xref: /netbsd-src/sys/rump/librump/rumpkern/vm.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /*	$NetBSD: vm.c,v 1.190 2020/06/11 19:20:46 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.190 2020/06/11 19:20:46 ad Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 #include <sys/radixtree.h>
56 
57 #include <machine/pmap.h>
58 
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64 #include <uvm/uvm_device.h>
65 
66 #include <rump-sys/kern.h>
67 #include <rump-sys/vfs.h>
68 
69 #include <rump/rumpuser.h>
70 
71 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
72 kmutex_t uvm_swap_data_lock;
73 
74 struct uvmexp uvmexp;
75 struct uvm uvm;
76 
77 #ifdef __uvmexp_pagesize
78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
81 #endif
82 
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85 
86 static struct vm_map module_map_store;
87 extern struct vm_map *module_map;
88 
89 static struct pmap pmap_kernel;
90 struct pmap rump_pmap_local;
91 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
92 
93 vmem_t *kmem_arena;
94 vmem_t *kmem_va_arena;
95 
96 static unsigned int pdaemon_waiters;
97 static kmutex_t pdaemonmtx;
98 static kcondvar_t pdaemoncv, oomwait;
99 
100 /* all local non-proc0 processes share this vmspace */
101 struct vmspace *rump_vmspace_local;
102 
103 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
104 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
105 static unsigned long curphysmem;
106 static unsigned long dddlim;		/* 90% of memory limit used */
107 #define NEED_PAGEDAEMON() \
108     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
109 #define PDRESERVE (2*MAXPHYS)
110 
111 /*
112  * Try to free two pages worth of pages from objects.
113  * If this succesfully frees a full page cache page, we'll
114  * free the released page plus PAGE_SIZE/sizeof(vm_page).
115  */
116 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
117 
118 /*
119  * Keep a list of least recently used pages.  Since the only way a
120  * rump kernel can "access" a page is via lookup, we put the page
121  * at the back of queue every time a lookup for it is done.  If the
122  * page is in front of this global queue and we're short of memory,
123  * it's a candidate for pageout.
124  */
125 static struct pglist vmpage_lruqueue;
126 static unsigned vmpage_onqueue;
127 
128 /*
129  * vm pages
130  */
131 
132 static int
133 pgctor(void *arg, void *obj, int flags)
134 {
135 	struct vm_page *pg = obj;
136 
137 	memset(pg, 0, sizeof(*pg));
138 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
139 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
140 	return pg->uanon == NULL;
141 }
142 
143 static void
144 pgdtor(void *arg, void *obj)
145 {
146 	struct vm_page *pg = obj;
147 
148 	rump_hyperfree(pg->uanon, PAGE_SIZE);
149 }
150 
151 static struct pool_cache pagecache;
152 
153 /*
154  * Called with the object locked.  We don't support anons.
155  */
156 struct vm_page *
157 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
158 	int flags, int strat, int free_list)
159 {
160 	struct vm_page *pg;
161 
162 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
163 	KASSERT(anon == NULL);
164 
165 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
166 	if (__predict_false(pg == NULL)) {
167 		return NULL;
168 	}
169 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
170 
171 	pg->offset = off;
172 	pg->uobject = uobj;
173 
174 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
175 	    pg) != 0) {
176 		pool_cache_put(&pagecache, pg);
177 		return NULL;
178 	}
179 
180 	if (UVM_OBJ_IS_VNODE(uobj)) {
181 		if (uobj->uo_npages == 0) {
182 			struct vnode *vp = (struct vnode *)uobj;
183 			mutex_enter(vp->v_interlock);
184 			vp->v_iflag |= VI_PAGES;
185 			mutex_exit(vp->v_interlock);
186 		}
187 		pg->flags |= PG_FILE;
188 	}
189 	uobj->uo_npages++;
190 
191 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
192 	if (flags & UVM_PGA_ZERO) {
193 		uvm_pagezero(pg);
194 	}
195 
196 	/*
197 	 * Don't put anons on the LRU page queue.  We can't flush them
198 	 * (there's no concept of swap in a rump kernel), so no reason
199 	 * to bother with them.
