xref: /netbsd-src/sys/rump/librump/rumpkern/vm.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: vm.c,v 1.173 2017/05/14 13:49:55 nat Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.173 2017/05/14 13:49:55 nat Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 
56 #include <machine/pmap.h>
57 
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_ddb.h>
60 #include <uvm/uvm_pdpolicy.h>
61 #include <uvm/uvm_prot.h>
62 #include <uvm/uvm_readahead.h>
63 #include <uvm/uvm_device.h>
64 
65 #include <rump-sys/kern.h>
66 #include <rump-sys/vfs.h>
67 
68 #include <rump/rumpuser.h>
69 
70 kmutex_t uvm_pageqlock; /* non-free page lock */
71 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
72 kmutex_t uvm_swap_data_lock;
73 
74 struct uvmexp uvmexp;
75 struct uvm uvm;
76 
77 #ifdef __uvmexp_pagesize
78 const int * const uvmexp_pagesize = &uvmexp.pagesize;
79 const int * const uvmexp_pagemask = &uvmexp.pagemask;
80 const int * const uvmexp_pageshift = &uvmexp.pageshift;
81 #endif
82 
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85 
86 static struct vm_map module_map_store;
87 extern struct vm_map *module_map;
88 
89 static struct pmap pmap_kernel;
90 struct pmap rump_pmap_local;
91 struct pmap *const kernel_pmap_ptr = &pmap_kernel;
92 
93 vmem_t *kmem_arena;
94 vmem_t *kmem_va_arena;
95 
96 static unsigned int pdaemon_waiters;
97 static kmutex_t pdaemonmtx;
98 static kcondvar_t pdaemoncv, oomwait;
99 
100 /* all local non-proc0 processes share this vmspace */
101 struct vmspace *rump_vmspace_local;
102 
103 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
104 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
105 static unsigned long curphysmem;
106 static unsigned long dddlim;		/* 90% of memory limit used */
107 #define NEED_PAGEDAEMON() \
108     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
109 #define PDRESERVE (2*MAXPHYS)
110 
111 /*
112  * Try to free two pages worth of pages from objects.
113  * If this succesfully frees a full page cache page, we'll
114  * free the released page plus PAGE_SIZE/sizeof(vm_page).
115  */
116 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
117 
118 /*
119  * Keep a list of least recently used pages.  Since the only way a
120  * rump kernel can "access" a page is via lookup, we put the page
121  * at the back of queue every time a lookup for it is done.  If the
122  * page is in front of this global queue and we're short of memory,
123  * it's a candidate for pageout.
124  */
125 static struct pglist vmpage_lruqueue;
126 static unsigned vmpage_onqueue;
127 
128 static int
129 pg_compare_key(void *ctx, const void *n, const void *key)
130 {
131 	voff_t a = ((const struct vm_page *)n)->offset;
132 	voff_t b = *(const voff_t *)key;
133 
134 	if (a < b)
135 		return -1;
136 	else if (a > b)
137 		return 1;
138 	else
139 		return 0;
140 }
141 
142 static int
143 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
144 {
145 
146 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
147 }
148 
149 const rb_tree_ops_t uvm_page_tree_ops = {
150 	.rbto_compare_nodes = pg_compare_nodes,
151 	.rbto_compare_key = pg_compare_key,
152 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
153 	.rbto_context = NULL
154 };
155 
156 /*
157  * vm pages
158  */
159 
160 static int
161 pgctor(void *arg, void *obj, int flags)
162 {
163 	struct vm_page *pg = obj;
164 
165 	memset(pg, 0, sizeof(*pg));
166 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
167 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
168 	return pg->uanon == NULL;
169 }
170 
171 static void
172 pgdtor(void *arg, void *obj)
173 {
174 	struct vm_page *pg = obj;
175 
176 	rump_hyperfree(pg->uanon, PAGE_SIZE);
177 }
178 
179 static struct pool_cache pagecache;
180 
181 /*
182  * Called with the object locked.  We don't support anons.
