {
858 			brelse(bp);
859 			return (NULL);
860 		}
861 		bno = ffs_alloccgblk(fs, cgp, bpref);
862 		bpref = dtogd(fs, bno);
863 		for (i = frags; i < fs->fs_frag; i++)
864 			setbit(cg_blksfree(cgp), bpref + i);
865 		i = fs->fs_frag - frags;
866 		cgp->cg_cs.cs_nffree += i;
867 		fs->fs_cstotal.cs_nffree += i;
868 		fs->fs_cs(fs, cg).cs_nffree += i;
869 		fs->fs_fmod = 1;
870 		cgp->cg_frsum[i]++;
871 		bdwrite(bp);
872 		return (bno);
873 	}
874 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
875 	if (bno < 0) {
876 		brelse(bp);
877 		return (NULL);
878 	}
879 	for (i = 0; i < frags; i++)
880 		clrbit(cg_blksfree(cgp), bno + i);
881 	cgp->cg_cs.cs_nffree -= frags;
882 	fs->fs_cstotal.cs_nffree -= frags;
883 	fs->fs_cs(fs, cg).cs_nffree -= frags;
884 	fs->fs_fmod = 1;
885 	cgp->cg_frsum[allocsiz]--;
886 	if (frags != allocsiz)
887 		cgp->cg_frsum[allocsiz - frags]++;
888 	bdwrite(bp);
889 	return (cg * fs->fs_fpg + bno);
890 }
891 
892 /*
893  * Allocate a block in a cylinder group.
894  *
895  * This algorithm implements the following policy:
896  *   1) allocate the requested block.
897  *   2) allocate a rotationally optimal block in the same cylinder.
898  *   3) allocate the next available block on the block rotor for the
899  *      specified cylinder group.
900  * Note that this routine only allocates fs_bsize blocks; these
901  * blocks may be fragmented by the routine that allocates them.
902  */
903 static daddr_t
904 ffs_alloccgblk(fs, cgp, bpref)
905 	register struct fs *fs;
906 	register struct cg *cgp;
907 	daddr_t bpref;
908 {
909 	daddr_t bno, blkno;
910 	int cylno, pos, delta;
911 	short *cylbp;
912 	register int i;
913 
914 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
915 		bpref = cgp->cg_rotor;
916 		goto norot;
917 	}
918 	bpref = blknum(fs, bpref);
919 	bpref = dtogd(fs, bpref);
920 	/*
921 	 * if the requested block is available, use it
922 	 */
923 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
924 		bno = bpref;
925 		goto gotit;
926 	}
927 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
928 		/*
929 		 * Block layout information is not available.
930 		 * Leaving bpref unchanged means we take the
931 		 * next available free block following the one
932 		 * we just allocated. Hopefully this will at
933 		 * least hit a track cache on drives of unknown
934 		 * geometry (e.g. SCSI).
935 		 */
936 		goto norot;
937 	}
938 	/*
939 	 * check for a block available on the same cylinder
940 	 */
941 	cylno = cbtocylno(fs, bpref);
942 	if (cg_blktot(cgp)[cylno] == 0)
943 		goto norot;
944 	/*
945 	 * check the summary information to see if a block is
946 	 * available in the requested cylinder starting at the
947 	 * requested rotational position and proceeding around.
948 	 */
949 	cylbp = cg_blks(fs, cgp, cylno);
950 	pos = cbtorpos(fs, bpref);
951 	for (i = pos; i < fs->fs_nrpos; i++)
952 		if (cylbp[i] > 0)
953 			break;
954 	if (i == fs->fs_nrpos)
955 		for (i = 0; i < pos; i++)
956 			if (cylbp[i] > 0)
957 				break;
958 	if (cylbp[i] > 0) {
959 		/*
960 		 * found a rotational position, now find the actual
961 		 * block. A panic if none is actually there.