200 	 */
201 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
202 		atomic_inc_uint(&vmpage_onqueue);
203 		mutex_enter(&vmpage_lruqueue_lock);
204 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
205 		mutex_exit(&vmpage_lruqueue_lock);
206 	} else {
207 		pg->flags |= PG_AOBJ;
208 	}
209 
210 	return pg;
211 }
212 
213 /*
214  * Release a page.
215  *
216  * Called with the vm object locked.
217  */
218 void
219 uvm_pagefree(struct vm_page *pg)
220 {
221 	struct uvm_object *uobj = pg->uobject;
222 	struct vm_page *pg2 __unused;
223 
224 	KASSERT(rw_write_held(uobj->vmobjlock));
225 
226 	mutex_enter(&pg->interlock);
227 	uvm_pagewakeup(pg);
228 	mutex_exit(&pg->interlock);
229 
230 	uobj->uo_npages--;
231 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
232 	KASSERT(pg == pg2);
233 
234 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
235 		mutex_enter(&vmpage_lruqueue_lock);
236 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
237 		mutex_exit(&vmpage_lruqueue_lock);
238 		atomic_dec_uint(&vmpage_onqueue);
239 	}
240 
241 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
242 		struct vnode *vp = (struct vnode *)uobj;
243 		mutex_enter(vp->v_interlock);
244 		vp->v_iflag &= ~VI_PAGES;
245 		mutex_exit(vp->v_interlock);
246 	}
247 
248 	mutex_destroy(&pg->interlock);
249 	pool_cache_put(&pagecache, pg);
250 }
251 
252 void
253 uvm_pagezero(struct vm_page *pg)
254 {
255 
256 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
257 	memset((void *)pg->uanon, 0, PAGE_SIZE);
258 }
259 
260 /*
261  * uvm_page_owner_locked_p: return true if object associated with page is
262  * locked.  this is a weak check for runtime assertions only.
263  */
264 
265 bool
266 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
267 {
268 
269 	if (exclusive)
270 		return rw_write_held(pg->uobject->vmobjlock);
271 	else
272 		return rw_lock_held(pg->uobject->vmobjlock);
273 }
274 
275 /*
276  * Misc routines
277  */
278 
279 static kmutex_t pagermtx;
280 
281 void
282 uvm_init(void)
283 {
284 	char buf[64];
285 
286 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
287 		unsigned long tmp;
288 		char *ep;
289 		int mult;
290 
291 		tmp = strtoul(buf, &ep, 10);
292 		if (strlen(ep) > 1)
293 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
294 
295 		/* mini-dehumanize-number */
296 		mult = 1;
297 		switch (*ep) {
298 		case 'k':
299 			mult = 1024;
300 			break;
301 		case 'm':
302 			mult = 1024*1024;
303 			break;
304 		case 'g':
305 			mult = 1024*1024*1024;
306 			break;
307 		case 0:
308 			break;
309 		default:
310 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
311 		}
312 		rump_physmemlimit = tmp * mult;
313 
314 		if (rump_physmemlimit / mult != tmp)
315 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
316 
317 		/* reserve some memory for the pager */
318 		if (rump_physmemlimit <= PDRESERVE)
319 			panic("uvm_init: system reserves %d bytes of mem, "
320 			    "only %lu bytes given",
321 			    PDRESERVE, rump_physmemlimit);
322 		pdlimit = rump_physmemlimit;
323 		rump_physmemlimit -= PDRESERVE;
324 
325 		if (pdlimit < 1024*1024)
326 			printf("uvm_init: WARNING: <1MB RAM limit, "
327 			    "hope you know what you're doing\n");
328 
329 #define HUMANIZE_BYTES 9
330 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
331 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
332 #undef HUMANIZE_BYTES
333 		dddlim = 9 * (rump_physmemlimit / 10);
334 	} else {
335 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
336 	}
337 	aprint_verbose("total memory = %s\n", buf);
338 
339 	TAILQ_INIT(&vmpage_lruqueue);
340 
341 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
342 		uvmexp.npages = physmem;
343 	} else {
344 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
345 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
346 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
347 	}
348 	/*
349 	 * uvmexp.free is not used internally or updated.  The reason is
350 	 * that the memory hypercall allocator is allowed to allocate
351 	 * non-page sized chunks.  We use a byte count in curphysmem
352 	 * instead.
