xref: /netbsd-src/sys/rump/librump/rumpkern/vm.c (revision c64d4171c6f912972428361000d29636c687d68b)
1 /*	$NetBSD: vm.c,v 1.194 2022/10/26 23:22:07 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.194 2022/10/26 23:22:07 riastradh Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 #include <sys/radixtree.h>
56 #include <sys/module.h>
57 
58 #include <machine/pmap.h>
59 
60 #if defined(__i386__) || defined(__x86_64__)
61 /*
62  * This file abuses the pmap abstraction to create its own statically
63  * allocated struct pmap object, even though it can't do anything
64  * useful with such a thing from userland.  On x86 the struct pmap
65  * definition is private, so we have to go to extra effort to abuse it
66  * there.  This should be fixed -- all of the struct pmap definitions
67  * should be private, and then rump can furnish its own fake struct
68  * pmap without clashing with anything.
69  */
70 #include <machine/pmap_private.h>
71 #endif
72 
73 #include <uvm/uvm.h>
74 #include <uvm/uvm_ddb.h>
75 #include <uvm/uvm_pdpolicy.h>
76 #include <uvm/uvm_prot.h>
77 #include <uvm/uvm_readahead.h>
78 #include <uvm/uvm_device.h>
79 
80 #include <rump-sys/kern.h>
81 #include <rump-sys/vfs.h>
82 
83 #include <rump/rumpuser.h>
84 
85 kmutex_t vmpage_lruqueue_lock; /* non-free page lock */
86 kmutex_t uvm_swap_data_lock;
87 
88 struct uvmexp uvmexp;
89 struct uvm uvm;
90 
91 #ifdef __uvmexp_pagesize
92 const int * const uvmexp_pagesize = &uvmexp.pagesize;
93 const int * const uvmexp_pagemask = &uvmexp.pagemask;
94 const int * const uvmexp_pageshift = &uvmexp.pageshift;
95 #endif
96 
97 static struct vm_map kernel_map_store;
98 struct vm_map *kernel_map = &kernel_map_store;
99 
100 static struct vm_map module_map_store;
101 
102 static struct pmap pmap_kernel;
103 struct pmap rump_pmap_local;
104 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
105 
106 vmem_t *kmem_arena;
107 vmem_t *kmem_va_arena;
108 
109 static unsigned int pdaemon_waiters;
110 static kmutex_t pdaemonmtx;
111 static kcondvar_t pdaemoncv, oomwait;
112 
113 /* all local non-proc0 processes share this vmspace */
114 struct vmspace *rump_vmspace_local;
115 
116 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
117 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
118 static unsigned long curphysmem;
119 static unsigned long dddlim;		/* 90% of memory limit used */
120 #define NEED_PAGEDAEMON() \
121     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
122 #define PDRESERVE (2*MAXPHYS)
123 
124 /*
125  * Try to free two pages worth of pages from objects.
126  * If this successfully frees a full page cache page, we'll
127  * free the released page plus PAGE_SIZE/sizeof(vm_page).
128  */
129 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
130 
131 /*
132  * Keep a list of least recently used pages.  Since the only way a
133  * rump kernel can "access" a page is via lookup, we put the page
134  * at the back of queue every time a lookup for it is done.  If the
135  * page is in front of this global queue and we're short of memory,
136  * it's a candidate for pageout.
137  */
138 static struct pglist vmpage_lruqueue;
139 static unsigned vmpage_onqueue;
140 
141 /*
142  * vm pages
143  */
144 
145 static int
146 pgctor(void *arg, void *obj, int flags)
147 {
148 	struct vm_page *pg = obj;
149 
150 	memset(pg, 0, sizeof(*pg));
151 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
152 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
153 	return pg->uanon == NULL;
154 }
155 
156 static void
157 pgdtor(void *arg, void *obj)
158 {
159 	struct vm_page *pg = obj;
160 
161 	rump_hyperfree(pg->uanon, PAGE_SIZE);
162 }
163 
164 static struct pool_cache pagecache;
165 
166 /*
167  * Called with the object locked.  We don't support anons.
