xref: /netbsd-src/sys/rump/librump/rumpkern/vm.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: vm.c,v 1.159 2014/06/15 12:58:01 pooka Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.159 2014/06/15 12:58:01 pooka Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 
56 #include <machine/pmap.h>
57 
58 #include <rump/rumpuser.h>
59 
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65 
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68 
69 kmutex_t uvm_pageqlock; /* non-free page lock */
70 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
71 kmutex_t uvm_swap_data_lock;
72 
73 struct uvmexp uvmexp;
74 struct uvm uvm;
75 
76 #ifdef __uvmexp_pagesize
77 const int * const uvmexp_pagesize = &uvmexp.pagesize;
78 const int * const uvmexp_pagemask = &uvmexp.pagemask;
79 const int * const uvmexp_pageshift = &uvmexp.pageshift;
80 #endif
81 
82 struct vm_map rump_vmmap;
83 
84 static struct vm_map kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store;
86 
87 static struct vm_map module_map_store;
88 extern struct vm_map *module_map;
89 
90 vmem_t *kmem_arena;
91 vmem_t *kmem_va_arena;
92 
93 static unsigned int pdaemon_waiters;
94 static kmutex_t pdaemonmtx;
95 static kcondvar_t pdaemoncv, oomwait;
96 
97 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
98 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
99 static unsigned long curphysmem;
100 static unsigned long dddlim;		/* 90% of memory limit used */
101 #define NEED_PAGEDAEMON() \
102     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
103 #define PDRESERVE (2*MAXPHYS)
104 
105 /*
106  * Try to free two pages worth of pages from objects.
107  * If this succesfully frees a full page cache page, we'll
108  * free the released page plus PAGE_SIZE/sizeof(vm_page).
109  */
110 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
111 
112 /*
113  * Keep a list of least recently used pages.  Since the only way a
114  * rump kernel can "access" a page is via lookup, we put the page
115  * at the back of queue every time a lookup for it is done.  If the
116  * page is in front of this global queue and we're short of memory,
117  * it's a candidate for pageout.
118  */
119 static struct pglist vmpage_lruqueue;
120 static unsigned vmpage_onqueue;
121 
122 static int
123 pg_compare_key(void *ctx, const void *n, const void *key)
124 {
125 	voff_t a = ((const struct vm_page *)n)->offset;
126 	voff_t b = *(const voff_t *)key;
127 
128 	if (a < b)
129 		return -1;
130 	else if (a > b)
131 		return 1;
132 	else
133 		return 0;
134 }
135 
136 static int
137 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
138 {
139 
140 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
141 }
142 
143 const rb_tree_ops_t uvm_page_tree_ops = {
144 	.rbto_compare_nodes = pg_compare_nodes,
145 	.rbto_compare_key = pg_compare_key,
146 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
147 	.rbto_context = NULL
148 };
149 
150 /*
151  * vm pages
152  */
153 
154 static int
155 pgctor(void *arg, void *obj, int flags)
156 {
157 	struct vm_page *pg = obj;
158 
159 	memset(pg, 0, sizeof(*pg));
160 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
161 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
162 	return pg->uanon == NULL;
163 }
164 
165 static void
166 pgdtor(void *arg, void *obj)
167 {
168 	struct vm_page *pg = obj;
169 
170 	rump_hyperfree(pg->uanon, PAGE_SIZE);
171 }
172 
173 static struct pool_cache pagecache;
174 
175 /*
176  * Called with the object locked.  We don't support anons.
177  */
178 struct vm_page *
179 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
180 	int flags, int strat, int free_list)
181 {
182 	struct vm_page *pg;
183 
184 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
185 	KASSERT(anon == NULL);
186 
187 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
188 	if (__predict_false(pg == NULL)) {
189 		return NULL;
190 	}
191 
192 	pg->offset = off;
193 	pg->uobject = uobj;
194 
195 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
196 	if (flags & UVM_PGA_ZERO) {
197 		uvm_pagezero(pg);
198 	}
199 
200 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
201 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
202 
203 	/*
204 	 * Don't put anons on the LRU page queue.  We can't flush them
205 	 * (there's no concept of swap in a rump kernel), so no reason
206 	 * to bother with them.
207 	 */
208 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
209 		atomic_inc_uint(&vmpage_onqueue);
210 		mutex_enter(&uvm_pageqlock);
211 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
212 		mutex_exit(&uvm_pageqlock);
213 	}
214 
215 	uobj->uo_npages++;
216 
217 	return pg;
218 }
219 
220 /*
221  * Release a page.