353 	 */
354 	uvmexp.free = uvmexp.npages;
355 
356 #ifndef __uvmexp_pagesize
357 	uvmexp.pagesize = PAGE_SIZE;
358 	uvmexp.pagemask = PAGE_MASK;
359 	uvmexp.pageshift = PAGE_SHIFT;
360 #else
361 #define FAKE_PAGE_SHIFT 12
362 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
363 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
364 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
365 #undef FAKE_PAGE_SHIFT
366 #endif
367 
368 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
369 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
370 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
371 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
372 
373 	cv_init(&pdaemoncv, "pdaemon");
374 	cv_init(&oomwait, "oomwait");
375 
376 	module_map = &module_map_store;
377 
378 	kernel_map->pmap = pmap_kernel();
379 
380 	pool_subsystem_init();
381 
382 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
383 	    NULL, NULL, NULL,
384 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
385 
386 	vmem_subsystem_init(kmem_arena);
387 
388 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
389 	    vmem_alloc, vmem_free, kmem_arena,
390 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
391 
392 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
393 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
394 
395 	radix_tree_init();
396 
397 	/* create vmspace used by local clients */
398 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
399 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
400 }
401 
402 void
403 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
404     bool topdown)
405 {
406 
407 	vm->vm_map.pmap = pmap;
408 	vm->vm_refcnt = 1;
409 }
410 
411 int
412 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
413     bool new_pageable, int lockflags)
414 {
415 	return 0;
416 }
417 
418 void
419 uvm_pagewire(struct vm_page *pg)
420 {
421 
422 	/* nada */
423 }
424 
425 void
426 uvm_pageunwire(struct vm_page *pg)
427 {
428 
429 	/* nada */
430 }
431 
432 int
433 uvm_availmem(bool cached)
434 {
435 
436 	return uvmexp.free;
437 }
438 
439 void
440 uvm_pagelock(struct vm_page *pg)
441 {
442 
443 	mutex_enter(&pg->interlock);
444 }
445 
446 void
447 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
448 {
449 
450 	if (pg1 < pg2) {
451 		mutex_enter(&pg1->interlock);
452 		mutex_enter(&pg2->interlock);
453 	} else {
454 		mutex_enter(&pg2->interlock);
455 		mutex_enter(&pg1->interlock);
456 	}
457 }
458 
459 void
460 uvm_pageunlock(struct vm_page *pg)
461 {
462 
463 	mutex_exit(&pg->interlock);
464 }
465 
466 void
467 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
468 {
469 
470 	mutex_exit(&pg1->interlock);
471 	mutex_exit(&pg2->interlock);
472 }
473 
474 /* where's your schmonz now? */
475 #define PUNLIMIT(a)	\
476 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
477 void
478 uvm_init_limits(struct proc *p)
479 {
480 
481 #ifndef DFLSSIZ
482 #define DFLSSIZ (16*1024*1024)
483 #endif
484 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
485 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
486 	PUNLIMIT(RLIMIT_DATA);
487 	PUNLIMIT(RLIMIT_RSS);
488 	PUNLIMIT(RLIMIT_AS);
489 	/* nice, cascade */
490 }
491 #undef PUNLIMIT
492 
493 /*
494  * This satisfies the "disgusting mmap hack" used by proplib.
495  */
496 int
497 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
498 {
499 	int error;
500 
501 	/* no reason in particular, but cf. uvm_default_mapaddr() */
502 	if (*addrp != NULL)
503 		panic("uvm_mmap() variant unsupported");
504 
505 	if (RUMP_LOCALPROC_P(curproc)) {
506 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
507 	} else {
508 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
509 		    size, addrp);
510 	}
511 	return error;
512 }
513 
514 /*
515  * Stubs for things referenced from vfs_vnode.c but not used.