168  */
169 struct vm_page *
170 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
171 	int flags, int strat, int free_list)
172 {
173 	struct vm_page *pg;
174 
175 	KASSERT(uobj && rw_write_held(uobj->vmobjlock));
176 	KASSERT(anon == NULL);
177 
178 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
179 	if (__predict_false(pg == NULL)) {
180 		return NULL;
181 	}
182 	mutex_init(&pg->interlock, MUTEX_DEFAULT, IPL_NONE);
183 
184 	pg->offset = off;
185 	pg->uobject = uobj;
186 
187 	if (radix_tree_insert_node(&uobj->uo_pages, off >> PAGE_SHIFT,
188 	    pg) != 0) {
189 		pool_cache_put(&pagecache, pg);
190 		return NULL;
191 	}
192 
193 	if (UVM_OBJ_IS_VNODE(uobj)) {
194 		if (uobj->uo_npages == 0) {
195 			struct vnode *vp = (struct vnode *)uobj;
196 			mutex_enter(vp->v_interlock);
197 			vp->v_iflag |= VI_PAGES;
198 			mutex_exit(vp->v_interlock);
199 		}
200 		pg->flags |= PG_FILE;
201 	}
202 	uobj->uo_npages++;
203 
204 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
205 	if (flags & UVM_PGA_ZERO) {
206 		uvm_pagezero(pg);
207 	}
208 
209 	/*
210 	 * Don't put anons on the LRU page queue.  We can't flush them
211 	 * (there's no concept of swap in a rump kernel), so no reason
212 	 * to bother with them.
213 	 */
214 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
215 		atomic_inc_uint(&vmpage_onqueue);
216 		mutex_enter(&vmpage_lruqueue_lock);
217 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
218 		mutex_exit(&vmpage_lruqueue_lock);
219 	} else {
220 		pg->flags |= PG_AOBJ;
221 	}
222 
223 	return pg;
224 }
225 
226 /*
227  * Release a page.
228  *
229  * Called with the vm object locked.
230  */
231 void
232 uvm_pagefree(struct vm_page *pg)
233 {
234 	struct uvm_object *uobj = pg->uobject;
235 	struct vm_page *pg2 __unused;
236 
237 	KASSERT(rw_write_held(uobj->vmobjlock));
238 
239 	mutex_enter(&pg->interlock);
240 	uvm_pagewakeup(pg);
241 	mutex_exit(&pg->interlock);
242 
243 	uobj->uo_npages--;
244 	pg2 = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
245 	KASSERT(pg == pg2);
246 
247 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
248 		mutex_enter(&vmpage_lruqueue_lock);
249 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
250 		mutex_exit(&vmpage_lruqueue_lock);
251 		atomic_dec_uint(&vmpage_onqueue);
252 	}
253 
254 	if (UVM_OBJ_IS_VNODE(uobj) && uobj->uo_npages == 0) {
255 		struct vnode *vp = (struct vnode *)uobj;
256 		mutex_enter(vp->v_interlock);
257 		vp->v_iflag &= ~VI_PAGES;
258 		mutex_exit(vp->v_interlock);
259 	}
260 
261 	mutex_destroy(&pg->interlock);
262 	pool_cache_put(&pagecache, pg);
263 }
264 
265 void
266 uvm_pagezero(struct vm_page *pg)
267 {
268 
269 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
270 	memset((void *)pg->uanon, 0, PAGE_SIZE);
271 }
272 
273 /*
274  * uvm_page_owner_locked_p: return true if object associated with page is
275  * locked.  this is a weak check for runtime assertions only.
276  */
277 
278 bool
279 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
280 {
281 
282 	if (exclusive)
283 		return rw_write_held(pg->uobject->vmobjlock);
284 	else
285 		return rw_lock_held(pg->uobject->vmobjlock);
286 }
287 
288 /*
289  * Misc routines
290  */
291 
292 static kmutex_t pagermtx;
293 
294 void
295 uvm_init(void)
296 {
297 	char buf[64];
298 
299 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
300 		unsigned long tmp;
301 		char *ep;
302 		int mult;
303 
304 		tmp = strtoul(buf, &ep, 10);
305 		if (strlen(ep) > 1)
306 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
307 
308 		/* mini-dehumanize-number */
309 		mult = 1;
310 		switch (*ep) {
311 		case 'k':
312 			mult = 1024;
313 			break;
314 		case 'm':
315 			mult = 1024*1024;
316 			break;
317 		case 'g':
318 			mult = 1024*1024*1024;
319 			break;
320 		case 0:
321 			break;
322 		default:
323 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
324 		}
325 		rump_physmemlimit = tmp * mult;
326 
327 		if (rump_physmemlimit / mult != tmp)
328 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
329 
330 		/* reserve some memory for the pager */
331 		if (rump_physmemlimit <= PDRESERVE)
332 			panic("uvm_init: system reserves %d bytes of mem, "
333 			    "only %lu bytes given",
334 			    PDRESERVE, rump_physmemlimit);
335 		pdlimit = rump_physmemlimit;
336 		rump_physmemlimit -= PDRESERVE;
337 
338 		if (pdlimit < 1024*1024)
339 			printf("uvm_init: WARNING: <1MB RAM limit, "
340 			    "hope you know what you're doing\n");
341 
342 #define HUMANIZE_BYTES 9
343 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
344 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
345 #undef HUMANIZE_BYTES
346 		dddlim = 9 * (rump_physmemlimit / 10);
347 	} else {
348 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
349 	}
350 	aprint_verbose("total memory = %s\n", buf);
351 
352 	TAILQ_INIT(&vmpage_lruqueue);
353 
354 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
355 		uvmexp.npages = physmem;
356 	} else {
357 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
358 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
359 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
360 	}
361 	/*
362 	 * uvmexp.free is not used internally or updated.  The reason is
363 	 * that the memory hypercall allocator is allowed to allocate
364 	 * non-page sized chunks.  We use a byte count in curphysmem
365 	 * instead.
