xref: /netbsd-src/sys/ufs/ffs/ffs_alloc.c (revision 81b108b45f75f89f1e3ffad9fb6f074e771c0935)
1 /*	$NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/vnode.h>
43 #include <sys/mount.h>
44 #include <sys/kernel.h>
45 #include <sys/syslog.h>
46 
47 #include <vm/vm.h>
48 
49 #include <ufs/ufs/quota.h>
50 #include <ufs/ufs/inode.h>
51 #include <ufs/ufs/ufs_extern.h>
52 
53 #include <ufs/ffs/fs.h>
54 #include <ufs/ffs/ffs_extern.h>
55 
56 extern u_long nextgennumber;
57 
58 static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
59 static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
60 static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
61 static ino_t	ffs_dirpref __P((struct fs *));
62 static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
63 static void	ffs_fserr __P((struct fs *, u_int, char *));
64 static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
65 				   daddr_t (*)(struct inode *, int, daddr_t,
66 					       int)));
67 static daddr_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
68 static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
69 
70 /*
71  * Allocate a block in the file system.
72  *
73  * The size of the requested block is given, which must be some
74  * multiple of fs_fsize and <= fs_bsize.
75  * A preference may be optionally specified. If a preference is given
76  * the following hierarchy is used to allocate a block:
77  *   1) allocate the requested block.
78  *   2) allocate a rotationally optimal block in the same cylinder.
79  *   3) allocate a block in the same cylinder group.
80  *   4) quadradically rehash into other cylinder groups, until an
81  *      available block is located.
82  * If no block preference is given the following heirarchy is used
83  * to allocate a block:
84  *   1) allocate a block in the cylinder group that contains the
85  *      inode for the file.
86  *   2) quadradically rehash into other cylinder groups, until an
87  *      available block is located.
88  */
89 int
90 ffs_alloc(ip, lbn, bpref, size, cred, bnp)
91 	register struct inode *ip;
92 	daddr_t lbn, bpref;
93 	int size;
94 	struct ucred *cred;
95 	daddr_t *bnp;
96 {
97 	register struct fs *fs;
98 	daddr_t bno;
99 	int cg;
100 #ifdef QUOTA
101 	int error;
102 #endif
103 
104 	*bnp = 0;
105 	fs = ip->i_fs;
106 #ifdef DIAGNOSTIC
107 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
108 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
109 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
110 		panic("ffs_alloc: bad size");
111 	}
112 	if (cred == NOCRED)
113 		panic("ffs_alloc: missing credential\n");
114 #endif /* DIAGNOSTIC */
115 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
116 		goto nospace;
117 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
118 		goto nospace;
119 #ifdef QUOTA
120 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
121 		return (error);
122 #endif
123 	if (bpref >= fs->fs_size)
124 		bpref = 0;
125 	if (bpref == 0)
126 		cg = ino_to_cg(fs, ip->i_number);
127 	else
128 		cg = dtog(fs, bpref);
129 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
130 	    			     ffs_alloccg);
131 	if (bno > 0) {
132 		ip->i_blocks += btodb(size);
133 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
134 		*bnp = bno;
135 		return (0);
136 	}
137 #ifdef QUOTA
138 	/*
139 	 * Restore user's disk quota because allocation failed.
140 	 */
141 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
142 #endif
143 nospace:
144 	ffs_fserr(fs, cred->cr_uid, "file system full");
145 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
146 	return (ENOSPC);
147 }
148 
149 /*
150  * Reallocate a fragment to a bigger size
151  *
152  * The number and size of the old block is given, and a preference
153  * and new size is also specified. The allocator attempts to extend
154  * the original block. Failing that, the regular block allocator is
155  * invoked to get an appropriate block.
156  */
157 int
158 ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
159 	register struct inode *ip;
160 	daddr_t lbprev;
161 	daddr_t bpref;
162 	int osize, nsize;
163 	struct ucred *cred;
164 	struct buf **bpp;
165 {
166 	register struct fs *fs;
167 	struct buf *bp;
168 	int cg, request, error;
169 	daddr_t bprev, bno;
170 
171 	*bpp = 0;
172 	fs = ip->i_fs;
173 #ifdef DIAGNOSTIC
174 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
175 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
176 		printf(
177 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
178 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
179 		panic("ffs_realloccg: bad size");
180 	}
181 	if (cred == NOCRED)
182 		panic("ffs_realloccg: missing credential\n");
183 #endif /* DIAGNOSTIC */
184 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
185 		goto nospace;
186 	if ((bprev = ip->i_db[lbprev]) == 0) {
187 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
188 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
189 		panic("ffs_realloccg: bad bprev");
190 	}
191 	/*
192 	 * Allocate the extra space in the buffer.
193 	 */
194 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
195 		brelse(bp);
196 		return (error);
197 	}
198 #ifdef QUOTA
199 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
200 		brelse(bp);
201 		return (error);
202 	}
203 #endif
204 	/*
205 	 * Check for extension in the existing location.
206 	 */
207 	cg = dtog(fs, bprev);
208 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
209 		if (bp->b_blkno != fsbtodb(fs, bno))
210 			panic("bad blockno");
211 		ip->i_blocks += btodb(nsize - osize);
212 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
213 		allocbuf(bp, nsize);
214 		bp->b_flags |= B_DONE;
215 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
216 		*bpp = bp;
217 		return (0);
218 	}
219 	/*
220 	 * Allocate a new disk location.
221 	 */
222 	if (bpref >= fs->fs_size)
223 		bpref = 0;
224 	switch ((int)fs->fs_optim) {
225 	case FS_OPTSPACE:
226 		/*
227 		 * Allocate an exact sized fragment. Although this makes
228 		 * best use of space, we will waste time relocating it if
229 		 * the file continues to grow. If the fragmentation is
230 		 * less than half of the minimum free reserve, we choose
231 		 * to begin optimizing for time.
232 		 */
233 		request = nsize;
234 		if (fs->fs_minfree < 5 ||
235 		    fs->fs_cstotal.cs_nffree >
236 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
237 			break;
238 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
239 			fs->fs_fsmnt);
240 		fs->fs_optim = FS_OPTTIME;
241 		break;
242 	case FS_OPTTIME:
243 		/*
244 		 * At this point we have discovered a file that is trying to
245 		 * grow a small fragment to a larger fragment. To save time,
246 		 * we allocate a full sized block, then free the unused portion.