516  */
517 const dev_t zerodev;
518 
519 struct uvm_object *
520 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
521 {
522 	return NULL;
523 }
524 
525 struct pagerinfo {
526 	vaddr_t pgr_kva;
527 	int pgr_npages;
528 	struct vm_page **pgr_pgs;
529 	bool pgr_read;
530 
531 	LIST_ENTRY(pagerinfo) pgr_entries;
532 };
533 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
534 
535 /*
536  * Pager "map" in routine.  Instead of mapping, we allocate memory
537  * and copy page contents there.  The reason for copying instead of
538  * mapping is simple: we do not assume we are running on virtual
539  * memory.  Even if we could emulate virtual memory in some envs
540  * such as userspace, copying is much faster than trying to awkardly
541  * cope with remapping (see "Design and Implementation" pp.95-98).
542  * The downside of the approach is that the pager requires MAXPHYS
543  * free memory to perform paging, but short of virtual memory or
544  * making the pager do I/O in page-sized chunks we cannot do much
545  * about that.
546  */
547 vaddr_t
548 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
549 {
550 	struct pagerinfo *pgri;
551 	vaddr_t curkva;
552 	int i;
553 
554 	/* allocate structures */
555 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
556 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
557 	pgri->pgr_npages = npages;
558 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
559 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
560 
561 	/* copy contents to "mapped" memory */
562 	for (i = 0, curkva = pgri->pgr_kva;
563 	    i < npages;
564 	    i++, curkva += PAGE_SIZE) {
565 		/*
566 		 * We need to copy the previous contents of the pages to
567 		 * the window even if we are reading from the
568 		 * device, since the device might not fill the contents of
569 		 * the full mapped range and we will end up corrupting
570 		 * data when we unmap the window.
571 		 */
572 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
573 		pgri->pgr_pgs[i] = pgs[i];
574 	}
575 
576 	mutex_enter(&pagermtx);
577 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
578 	mutex_exit(&pagermtx);
579 
580 	return pgri->pgr_kva;
581 }
582 
583 /*
584  * map out the pager window.  return contents from VA to page storage
585  * and free structures.
586  *
587  * Note: does not currently support partial frees
588  */
589 void
590 uvm_pagermapout(vaddr_t kva, int npages)
591 {
592 	struct pagerinfo *pgri;
593 	vaddr_t curkva;
594 	int i;
595 
596 	mutex_enter(&pagermtx);
597 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
598 		if (pgri->pgr_kva == kva)
599 			break;
600 	}
601 	KASSERT(pgri);
602 	if (pgri->pgr_npages != npages)
603 		panic("uvm_pagermapout: partial unmapping not supported");
604 	LIST_REMOVE(pgri, pgr_entries);
605 	mutex_exit(&pagermtx);
606 
607 	if (pgri->pgr_read) {
608 		for (i = 0, curkva = pgri->pgr_kva;
609 		    i < pgri->pgr_npages;
610 		    i++, curkva += PAGE_SIZE) {
611 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
612 		}
613 	}
614 
615 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
616 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
617 	kmem_free(pgri, sizeof(*pgri));
618 }
619 
620 /*
621  * convert va in pager window to page structure.
622  * XXX: how expensive is this (global lock, list traversal)?
623  */
624 struct vm_page *
625 uvm_pageratop(vaddr_t va)
626 {
627 	struct pagerinfo *pgri;
628 	struct vm_page *pg = NULL;
629 	int i;
630 
631 	mutex_enter(&pagermtx);
632 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
633 		if (pgri->pgr_kva <= va
634 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
635 			break;
636 	}
637 	if (pgri) {
638 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
639 		pg = pgri->pgr_pgs[i];
640 	}
641 	mutex_exit(&pagermtx);
642 
643 	return pg;
644 }
645 
646 /*
647  * Called with the vm object locked.
648  *
649  * Put vnode object pages at the end of the access queue to indicate
650  * they have been recently accessed and should not be immediate
651  * candidates for pageout.  Do not do this for lookups done by
652  * the pagedaemon to mimic pmap_kentered mappings which don't track
653  * access information.