366 	 */
367 	uvmexp.free = uvmexp.npages;
368 
369 #ifndef __uvmexp_pagesize
370 	uvmexp.pagesize = PAGE_SIZE;
371 	uvmexp.pagemask = PAGE_MASK;
372 	uvmexp.pageshift = PAGE_SHIFT;
373 #else
374 #define FAKE_PAGE_SHIFT 12
375 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
376 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
377 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
378 #undef FAKE_PAGE_SHIFT
379 #endif
380 
381 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
382 	mutex_init(&vmpage_lruqueue_lock, MUTEX_DEFAULT, IPL_NONE);
383 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
384 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
385 
386 	cv_init(&pdaemoncv, "pdaemon");
387 	cv_init(&oomwait, "oomwait");
388 
389 	module_map = &module_map_store;
390 
391 	kernel_map->pmap = pmap_kernel();
392 
393 	pool_subsystem_init();
394 
395 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
396 	    NULL, NULL, NULL,
397 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
398 
399 	vmem_subsystem_init(kmem_arena);
400 
401 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
402 	    vmem_alloc, vmem_free, kmem_arena,
403 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
404 
405 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
406 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
407 
408 	radix_tree_init();
409 
410 	/* create vmspace used by local clients */
411 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
412 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
413 }
414 
415 void
416 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
417     bool topdown)
418 {
419 
420 	vm->vm_map.pmap = pmap;
421 	vm->vm_refcnt = 1;
422 }
423 
424 int
425 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
426     bool new_pageable, int lockflags)
427 {
428 	return 0;
429 }
430 
431 void
432 uvm_pagewire(struct vm_page *pg)
433 {
434 
435 	/* nada */
436 }
437 
438 void
439 uvm_pageunwire(struct vm_page *pg)
440 {
441 
442 	/* nada */
443 }
444 
445 int
446 uvm_availmem(bool cached)
447 {
448 
449 	return uvmexp.free;
450 }
451 
452 void
453 uvm_pagelock(struct vm_page *pg)
454 {
455 
456 	mutex_enter(&pg->interlock);
457 }
458 
459 void
460 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
461 {
462 
463 	if (pg1 < pg2) {
464 		mutex_enter(&pg1->interlock);
465 		mutex_enter(&pg2->interlock);
466 	} else {
467 		mutex_enter(&pg2->interlock);
468 		mutex_enter(&pg1->interlock);
469 	}
470 }
471 
472 void
473 uvm_pageunlock(struct vm_page *pg)
474 {
475 
476 	mutex_exit(&pg->interlock);
477 }
478 
479 void
480 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
481 {
482 
483 	mutex_exit(&pg1->interlock);
484 	mutex_exit(&pg2->interlock);
485 }
486 
487 /* where's your schmonz now? */
488 #define PUNLIMIT(a)	\
489 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
490 void
491 uvm_init_limits(struct proc *p)
492 {
493 
494 #ifndef DFLSSIZ
495 #define DFLSSIZ (16*1024*1024)
496 #endif
497 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
498 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
499 	PUNLIMIT(RLIMIT_DATA);
500 	PUNLIMIT(RLIMIT_RSS);
501 	PUNLIMIT(RLIMIT_AS);
502 	/* nice, cascade */
503 }
504 #undef PUNLIMIT
505 
506 /*
507  * This satisfies the "disgusting mmap hack" used by proplib.
508  */
509 int
510 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
511 {
512 	int error;
513 
514 	/* no reason in particular, but cf. uvm_default_mapaddr() */
515 	if (*addrp != NULL)
516 		panic("uvm_mmap() variant unsupported");
517 
518 	if (RUMP_LOCALPROC_P(curproc)) {
519 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
520 	} else {
521 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
522 		    size, addrp);
523 	}
524 	return error;
525 }
526 
527 /*
528  * Stubs for things referenced from vfs_vnode.c but not used.