247 		 * If the file continues to grow, the `ffs_fragextend' call
248 		 * above will be able to grow it in place without further
249 		 * copying. If aberrant programs cause disk fragmentation to
250 		 * grow within 2% of the free reserve, we choose to begin
251 		 * optimizing for space.
252 		 */
253 		request = fs->fs_bsize;
254 		if (fs->fs_cstotal.cs_nffree <
255 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
256 			break;
257 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
258 			fs->fs_fsmnt);
259 		fs->fs_optim = FS_OPTSPACE;
260 		break;
261 	default:
262 		printf("dev = 0x%x, optim = %d, fs = %s\n",
263 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
264 		panic("ffs_realloccg: bad optim");
265 		/* NOTREACHED */
266 	}
267 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
268 	    			     ffs_alloccg);
269 	if (bno > 0) {
270 		bp->b_blkno = fsbtodb(fs, bno);
271 		(void) vnode_pager_uncache(ITOV(ip));
272 		ffs_blkfree(ip, bprev, (long)osize);
273 		if (nsize < request)
274 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
275 			    (long)(request - nsize));
276 		ip->i_blocks += btodb(nsize - osize);
277 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
278 		allocbuf(bp, nsize);
279 		bp->b_flags |= B_DONE;
280 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
281 		*bpp = bp;
282 		return (0);
283 	}
284 #ifdef QUOTA
285 	/*
286 	 * Restore user's disk quota because allocation failed.
287 	 */
288 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
289 #endif
290 	brelse(bp);
291 nospace:
292 	/*
293 	 * no space available
294 	 */
295 	ffs_fserr(fs, cred->cr_uid, "file system full");
296 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
297 	return (ENOSPC);
298 }
299 
300 /*
301  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
302  *
303  * The vnode and an array of buffer pointers for a range of sequential
304  * logical blocks to be made contiguous is given. The allocator attempts
305  * to find a range of sequential blocks starting as close as possible to
306  * an fs_rotdelay offset from the end of the allocation for the logical
307  * block immediately preceeding the current range. If successful, the
308  * physical block numbers in the buffer pointers and in the inode are
309  * changed to reflect the new allocation. If unsuccessful, the allocation
310  * is left unchanged. The success in doing the reallocation is returned.
311  * Note that the error return is not reflected back to the user. Rather
312  * the previous block allocation will be used.
313  */
314 #ifdef DEBUG
315 #include <sys/sysctl.h>
316 int doasyncfree = 1;
317 struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
318 int prtrealloc = 0;
319 struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
320 #else
321 #define doasyncfree 1
322 #endif
323 
324 int
325 ffs_reallocblks(v)
326 	void *v;
327 {
328 	struct vop_reallocblks_args /* {
329 		struct vnode *a_vp;
330 		struct cluster_save *a_buflist;
331 	} */ *ap = v;
332 	struct fs *fs;
333 	struct inode *ip;
334 	struct vnode *vp;
335 	struct buf *sbp, *ebp;
336 	daddr_t *bap, *sbap, *ebap = NULL;
337 	struct cluster_save *buflist;
338 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
339 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
340 	int i, len, start_lvl, end_lvl, pref, ssize;
341 	struct timespec ts;
342 
343 	vp = ap->a_vp;
344 	ip = VTOI(vp);
345 	fs = ip->i_fs;
346 	if (fs->fs_contigsumsize <= 0)
347 		return (ENOSPC);
348 	buflist = ap->a_buflist;
349 	len = buflist->bs_nchildren;
350 	start_lbn = buflist->bs_children[0]->b_lblkno;
351 	end_lbn = start_lbn + len - 1;
352 #ifdef DIAGNOSTIC
353 	for (i = 1; i < len; i++)
354 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
355 			panic("ffs_reallocblks: non-cluster");
356 #endif
357 	/*
358 	 * If the latest allocation is in a new cylinder group, assume that
359 	 * the filesystem has decided to move and do not force it back to
360 	 * the previous cylinder group.
361 	 */
362 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
363 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
364 		return (ENOSPC);
365 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
366 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
367 		return (ENOSPC);
368 	/*
369 	 * Get the starting offset and block map for the first block.
370 	 */
371 	if (start_lvl == 0) {
372 		sbap = &ip->i_db[0];
373 		soff = start_lbn;
374 	} else {
375 		idp = &start_ap[start_lvl - 1];
376 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
377 			brelse(sbp);
378 			return (ENOSPC);
379 		}
380 		sbap = (daddr_t *)sbp->b_data;
381 		soff = idp->in_off;
382 	}
383 	/*
384 	 * Find the preferred location for the cluster.
385 	 */
386 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
387 	/*
388 	 * If the block range spans two block maps, get the second map.
389 	 */
390 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
391 		ssize = len;
392 	} else {
393 #ifdef DIAGNOSTIC
394 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
395 			panic("ffs_reallocblk: start == end");
396 #endif
397 		ssize = len - (idp->in_off + 1);
398 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
399 			goto fail;
400 		ebap = (daddr_t *)ebp->b_data;
401 	}
402 	/*
403 	 * Search the block map looking for an allocation of the desired size.
404 	 */
405 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
406 	    len, ffs_clusteralloc)) == 0)
407 		goto fail;
408 	/*
409 	 * We have found a new contiguous block.
410 	 *
411 	 * First we have to replace the old block pointers with the new
412 	 * block pointers in the inode and indirect blocks associated
413 	 * with the file.
414 	 */
415 #ifdef DEBUG
416 	if (prtrealloc)
417 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
418 		    start_lbn, end_lbn);
419 #endif
420 	blkno = newblk;
421 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
422 		if (i == ssize)
423 			bap = ebap;
424 #ifdef DIAGNOSTIC
425 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
426 			panic("ffs_reallocblks: alloc mismatch");
427 #endif
428 #ifdef DEBUG
429 		if (prtrealloc)
430 			printf(" %d,", *bap);
431 #endif
432 		*bap++ = blkno;
433 	}
434 	/*
435 	 * Next we must write out the modified inode and indirect blocks.
436 	 * For strict correctness, the writes should be synchronous since
437 	 * the old block values may have been written to disk. In practise
438 	 * they are almost never written, but if we are concerned about
439 	 * strict correctness, the `doasyncfree' flag should be set to zero.