654  */
655 struct vm_page *
656 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
657 {
658 	struct vm_page *pg;
659 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
660 
661 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
662 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
663 		mutex_enter(&vmpage_lruqueue_lock);
664 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
665 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
666 		mutex_exit(&vmpage_lruqueue_lock);
667 	}
668 
669 	return pg;
670 }
671 
672 void
673 uvm_page_unbusy(struct vm_page **pgs, int npgs)
674 {
675 	struct vm_page *pg;
676 	int i;
677 
678 	KASSERT(npgs > 0);
679 	KASSERT(rw_write_held(pgs[0]->uobject->vmobjlock));
680 
681 	for (i = 0; i < npgs; i++) {
682 		pg = pgs[i];
683 		if (pg == NULL)
684 			continue;
685 
686 		KASSERT(pg->flags & PG_BUSY);
687 		if (pg->flags & PG_RELEASED) {
688 			uvm_pagefree(pg);
689 		} else {
690 			pg->flags &= ~PG_BUSY;
691 			uvm_pagelock(pg);
692 			uvm_pagewakeup(pg);
693 			uvm_pageunlock(pg);
694 		}
695 	}
696 }
697 
698 void
699 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
700 {
701 
702 	KASSERT(rw_lock_held(lock));
703 	KASSERT((pg->flags & PG_BUSY) != 0);
704 
705 	mutex_enter(&pg->interlock);
706 	pg->pqflags |= PQ_WANTED;
707 	rw_exit(lock);
708 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
709 }
710 
711 void
712 uvm_pagewakeup(struct vm_page *pg)
713 {
714 
715 	KASSERT(mutex_owned(&pg->interlock));
716 
717 	if ((pg->pqflags & PQ_WANTED) != 0) {
718 		pg->pqflags &= ~PQ_WANTED;
719 		wakeup(pg);
720 	}
721 }
722 
723 void
724 uvm_estimatepageable(int *active, int *inactive)
725 {
726 
727 	/* XXX: guessing game */
728 	*active = 1024;
729 	*inactive = 1024;
730 }
731 
732 int
733 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
734 {
735 
736 	panic("%s: unimplemented", __func__);
737 }
738 
739 void
740 uvm_unloan(void *v, int npages, int flags)
741 {
742 
743 	panic("%s: unimplemented", __func__);
744 }
745 
746 int
747 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
748 	struct vm_page **opp)
749 {
750 
751 	return EBUSY;
752 }
753 
754 struct vm_page *
755 uvm_loanbreak(struct vm_page *pg)
756 {
757 
758 	panic("%s: unimplemented", __func__);
759 }
760 
761 void
762 ubc_purge(struct uvm_object *uobj)
763 {
764 
765 }
766 
767 vaddr_t
768 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
769 {
770 
771 	return 0;
772 }
773 
774 int
775 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
776 	vm_prot_t prot, bool set_max)
777 {
778 
779 	return EOPNOTSUPP;
780 }
781 
782 int
783 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
784     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
785     uvm_flag_t flags)
786 {
787 
788 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
789 	return *startp != 0 ? 0 : ENOMEM;
790 }
791 
792 void
793 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
794 {
795 
796 	rump_hyperfree((void*)start, end-start);
797 }
798 
799 
800 /*
801  * UVM km
802  */
803 
804 vaddr_t
805 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
806 {
807 	void *rv, *desired = NULL;
808 	int alignbit, error;
809 
810 #ifdef __x86_64__
811 	/*
812 	 * On amd64, allocate all module memory from the lowest 2GB.
813 	 * This is because NetBSD kernel modules are compiled
814 	 * with -mcmodel=kernel and reserve only 4 bytes for
815 	 * offsets.  If we load code compiled with -mcmodel=kernel
816 	 * anywhere except the lowest or highest 2GB, it will not
817 	 * work.  Since userspace does not have access to the highest
818 	 * 2GB, use the lowest 2GB.
819 	 *
820 	 * Note: this assumes the rump kernel resides in
821 	 * the lowest 2GB as well.
822 	 *
823 	 * Note2: yes, it's a quick hack, but since this the only
824 	 * place where we care about the map we're allocating from,
825 	 * just use a simple "if" instead of coming up with a fancy
826 	 * generic solution.