183  */
184 struct vm_page *
185 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
186 	int flags, int strat, int free_list)
187 {
188 	struct vm_page *pg;
189 
190 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
191 	KASSERT(anon == NULL);
192 
193 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
194 	if (__predict_false(pg == NULL)) {
195 		return NULL;
196 	}
197 
198 	pg->offset = off;
199 	pg->uobject = uobj;
200 
201 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
202 	if (flags & UVM_PGA_ZERO) {
203 		uvm_pagezero(pg);
204 	}
205 
206 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
207 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
208 
209 	/*
210 	 * Don't put anons on the LRU page queue.  We can't flush them
211 	 * (there's no concept of swap in a rump kernel), so no reason
212 	 * to bother with them.
213 	 */
214 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
215 		atomic_inc_uint(&vmpage_onqueue);
216 		mutex_enter(&uvm_pageqlock);
217 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
218 		mutex_exit(&uvm_pageqlock);
219 	}
220 
221 	uobj->uo_npages++;
222 
223 	return pg;
224 }
225 
226 /*
227  * Release a page.
228  *
229  * Called with the vm object locked.
230  */
231 void
232 uvm_pagefree(struct vm_page *pg)
233 {
234 	struct uvm_object *uobj = pg->uobject;
235 
236 	KASSERT(mutex_owned(&uvm_pageqlock));
237 	KASSERT(mutex_owned(uobj->vmobjlock));
238 
239 	if (pg->flags & PG_WANTED)
240 		wakeup(pg);
241 
242 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
243 
244 	uobj->uo_npages--;
245 	rb_tree_remove_node(&uobj->rb_tree, pg);
246 
247 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
248 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
249 		atomic_dec_uint(&vmpage_onqueue);
250 	}
251 
252 	pool_cache_put(&pagecache, pg);
253 }
254 
255 void
256 uvm_pagezero(struct vm_page *pg)
257 {
258 
259 	pg->flags &= ~PG_CLEAN;
260 	memset((void *)pg->uanon, 0, PAGE_SIZE);
261 }
262 
263 /*
264  * uvm_page_locked_p: return true if object associated with page is
265  * locked.  this is a weak check for runtime assertions only.
266  */
267 
268 bool
269 uvm_page_locked_p(struct vm_page *pg)
270 {
271 
272 	return mutex_owned(pg->uobject->vmobjlock);
273 }
274 
275 /*
276  * Misc routines
277  */
278 
279 static kmutex_t pagermtx;
280 
281 void
282 uvm_init(void)
283 {
284 	char buf[64];
285 
286 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
287 		unsigned long tmp;
288 		char *ep;
289 		int mult;
290 
291 		tmp = strtoul(buf, &ep, 10);
292 		if (strlen(ep) > 1)
293 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
294 
295 		/* mini-dehumanize-number */
296 		mult = 1;
297 		switch (*ep) {
298 		case 'k':
299 			mult = 1024;
300 			break;
301 		case 'm':
302 			mult = 1024*1024;
303 			break;
304 		case 'g':
305 			mult = 1024*1024*1024;
306 			break;
307 		case 0:
308 			break;
309 		default:
310 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
311 		}
312 		rump_physmemlimit = tmp * mult;
313 
314 		if (rump_physmemlimit / mult != tmp)
315 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
316 
317 		/* reserve some memory for the pager */
318 		if (rump_physmemlimit <= PDRESERVE)
319 			panic("uvm_init: system reserves %d bytes of mem, "
320 			    "only %lu bytes given",
321 			    PDRESERVE, rump_physmemlimit);
322 		pdlimit = rump_physmemlimit;
323 		rump_physmemlimit -= PDRESERVE;
324 
325 		if (pdlimit < 1024*1024)
326 			printf("uvm_init: WARNING: <1MB RAM limit, "
327 			    "hope you know what you're doing\n");
328 
329 #define HUMANIZE_BYTES 9
330 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
331 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
332 #undef HUMANIZE_BYTES
333 		dddlim = 9 * (rump_physmemlimit / 10);
334 	} else {
335 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
336 	}
337 	aprint_verbose("total memory = %s\n", buf);
338 
339 	TAILQ_INIT(&vmpage_lruqueue);
340 
341 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
342 		uvmexp.npages = physmem;
343 	} else {
344 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
345 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
346 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
347 	}
348 	/*
349 	 * uvmexp.free is not used internally or updated.  The reason is
350 	 * that the memory hypercall allocator is allowed to allocate
351 	 * non-page sized chunks.  We use a byte count in curphysmem
352 	 * instead.