529  */
530 const dev_t zerodev;
531 
532 struct uvm_object *
533 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
534 {
535 	return NULL;
536 }
537 
538 struct pagerinfo {
539 	vaddr_t pgr_kva;
540 	int pgr_npages;
541 	struct vm_page **pgr_pgs;
542 	bool pgr_read;
543 
544 	LIST_ENTRY(pagerinfo) pgr_entries;
545 };
546 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
547 
548 /*
549  * Pager "map" in routine.  Instead of mapping, we allocate memory
550  * and copy page contents there.  The reason for copying instead of
551  * mapping is simple: we do not assume we are running on virtual
552  * memory.  Even if we could emulate virtual memory in some envs
553  * such as userspace, copying is much faster than trying to awkardly
554  * cope with remapping (see "Design and Implementation" pp.95-98).
555  * The downside of the approach is that the pager requires MAXPHYS
556  * free memory to perform paging, but short of virtual memory or
557  * making the pager do I/O in page-sized chunks we cannot do much
558  * about that.
559  */
560 vaddr_t
561 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
562 {
563 	struct pagerinfo *pgri;
564 	vaddr_t curkva;
565 	int i;
566 
567 	/* allocate structures */
568 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
569 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
570 	pgri->pgr_npages = npages;
571 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
572 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
573 
574 	/* copy contents to "mapped" memory */
575 	for (i = 0, curkva = pgri->pgr_kva;
576 	    i < npages;
577 	    i++, curkva += PAGE_SIZE) {
578 		/*
579 		 * We need to copy the previous contents of the pages to
580 		 * the window even if we are reading from the
581 		 * device, since the device might not fill the contents of
582 		 * the full mapped range and we will end up corrupting
583 		 * data when we unmap the window.
584 		 */
585 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
586 		pgri->pgr_pgs[i] = pgs[i];
587 	}
588 
589 	mutex_enter(&pagermtx);
590 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
591 	mutex_exit(&pagermtx);
592 
593 	return pgri->pgr_kva;
594 }
595 
596 /*
597  * map out the pager window.  return contents from VA to page storage
598  * and free structures.
599  *
600  * Note: does not currently support partial frees
601  */
602 void
603 uvm_pagermapout(vaddr_t kva, int npages)
604 {
605 	struct pagerinfo *pgri;
606 	vaddr_t curkva;
607 	int i;
608 
609 	mutex_enter(&pagermtx);
610 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
611 		if (pgri->pgr_kva == kva)
612 			break;
613 	}
614 	KASSERT(pgri);
615 	if (pgri->pgr_npages != npages)
616 		panic("uvm_pagermapout: partial unmapping not supported");
617 	LIST_REMOVE(pgri, pgr_entries);
618 	mutex_exit(&pagermtx);
619 
620 	if (pgri->pgr_read) {
621 		for (i = 0, curkva = pgri->pgr_kva;
622 		    i < pgri->pgr_npages;
623 		    i++, curkva += PAGE_SIZE) {
624 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
625 		}
626 	}
627 
628 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
629 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
630 	kmem_free(pgri, sizeof(*pgri));
631 }
632 
633 /*
634  * convert va in pager window to page structure.
635  * XXX: how expensive is this (global lock, list traversal)?
636  */
637 struct vm_page *
638 uvm_pageratop(vaddr_t va)
639 {
640 	struct pagerinfo *pgri;
641 	struct vm_page *pg = NULL;
642 	int i;
643 
644 	mutex_enter(&pagermtx);
645 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
646 		if (pgri->pgr_kva <= va
647 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
648 			break;
649 	}
650 	if (pgri) {
651 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
652 		pg = pgri->pgr_pgs[i];
653 	}
654 	mutex_exit(&pagermtx);
655 
656 	return pg;
657 }
658 
659 /*
660  * Called with the vm object locked.
661  *
662  * Put vnode object pages at the end of the access queue to indicate
663  * they have been recently accessed and should not be immediate
664  * candidates for pageout.  Do not do this for lookups done by
665  * the pagedaemon to mimic pmap_kentered mappings which don't track
666  * access information.