827 	 */
828 	if (map == module_map) {
829 		desired = (void *)(0x80000000 - size);
830 	}
831 #endif
832 
833 	if (__predict_false(map == module_map)) {
834 		alignbit = 0;
835 		if (align) {
836 			alignbit = ffs(align)-1;
837 		}
838 		error = rumpuser_anonmmap(desired, size, alignbit,
839 		    flags & UVM_KMF_EXEC, &rv);
840 	} else {
841 		error = rumpuser_malloc(size, align, &rv);
842 	}
843 
844 	if (error) {
845 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
846 			return 0;
847 		else
848 			panic("uvm_km_alloc failed");
849 	}
850 
851 	if (flags & UVM_KMF_ZERO)
852 		memset(rv, 0, size);
853 
854 	return (vaddr_t)rv;
855 }
856 
857 void
858 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
859 {
860 
861 	if (__predict_false(map == module_map))
862 		rumpuser_unmap((void *)vaddr, size);
863 	else
864 		rumpuser_free((void *)vaddr, size);
865 }
866 
867 int
868 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
869 {
870 	return 0;
871 }
872 
873 struct vm_map *
874 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
875 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
876 {
877 
878 	return (struct vm_map *)417416;
879 }
880 
881 int
882 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
883     vmem_addr_t *addr)
884 {
885 	vaddr_t va;
886 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
887 	    (flags & VM_SLEEP), "kmalloc");
888 
889 	if (va) {
890 		*addr = va;
891 		return 0;
892 	} else {
893 		return ENOMEM;
894 	}
895 }
896 
897 void
898 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
899 {
900 
901 	rump_hyperfree((void *)addr, size);
902 }
903 
904 /*
905  * VM space locking routines.  We don't really have to do anything,
906  * since the pages are always "wired" (both local and remote processes).
907  */
908 int
909 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
910 {
911 
912 	return 0;
913 }
914 
915 void
916 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
917 {
918 
919 }
920 
921 /*
922  * For the local case the buffer mappers don't need to do anything.
923  * For the remote case we need to reserve space and copy data in or
924  * out, depending on B_READ/B_WRITE.
925  */
926 int
927 vmapbuf(struct buf *bp, vsize_t len)
928 {
929 	int error = 0;
930 
931 	bp->b_saveaddr = bp->b_data;
932 
933 	/* remote case */
934 	if (!RUMP_LOCALPROC_P(curproc)) {
935 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
936 		if (BUF_ISWRITE(bp)) {
937 			error = copyin(bp->b_saveaddr, bp->b_data, len);
938 			if (error) {
939 				rump_hyperfree(bp->b_data, len);
940 				bp->b_data = bp->b_saveaddr;
941 				bp->b_saveaddr = 0;
942 			}
943 		}
944 	}
945 
946 	return error;
947 }
948 
949 void
950 vunmapbuf(struct buf *bp, vsize_t len)
951 {
952 
953 	/* remote case */
954 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
955 		if (BUF_ISREAD(bp)) {
956 			bp->b_error = copyout_proc(bp->b_proc,
957 			    bp->b_data, bp->b_saveaddr, len);
958 		}
959 		rump_hyperfree(bp->b_data, len);
960 	}
961 
962 	bp->b_data = bp->b_saveaddr;
963 	bp->b_saveaddr = 0;
964 }
965 
966 void
967 uvmspace_addref(struct vmspace *vm)
968 {
969 
970 	/*
971 	 * No dynamically allocated vmspaces exist.
972 	 */
973 }
974 
975 void
976 uvmspace_free(struct vmspace *vm)
977 {
978 
979 	/* nothing for now */
980 }
981 
982 /*
983  * page life cycle stuff.  it really doesn't exist, so just stubs.
984  */
985 
986 void
987 uvm_pageactivate(struct vm_page *pg)
988 {
989 
990 	/* nada */
991 }
992 
993 void
994 uvm_pagedeactivate(struct vm_page *pg)
995 {
996 
997 	/* nada */
998 }
999 
1000 void
1001 uvm_pagedequeue(struct vm_page *pg)
1002 {
1003 
1004 	/* nada*/
1005 }
1006 
1007 void
1008 uvm_pageenqueue(struct vm_page *pg)
1009 {
1010 
1011 	/* nada */
1012 }
1013 
1014 void
1015 uvmpdpol_anfree(struct vm_anon *an)
1016 {
1017 
1018 	/* nada */
1019 }
1020 
1021 /*
1022  * Physical address accessors.