353 	 */
354 	uvmexp.free = uvmexp.npages;
355 
356 #ifndef __uvmexp_pagesize
357 	uvmexp.pagesize = PAGE_SIZE;
358 	uvmexp.pagemask = PAGE_MASK;
359 	uvmexp.pageshift = PAGE_SHIFT;
360 #else
361 #define FAKE_PAGE_SHIFT 12
362 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
363 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
364 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
365 #undef FAKE_PAGE_SHIFT
366 #endif
367 
368 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
369 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
370 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
371 
372 	/* just to appease linkage */
373 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
374 
375 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
376 	cv_init(&pdaemoncv, "pdaemon");
377 	cv_init(&oomwait, "oomwait");
378 
379 	module_map = &module_map_store;
380 
381 	kernel_map->pmap = pmap_kernel();
382 
383 	pool_subsystem_init();
384 
385 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
386 	    NULL, NULL, NULL,
387 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
388 
389 	vmem_subsystem_init(kmem_arena);
390 
391 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
392 	    vmem_alloc, vmem_free, kmem_arena,
393 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
394 
395 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
396 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
397 
398 	/* create vmspace used by local clients */
399 	rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
400 	uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
401 }
402 
403 void
404 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
405     bool topdown)
406 {
407 
408 	vm->vm_map.pmap = pmap;
409 	vm->vm_refcnt = 1;
410 }
411 
412 int
413 uvm_map_pageable(struct vm_map *map, vaddr_t start, vaddr_t end,
414     bool new_pageable, int lockflags)
415 {
416 	return 0;
417 }
418 
419 void
420 uvm_pagewire(struct vm_page *pg)
421 {
422 
423 	/* nada */
424 }
425 
426 void
427 uvm_pageunwire(struct vm_page *pg)
428 {
429 
430 	/* nada */
431 }
432 
433 /* where's your schmonz now? */
434 #define PUNLIMIT(a)	\
435 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
436 void
437 uvm_init_limits(struct proc *p)
438 {
439 
440 #ifndef DFLSSIZ
441 #define DFLSSIZ (16*1024*1024)
442 #endif
443 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
444 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
445 	PUNLIMIT(RLIMIT_DATA);
446 	PUNLIMIT(RLIMIT_RSS);
447 	PUNLIMIT(RLIMIT_AS);
448 	/* nice, cascade */
449 }
450 #undef PUNLIMIT
451 
452 /*
453  * This satisfies the "disgusting mmap hack" used by proplib.
454  */
455 int
456 uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
457 {
458 	int error;
459 
460 	/* no reason in particular, but cf. uvm_default_mapaddr() */
461 	if (*addrp != NULL)
462 		panic("uvm_mmap() variant unsupported");
463 
464 	if (RUMP_LOCALPROC_P(curproc)) {
465 		error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
466 	} else {
467 		error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
468 		    size, addrp);
469 	}
470 	return error;
471 }
472 
473 /*
474  * Stubs for things referenced from vfs_vnode.c but not used.
475  */
476 const dev_t zerodev;
477 
478 struct uvm_object *
479 udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
480 {
481 	return NULL;
482 }
483 
484 struct pagerinfo {
485 	vaddr_t pgr_kva;
486 	int pgr_npages;
487 	struct vm_page **pgr_pgs;
488 	bool pgr_read;
489 
490 	LIST_ENTRY(pagerinfo) pgr_entries;
491 };
492 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
493 
494 /*
495  * Pager "map" in routine.  Instead of mapping, we allocate memory
496  * and copy page contents there.  The reason for copying instead of
497  * mapping is simple: we do not assume we are running on virtual
498  * memory.  Even if we could emulate virtual memory in some envs
499  * such as userspace, copying is much faster than trying to awkardly
500  * cope with remapping (see "Design and Implementation" pp.95-98).
501  * The downside of the approach is that the pager requires MAXPHYS
502  * free memory to perform paging, but short of virtual memory or
503  * making the pager do I/O in page-sized chunks we cannot do much
504  * about that.