440 	 *
441 	 * The test on `doasyncfree' should be changed to test a flag
442 	 * that shows whether the associated buffers and inodes have
443 	 * been written. The flag should be set when the cluster is
444 	 * started and cleared whenever the buffer or inode is flushed.
445 	 * We can then check below to see if it is set, and do the
446 	 * synchronous write only when it has been cleared.
447 	 */
448 	if (sbap != &ip->i_db[0]) {
449 		if (doasyncfree)
450 			bdwrite(sbp);
451 		else
452 			bwrite(sbp);
453 	} else {
454 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
455 		if (!doasyncfree) {
456 			TIMEVAL_TO_TIMESPEC(&time, &ts);
457 			VOP_UPDATE(vp, &ts, &ts, 1);
458 		}
459 	}
460 	if (ssize < len)
461 		if (doasyncfree)
462 			bdwrite(ebp);
463 		else
464 			bwrite(ebp);
465 	/*
466 	 * Last, free the old blocks and assign the new blocks to the buffers.
467 	 */
468 #ifdef DEBUG
469 	if (prtrealloc)
470 		printf("\n\tnew:");
471 #endif
472 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
473 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
474 		    fs->fs_bsize);
475 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
476 #ifdef DEBUG
477 		if (prtrealloc)
478 			printf(" %d,", blkno);
479 #endif
480 	}
481 #ifdef DEBUG
482 	if (prtrealloc) {
483 		prtrealloc--;
484 		printf("\n");
485 	}
486 #endif
487 	return (0);
488 
489 fail:
490 	if (ssize < len)
491 		brelse(ebp);
492 	if (sbap != &ip->i_db[0])
493 		brelse(sbp);
494 	return (ENOSPC);
495 }
496 
497 /*
498  * Allocate an inode in the file system.
499  *
500  * If allocating a directory, use ffs_dirpref to select the inode.
501  * If allocating in a directory, the following hierarchy is followed:
502  *   1) allocate the preferred inode.
503  *   2) allocate an inode in the same cylinder group.
504  *   3) quadradically rehash into other cylinder groups, until an
505  *      available inode is located.
506  * If no inode preference is given the following heirarchy is used
507  * to allocate an inode:
508  *   1) allocate an inode in cylinder group 0.
509  *   2) quadradically rehash into other cylinder groups, until an
510  *      available inode is located.
511  */
512 int
513 ffs_valloc(v)
514 	void *v;
515 {
516 	struct vop_valloc_args /* {
517 		struct vnode *a_pvp;
518 		int a_mode;
519 		struct ucred *a_cred;
520 		struct vnode **a_vpp;
521 	} */ *ap = v;
522 	register struct vnode *pvp = ap->a_pvp;
523 	register struct inode *pip;
524 	register struct fs *fs;
525 	register struct inode *ip;
526 	mode_t mode = ap->a_mode;
527 	ino_t ino, ipref;
528 	int cg, error;
529 
530 	*ap->a_vpp = NULL;
531 	pip = VTOI(pvp);
532 	fs = pip->i_fs;
533 	if (fs->fs_cstotal.cs_nifree == 0)
534 		goto noinodes;
535 
536 	if ((mode & IFMT) == IFDIR)
537 		ipref = ffs_dirpref(fs);
538 	else
539 		ipref = pip->i_number;
540 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
541 		ipref = 0;
542 	cg = ino_to_cg(fs, ipref);
543 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
544 	if (ino == 0)
545 		goto noinodes;
546 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
547 	if (error) {
548 		VOP_VFREE(pvp, ino, mode);
549 		return (error);
550 	}
551 	ip = VTOI(*ap->a_vpp);
552 	if (ip->i_mode) {
553 		printf("mode = 0%o, inum = %d, fs = %s\n",
554 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
555 		panic("ffs_valloc: dup alloc");
556 	}
557 	if (ip->i_blocks) {				/* XXX */
558 		printf("free inode %s/%d had %d blocks\n",
559 		    fs->fs_fsmnt, ino, ip->i_blocks);
560 		ip->i_blocks = 0;
561 	}
562 	ip->i_flags = 0;
563 	/*
564 	 * Set up a new generation number for this inode.
565 	 */
566 	if (++nextgennumber < (u_long)time.tv_sec)
567 		nextgennumber = time.tv_sec;
568 	ip->i_gen = nextgennumber;
569 	return (0);
570 noinodes:
571 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
572 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
573 	return (ENOSPC);
574 }
575 
576 /*
577  * Find a cylinder to place a directory.
578  *
579  * The policy implemented by this algorithm is to select from
580  * among those cylinder groups with above the average number of
581  * free inodes, the one with the smallest number of directories.
582  */
583 static ino_t
584 ffs_dirpref(fs)
585 	register struct fs *fs;
586 {
587 	int cg, minndir, mincg, avgifree;
588 
589 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
590 	minndir = fs->fs_ipg;
591 	mincg = 0;
592 	for (cg = 0; cg < fs->fs_ncg; cg++)
593 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
594 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
595 			mincg = cg;
596 			minndir = fs->fs_cs(fs, cg).cs_ndir;
597 		}
598 	return ((ino_t)(fs->fs_ipg * mincg));
599 }
600 
601 /*
602  * Select the desired position for the next block in a file.  The file is
603  * logically divided into sections. The first section is composed of the
604  * direct blocks. Each additional section contains fs_maxbpg blocks.
605  *
606  * If no blocks have been allocated in the first section, the policy is to
607  * request a block in the same cylinder group as the inode that describes
608  * the file. If no blocks have been allocated in any other section, the
609  * policy is to place the section in a cylinder group with a greater than
610  * average number of free blocks.  An appropriate cylinder group is found
611  * by using a rotor that sweeps the cylinder groups. When a new group of
612  * blocks is needed, the sweep begins in the cylinder group following the
613  * cylinder group from which the previous allocation was made. The sweep
614  * continues until a cylinder group with greater than the average number
615  * of free blocks is found. If the allocation is for the first block in an
616  * indirect block, the information on the previous allocation is unavailable;
617  * here a best guess is made based upon the logical block number being
618  * allocated.
619  *
620  * If a section is already partially allocated, the policy is to
621  * contiguously allocate fs_maxcontig blocks.  The end of one of these
622  * contiguous blocks and the beginning of the next is physically separated
623  * so that the disk head will be in transit between them for at least
624  * fs_rotdelay milliseconds.  This is to allow time for the processor to
625  * schedule another I/O transfer.