1023  */
1024 
1025 struct vm_page *
1026 uvm_phys_to_vm_page(paddr_t pa)
1027 {
1028 
1029 	return NULL;
1030 }
1031 
1032 paddr_t
1033 uvm_vm_page_to_phys(const struct vm_page *pg)
1034 {
1035 
1036 	return 0;
1037 }
1038 
1039 vaddr_t
1040 uvm_uarea_alloc(void)
1041 {
1042 
1043 	/* non-zero */
1044 	return (vaddr_t)11;
1045 }
1046 
1047 void
1048 uvm_uarea_free(vaddr_t uarea)
1049 {
1050 
1051 	/* nata, so creamy */
1052 }
1053 
1054 /*
1055  * Routines related to the Page Baroness.
1056  */
1057 
1058 void
1059 uvm_wait(const char *msg)
1060 {
1061 
1062 	if (__predict_false(rump_threads == 0))
1063 		panic("pagedaemon missing (RUMP_THREADS = 0)");
1064 
1065 	if (curlwp == uvm.pagedaemon_lwp) {
1066 		/* is it possible for us to later get memory? */
1067 		if (!uvmexp.paging)
1068 			panic("pagedaemon out of memory");
1069 	}
1070 
1071 	mutex_enter(&pdaemonmtx);
1072 	pdaemon_waiters++;
1073 	cv_signal(&pdaemoncv);
1074 	cv_wait(&oomwait, &pdaemonmtx);
1075 	mutex_exit(&pdaemonmtx);
1076 }
1077 
1078 void
1079 uvm_pageout_start(int npages)
1080 {
1081 
1082 	mutex_enter(&pdaemonmtx);
1083 	uvmexp.paging += npages;
1084 	mutex_exit(&pdaemonmtx);
1085 }
1086 
1087 void
1088 uvm_pageout_done(int npages)
1089 {
1090 
1091 	if (!npages)
1092 		return;
1093 
1094 	mutex_enter(&pdaemonmtx);
1095 	KASSERT(uvmexp.paging >= npages);
1096 	uvmexp.paging -= npages;
1097 
1098 	if (pdaemon_waiters) {
1099 		pdaemon_waiters = 0;
1100 		cv_broadcast(&oomwait);
1101 	}
1102 	mutex_exit(&pdaemonmtx);
1103 }
1104 
1105 static bool
1106 processpage(struct vm_page *pg)
1107 {
1108 	struct uvm_object *uobj;
1109 
1110 	uobj = pg->uobject;
1111 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
1112 		if ((pg->flags & PG_BUSY) == 0) {
1113 			mutex_exit(&vmpage_lruqueue_lock);
1114 			uobj->pgops->pgo_put(uobj, pg->offset,
1115 			    pg->offset + PAGE_SIZE,
1116 			    PGO_CLEANIT|PGO_FREE);
1117 			KASSERT(!rw_write_held(uobj->vmobjlock));
1118 			return true;
1119 		} else {
1120 			rw_exit(uobj->vmobjlock);
1121 		}
1122 	}
1123 
1124 	return false;
1125 }
1126 
1127 /*
1128  * The Diabolical pageDaemon Director (DDD).
1129  *
1130  * This routine can always use better heuristics.
1131  */
1132 void
1133 uvm_pageout(void *arg)
1134 {
1135 	struct vm_page *pg;
1136 	struct pool *pp, *pp_first;
1137 	int cleaned, skip, skipped;
1138 	bool succ;
1139 
1140 	mutex_enter(&pdaemonmtx);
1141 	for (;;) {
1142 		if (pdaemon_waiters) {
1143 			pdaemon_waiters = 0;
1144 			cv_broadcast(&oomwait);
1145 		}
1146 		if (!NEED_PAGEDAEMON()) {
1147 			kernel_map->flags &= ~VM_MAP_WANTVA;
1148 			cv_wait(&pdaemoncv, &pdaemonmtx);
1149 		}
1150 		uvmexp.pdwoke++;
1151 
1152 		/* tell the world that we are hungry */
1153 		kernel_map->flags |= VM_MAP_WANTVA;
1154 		mutex_exit(&pdaemonmtx);
1155 
1156 		/*
1157 		 * step one: reclaim the page cache.  this should give
1158 		 * us the biggest earnings since whole pages are released
1159 		 * into backing memory.