222  *
223  * Called with the vm object locked.
224  */
225 void
226 uvm_pagefree(struct vm_page *pg)
227 {
228 	struct uvm_object *uobj = pg->uobject;
229 
230 	KASSERT(mutex_owned(&uvm_pageqlock));
231 	KASSERT(mutex_owned(uobj->vmobjlock));
232 
233 	if (pg->flags & PG_WANTED)
234 		wakeup(pg);
235 
236 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
237 
238 	uobj->uo_npages--;
239 	rb_tree_remove_node(&uobj->rb_tree, pg);
240 
241 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
242 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
243 		atomic_dec_uint(&vmpage_onqueue);
244 	}
245 
246 	pool_cache_put(&pagecache, pg);
247 }
248 
249 void
250 uvm_pagezero(struct vm_page *pg)
251 {
252 
253 	pg->flags &= ~PG_CLEAN;
254 	memset((void *)pg->uanon, 0, PAGE_SIZE);
255 }
256 
257 /*
258  * uvm_page_locked_p: return true if object associated with page is
259  * locked.  this is a weak check for runtime assertions only.
260  */
261 
262 bool
263 uvm_page_locked_p(struct vm_page *pg)
264 {
265 
266 	return mutex_owned(pg->uobject->vmobjlock);
267 }
268 
269 /*
270  * Misc routines
271  */
272 
273 static kmutex_t pagermtx;
274 
275 void
276 uvm_init(void)
277 {
278 	char buf[64];
279 
280 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
281 		unsigned long tmp;
282 		char *ep;
283 		int mult;
284 
285 		tmp = strtoul(buf, &ep, 10);
286 		if (strlen(ep) > 1)
287 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
288 
289 		/* mini-dehumanize-number */
290 		mult = 1;
291 		switch (*ep) {
292 		case 'k':
293 			mult = 1024;
294 			break;
295 		case 'm':
296 			mult = 1024*1024;
297 			break;
298 		case 'g':
299 			mult = 1024*1024*1024;
300 			break;
301 		case 0:
302 			break;
303 		default:
304 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
305 		}
306 		rump_physmemlimit = tmp * mult;
307 
308 		if (rump_physmemlimit / mult != tmp)
309 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
310 
311 		/* reserve some memory for the pager */
312 		if (rump_physmemlimit <= PDRESERVE)
313 			panic("uvm_init: system reserves %d bytes of mem, "
314 			    "only %lu bytes given",
315 			    PDRESERVE, rump_physmemlimit);
316 		pdlimit = rump_physmemlimit;
317 		rump_physmemlimit -= PDRESERVE;
318 
319 		if (pdlimit < 1024*1024)
320 			printf("uvm_init: WARNING: <1MB RAM limit, "
321 			    "hope you know what you're doing\n");
322 
323 #define HUMANIZE_BYTES 9
324 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
325 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
326 #undef HUMANIZE_BYTES
327 		dddlim = 9 * (rump_physmemlimit / 10);
328 	} else {
329 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
330 	}
331 	aprint_verbose("total memory = %s\n", buf);
332 
333 	TAILQ_INIT(&vmpage_lruqueue);
334 
335 	if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
336 		uvmexp.npages = physmem;
337 	} else {
338 		uvmexp.npages = pdlimit >> PAGE_SHIFT;
339 		uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
340 		uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
341 	}
342 	/*
343 	 * uvmexp.free is not used internally or updated.  The reason is
344 	 * that the memory hypercall allocator is allowed to allocate
345 	 * non-page sized chunks.  We use a byte count in curphysmem
346 	 * instead.