626  */
627 daddr_t
628 ffs_blkpref(ip, lbn, indx, bap)
629 	struct inode *ip;
630 	daddr_t lbn;
631 	int indx;
632 	daddr_t *bap;
633 {
634 	register struct fs *fs;
635 	register int cg;
636 	int avgbfree, startcg;
637 	daddr_t nextblk;
638 
639 	fs = ip->i_fs;
640 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
641 		if (lbn < NDADDR) {
642 			cg = ino_to_cg(fs, ip->i_number);
643 			return (fs->fs_fpg * cg + fs->fs_frag);
644 		}
645 		/*
646 		 * Find a cylinder with greater than average number of
647 		 * unused data blocks.
648 		 */
649 		if (indx == 0 || bap[indx - 1] == 0)
650 			startcg =
651 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
652 		else
653 			startcg = dtog(fs, bap[indx - 1]) + 1;
654 		startcg %= fs->fs_ncg;
655 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
656 		for (cg = startcg; cg < fs->fs_ncg; cg++)
657 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
658 				fs->fs_cgrotor = cg;
659 				return (fs->fs_fpg * cg + fs->fs_frag);
660 			}
661 		for (cg = 0; cg <= startcg; cg++)
662 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
663 				fs->fs_cgrotor = cg;
664 				return (fs->fs_fpg * cg + fs->fs_frag);
665 			}
666 		return (NULL);
667 	}
668 	/*
669 	 * One or more previous blocks have been laid out. If less
670 	 * than fs_maxcontig previous blocks are contiguous, the
671 	 * next block is requested contiguously, otherwise it is
672 	 * requested rotationally delayed by fs_rotdelay milliseconds.
673 	 */
674 	nextblk = bap[indx - 1] + fs->fs_frag;
675 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
676 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
677 		return (nextblk);
678 	if (fs->fs_rotdelay != 0)
679 		/*
680 		 * Here we convert ms of delay to frags as:
681 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
682 		 *	((sect/frag) * (ms/sec))
683 		 * then round up to the next block.
684 		 */
685 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
686 		    (NSPF(fs) * 1000), fs->fs_frag);
687 	return (nextblk);
688 }
689 
690 /*
691  * Implement the cylinder overflow algorithm.
692  *
693  * The policy implemented by this algorithm is:
694  *   1) allocate the block in its requested cylinder group.
695  *   2) quadradically rehash on the cylinder group number.
696  *   3) brute force search for a free block.
697  */
698 /*VARARGS5*/
699 static u_long
700 ffs_hashalloc(ip, cg, pref, size, allocator)
701 	struct inode *ip;
702 	int cg;
703 	long pref;
704 	int size;	/* size for data blocks, mode for inodes */
705 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
706 {
707 	register struct fs *fs;
708 	long result;
709 	int i, icg = cg;
710 
711 	fs = ip->i_fs;
712 	/*
713 	 * 1: preferred cylinder group
714 	 */
715 	result = (*allocator)(ip, cg, pref, size);
716 	if (result)
717 		return (result);
718 	/*
719 	 * 2: quadratic rehash
720 	 */
721 	for (i = 1; i < fs->fs_ncg; i *= 2) {
722 		cg += i;
723 		if (cg >= fs->fs_ncg)
724 			cg -= fs->fs_ncg;
725 		result = (*allocator)(ip, cg, 0, size);
726 		if (result)
727 			return (result);
728 	}
729 	/*
730 	 * 3: brute force search
731 	 * Note that we start at i == 2, since 0 was checked initially,
732 	 * and 1 is always checked in the quadratic rehash.
733 	 */
734 	cg = (icg + 2) % fs->fs_ncg;
735 	for (i = 2; i < fs->fs_ncg; i++) {
736 		result = (*allocator)(ip, cg, 0, size);
737 		if (result)
738 			return (result);
739 		cg++;
740 		if (cg == fs->fs_ncg)
741 			cg = 0;
742 	}
743 	return (NULL);
744 }
745 
746 /*
747  * Determine whether a fragment can be extended.
748  *
749  * Check to see if the necessary fragments are available, and
750  * if they are, allocate them.
751  */
752 static daddr_t
753 ffs_fragextend(ip, cg, bprev, osize, nsize)
754 	struct inode *ip;
755 	int cg;
756 	long bprev;
757 	int osize, nsize;
758 {
759 	register struct fs *fs;
760 	register struct cg *cgp;
761 	struct buf *bp;
762 	long bno;
763 	int frags, bbase;
764 	int i, error;
765 
766 	fs = ip->i_fs;
767 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
768 		return (NULL);
769 	frags = numfrags(fs, nsize);
770 	bbase = fragnum(fs, bprev);
771 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
772 		/* cannot extend across a block boundary */
773 		return (NULL);
774 	}
775 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
776 		(int)fs->fs_cgsize, NOCRED, &bp);
777 	if (error) {
778 		brelse(bp);
779 		return (NULL);
780 	}
781 	cgp = (struct cg *)bp->b_data;
782 	if (!cg_chkmagic(cgp)) {
783 		brelse(bp);
784 		return (NULL);
785 	}
786 	cgp->cg_time = time.tv_sec;
787 	bno = dtogd(fs, bprev);
788 	for (i = numfrags(fs, osize); i < frags; i++)
789 		if (isclr(cg_blksfree(cgp), bno + i)) {
790 			brelse(bp);
791 			return (NULL);
792 		}
793 	/*
794 	 * the current fragment can be extended
795 	 * deduct the count on fragment being extended into
796 	 * increase the count on the remaining fragment (if any)
797 	 * allocate the extended piece
798 	 */
799 	for (i = frags; i < fs->fs_frag - bbase; i++)
800 		if (isclr(cg_blksfree(cgp), bno + i))
801 			break;
802 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
803 	if (i != frags)
804 		cgp->cg_frsum[i - frags]++;
805 	for (i = numfrags(fs, osize); i < frags; i++) {
806 		clrbit(cg_blksfree(cgp), bno + i);
807 		cgp->cg_cs.cs_nffree--;
808 		fs->fs_cstotal.cs_nffree--;
809 		fs->fs_cs(fs, cg).cs_nffree--;
810 	}
811 	fs->fs_fmod = 1;
812 	bdwrite(bp);
813 	return (bprev);
814 }
815 
816 /*
817  * Determine whether a block can be allocated.
818  *
819  * Check to see if a block of the appropriate size is available,
820  * and if it is, allocate it.