1160 		 */
1161 		pool_cache_reclaim(&pagecache);
1162 		if (!NEED_PAGEDAEMON()) {
1163 			mutex_enter(&pdaemonmtx);
1164 			continue;
1165 		}
1166 
1167 		/*
1168 		 * Ok, so that didn't help.  Next, try to hunt memory
1169 		 * by pushing out vnode pages.  The pages might contain
1170 		 * useful cached data, but we need the memory.
1171 		 */
1172 		cleaned = 0;
1173 		skip = 0;
1174  again:
1175 		mutex_enter(&vmpage_lruqueue_lock);
1176 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1177 			skipped = 0;
1178 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1179 
1180 				/*
1181 				 * skip over pages we _might_ have tried
1182 				 * to handle earlier.  they might not be
1183 				 * exactly the same ones, but I'm not too
1184 				 * concerned.
1185 				 */
1186 				while (skipped++ < skip)
1187 					continue;
1188 
1189 				if (processpage(pg)) {
1190 					cleaned++;
1191 					goto again;
1192 				}
1193 
1194 				skip++;
1195 			}
1196 			break;
1197 		}
1198 		mutex_exit(&vmpage_lruqueue_lock);
1199 
1200 		/*
1201 		 * And of course we need to reclaim the page cache
1202 		 * again to actually release memory.
1203 		 */
1204 		pool_cache_reclaim(&pagecache);
1205 		if (!NEED_PAGEDAEMON()) {
1206 			mutex_enter(&pdaemonmtx);
1207 			continue;
1208 		}
1209 
1210 		/*
1211 		 * And then drain the pools.  Wipe them out ... all of them.
1212 		 */
1213 		for (pp_first = NULL;;) {
1214 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
1215 
1216 			succ = pool_drain(&pp);
1217 			if (succ || pp == pp_first)
1218 				break;
1219 
1220 			if (pp_first == NULL)
1221 				pp_first = pp;
1222 		}
1223 
1224 		/*
1225 		 * Need to use PYEC on our bag of tricks.
1226 		 * Unfortunately, the wife just borrowed it.
1227 		 */
1228 
1229 		mutex_enter(&pdaemonmtx);
1230 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1231 		    uvmexp.paging == 0) {
1232 			kpause("pddlk", false, hz, &pdaemonmtx);
1233 		}
1234 	}
1235 
1236 	panic("you can swap out any time you like, but you can never leave");
1237 }
1238 
1239 void
1240 uvm_kick_pdaemon()
1241 {
1242 
1243 	/*
1244 	 * Wake up the diabolical pagedaemon director if we are over
1245 	 * 90% of the memory limit.  This is a complete and utter
1246 	 * stetson-harrison decision which you are allowed to finetune.
1247 	 * Don't bother locking.  If we have some unflushed caches,
1248 	 * other waker-uppers will deal with the issue.
1249 	 */
1250 	if (NEED_PAGEDAEMON()) {
1251 		cv_signal(&pdaemoncv);
1252 	}
1253 }
1254 
1255 void *
1256 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1257 {
1258 	const unsigned long thelimit =
1259 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1260 	unsigned long newmem;
1261 	void *rv;
1262 	int error;
1263 
1264 	uvm_kick_pdaemon(); /* ouch */
1265 
1266 	/* first we must be within the limit */
1267  limitagain:
1268 	if (thelimit != RUMPMEM_UNLIMITED) {
1269 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1270 		if (newmem > thelimit) {
1271 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1272 			if (!waitok) {
1273 				return NULL;
1274 			}
1275 			uvm_wait(wmsg);
1276 			goto limitagain;
1277 		}
1278 	}
1279 
1280 	/* second, we must get something from the backend */
1281  again:
1282 	error = rumpuser_malloc(howmuch, alignment, &rv);
1283 	if (__predict_false(error && waitok)) {
1284 		uvm_wait(wmsg);
1285 		goto again;
1286 	}
1287 
1288 	return rv;
1289 }
1290 
1291 void
1292 rump_hyperfree(void *what, size_t size)
1293 {
1294 
1295 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1296 		atomic_add_long(&curphysmem, -size);
1297 	}
1298 	rumpuser_free(what, size);
1299 }
1300