505  */
506 vaddr_t
507 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
508 {
509 	struct pagerinfo *pgri;
510 	vaddr_t curkva;
511 	int i;
512 
513 	/* allocate structures */
514 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
515 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
516 	pgri->pgr_npages = npages;
517 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
518 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
519 
520 	/* copy contents to "mapped" memory */
521 	for (i = 0, curkva = pgri->pgr_kva;
522 	    i < npages;
523 	    i++, curkva += PAGE_SIZE) {
524 		/*
525 		 * We need to copy the previous contents of the pages to
526 		 * the window even if we are reading from the
527 		 * device, since the device might not fill the contents of
528 		 * the full mapped range and we will end up corrupting
529 		 * data when we unmap the window.
530 		 */
531 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
532 		pgri->pgr_pgs[i] = pgs[i];
533 	}
534 
535 	mutex_enter(&pagermtx);
536 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
537 	mutex_exit(&pagermtx);
538 
539 	return pgri->pgr_kva;
540 }
541 
542 /*
543  * map out the pager window.  return contents from VA to page storage
544  * and free structures.
545  *
546  * Note: does not currently support partial frees
547  */
548 void
549 uvm_pagermapout(vaddr_t kva, int npages)
550 {
551 	struct pagerinfo *pgri;
552 	vaddr_t curkva;
553 	int i;
554 
555 	mutex_enter(&pagermtx);
556 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
557 		if (pgri->pgr_kva == kva)
558 			break;
559 	}
560 	KASSERT(pgri);
561 	if (pgri->pgr_npages != npages)
562 		panic("uvm_pagermapout: partial unmapping not supported");
563 	LIST_REMOVE(pgri, pgr_entries);
564 	mutex_exit(&pagermtx);
565 
566 	if (pgri->pgr_read) {
567 		for (i = 0, curkva = pgri->pgr_kva;
568 		    i < pgri->pgr_npages;
569 		    i++, curkva += PAGE_SIZE) {
570 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
571 		}
572 	}
573 
574 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
575 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
576 	kmem_free(pgri, sizeof(*pgri));
577 }
578 
579 /*
580  * convert va in pager window to page structure.
581  * XXX: how expensive is this (global lock, list traversal)?
582  */
583 struct vm_page *
584 uvm_pageratop(vaddr_t va)
585 {
586 	struct pagerinfo *pgri;
587 	struct vm_page *pg = NULL;
588 	int i;
589 
590 	mutex_enter(&pagermtx);
591 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
592 		if (pgri->pgr_kva <= va
593 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
594 			break;
595 	}
596 	if (pgri) {
597 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
598 		pg = pgri->pgr_pgs[i];
599 	}
600 	mutex_exit(&pagermtx);
601 
602 	return pg;
603 }
604 
605 /*
606  * Called with the vm object locked.
607  *
608  * Put vnode object pages at the end of the access queue to indicate
609  * they have been recently accessed and should not be immediate
610  * candidates for pageout.  Do not do this for lookups done by
611  * the pagedaemon to mimic pmap_kentered mappings which don't track
612  * access information.
613  */
614 struct vm_page *
615 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
616 {
617 	struct vm_page *pg;
618 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
619 
620 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
621 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
622 		mutex_enter(&uvm_pageqlock);
623 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
624 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
625 		mutex_exit(&uvm_pageqlock);
626 	}
627 
628 	return pg;
629 }
630 
631 void
632 uvm_page_unbusy(struct vm_page **pgs, int npgs)
633 {
634 	struct vm_page *pg;
635 	int i;
636 
637 	KASSERT(npgs > 0);
638 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
639 
640 	for (i = 0; i < npgs; i++) {
641 		pg = pgs[i];
642 		if (pg == NULL)
643 			continue;
644 
645 		KASSERT(pg->flags & PG_BUSY);
646 		if (pg->flags & PG_WANTED)
647 			wakeup(pg);
648 		if (pg->flags & PG_RELEASED)
649 			uvm_pagefree(pg);
650 		else
651 			pg->flags &= ~(PG_WANTED|PG_BUSY);
652 	}
653 }
654 
655 void
656 uvm_estimatepageable(int *active, int *inactive)
657 {
658 