962 		 */
963 		pos = cylno % fs->fs_cpc;
964 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
965 		if (fs_postbl(fs, pos)[i] == -1) {
966 			printf("pos = %d, i = %d, fs = %s\n",
967 			    pos, i, fs->fs_fsmnt);
968 			panic("ffs_alloccgblk: cyl groups corrupted");
969 		}
970 		for (i = fs_postbl(fs, pos)[i];; ) {
971 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
972 				bno = blkstofrags(fs, (bno + i));
973 				goto gotit;
974 			}
975 			delta = fs_rotbl(fs)[i];
976 			if (delta <= 0 ||
977 			    delta + i > fragstoblks(fs, fs->fs_fpg))
978 				break;
979 			i += delta;
980 		}
981 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
982 		panic("ffs_alloccgblk: can't find blk in cyl");
983 	}
984 norot:
985 	/*
986 	 * no blocks in the requested cylinder, so take next
987 	 * available one in this cylinder group.
988 	 */
989 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
990 	if (bno < 0)
991 		return (NULL);
992 	cgp->cg_rotor = bno;
993 gotit:
994 	blkno = fragstoblks(fs, bno);
995 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
996 	ffs_clusteracct(fs, cgp, blkno, -1);
997 	cgp->cg_cs.cs_nbfree--;
998 	fs->fs_cstotal.cs_nbfree--;
999 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1000 	cylno = cbtocylno(fs, bno);
1001 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1002 	cg_blktot(cgp)[cylno]--;
1003 	fs->fs_fmod = 1;
1004 	return (cgp->cg_cgx * fs->fs_fpg + bno);
1005 }
1006 
1007 /*
1008  * Determine whether a cluster can be allocated.
1009  *
1010  * We do not currently check for optimal rotational layout if there
1011  * are multiple choices in the same cylinder group. Instead we just
1012  * take the first one that we find following bpref.
1013  */
1014 static daddr_t
1015 ffs_clusteralloc(ip, cg, bpref, len)
1016 	struct inode *ip;
1017 	int cg;
1018 	daddr_t bpref;
1019 	int len;
1020 {
1021 	register struct fs *fs;
1022 	register struct cg *cgp;
1023 	struct buf *bp;
1024 	int i, run, bno, bit, map;
1025 	u_char *mapp;
1026 	int32_t *lp;
1027 
1028 	fs = ip->i_fs;
1029 	if (fs->fs_maxcluster[cg] < len)
1030 		return (NULL);
1031 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1032 	    NOCRED, &bp))
1033 		goto fail;
1034 	cgp = (struct cg *)bp->b_data;
1035 	if (!cg_chkmagic(cgp))
1036 		goto fail;
1037 	/*
1038 	 * Check to see if a cluster of the needed size (or bigger) is
1039 	 * available in this cylinder group.
1040 	 */
1041 	lp = &cg_clustersum(cgp)[len];
1042 	for (i = len; i <= fs->fs_contigsumsize; i++)
1043 		if (*lp++ > 0)
1044 			break;
1045 	if (i > fs->fs_contigsumsize) {
1046 		/*
1047 		 * This is the first time looking for a cluster in this
1048 		 * cylinder group. Update the cluster summary information
1049 		 * to reflect the true maximum sized cluster so that
1050 		 * future cluster allocation requests can avoid reading
1051 		 * the cylinder group map only to find no clusters.
1052 		 */
1053 		lp = &cg_clustersum(cgp)[len - 1];
1054 		for (i = len - 1; i > 0; i--)
1055 			if (*lp-- > 0)
1056 				break;
1057 		fs->fs_maxcluster[cg] = i;
1058 		goto fail;
1059 	}
1060 	/*
1061 	 * Search the cluster map to find a big enough cluster.
1062 	 * We take the first one that we find, even if it is larger
1063 	 * than we need as we prefer to get one close to the previous
1064 	 * block allocation. We do not search before the current
1065 	 * preference point as we do not want to allocate a block
1066 	 * that is allocated before the previous one (as we will
1067 	 * then have to wait for another pass of the elevator
1068 	 * algorithm before it will be read). We prefer to fail and
1069 	 * be recalled to try an allocation in the next cylinder group.