667  */
668 struct vm_page *
669 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
670 {
671 	struct vm_page *pg;
672 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
673 
674 	pg = radix_tree_lookup_node(&uobj->uo_pages, off >> PAGE_SHIFT);
675 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
676 		mutex_enter(&vmpage_lruqueue_lock);
677 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
678 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
679 		mutex_exit(&vmpage_lruqueue_lock);
680 	}
681 
682 	return pg;
683 }
684 
685 void
686 uvm_page_unbusy(struct vm_page **pgs, int npgs)
687 {
688 	struct vm_page *pg;
689 	int i, pageout_done;
690 
691 	KASSERT(npgs > 0);
692 
693 	pageout_done = 0;
694 	for (i = 0; i < npgs; i++) {
695 		pg = pgs[i];
696 		if (pg == NULL || pg == PGO_DONTCARE) {
697 			continue;
698 		}
699 
700 #if 0
701 		KASSERT(uvm_page_owner_locked_p(pg, true));
702 #else
703 		/*
704 		 * uvm_page_owner_locked_p() is not available in rump,
705 		 * and rump doesn't support amaps anyway.
706 		 */
707 		KASSERT(rw_write_held(pg->uobject->vmobjlock));
708 #endif
709 		KASSERT(pg->flags & PG_BUSY);
710 
711 		if (pg->flags & PG_PAGEOUT) {
712 			pg->flags &= ~PG_PAGEOUT;
713 			pg->flags |= PG_RELEASED;
714 			pageout_done++;
715 			atomic_inc_uint(&uvmexp.pdfreed);
716 		}
717 		if (pg->flags & PG_RELEASED) {
718 			KASSERT(pg->uobject != NULL ||
719 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
720 			pg->flags &= ~PG_RELEASED;
721 			uvm_pagefree(pg);
722 		} else {
723 			KASSERT((pg->flags & PG_FAKE) == 0);
724 			pg->flags &= ~PG_BUSY;
725 			uvm_pagelock(pg);
726 			uvm_pagewakeup(pg);
727 			uvm_pageunlock(pg);
728 			UVM_PAGE_OWN(pg, NULL);
729 		}
730 	}
731 	if (pageout_done != 0) {
732 		uvm_pageout_done(pageout_done);
733 	}
734 }
735 
736 void
737 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
738 {
739 
740 	KASSERT(rw_lock_held(lock));
741 	KASSERT((pg->flags & PG_BUSY) != 0);
742 
743 	mutex_enter(&pg->interlock);
744 	pg->pqflags |= PQ_WANTED;
745 	rw_exit(lock);
746 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
747 }
748 
749 void
750 uvm_pagewakeup(struct vm_page *pg)
751 {
752 
753 	KASSERT(mutex_owned(&pg->interlock));
754 
755 	if ((pg->pqflags & PQ_WANTED) != 0) {
756 		pg->pqflags &= ~PQ_WANTED;
757 		wakeup(pg);
758 	}
759 }
760 
761 void
762 uvm_estimatepageable(int *active, int *inactive)
763 {
764 
765 	/* XXX: guessing game */
766 	*active = 1024;
767 	*inactive = 1024;
768 }
769 
770 int
771 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
772 {
773 
774 	panic("%s: unimplemented", __func__);
775 }
776 
777 void
778 uvm_unloan(void *v, int npages, int flags)
779 {
780 
781 	panic("%s: unimplemented", __func__);
782 }
783 
784 int
785 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
786 	struct vm_page **opp)
787 {
788 
789 	return EBUSY;
790 }
791 
792 struct vm_page *
793 uvm_loanbreak(struct vm_page *pg)
794 {
795 
796 	panic("%s: unimplemented", __func__);
797 }
798 
799 void
800 ubc_purge(struct uvm_object *uobj)
801 {
802 
803 }
804 
805 vaddr_t
806 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
807 {
808 
809 	return 0;
810 }
811 
812 int
813 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
814 	vm_prot_t prot, bool set_max)
815 {
816 
817 	return EOPNOTSUPP;
818 }
819 
820 int
821 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
822     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
823     uvm_flag_t flags)
824 {
825 
826 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
827 	return *startp != 0 ? 0 : ENOMEM;
828 }
829 
830 void
831 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
832 {
833 
834 	rump_hyperfree((void*)start, end-start);
835 }
836 
837 
838 /*
839  * UVM km
840  */
841 
842 vaddr_t
843 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
844 {
845 	void *rv, *desired = NULL;
846 	int alignbit, error;
847 
848 #ifdef __x86_64__
849 	/*
850 	 * On amd64, allocate all module memory from the lowest 2GB.
851 	 * This is because NetBSD kernel modules are compiled
852 	 * with -mcmodel=kernel and reserve only 4 bytes for
853 	 * offsets.  If we load code compiled with -mcmodel=kernel
854 	 * anywhere except the lowest or highest 2GB, it will not
855 	 * work.  Since userspace does not have access to the highest
856 	 * 2GB, use the lowest 2GB.