659 	/* XXX: guessing game */
660 	*active = 1024;
661 	*inactive = 1024;
662 }
663 
664 bool
665 vm_map_starved_p(struct vm_map *map)
666 {
667 
668 	if (map->flags & VM_MAP_WANTVA)
669 		return true;
670 
671 	return false;
672 }
673 
674 int
675 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
676 {
677 
678 	panic("%s: unimplemented", __func__);
679 }
680 
681 void
682 uvm_unloan(void *v, int npages, int flags)
683 {
684 
685 	panic("%s: unimplemented", __func__);
686 }
687 
688 int
689 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
690 	struct vm_page **opp)
691 {
692 
693 	return EBUSY;
694 }
695 
696 struct vm_page *
697 uvm_loanbreak(struct vm_page *pg)
698 {
699 
700 	panic("%s: unimplemented", __func__);
701 }
702 
703 void
704 ubc_purge(struct uvm_object *uobj)
705 {
706 
707 }
708 
709 vaddr_t
710 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz, int topdown)
711 {
712 
713 	return 0;
714 }
715 
716 int
717 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
718 	vm_prot_t prot, bool set_max)
719 {
720 
721 	return EOPNOTSUPP;
722 }
723 
724 int
725 uvm_map(struct vm_map *map, vaddr_t *startp, vsize_t size,
726     struct uvm_object *uobj, voff_t uoffset, vsize_t align,
727     uvm_flag_t flags)
728 {
729 
730 	*startp = (vaddr_t)rump_hypermalloc(size, align, true, "uvm_map");
731 	return *startp != 0 ? 0 : ENOMEM;
732 }
733 
734 void
735 uvm_unmap1(struct vm_map *map, vaddr_t start, vaddr_t end, int flags)
736 {
737 
738 	rump_hyperfree((void*)start, end-start);
739 }
740 
741 
742 /*
743  * UVM km
744  */
745 
746 vaddr_t
747 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
748 {
749 	void *rv, *desired = NULL;
750 	int alignbit, error;
751 
752 #ifdef __x86_64__
753 	/*
754 	 * On amd64, allocate all module memory from the lowest 2GB.
755 	 * This is because NetBSD kernel modules are compiled
756 	 * with -mcmodel=kernel and reserve only 4 bytes for
757 	 * offsets.  If we load code compiled with -mcmodel=kernel
758 	 * anywhere except the lowest or highest 2GB, it will not
759 	 * work.  Since userspace does not have access to the highest
760 	 * 2GB, use the lowest 2GB.
761 	 *
762 	 * Note: this assumes the rump kernel resides in
763 	 * the lowest 2GB as well.
764 	 *
765 	 * Note2: yes, it's a quick hack, but since this the only
766 	 * place where we care about the map we're allocating from,
767 	 * just use a simple "if" instead of coming up with a fancy
768 	 * generic solution.
769 	 */
770 	if (map == module_map) {
771 		desired = (void *)(0x80000000 - size);
772 	}
773 #endif
774 
775 	if (__predict_false(map == module_map)) {
776 		alignbit = 0;
777 		if (align) {
778 			alignbit = ffs(align)-1;
779 		}
780 		error = rumpuser_anonmmap(desired, size, alignbit,
781 		    flags & UVM_KMF_EXEC, &rv);
782 	} else {
783 		error = rumpuser_malloc(size, align, &rv);
784 	}
785 
786 	if (error) {
787 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
788 			return 0;
789 		else
790 			panic("uvm_km_alloc failed");
791 	}
792 
793 	if (flags & UVM_KMF_ZERO)
794 		memset(rv, 0, size);
795 
796 	return (vaddr_t)rv;
797 }
798 
799 void
800 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
801 {
802 
803 	if (__predict_false(map == module_map))
804 		rumpuser_unmap((void *)vaddr, size);
805 	else
806 		rumpuser_free((void *)vaddr, size);
807 }
808 
809 int
810 uvm_km_protect(struct vm_map *map, vaddr_t vaddr, vsize_t size, vm_prot_t prot)
811 {
812 	return 0;
813 }
814 
815 struct vm_map *
816 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
817 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
818 {
819 
820 	return (struct vm_map *)417416;
821 }
822 
823 int
824 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
825     vmem_addr_t *addr)
826 {
827 	vaddr_t va;
828 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
829 	    (flags & VM_SLEEP), "kmalloc");
830 
831 	if (va) {
832 		*addr = va;
833 		return 0;
834 	} else {
835 		return ENOMEM;
836 	}
837 }
838 
839 void
840 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
841 {
842 
843 	rump_hyperfree((void *)addr, size);
844 }
845 
846 /*
847  * VM space locking routines.  We don't really have to do anything,
848  * since the pages are always "wired" (both local and remote processes).