1070 	 */
1071 	if (dtog(fs, bpref) != cg)
1072 		bpref = 0;
1073 	else
1074 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1075 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1076 	map = *mapp++;
1077 	bit = 1 << (bpref % NBBY);
1078 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1079 		if ((map & bit) == 0) {
1080 			run = 0;
1081 		} else {
1082 			run++;
1083 			if (run == len)
1084 				break;
1085 		}
1086 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1087 			bit <<= 1;
1088 		} else {
1089 			map = *mapp++;
1090 			bit = 1;
1091 		}
1092 	}
1093 	if (i == cgp->cg_nclusterblks)
1094 		goto fail;
1095 	/*
1096 	 * Allocate the cluster that we have found.
1097 	 */
1098 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1099 	len = blkstofrags(fs, len);
1100 	for (i = 0; i < len; i += fs->fs_frag)
1101 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1102 			panic("ffs_clusteralloc: lost block");
1103 	brelse(bp);
1104 	return (bno);
1105 
1106 fail:
1107 	brelse(bp);
1108 	return (0);
1109 }
1110 
1111 /*
1112  * Determine whether an inode can be allocated.
1113  *
1114  * Check to see if an inode is available, and if it is,
1115  * allocate it using the following policy:
1116  *   1) allocate the requested inode.
1117  *   2) allocate the next available inode after the requested
1118  *      inode in the specified cylinder group.
1119  */
1120 static ino_t
1121 ffs_nodealloccg(ip, cg, ipref, mode)
1122 	struct inode *ip;
1123 	int cg;
1124 	daddr_t ipref;
1125 	int mode;
1126 {
1127 	register struct fs *fs;
1128 	register struct cg *cgp;
1129 	struct buf *bp;
1130 	int error, start, len, loc, map, i;
1131 
1132 	fs = ip->i_fs;
1133 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1134 		return (NULL);
1135 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1136 		(int)fs->fs_cgsize, NOCRED, &bp);
1137 	if (error) {
1138 		brelse(bp);
1139 		return (NULL);
1140 	}
1141 	cgp = (struct cg *)bp->b_data;
1142 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1143 		brelse(bp);
1144 		return (NULL);
1145 	}
1146 	cgp->cg_time = time.tv_sec;
1147 	if (ipref) {
1148 		ipref %= fs->fs_ipg;
1149 		if (isclr(cg_inosused(cgp), ipref))
1150 			goto gotit;
1151 	}
1152 	start = cgp->cg_irotor / NBBY;
1153 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1154 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1155 	if (loc == 0) {
1156 		len = start + 1;
1157 		start = 0;
1158 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1159 		if (loc == 0) {
1160 			printf("cg = %d, irotor = %d, fs = %s\n",
1161 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
1162 			panic("ffs_nodealloccg: map corrupted");
1163 			/* NOTREACHED */
1164 		}
1165 	}
1166 	i = start + len - loc;
1167 	map = cg_inosused(cgp)[i];
1168 	ipref = i * NBBY;
1169 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1170 		if ((map & i) == 0) {
1171 			cgp->cg_irotor = ipref;
1172 			goto gotit;
1173 		}
1174 	}
1175 	printf("fs = %s\n", fs->fs_fsmnt);
1176 	panic("ffs_nodealloccg: block not in map");
1177 	/* NOTREACHED */
1178 gotit:
1179 	setbit(cg_inosused(cgp), ipref);
1180 	cgp->cg_cs.cs_nifree--;
1181 	fs->fs_cstotal.cs_nifree--;
1182 	fs->fs_cs(fs, cg).cs_nifree--;
1183 	fs->fs_fmod = 1;
1184 	if ((mode & IFMT) == IFDIR) {
1185 		cgp->cg_cs.cs_ndir++;
1186 		fs->fs_cstotal.cs_ndir++;
1187 		fs->fs_cs(fs, cg).cs_ndir++;
1188 	}
1189 	bdwrite(bp);
1190 	return (cg * fs->fs_ipg + ipref);
1191 }
1192 
1193 /*
1194  * Free a block or fragment.