347 	 */
348 	uvmexp.free = uvmexp.npages;
349 
350 #ifndef __uvmexp_pagesize
351 	uvmexp.pagesize = PAGE_SIZE;
352 	uvmexp.pagemask = PAGE_MASK;
353 	uvmexp.pageshift = PAGE_SHIFT;
354 #else
355 #define FAKE_PAGE_SHIFT 12
356 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
357 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
358 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
359 #undef FAKE_PAGE_SHIFT
360 #endif
361 
362 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
363 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
364 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
365 
366 	/* just to appease linkage */
367 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
368 
369 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
370 	cv_init(&pdaemoncv, "pdaemon");
371 	cv_init(&oomwait, "oomwait");
372 
373 	module_map = &module_map_store;
374 
375 	kernel_map->pmap = pmap_kernel();
376 
377 	pool_subsystem_init();
378 
379 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
380 	    NULL, NULL, NULL,
381 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
382 
383 	vmem_subsystem_init(kmem_arena);
384 
385 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
386 	    vmem_alloc, vmem_free, kmem_arena,
387 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
388 
389 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
390 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
391 }
392 
393 void
394 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
395     bool topdown)
396 {
397 
398 	vm->vm_map.pmap = pmap_kernel();
399 	vm->vm_refcnt = 1;
400 }
401 
402 void
403 uvm_pagewire(struct vm_page *pg)
404 {
405 
406 	/* nada */
407 }
408 
409 void
410 uvm_pageunwire(struct vm_page *pg)
411 {
412 
413 	/* nada */
414 }
415 
416 /* where's your schmonz now? */
417 #define PUNLIMIT(a)	\
418 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
419 void
420 uvm_init_limits(struct proc *p)
421 {
422 
423 #ifndef DFLSSIZ
424 #define DFLSSIZ (16*1024*1024)
425 #endif
426 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
427 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
428 	PUNLIMIT(RLIMIT_DATA);
429 	PUNLIMIT(RLIMIT_RSS);
430 	PUNLIMIT(RLIMIT_AS);
431 	/* nice, cascade */
432 }
433 #undef PUNLIMIT
434 
435 /*
436  * This satisfies the "disgusting mmap hack" used by proplib.
437  * We probably should grow some more assertables to make sure we're
438  * not satisfying anything we shouldn't be satisfying.
439  */
440 int
441 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
442 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
443 {
444 	void *uaddr;
445 	int error;
446 
447 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
448 		panic("uvm_mmap() variant unsupported");
449 	if (flags != (MAP_PRIVATE | MAP_ANON))
450 		panic("uvm_mmap() variant unsupported");
451 
452 	/* no reason in particular, but cf. uvm_default_mapaddr() */
453 	if (*addr != 0)
454 		panic("uvm_mmap() variant unsupported");
455 
456 	if (RUMP_LOCALPROC_P(curproc)) {
457 		error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
458 	} else {
459 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
460 		    size, &uaddr);
461 	}
462 	if (error)
463 		return error;
464 
465 	*addr = (vaddr_t)uaddr;
466 	return 0;
467 }
468 
469 struct pagerinfo {
470 	vaddr_t pgr_kva;
471 	int pgr_npages;
472 	struct vm_page **pgr_pgs;
473 	bool pgr_read;
474 
475 	LIST_ENTRY(pagerinfo) pgr_entries;
476 };
477 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
478 
479 /*
480  * Pager "map" in routine.  Instead of mapping, we allocate memory
481  * and copy page contents there.  The reason for copying instead of
482  * mapping is simple: we do not assume we are running on virtual
483  * memory.  Even if we could emulate virtual memory in some envs
484  * such as userspace, copying is much faster than trying to awkardly
485  * cope with remapping (see "Design and Implementation" pp.95-98).
486  * The downside of the approach is that the pager requires MAXPHYS
487  * free memory to perform paging, but short of virtual memory or
488  * making the pager do I/O in page-sized chunks we cannot do much
489  * about that.
490  */
491 vaddr_t
492 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
493 {
494 	struct pagerinfo *pgri;
495 	vaddr_t curkva;
496 	int i;
497 
498 	/* allocate structures */
499 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
500 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
501 	pgri->pgr_npages = npages;
502 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
503 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
504 
505 	/* copy contents to "mapped" memory */
506 	for (i = 0, curkva = pgri->pgr_kva;
507 	    i < npages;
508 	    i++, curkva += PAGE_SIZE) {
509 		/*
510 		 * We need to copy the previous contents of the pages to
511 		 * the window even if we are reading from the
512 		 * device, since the device might not fill the contents of
513 		 * the full mapped range and we will end up corrupting
514 		 * data when we unmap the window.
515 		 */
516 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
517 		pgri->pgr_pgs[i] = pgs[i];
518 	}
519 
520 	mutex_enter(&pagermtx);
521 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
522 	mutex_exit(&pagermtx);
523 
524 	return pgri->pgr_kva;
525 }
526 
527 /*
528  * map out the pager window.  return contents from VA to page storage
529  * and free structures.