849  */
850 int
851 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
852 {
853 
854 	return 0;
855 }
856 
857 void
858 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
859 {
860 
861 }
862 
863 /*
864  * For the local case the buffer mappers don't need to do anything.
865  * For the remote case we need to reserve space and copy data in or
866  * out, depending on B_READ/B_WRITE.
867  */
868 int
869 vmapbuf(struct buf *bp, vsize_t len)
870 {
871 	int error = 0;
872 
873 	bp->b_saveaddr = bp->b_data;
874 
875 	/* remote case */
876 	if (!RUMP_LOCALPROC_P(curproc)) {
877 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
878 		if (BUF_ISWRITE(bp)) {
879 			error = copyin(bp->b_saveaddr, bp->b_data, len);
880 			if (error) {
881 				rump_hyperfree(bp->b_data, len);
882 				bp->b_data = bp->b_saveaddr;
883 				bp->b_saveaddr = 0;
884 			}
885 		}
886 	}
887 
888 	return error;
889 }
890 
891 void
892 vunmapbuf(struct buf *bp, vsize_t len)
893 {
894 
895 	/* remote case */
896 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
897 		if (BUF_ISREAD(bp)) {
898 			bp->b_error = copyout_proc(bp->b_proc,
899 			    bp->b_data, bp->b_saveaddr, len);
900 		}
901 		rump_hyperfree(bp->b_data, len);
902 	}
903 
904 	bp->b_data = bp->b_saveaddr;
905 	bp->b_saveaddr = 0;
906 }
907 
908 void
909 uvmspace_addref(struct vmspace *vm)
910 {
911 
912 	/*
913 	 * No dynamically allocated vmspaces exist.
914 	 */
915 }
916 
917 void
918 uvmspace_free(struct vmspace *vm)
919 {
920 
921 	/* nothing for now */
922 }
923 
924 /*
925  * page life cycle stuff.  it really doesn't exist, so just stubs.
926  */
927 
928 void
929 uvm_pageactivate(struct vm_page *pg)
930 {
931 
932 	/* nada */
933 }
934 
935 void
936 uvm_pagedeactivate(struct vm_page *pg)
937 {
938 
939 	/* nada */
940 }
941 
942 void
943 uvm_pagedequeue(struct vm_page *pg)
944 {
945 
946 	/* nada*/
947 }
948 
949 void
950 uvm_pageenqueue(struct vm_page *pg)
951 {
952 
953 	/* nada */
954 }
955 
956 void
957 uvmpdpol_anfree(struct vm_anon *an)
958 {
959 
960 	/* nada */
961 }
962 
963 /*
964  * Physical address accessors.
965  */
966 
967 struct vm_page *
968 uvm_phys_to_vm_page(paddr_t pa)
969 {
970 
971 	return NULL;
972 }
973 
974 paddr_t
975 uvm_vm_page_to_phys(const struct vm_page *pg)
976 {
977 
978 	return 0;
979 }
980 
981 vaddr_t
982 uvm_uarea_alloc(void)
983 {
984 
985 	/* non-zero */
986 	return (vaddr_t)11;
987 }
988 
989 void
990 uvm_uarea_free(vaddr_t uarea)
991 {
992 
993 	/* nata, so creamy */
994 }
995 
996 /*
997  * Routines related to the Page Baroness.