821  */
822 static daddr_t
823 ffs_alloccg(ip, cg, bpref, size)
824 	struct inode *ip;
825 	int cg;
826 	daddr_t bpref;
827 	int size;
828 {
829 	register struct fs *fs;
830 	register struct cg *cgp;
831 	struct buf *bp;
832 	register int i;
833 	int error, bno, frags, allocsiz;
834 
835 	fs = ip->i_fs;
836 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
837 		return (NULL);
838 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
839 		(int)fs->fs_cgsize, NOCRED, &bp);
840 	if (error) {
841 		brelse(bp);
842 		return (NULL);
843 	}
844 	cgp = (struct cg *)bp->b_data;
845 	if (!cg_chkmagic(cgp) ||
846 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
847 		brelse(bp);
848 		return (NULL);
849 	}
850 	cgp->cg_time = time.tv_sec;
851 	if (size == fs->fs_bsize) {
852 		bno = ffs_alloccgblk(fs, cgp, bpref);
853 		bdwrite(bp);
854 		return (bno);
855 	}
856 	/*
857 	 * check to see if any fragments are already available
858 	 * allocsiz is the size which will be allocated, hacking
859 	 * it down to a smaller size if necessary
860 	 */
861 	frags = numfrags(fs, size);
862 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
863 		if (cgp->cg_frsum[allocsiz] != 0)
864 			break;
865 	if (allocsiz == fs->fs_frag) {
866 		/*
867 		 * no fragments were available, so a block will be
868 		 * allocated, and hacked up
869 		 */
870 		if (cgp->cg_cs.cs_nbfree == 0) {
871 			brelse(bp);
872 			return (NULL);
873 		}
874 		bno = ffs_alloccgblk(fs, cgp, bpref);
875 		bpref = dtogd(fs, bno);
876 		for (i = frags; i < fs->fs_frag; i++)
877 			setbit(cg_blksfree(cgp), bpref + i);
878 		i = fs->fs_frag - frags;
879 		cgp->cg_cs.cs_nffree += i;
880 		fs->fs_cstotal.cs_nffree += i;
881 		fs->fs_cs(fs, cg).cs_nffree += i;
882 		fs->fs_fmod = 1;
883 		cgp->cg_frsum[i]++;
884 		bdwrite(bp);
885 		return (bno);
886 	}
887 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
888 	if (bno < 0) {
889 		brelse(bp);
890 		return (NULL);
891 	}
892 	for (i = 0; i < frags; i++)
893 		clrbit(cg_blksfree(cgp), bno + i);
894 	cgp->cg_cs.cs_nffree -= frags;
895 	fs->fs_cstotal.cs_nffree -= frags;
896 	fs->fs_cs(fs, cg).cs_nffree -= frags;
897 	fs->fs_fmod = 1;
898 	cgp->cg_frsum[allocsiz]--;
899 	if (frags != allocsiz)
900 		cgp->cg_frsum[allocsiz - frags]++;
901 	bdwrite(bp);
902 	return (cg * fs->fs_fpg + bno);
903 }
904 
905 /*
906  * Allocate a block in a cylinder group.
907  *
908  * This algorithm implements the following policy:
909  *   1) allocate the requested block.
910  *   2) allocate a rotationally optimal block in the same cylinder.
911  *   3) allocate the next available block on the block rotor for the
912  *      specified cylinder group.
913  * Note that this routine only allocates fs_bsize blocks; these
914  * blocks may be fragmented by the routine that allocates them.
915  */
916 static daddr_t
917 ffs_alloccgblk(fs, cgp, bpref)
918 	register struct fs *fs;
919 	register struct cg *cgp;
920 	daddr_t bpref;
921 {
922 	daddr_t bno, blkno;
923 	int cylno, pos, delta;
924 	short *cylbp;
925 	register int i;
926 
927 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
928 		bpref = cgp->cg_rotor;
929 		goto norot;
930 	}
931 	bpref = blknum(fs, bpref);
932 	bpref = dtogd(fs, bpref);
933 	/*
934 	 * if the requested block is available, use it
935 	 */
936 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
937 		bno = bpref;
938 		goto gotit;
939 	}
940 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
941 		/*
942 		 * Block layout information is not available.
943 		 * Leaving bpref unchanged means we take the
944 		 * next available free block following the one
945 		 * we just allocated. Hopefully this will at
946 		 * least hit a track cache on drives of unknown
947 		 * geometry (e.g. SCSI).
948 		 */
949 		goto norot;
950 	}
951 	/*
952 	 * check for a block available on the same cylinder
953 	 */
954 	cylno = cbtocylno(fs, bpref);
955 	if (cg_blktot(cgp)[cylno] == 0)
956 		goto norot;
957 	/*
958 	 * check the summary information to see if a block is
959 	 * available in the requested cylinder starting at the
960 	 * requested rotational position and proceeding around.
961 	 */
962 	cylbp = cg_blks(fs, cgp, cylno);
963 	pos = cbtorpos(fs, bpref);
964 	for (i = pos; i < fs->fs_nrpos; i++)
965 		if (cylbp[i] > 0)
966 			break;
967 	if (i == fs->fs_nrpos)
968 		for (i = 0; i < pos; i++)
969 			if (cylbp[i] > 0)
970 				break;
971 	if (cylbp[i] > 0) {
972 		/*
973 		 * found a rotational position, now find the actual
974 		 * block. A panic if none is actually there.
975 		 */
976 		pos = cylno % fs->fs_cpc;
977 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
978 		if (fs_postbl(fs, pos)[i] == -1) {
979 			printf("pos = %d, i = %d, fs = %s\n",
980 			    pos, i, fs->fs_fsmnt);
981 			panic("ffs_alloccgblk: cyl groups corrupted");
982 		}
983 		for (i = fs_postbl(fs, pos)[i];; ) {
984 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
985 				bno = blkstofrags(fs, (bno + i));
986 				goto gotit;
987 			}
988 			delta = fs_rotbl(fs)[i];
989 			if (delta <= 0 ||
990 			    delta + i > fragstoblks(fs, fs->fs_fpg))
991 				break;
992 			i += delta;
993 		}
994 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
995 		panic("ffs_alloccgblk: can't find blk in cyl");
996 	}
997 norot:
998 	/*
999 	 * no blocks in the requested cylinder, so take next
1000 	 * available one in this cylinder group.