1195  *
1196  * The specified block or fragment is placed back in the
1197  * free map. If a fragment is deallocated, a possible
1198  * block reassembly is checked.
1199  */
1200 ffs_blkfree(ip, bno, size)
1201 	register struct inode *ip;
1202 	daddr_t bno;
1203 	long size;
1204 {
1205 	register struct fs *fs;
1206 	register struct cg *cgp;
1207 	struct buf *bp;
1208 	daddr_t blkno;
1209 	int i, error, cg, blk, frags, bbase;
1210 
1211 	fs = ip->i_fs;
1212 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1213 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1214 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1215 		panic("blkfree: bad size");
1216 	}
1217 	cg = dtog(fs, bno);
1218 	if ((u_int)bno >= fs->fs_size) {
1219 		printf("bad block %d, ino %d\n", bno, ip->i_number);
1220 		ffs_fserr(fs, ip->i_uid, "bad block");
1221 		return;
1222 	}
1223 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1224 		(int)fs->fs_cgsize, NOCRED, &bp);
1225 	if (error) {
1226 		brelse(bp);
1227 		return;
1228 	}
1229 	cgp = (struct cg *)bp->b_data;
1230 	if (!cg_chkmagic(cgp)) {
1231 		brelse(bp);
1232 		return;
1233 	}
1234 	cgp->cg_time = time.tv_sec;
1235 	bno = dtogd(fs, bno);
1236 	if (size == fs->fs_bsize) {
1237 		blkno = fragstoblks(fs, bno);
1238 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1239 			printf("dev = 0x%x, block = %d, fs = %s\n",
1240 			    ip->i_dev, bno, fs->fs_fsmnt);
1241 			panic("blkfree: freeing free block");
1242 		}
1243 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1244 		ffs_clusteracct(fs, cgp, blkno, 1);
1245 		cgp->cg_cs.cs_nbfree++;
1246 		fs->fs_cstotal.cs_nbfree++;
1247 		fs->fs_cs(fs, cg).cs_nbfree++;
1248 		i = cbtocylno(fs, bno);
1249 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1250 		cg_blktot(cgp)[i]++;
1251 	} else {
1252 		bbase = bno - fragnum(fs, bno);
1253 		/*
1254 		 * decrement the counts associated with the old frags
1255 		 */
1256 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1257 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1258 		/*
1259 		 * deallocate the fragment
1260 		 */
1261 		frags = numfrags(fs, size);
1262 		for (i = 0; i < frags; i++) {
1263 			if (isset(cg_blksfree(cgp), bno + i)) {
1264 				printf("dev = 0x%x, block = %d, fs = %s\n",
1265 				    ip->i_dev, bno + i, fs->fs_fsmnt);
1266 				panic("blkfree: freeing free frag");
1267 			}
1268 			setbit(cg_blksfree(cgp), bno + i);
1269 		}
1270 		cgp->cg_cs.cs_nffree += i;
1271 		fs->fs_cstotal.cs_nffree += i;
1272 		fs->fs_cs(fs, cg).cs_nffree += i;
1273 		/*
1274 		 * add back in counts associated with the new frags
1275 		 */
1276 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1277 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1278 		/*
1279 		 * if a complete block has been reassembled, account for it
1280 		 */
1281 		blkno = fragstoblks(fs, bbase);
1282 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1283 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1284 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1285 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1286 			ffs_clusteracct(fs, cgp, blkno, 1);
1287 			cgp->cg_cs.cs_nbfree++;
1288 			fs->fs_cstotal.cs_nbfree++;
1289 			fs->fs_cs(fs, cg).cs_nbfree++;
1290 			i = cbtocylno(fs, bbase);
1291 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1292 			cg_blktot(cgp)[i]++;
1293 		}
1294 	}
1295 	fs->fs_fmod = 1;
1296 	bdwrite(bp);
1297 }
1298 
1299 /*
1300  * Free an inode.