998  */
999 
1000 void
1001 uvm_wait(const char *msg)
1002 {
1003 
1004 	if (__predict_false(rump_threads == 0))
1005 		panic("pagedaemon missing (RUMP_THREADS = 0)");
1006 
1007 	if (curlwp == uvm.pagedaemon_lwp) {
1008 		/* is it possible for us to later get memory? */
1009 		if (!uvmexp.paging)
1010 			panic("pagedaemon out of memory");
1011 	}
1012 
1013 	mutex_enter(&pdaemonmtx);
1014 	pdaemon_waiters++;
1015 	cv_signal(&pdaemoncv);
1016 	cv_wait(&oomwait, &pdaemonmtx);
1017 	mutex_exit(&pdaemonmtx);
1018 }
1019 
1020 void
1021 uvm_pageout_start(int npages)
1022 {
1023 
1024 	mutex_enter(&pdaemonmtx);
1025 	uvmexp.paging += npages;
1026 	mutex_exit(&pdaemonmtx);
1027 }
1028 
1029 void
1030 uvm_pageout_done(int npages)
1031 {
1032 
1033 	if (!npages)
1034 		return;
1035 
1036 	mutex_enter(&pdaemonmtx);
1037 	KASSERT(uvmexp.paging >= npages);
1038 	uvmexp.paging -= npages;
1039 
1040 	if (pdaemon_waiters) {
1041 		pdaemon_waiters = 0;
1042 		cv_broadcast(&oomwait);
1043 	}
1044 	mutex_exit(&pdaemonmtx);
1045 }
1046 
1047 static bool
1048 processpage(struct vm_page *pg, bool *lockrunning)
1049 {
1050 	struct uvm_object *uobj;
1051 
1052 	uobj = pg->uobject;
1053 	if (mutex_tryenter(uobj->vmobjlock)) {
1054 		if ((pg->flags & PG_BUSY) == 0) {
1055 			mutex_exit(&uvm_pageqlock);
1056 			uobj->pgops->pgo_put(uobj, pg->offset,
1057 			    pg->offset + PAGE_SIZE,
1058 			    PGO_CLEANIT|PGO_FREE);
1059 			KASSERT(!mutex_owned(uobj->vmobjlock));
1060 			return true;
1061 		} else {
1062 			mutex_exit(uobj->vmobjlock);
1063 		}
1064 	} else if (*lockrunning == false && ncpu > 1) {
1065 		CPU_INFO_ITERATOR cii;
1066 		struct cpu_info *ci;
1067 		struct lwp *l;
1068 
1069 		l = mutex_owner(uobj->vmobjlock);
1070 		for (CPU_INFO_FOREACH(cii, ci)) {
1071 			if (ci->ci_curlwp == l) {
1072 				*lockrunning = true;
1073 				break;
1074 			}
1075 		}
1076 	}
1077 
1078 	return false;
1079 }
1080 
1081 /*
1082  * The Diabolical pageDaemon Director (DDD).
1083  *
1084  * This routine can always use better heuristics.
1085  */
1086 void
1087 uvm_pageout(void *arg)
1088 {
1089 	struct vm_page *pg;
1090 	struct pool *pp, *pp_first;
1091 	int cleaned, skip, skipped;
1092 	bool succ;
1093 	bool lockrunning;
1094 
1095 	mutex_enter(&pdaemonmtx);
1096 	for (;;) {
1097 		if (!NEED_PAGEDAEMON()) {
1098 			kernel_map->flags &= ~VM_MAP_WANTVA;
1099 		}
1100 
1101 		if (pdaemon_waiters) {
1102 			pdaemon_waiters = 0;
1103 			cv_broadcast(&oomwait);
1104 		}
1105 
1106 		cv_wait(&pdaemoncv, &pdaemonmtx);
1107 		uvmexp.pdwoke++;
1108 
1109 		/* tell the world that we are hungry */
1110 		kernel_map->flags |= VM_MAP_WANTVA;
1111 		mutex_exit(&pdaemonmtx);
1112 
1113 		/*
1114 		 * step one: reclaim the page cache.  this should give
1115 		 * us the biggest earnings since whole pages are released
1116 		 * into backing memory.
1117 		 */
1118 		pool_cache_reclaim(&pagecache);
1119 		if (!NEED_PAGEDAEMON()) {
1120 			mutex_enter(&pdaemonmtx);
1121 			continue;
1122 		}
1123 
1124 		/*
1125 		 * Ok, so that didn't help.  Next, try to hunt memory
1126 		 * by pushing out vnode pages.  The pages might contain
1127 		 * useful cached data, but we need the memory.
1128 		 */
1129 		cleaned = 0;
1130 		skip = 0;
1131 		lockrunning = false;
1132  again:
1133 		mutex_enter(&uvm_pageqlock);
1134 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1135 			skipped = 0;
1136 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1137 
1138 				/*
1139 				 * skip over pages we _might_ have tried
1140 				 * to handle earlier.  they might not be
1141 				 * exactly the same ones, but I'm not too
1142 				 * concerned.