1001 	 */
1002 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1003 	if (bno < 0)
1004 		return (NULL);
1005 	cgp->cg_rotor = bno;
1006 gotit:
1007 	blkno = fragstoblks(fs, bno);
1008 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1009 	ffs_clusteracct(fs, cgp, blkno, -1);
1010 	cgp->cg_cs.cs_nbfree--;
1011 	fs->fs_cstotal.cs_nbfree--;
1012 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1013 	cylno = cbtocylno(fs, bno);
1014 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1015 	cg_blktot(cgp)[cylno]--;
1016 	fs->fs_fmod = 1;
1017 	return (cgp->cg_cgx * fs->fs_fpg + bno);
1018 }
1019 
1020 /*
1021  * Determine whether a cluster can be allocated.
1022  *
1023  * We do not currently check for optimal rotational layout if there
1024  * are multiple choices in the same cylinder group. Instead we just
1025  * take the first one that we find following bpref.
1026  */
1027 static daddr_t
1028 ffs_clusteralloc(ip, cg, bpref, len)
1029 	struct inode *ip;
1030 	int cg;
1031 	daddr_t bpref;
1032 	int len;
1033 {
1034 	register struct fs *fs;
1035 	register struct cg *cgp;
1036 	struct buf *bp;
1037 	int i, run, bno, bit, map;
1038 	u_char *mapp;
1039 	int32_t *lp;
1040 
1041 	fs = ip->i_fs;
1042 	if (fs->fs_maxcluster[cg] < len)
1043 		return (NULL);
1044 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1045 	    NOCRED, &bp))
1046 		goto fail;
1047 	cgp = (struct cg *)bp->b_data;
1048 	if (!cg_chkmagic(cgp))
1049 		goto fail;
1050 	/*
1051 	 * Check to see if a cluster of the needed size (or bigger) is
1052 	 * available in this cylinder group.
1053 	 */
1054 	lp = &cg_clustersum(cgp)[len];
1055 	for (i = len; i <= fs->fs_contigsumsize; i++)
1056 		if (*lp++ > 0)
1057 			break;
1058 	if (i > fs->fs_contigsumsize) {
1059 		/*
1060 		 * This is the first time looking for a cluster in this
1061 		 * cylinder group. Update the cluster summary information
1062 		 * to reflect the true maximum sized cluster so that
1063 		 * future cluster allocation requests can avoid reading
1064 		 * the cylinder group map only to find no clusters.
1065 		 */
1066 		lp = &cg_clustersum(cgp)[len - 1];
1067 		for (i = len - 1; i > 0; i--)
1068 			if (*lp-- > 0)
1069 				break;
1070 		fs->fs_maxcluster[cg] = i;
1071 		goto fail;
1072 	}
1073 	/*
1074 	 * Search the cluster map to find a big enough cluster.
1075 	 * We take the first one that we find, even if it is larger
1076 	 * than we need as we prefer to get one close to the previous
1077 	 * block allocation. We do not search before the current
1078 	 * preference point as we do not want to allocate a block
1079 	 * that is allocated before the previous one (as we will
1080 	 * then have to wait for another pass of the elevator
1081 	 * algorithm before it will be read). We prefer to fail and
1082 	 * be recalled to try an allocation in the next cylinder group.
1083 	 */
1084 	if (dtog(fs, bpref) != cg)
1085 		bpref = 0;
1086 	else
1087 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1088 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1089 	map = *mapp++;
1090 	bit = 1 << (bpref % NBBY);
1091 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1092 		if ((map & bit) == 0) {
1093 			run = 0;
1094 		} else {
1095 			run++;
1096 			if (run == len)
1097 				break;
1098 		}
1099 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1100 			bit <<= 1;
1101 		} else {
1102 			map = *mapp++;
1103 			bit = 1;
1104 		}
1105 	}
1106 	if (i == cgp->cg_nclusterblks)
1107 		goto fail;
1108 	/*
1109 	 * Allocate the cluster that we have found.
1110 	 */
1111 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1112 	len = blkstofrags(fs, len);
1113 	for (i = 0; i < len; i += fs->fs_frag)
1114 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1115 			panic("ffs_clusteralloc: lost block");
1116 	bdwrite(bp);
1117 	return (bno);
1118 
1119 fail:
1120 	brelse(bp);
1121 	return (0);
1122 }
1123 
1124 /*
1125  * Determine whether an inode can be allocated.
1126  *
1127  * Check to see if an inode is available, and if it is,
1128  * allocate it using the following policy:
1129  *   1) allocate the requested inode.
1130  *   2) allocate the next available inode after the requested
1131  *      inode in the specified cylinder group.
1132  */
1133 static daddr_t
1134 ffs_nodealloccg(ip, cg, ipref, mode)
1135 	struct inode *ip;
1136 	int cg;
1137 	daddr_t ipref;
1138 	int mode;
1139 {
1140 	register struct fs *fs;
1141 	register struct cg *cgp;
1142 	struct buf *bp;
1143 	int error, start, len, loc, map, i;
1144 
1145 	fs = ip->i_fs;
1146 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1147 		return (NULL);
1148 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1149 		(int)fs->fs_cgsize, NOCRED, &bp);
1150 	if (error) {
1151 		brelse(bp);
1152 		return (NULL);
1153 	}
1154 	cgp = (struct cg *)bp->b_data;
1155 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1156 		brelse(bp);
1157 		return (NULL);
1158 	}
1159 	cgp->cg_time = time.tv_sec;
1160 	if (ipref) {
1161 		ipref %= fs->fs_ipg;
1162 		if (isclr(cg_inosused(cgp), ipref))
1163 			goto gotit;
1164 	}
1165 	start = cgp->cg_irotor / NBBY;
1166 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1167 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1168 	if (loc == 0) {
1169 		len = start + 1;
1170 		start = 0;
1171 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1172 		if (loc == 0) {
1173 			printf("cg = %d, irotor = %d, fs = %s\n",
1174 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
1175 			panic("ffs_nodealloccg: map corrupted");
1176 			/* NOTREACHED */
1177 		}
1178 	}
1179 	i = start + len - loc;
1180 	map = cg_inosused(cgp)[i];
1181 	ipref = i * NBBY;
1182 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1183 		if ((map & i) == 0) {
1184 			cgp->cg_irotor = ipref;
1185 			goto gotit;
1186 		}
1187 	}
1188 	printf("fs = %s\n", fs->fs_fsmnt);
1189 	panic("ffs_nodealloccg: block not in map");
1190 	/* NOTREACHED */
1191 gotit:
1192 	setbit(cg_inosused(cgp), ipref);
1193 	cgp->cg_cs.cs_nifree--;
1194 	fs->fs_cstotal.cs_nifree--;
1195 	fs->fs_cs(fs, cg).cs_nifree--;
1196 	fs->fs_fmod = 1;
1197 	if ((mode & IFMT) == IFDIR) {
1198 		cgp->cg_cs.cs_ndir++;
1199 		fs->fs_cstotal.cs_ndir++;
1200 		fs->fs_cs(fs, cg).cs_ndir++;
1201 	}
1202 	bdwrite(bp);
1203 	return (cg * fs->fs_ipg + ipref);
1204 }
1205 
1206 /*
1207  * Free a block or fragment.