1301  *
1302  * The specified inode is placed back in the free map.
1303  */
1304 int
1305 ffs_vfree(ap)
1306 	struct vop_vfree_args /* {
1307 		struct vnode *a_pvp;
1308 		ino_t a_ino;
1309 		int a_mode;
1310 	} */ *ap;
1311 {
1312 	register struct fs *fs;
1313 	register struct cg *cgp;
1314 	register struct inode *pip;
1315 	ino_t ino = ap->a_ino;
1316 	struct buf *bp;
1317 	int error, cg;
1318 
1319 	pip = VTOI(ap->a_pvp);
1320 	fs = pip->i_fs;
1321 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1322 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1323 		    pip->i_dev, ino, fs->fs_fsmnt);
1324 	cg = ino_to_cg(fs, ino);
1325 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1326 		(int)fs->fs_cgsize, NOCRED, &bp);
1327 	if (error) {
1328 		brelse(bp);
1329 		return (0);
1330 	}
1331 	cgp = (struct cg *)bp->b_data;
1332 	if (!cg_chkmagic(cgp)) {
1333 		brelse(bp);
1334 		return (0);
1335 	}
1336 	cgp->cg_time = time.tv_sec;
1337 	ino %= fs->fs_ipg;
1338 	if (isclr(cg_inosused(cgp), ino)) {
1339 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1340 		    pip->i_dev, ino, fs->fs_fsmnt);
1341 		if (fs->fs_ronly == 0)
1342 			panic("ifree: freeing free inode");
1343 	}
1344 	clrbit(cg_inosused(cgp), ino);
1345 	if (ino < cgp->cg_irotor)
1346 		cgp->cg_irotor = ino;
1347 	cgp->cg_cs.cs_nifree++;
1348 	fs->fs_cstotal.cs_nifree++;
1349 	fs->fs_cs(fs, cg).cs_nifree++;
1350 	if ((ap->a_mode & IFMT) == IFDIR) {
1351 		cgp->cg_cs.cs_ndir--;
1352 		fs->fs_cstotal.cs_ndir--;
1353 		fs->fs_cs(fs, cg).cs_ndir--;
1354 	}
1355 	fs->fs_fmod = 1;
1356 	bdwrite(bp);
1357 	return (0);
1358 }
1359 
1360 /*
1361  * Find a block of the specified size in the specified cylinder group.
1362  *
1363  * It is a panic if a request is made to find a block if none are
1364  * available.
1365  */
1366 static daddr_t
1367 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1368 	register struct fs *fs;
1369 	register struct cg *cgp;
1370 	daddr_t bpref;
1371 	int allocsiz;
1372 {
1373 	daddr_t bno;
1374 	int start, len, loc, i;
1375 	int blk, field, subfield, pos;
1376 
1377 	/*
1378 	 * find the fragment by searching through the free block
1379 	 * map for an appropriate bit pattern
1380 	 */
1381 	if (bpref)
1382 		start = dtogd(fs, bpref) / NBBY;
1383 	else
1384 		start = cgp->cg_frotor / NBBY;
1385 	len = howmany(fs->fs_fpg, NBBY) - start;
1386 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1387 		(u_char *)fragtbl[fs->fs_frag],
1388 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1389 	if (loc == 0) {
1390 		len = start + 1;
1391 		start = 0;
1392 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1393 			(u_char *)fragtbl[fs->fs_frag],
1394 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1395 		if (loc == 0) {
1396 			printf("start = %d, len = %d, fs = %s\n",
1397 			    start, len, fs->fs_fsmnt);
1398 			panic("ffs_alloccg: map corrupted");
1399 			/* NOTREACHED */
1400 		}
1401 	}
1402 	bno = (start + len - loc) * NBBY;
1403 	cgp->cg_frotor = bno;
1404 	/*
1405 	 * found the byte in the map
1406 	 * sift through the bits to find the selected frag
1407 	 */
1408 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1409 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1410 		blk <<= 1;
1411 		field = around[allocsiz];
1412 		subfield = inside[allocsiz];
1413 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1414 			if ((blk & field) == subfield)
1415 				return (bno + pos);
1416 			field <<= 1;
1417 			subfield <<= 1;
1418 		}
1419 	}
1420 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1421 	panic("ffs_alloccg: block not in map");
1422 	return (-1);
1423 }
1424 
1425 /*
1426  * Update the cluster map because of an allocation or free.