857 	 *
858 	 * Note: this assumes the rump kernel resides in
859 	 * the lowest 2GB as well.
860 	 *
861 	 * Note2: yes, it's a quick hack, but since this the only
862 	 * place where we care about the map we're allocating from,
863 	 * just use a simple "if" instead of coming up with a fancy
864 	 * generic solution.
865 	 */
866 	if (map == module_map) {
867 		desired = (void *)(0x80000000 - size);
868 	}
869 #endif
870 
871 	if (__predict_false(map == module_map)) {
872 		alignbit = 0;
873 		if (align) {
874 			alignbit = ffs(align)-1;
875 		}
876 		error = rumpuser_anonmmap(desired, size, alignbit,
877 		    flags & UVM_KMF_EXEC, &rv);
878 	} else {
879 		error = rumpuser_malloc(size, align, &rv);
880 	}
881 
882 	if (error) {
883 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
884 			return 0;
885 		else
886 			panic("uvm_km_alloc failed");
887 	}
888 
889 	if (flags & UVM_KMF_ZERO)
890 		memset(rv, 0, size);
891 
892 	return (vaddr_t)rv;
893 }
894 
895 void
896 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
897 {
898 
899 	if (__predict_false(map == module_map))
900 		rumpuser_unmap((void *)vaddr, size);
901 	else
902 		rumpuser_free((void *)vaddr, size);
903 }
904 
905 int
906 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
907 {
908 	return 0;
909 }
910 
911 struct vm_map *
912 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
913 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
914 {
915 
916 	return (struct vm_map *)417416;
917 }
918 
919 int
920 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
921     vmem_addr_t *addr)
922 {
923 	vaddr_t va;
924 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
925 	    (flags & VM_SLEEP), "kmalloc");
926 
927 	if (va) {
928 		*addr = va;
929 		return 0;
930 	} else {
931 		return ENOMEM;
932 	}
933 }
934 
935 void
936 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
937 {
938 
939 	rump_hyperfree((void *)addr, size);
940 }
941 
942 /*
943  * VM space locking routines.  We don't really have to do anything,
944  * since the pages are always "wired" (both local and remote processes).
945  */
946 int
947 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
948 {
949 
950 	return 0;
951 }
952 
953 void
954 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
955 {
956 
957 }
958 
959 /*
960  * For the local case the buffer mappers don't need to do anything.
961  * For the remote case we need to reserve space and copy data in or
962  * out, depending on B_READ/B_WRITE.
963  */
964 int
965 vmapbuf(struct buf *bp, vsize_t len)
966 {
967 	int error = 0;
968 
969 	bp->b_saveaddr = bp->b_data;
970 
971 	/* remote case */
972 	if (!RUMP_LOCALPROC_P(curproc)) {
973 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
974 		if (BUF_ISWRITE(bp)) {
975 			error = copyin(bp->b_saveaddr, bp->b_data, len);
976 			if (error) {
977 				rump_hyperfree(bp->b_data, len);
978 				bp->b_data = bp->b_saveaddr;
979 				bp->b_saveaddr = 0;
980 			}
981 		}
982 	}
983 
984 	return error;
985 }
986 
987 void
988 vunmapbuf(struct buf *bp, vsize_t len)
989 {
990 
991 	/* remote case */
992 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
993 		if (BUF_ISREAD(bp)) {
994 			bp->b_error = copyout_proc(bp->b_proc,
995 			    bp->b_data, bp->b_saveaddr, len);
996 		}
997 		rump_hyperfree(bp->b_data, len);
998 	}
999 
1000 	bp->b_data = bp->b_saveaddr;
1001 	bp->b_saveaddr = 0;
1002 }
1003 
1004 void
1005 uvmspace_addref(struct vmspace *vm)
1006 {
1007 
1008 	/*
1009 	 * No dynamically allocated vmspaces exist.
1010 	 */
1011 }
1012 
1013 void
1014 uvmspace_free(struct vmspace *vm)
1015 {
1016 
1017 	/* nothing for now */
1018 }
1019 
1020 /*
1021  * page life cycle stuff.  it really doesn't exist, so just stubs.