1143 				 */
1144 				while (skipped++ < skip)
1145 					continue;
1146 
1147 				if (processpage(pg, &lockrunning)) {
1148 					cleaned++;
1149 					goto again;
1150 				}
1151 
1152 				skip++;
1153 			}
1154 			break;
1155 		}
1156 		mutex_exit(&uvm_pageqlock);
1157 
1158 		/*
1159 		 * Ok, someone is running with an object lock held.
1160 		 * We want to yield the host CPU to make sure the
1161 		 * thread is not parked on the host.  Since sched_yield()
1162 		 * doesn't appear to do anything on NetBSD, nanosleep
1163 		 * for the smallest possible time and hope we're back in
1164 		 * the game soon.
1165 		 */
1166 		if (cleaned == 0 && lockrunning) {
1167 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1168 
1169 			lockrunning = false;
1170 			skip = 0;
1171 
1172 			/* and here we go again */
1173 			goto again;
1174 		}
1175 
1176 		/*
1177 		 * And of course we need to reclaim the page cache
1178 		 * again to actually release memory.
1179 		 */
1180 		pool_cache_reclaim(&pagecache);
1181 		if (!NEED_PAGEDAEMON()) {
1182 			mutex_enter(&pdaemonmtx);
1183 			continue;
1184 		}
1185 
1186 		/*
1187 		 * And then drain the pools.  Wipe them out ... all of them.
1188 		 */
1189 		for (pp_first = NULL;;) {
1190 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
1191 
1192 			succ = pool_drain(&pp);
1193 			if (succ || pp == pp_first)
1194 				break;
1195 
1196 			if (pp_first == NULL)
1197 				pp_first = pp;
1198 		}
1199 
1200 		/*
1201 		 * Need to use PYEC on our bag of tricks.
1202 		 * Unfortunately, the wife just borrowed it.
1203 		 */
1204 
1205 		mutex_enter(&pdaemonmtx);
1206 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1207 		    uvmexp.paging == 0) {
1208 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
1209 			    "memory ... sleeping (deadlock?)\n");
1210 			kpause("pddlk", false, hz, &pdaemonmtx);
1211 		}
1212 	}
1213 
1214 	panic("you can swap out any time you like, but you can never leave");
1215 }
1216 
1217 void
1218 uvm_kick_pdaemon()
1219 {
1220 
1221 	/*
1222 	 * Wake up the diabolical pagedaemon director if we are over
1223 	 * 90% of the memory limit.  This is a complete and utter
1224 	 * stetson-harrison decision which you are allowed to finetune.
1225 	 * Don't bother locking.  If we have some unflushed caches,
1226 	 * other waker-uppers will deal with the issue.
1227 	 */
1228 	if (NEED_PAGEDAEMON()) {
1229 		cv_signal(&pdaemoncv);
1230 	}
1231 }
1232 
1233 void *
1234 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1235 {
1236 	const unsigned long thelimit =
1237 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1238 	unsigned long newmem;
1239 	void *rv;
1240 	int error;
1241 
1242 	uvm_kick_pdaemon(); /* ouch */
1243 
1244 	/* first we must be within the limit */
1245  limitagain:
1246 	if (thelimit != RUMPMEM_UNLIMITED) {
1247 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1248 		if (newmem > thelimit) {
1249 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1250 			if (!waitok) {
1251 				return NULL;
1252 			}
1253 			uvm_wait(wmsg);
1254 			goto limitagain;
1255 		}
1256 	}
1257 
1258 	/* second, we must get something from the backend */
1259  again:
1260 	error = rumpuser_malloc(howmuch, alignment, &rv);
1261 	if (__predict_false(error && waitok)) {
1262 		uvm_wait(wmsg);
1263 		goto again;
1264 	}
1265 
1266 	return rv;
1267 }
1268 
1269 void
1270 rump_hyperfree(void *what, size_t size)
1271 {
1272 
1273 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1274 		atomic_add_long(&curphysmem, -size);
1275 	}
1276 	rumpuser_free(what, size);
1277 }
1278