1208  *
1209  * The specified block or fragment is placed back in the
1210  * free map. If a fragment is deallocated, a possible
1211  * block reassembly is checked.
1212  */
1213 void
1214 ffs_blkfree(ip, bno, size)
1215 	register struct inode *ip;
1216 	daddr_t bno;
1217 	long size;
1218 {
1219 	register struct fs *fs;
1220 	register struct cg *cgp;
1221 	struct buf *bp;
1222 	daddr_t blkno;
1223 	int i, error, cg, blk, frags, bbase;
1224 
1225 	fs = ip->i_fs;
1226 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1227 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1228 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1229 		panic("blkfree: bad size");
1230 	}
1231 	cg = dtog(fs, bno);
1232 	if ((u_int)bno >= fs->fs_size) {
1233 		printf("bad block %d, ino %d\n", bno, ip->i_number);
1234 		ffs_fserr(fs, ip->i_uid, "bad block");
1235 		return;
1236 	}
1237 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1238 		(int)fs->fs_cgsize, NOCRED, &bp);
1239 	if (error) {
1240 		brelse(bp);
1241 		return;
1242 	}
1243 	cgp = (struct cg *)bp->b_data;
1244 	if (!cg_chkmagic(cgp)) {
1245 		brelse(bp);
1246 		return;
1247 	}
1248 	cgp->cg_time = time.tv_sec;
1249 	bno = dtogd(fs, bno);
1250 	if (size == fs->fs_bsize) {
1251 		blkno = fragstoblks(fs, bno);
1252 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1253 			printf("dev = 0x%x, block = %d, fs = %s\n",
1254 			    ip->i_dev, bno, fs->fs_fsmnt);
1255 			panic("blkfree: freeing free block");
1256 		}
1257 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1258 		ffs_clusteracct(fs, cgp, blkno, 1);
1259 		cgp->cg_cs.cs_nbfree++;
1260 		fs->fs_cstotal.cs_nbfree++;
1261 		fs->fs_cs(fs, cg).cs_nbfree++;
1262 		i = cbtocylno(fs, bno);
1263 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1264 		cg_blktot(cgp)[i]++;
1265 	} else {
1266 		bbase = bno - fragnum(fs, bno);
1267 		/*
1268 		 * decrement the counts associated with the old frags
1269 		 */
1270 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1271 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1272 		/*
1273 		 * deallocate the fragment
1274 		 */
1275 		frags = numfrags(fs, size);
1276 		for (i = 0; i < frags; i++) {
1277 			if (isset(cg_blksfree(cgp), bno + i)) {
1278 				printf("dev = 0x%x, block = %d, fs = %s\n",
1279 				    ip->i_dev, bno + i, fs->fs_fsmnt);
1280 				panic("blkfree: freeing free frag");
1281 			}
1282 			setbit(cg_blksfree(cgp), bno + i);
1283 		}
1284 		cgp->cg_cs.cs_nffree += i;
1285 		fs->fs_cstotal.cs_nffree += i;
1286 		fs->fs_cs(fs, cg).cs_nffree += i;
1287 		/*
1288 		 * add back in counts associated with the new frags
1289 		 */
1290 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1291 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1292 		/*
1293 		 * if a complete block has been reassembled, account for it
1294 		 */
1295 		blkno = fragstoblks(fs, bbase);
1296 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1297 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1298 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1299 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1300 			ffs_clusteracct(fs, cgp, blkno, 1);
1301 			cgp->cg_cs.cs_nbfree++;
1302 			fs->fs_cstotal.cs_nbfree++;
1303 			fs->fs_cs(fs, cg).cs_nbfree++;
1304 			i = cbtocylno(fs, bbase);
1305 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1306 			cg_blktot(cgp)[i]++;
1307 		}
1308 	}
1309 	fs->fs_fmod = 1;
1310 	bdwrite(bp);
1311 }
1312 
1313 /*
1314  * Free an inode.
1315  *
1316  * The specified inode is placed back in the free map.
1317  */
1318 int
1319 ffs_vfree(v)
1320 	void *v;
1321 {
1322 	struct vop_vfree_args /* {
1323 		struct vnode *a_pvp;
1324 		ino_t a_ino;
1325 		int a_mode;
1326 	} */ *ap = v;
1327 	register struct fs *fs;
1328 	register struct cg *cgp;
1329 	register struct inode *pip;
1330 	ino_t ino = ap->a_ino;
1331 	struct buf *bp;
1332 	int error, cg;
1333 
1334 	pip = VTOI(ap->a_pvp);
1335 	fs = pip->i_fs;
1336 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1337 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1338 		    pip->i_dev, ino, fs->fs_fsmnt);
1339 	cg = ino_to_cg(fs, ino);
1340 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1341 		(int)fs->fs_cgsize, NOCRED, &bp);
1342 	if (error) {
1343 		brelse(bp);
1344 		return (0);
1345 	}
1346 	cgp = (struct cg *)bp->b_data;
1347 	if (!cg_chkmagic(cgp)) {
1348 		brelse(bp);
1349 		return (0);
1350 	}
1351 	cgp->cg_time = time.tv_sec;
1352 	ino %= fs->fs_ipg;
1353 	if (isclr(cg_inosused(cgp), ino)) {
1354 		printf("dev = 0x%x, ino = %d, fs = %s\n",
1355 		    pip->i_dev, ino, fs->fs_fsmnt);
1356 		if (fs->fs_ronly == 0)
1357 			panic("ifree: freeing free inode");
1358 	}
1359 	clrbit(cg_inosused(cgp), ino);
1360 	if (ino < cgp->cg_irotor)
1361 		cgp->cg_irotor = ino;
1362 	cgp->cg_cs.cs_nifree++;
1363 	fs->fs_cstotal.cs_nifree++;
1364 	fs->fs_cs(fs, cg).cs_nifree++;
1365 	if ((ap->a_mode & IFMT) == IFDIR) {
1366 		cgp->cg_cs.cs_ndir--;
1367 		fs->fs_cstotal.cs_ndir--;
1368 		fs->fs_cs(fs, cg).cs_ndir--;
1369 	}
1370 	fs->fs_fmod = 1;
1371 	bdwrite(bp);
1372 	return (0);
1373 }
1374 
1375 /*
1376  * Find a block of the specified size in the specified cylinder group.