1022  */
1023 
1024 void
1025 uvm_pageactivate(struct vm_page *pg)
1026 {
1027 
1028 	/* nada */
1029 }
1030 
1031 void
1032 uvm_pagedeactivate(struct vm_page *pg)
1033 {
1034 
1035 	/* nada */
1036 }
1037 
1038 void
1039 uvm_pagedequeue(struct vm_page *pg)
1040 {
1041 
1042 	/* nada*/
1043 }
1044 
1045 void
1046 uvm_pageenqueue(struct vm_page *pg)
1047 {
1048 
1049 	/* nada */
1050 }
1051 
1052 void
1053 uvmpdpol_anfree(struct vm_anon *an)
1054 {
1055 
1056 	/* nada */
1057 }
1058 
1059 /*
1060  * Physical address accessors.
1061  */
1062 
1063 struct vm_page *
1064 uvm_phys_to_vm_page(paddr_t pa)
1065 {
1066 
1067 	return NULL;
1068 }
1069 
1070 paddr_t
1071 uvm_vm_page_to_phys(const struct vm_page *pg)
1072 {
1073 
1074 	return 0;
1075 }
1076 
1077 vaddr_t
1078 uvm_uarea_alloc(void)
1079 {
1080 
1081 	/* non-zero */
1082 	return (vaddr_t)11;
1083 }
1084 
1085 void
1086 uvm_uarea_free(vaddr_t uarea)
1087 {
1088 
1089 	/* nata, so creamy */
1090 }
1091 
1092 /*
1093  * Routines related to the Page Baroness.
1094  */
1095 
1096 void
1097 uvm_wait(const char *msg)
1098 {
1099 
1100 	if (__predict_false(rump_threads == 0))
1101 		panic("pagedaemon missing (RUMP_THREADS = 0)");
1102 
1103 	if (curlwp == uvm.pagedaemon_lwp) {
1104 		/* is it possible for us to later get memory? */
1105 		if (!uvmexp.paging)
1106 			panic("pagedaemon out of memory");
1107 	}
1108 
1109 	mutex_enter(&pdaemonmtx);
1110 	pdaemon_waiters++;
1111 	cv_signal(&pdaemoncv);
1112 	cv_wait(&oomwait, &pdaemonmtx);
1113 	mutex_exit(&pdaemonmtx);
1114 }
1115 
1116 void
1117 uvm_pageout_start(int npages)
1118 {
1119 
1120 	mutex_enter(&pdaemonmtx);
1121 	uvmexp.paging += npages;
1122 	mutex_exit(&pdaemonmtx);
1123 }
1124 
1125 void
1126 uvm_pageout_done(int npages)
1127 {
1128 
1129 	if (!npages)
1130 		return;
1131 
1132 	mutex_enter(&pdaemonmtx);
1133 	KASSERT(uvmexp.paging >= npages);
1134 	uvmexp.paging -= npages;
1135 
1136 	if (pdaemon_waiters) {
1137 		pdaemon_waiters = 0;
1138 		cv_broadcast(&oomwait);
1139 	}
1140 	mutex_exit(&pdaemonmtx);
1141 }
1142 
1143 static bool
1144 processpage(struct vm_page *pg)
1145 {
1146 	struct uvm_object *uobj;
1147 
1148 	uobj = pg->uobject;
1149 	if (rw_tryenter(uobj->vmobjlock, RW_WRITER)) {
1150 		if ((pg->flags & PG_BUSY) == 0) {
1151 			mutex_exit(&vmpage_lruqueue_lock);
1152 			uobj->pgops->pgo_put(uobj, pg->offset,
1153 			    pg->offset + PAGE_SIZE,
1154 			    PGO_CLEANIT|PGO_FREE);
1155 			KASSERT(!rw_write_held(uobj->vmobjlock));
1156 			return true;
1157 		} else {
1158 			rw_exit(uobj->vmobjlock);
1159 		}
1160 	}
1161 
1162 	return false;
1163 }
1164 
1165 /*
1166  * The Diabolical pageDaemon Director (DDD).
1167  *
1168  * This routine can always use better heuristics.
1169  */
1170 void
1171 uvm_pageout(void *arg)
1172 {
1173 	struct vm_page *pg;
1174 	struct pool *pp, *pp_first;
1175 	int cleaned, skip, skipped;
1176 	bool succ;
1177 
1178 	mutex_enter(&pdaemonmtx);
1179 	for (;;) {
1180 		if (pdaemon_waiters) {
1181 			pdaemon_waiters = 0;
1182 			cv_broadcast(&oomwait);
1183 		}
1184 		if (!NEED_PAGEDAEMON()) {
1185 			kernel_map->flags &= ~VM_MAP_WANTVA;
1186 			cv_wait(&pdaemoncv, &pdaemonmtx);
1187 		}
1188 		uvmexp.pdwoke++;
1189 
1190 		/* tell the world that we are hungry */
1191 		kernel_map->flags |= VM_MAP_WANTVA;
1192 		mutex_exit(&pdaemonmtx);
1193 
1194 		/*
1195 		 * step one: reclaim the page cache.  this should give
1196 		 * us the biggest earnings since whole pages are released
1197 		 * into backing memory.