1427  *
1428  * Cnt == 1 means free; cnt == -1 means allocating.
1429  */
1430 ffs_clusteracct(fs, cgp, blkno, cnt)
1431 	struct fs *fs;
1432 	struct cg *cgp;
1433 	daddr_t blkno;
1434 	int cnt;
1435 {
1436 	int32_t *sump;
1437 	int32_t *lp;
1438 	u_char *freemapp, *mapp;
1439 	int i, start, end, forw, back, map, bit;
1440 
1441 	if (fs->fs_contigsumsize <= 0)
1442 		return;
1443 	freemapp = cg_clustersfree(cgp);
1444 	sump = cg_clustersum(cgp);
1445 	/*
1446 	 * Allocate or clear the actual block.
1447 	 */
1448 	if (cnt > 0)
1449 		setbit(freemapp, blkno);
1450 	else
1451 		clrbit(freemapp, blkno);
1452 	/*
1453 	 * Find the size of the cluster going forward.
1454 	 */
1455 	start = blkno + 1;
1456 	end = start + fs->fs_contigsumsize;
1457 	if (end >= cgp->cg_nclusterblks)
1458 		end = cgp->cg_nclusterblks;
1459 	mapp = &freemapp[start / NBBY];
1460 	map = *mapp++;
1461 	bit = 1 << (start % NBBY);
1462 	for (i = start; i < end; i++) {
1463 		if ((map & bit) == 0)
1464 			break;
1465 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1466 			bit <<= 1;
1467 		} else {
1468 			map = *mapp++;
1469 			bit = 1;
1470 		}
1471 	}
1472 	forw = i - start;
1473 	/*
1474 	 * Find the size of the cluster going backward.
1475 	 */
1476 	start = blkno - 1;
1477 	end = start - fs->fs_contigsumsize;
1478 	if (end < 0)
1479 		end = -1;
1480 	mapp = &freemapp[start / NBBY];
1481 	map = *mapp--;
1482 	bit = 1 << (start % NBBY);
1483 	for (i = start; i > end; i--) {
1484 		if ((map & bit) == 0)
1485 			break;
1486 		if ((i & (NBBY - 1)) != 0) {
1487 			bit >>= 1;
1488 		} else {
1489 			map = *mapp--;
1490 			bit = 1 << (NBBY - 1);
1491 		}
1492 	}
1493 	back = start - i;
1494 	/*
1495 	 * Account for old cluster and the possibly new forward and
1496 	 * back clusters.
1497 	 */
1498 	i = back + forw + 1;
1499 	if (i > fs->fs_contigsumsize)
1500 		i = fs->fs_contigsumsize;
1501 	sump[i] += cnt;
1502 	if (back > 0)
1503 		sump[back] -= cnt;
1504 	if (forw > 0)
1505 		sump[forw] -= cnt;
1506 	/*
1507 	 * Update cluster summary information.
1508 	 */
1509 	lp = &sump[fs->fs_contigsumsize];
1510 	for (i = fs->fs_contigsumsize; i > 0; i--)
1511 		if (*lp-- > 0)
1512 			break;
1513 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1514 }
1515 
1516 /*
1517  * Fserr prints the name of a file system with an error diagnostic.
1518  *
1519  * The form of the error message is:
1520  *	fs: error message
1521  */
1522 static void
1523 ffs_fserr(fs, uid, cp)
1524 	struct fs *fs;
1525 	u_int uid;
1526 	char *cp;
1527 {
1528 
1529 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1530 }
1531