1377  *
1378  * It is a panic if a request is made to find a block if none are
1379  * available.
1380  */
1381 static daddr_t
1382 ffs_mapsearch(fs, cgp, bpref, allocsiz)
1383 	register struct fs *fs;
1384 	register struct cg *cgp;
1385 	daddr_t bpref;
1386 	int allocsiz;
1387 {
1388 	daddr_t bno;
1389 	int start, len, loc, i;
1390 	int blk, field, subfield, pos;
1391 
1392 	/*
1393 	 * find the fragment by searching through the free block
1394 	 * map for an appropriate bit pattern
1395 	 */
1396 	if (bpref)
1397 		start = dtogd(fs, bpref) / NBBY;
1398 	else
1399 		start = cgp->cg_frotor / NBBY;
1400 	len = howmany(fs->fs_fpg, NBBY) - start;
1401 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1402 		(u_char *)fragtbl[fs->fs_frag],
1403 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1404 	if (loc == 0) {
1405 		len = start + 1;
1406 		start = 0;
1407 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1408 			(u_char *)fragtbl[fs->fs_frag],
1409 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1410 		if (loc == 0) {
1411 			printf("start = %d, len = %d, fs = %s\n",
1412 			    start, len, fs->fs_fsmnt);
1413 			panic("ffs_alloccg: map corrupted");
1414 			/* NOTREACHED */
1415 		}
1416 	}
1417 	bno = (start + len - loc) * NBBY;
1418 	cgp->cg_frotor = bno;
1419 	/*
1420 	 * found the byte in the map
1421 	 * sift through the bits to find the selected frag
1422 	 */
1423 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1424 		blk = blkmap(fs, cg_blksfree(cgp), bno);
1425 		blk <<= 1;
1426 		field = around[allocsiz];
1427 		subfield = inside[allocsiz];
1428 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1429 			if ((blk & field) == subfield)
1430 				return (bno + pos);
1431 			field <<= 1;
1432 			subfield <<= 1;
1433 		}
1434 	}
1435 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1436 	panic("ffs_alloccg: block not in map");
1437 	return (-1);
1438 }
1439 
1440 /*
1441  * Update the cluster map because of an allocation or free.
1442  *
1443  * Cnt == 1 means free; cnt == -1 means allocating.
1444  */
1445 void
1446 ffs_clusteracct(fs, cgp, blkno, cnt)
1447 	struct fs *fs;
1448 	struct cg *cgp;
1449 	daddr_t blkno;
1450 	int cnt;
1451 {
1452 	int32_t *sump;
1453 	int32_t *lp;
1454 	u_char *freemapp, *mapp;
1455 	int i, start, end, forw, back, map, bit;
1456 
1457 	if (fs->fs_contigsumsize <= 0)
1458 		return;
1459 	freemapp = cg_clustersfree(cgp);
1460 	sump = cg_clustersum(cgp);
1461 	/*
1462 	 * Allocate or clear the actual block.
1463 	 */
1464 	if (cnt > 0)
1465 		setbit(freemapp, blkno);
1466 	else
1467 		clrbit(freemapp, blkno);
1468 	/*
1469 	 * Find the size of the cluster going forward.
1470 	 */
1471 	start = blkno + 1;
1472 	end = start + fs->fs_contigsumsize;
1473 	if (end >= cgp->cg_nclusterblks)
1474 		end = cgp->cg_nclusterblks;
1475 	mapp = &freemapp[start / NBBY];
1476 	map = *mapp++;
1477 	bit = 1 << (start % NBBY);
1478 	for (i = start; i < end; i++) {
1479 		if ((map & bit) == 0)
1480 			break;
1481 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1482 			bit <<= 1;
1483 		} else {
1484 			map = *mapp++;
1485 			bit = 1;
1486 		}
1487 	}
1488 	forw = i - start;
1489 	/*
1490 	 * Find the size of the cluster going backward.
1491 	 */
1492 	start = blkno - 1;
1493 	end = start - fs->fs_contigsumsize;
1494 	if (end < 0)
1495 		end = -1;
1496 	mapp = &freemapp[start / NBBY];
1497 	map = *mapp--;
1498 	bit = 1 << (start % NBBY);
1499 	for (i = start; i > end; i--) {
1500 		if ((map & bit) == 0)
1501 			break;
1502 		if ((i & (NBBY - 1)) != 0) {
1503 			bit >>= 1;
1504 		} else {
1505 			map = *mapp--;
1506 			bit = 1 << (NBBY - 1);
1507 		}
1508 	}
1509 	back = start - i;
1510 	/*
1511 	 * Account for old cluster and the possibly new forward and
1512 	 * back clusters.
1513 	 */
1514 	i = back + forw + 1;
1515 	if (i > fs->fs_contigsumsize)
1516 		i = fs->fs_contigsumsize;
1517 	sump[i] += cnt;
1518 	if (back > 0)
1519 		sump[back] -= cnt;
1520 	if (forw > 0)
1521 		sump[forw] -= cnt;
1522 	/*
1523 	 * Update cluster summary information.
1524 	 */
1525 	lp = &sump[fs->fs_contigsumsize];
1526 	for (i = fs->fs_contigsumsize; i > 0; i--)
1527 		if (*lp-- > 0)
1528 			break;
1529 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1530 }
1531 
1532 /*
1533  * Fserr prints the name of a file system with an error diagnostic.
1534  *
1535  * The form of the error message is:
1536  *	fs: error message
1537  */
1538 static void
1539 ffs_fserr(fs, uid, cp)
1540 	struct fs *fs;
1541 	u_int uid;
1542 	char *cp;
1543 {
1544 
1545 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1546 }
1547