1198 		 */
1199 		pool_cache_reclaim(&pagecache);
1200 		if (!NEED_PAGEDAEMON()) {
1201 			mutex_enter(&pdaemonmtx);
1202 			continue;
1203 		}
1204 
1205 		/*
1206 		 * Ok, so that didn't help.  Next, try to hunt memory
1207 		 * by pushing out vnode pages.  The pages might contain
1208 		 * useful cached data, but we need the memory.
1209 		 */
1210 		cleaned = 0;
1211 		skip = 0;
1212  again:
1213 		mutex_enter(&vmpage_lruqueue_lock);
1214 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1215 			skipped = 0;
1216 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1217 
1218 				/*
1219 				 * skip over pages we _might_ have tried
1220 				 * to handle earlier.  they might not be
1221 				 * exactly the same ones, but I'm not too
1222 				 * concerned.
1223 				 */
1224 				while (skipped++ < skip)
1225 					continue;
1226 
1227 				if (processpage(pg)) {
1228 					cleaned++;
1229 					goto again;
1230 				}
1231 
1232 				skip++;
1233 			}
1234 			break;
1235 		}
1236 		mutex_exit(&vmpage_lruqueue_lock);
1237 
1238 		/*
1239 		 * And of course we need to reclaim the page cache
1240 		 * again to actually release memory.
1241 		 */
1242 		pool_cache_reclaim(&pagecache);
1243 		if (!NEED_PAGEDAEMON()) {
1244 			mutex_enter(&pdaemonmtx);
1245 			continue;
1246 		}
1247 
1248 		/*
1249 		 * And then drain the pools.  Wipe them out ... all of them.
1250 		 */
1251 		for (pp_first = NULL;;) {
1252 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
1253 
1254 			succ = pool_drain(&pp);
1255 			if (succ || pp == pp_first)
1256 				break;
1257 
1258 			if (pp_first == NULL)
1259 				pp_first = pp;
1260 		}
1261 
1262 		/*
1263 		 * Need to use PYEC on our bag of tricks.
1264 		 * Unfortunately, the wife just borrowed it.
1265 		 */
1266 
1267 		mutex_enter(&pdaemonmtx);
1268 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1269 		    uvmexp.paging == 0) {
1270 			kpause("pddlk", false, hz, &pdaemonmtx);
1271 		}
1272 	}
1273 
1274 	panic("you can swap out any time you like, but you can never leave");
1275 }
1276 
1277 void
1278 uvm_kick_pdaemon()
1279 {
1280 
1281 	/*
1282 	 * Wake up the diabolical pagedaemon director if we are over
1283 	 * 90% of the memory limit.  This is a complete and utter
1284 	 * stetson-harrison decision which you are allowed to finetune.
1285 	 * Don't bother locking.  If we have some unflushed caches,
1286 	 * other waker-uppers will deal with the issue.
1287 	 */
1288 	if (NEED_PAGEDAEMON()) {
1289 		cv_signal(&pdaemoncv);
1290 	}
1291 }
1292 
1293 void *
1294 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1295 {
1296 	const unsigned long thelimit =
1297 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1298 	unsigned long newmem;
1299 	void *rv;
1300 	int error;
1301 
1302 	uvm_kick_pdaemon(); /* ouch */
1303 
1304 	/* first we must be within the limit */
1305  limitagain:
1306 	if (thelimit != RUMPMEM_UNLIMITED) {
1307 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1308 		if (newmem > thelimit) {
1309 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1310 			if (!waitok) {
1311 				return NULL;
1312 			}
1313 			uvm_wait(wmsg);
1314 			goto limitagain;
1315 		}
1316 	}
1317 
1318 	/* second, we must get something from the backend */
1319  again:
1320 	error = rumpuser_malloc(howmuch, alignment, &rv);
1321 	if (__predict_false(error && waitok)) {
1322 		uvm_wait(wmsg);
1323 		goto again;
1324 	}
1325 
1326 	return rv;
1327 }
1328 
1329 void
1330 rump_hyperfree(void *what, size_t size)
1331 {
1332 
1333 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1334 		atomic_add_long(&curphysmem, -size);
1335 	}
1336 	rumpuser_free(what, size);
1337 }
1338