530  *
531  * Note: does not currently support partial frees
532  */
533 void
534 uvm_pagermapout(vaddr_t kva, int npages)
535 {
536 	struct pagerinfo *pgri;
537 	vaddr_t curkva;
538 	int i;
539 
540 	mutex_enter(&pagermtx);
541 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
542 		if (pgri->pgr_kva == kva)
543 			break;
544 	}
545 	KASSERT(pgri);
546 	if (pgri->pgr_npages != npages)
547 		panic("uvm_pagermapout: partial unmapping not supported");
548 	LIST_REMOVE(pgri, pgr_entries);
549 	mutex_exit(&pagermtx);
550 
551 	if (pgri->pgr_read) {
552 		for (i = 0, curkva = pgri->pgr_kva;
553 		    i < pgri->pgr_npages;
554 		    i++, curkva += PAGE_SIZE) {
555 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
556 		}
557 	}
558 
559 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
560 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
561 	kmem_free(pgri, sizeof(*pgri));
562 }
563 
564 /*
565  * convert va in pager window to page structure.
566  * XXX: how expensive is this (global lock, list traversal)?
567  */
568 struct vm_page *
569 uvm_pageratop(vaddr_t va)
570 {
571 	struct pagerinfo *pgri;
572 	struct vm_page *pg = NULL;
573 	int i;
574 
575 	mutex_enter(&pagermtx);
576 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
577 		if (pgri->pgr_kva <= va
578 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
579 			break;
580 	}
581 	if (pgri) {
582 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
583 		pg = pgri->pgr_pgs[i];
584 	}
585 	mutex_exit(&pagermtx);
586 
587 	return pg;
588 }
589 
590 /*
591  * Called with the vm object locked.
592  *
593  * Put vnode object pages at the end of the access queue to indicate
594  * they have been recently accessed and should not be immediate
595  * candidates for pageout.  Do not do this for lookups done by
596  * the pagedaemon to mimic pmap_kentered mappings which don't track
597  * access information.
598  */
599 struct vm_page *
600 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
601 {
602 	struct vm_page *pg;
603 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
604 
605 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
606 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
607 		mutex_enter(&uvm_pageqlock);
608 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
609 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
610 		mutex_exit(&uvm_pageqlock);
611 	}
612 
613 	return pg;
614 }
615 
616 void
617 uvm_page_unbusy(struct vm_page **pgs, int npgs)
618 {
619 	struct vm_page *pg;
620 	int i;
621 
622 	KASSERT(npgs > 0);
623 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
624 
625 	for (i = 0; i < npgs; i++) {
626 		pg = pgs[i];
627 		if (pg == NULL)
628 			continue;
629 
630 		KASSERT(pg->flags & PG_BUSY);
631 		if (pg->flags & PG_WANTED)
632 			wakeup(pg);
633 		if (pg->flags & PG_RELEASED)
634 			uvm_pagefree(pg);
635 		else
636 			pg->flags &= ~(PG_WANTED|PG_BUSY);
637 	}
638 }
639 
640 void
641 uvm_estimatepageable(int *active, int *inactive)
642 {
643 
644 	/* XXX: guessing game */
645 	*active = 1024;
646 	*inactive = 1024;
647 }
648 
649 bool
650 vm_map_starved_p(struct vm_map *map)
651 {
652 
653 	if (map->flags & VM_MAP_WANTVA)
654 		return true;
655 
656 	return false;
657 }
658 
659 int
660 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
661 {
662 
663 	panic("%s: unimplemented", __func__);
664 }
665 
666 void
667 uvm_unloan(void *v, int npages, int flags)
668 {
669 
670 	panic("%s: unimplemented", __func__);
671 }
672 
673 int
674 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
675 	struct vm_page **opp)
676 {
677 
678 	return EBUSY;
679 }
680 
681 struct vm_page *
682 uvm_loanbreak(struct vm_page *pg)
683 {
684 
685 	panic("%s: unimplemented", __func__);
686 }
687 
688 void
689 ubc_purge(struct uvm_object *uobj)
690 {
691 
692 }
693 
694 vaddr_t
695 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
696 {
697 
698 	return 0;
699 }
700 
701 int
702 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
703 	vm_prot_t prot, bool set_max)
704 {
705 
706 	return EOPNOTSUPP;
707 }
708 
709 /*
710  * UVM km
711  */
712 
713 vaddr_t
714 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
715 {
716 	void *rv, *desired = NULL;
717 	int alignbit, error;
718 
719 #ifdef __x86_64__
720 	/*
721 	 * On amd64, allocate all module memory from the lowest 2GB.
722 	 * This is because NetBSD kernel modules are compiled
723 	 * with -mcmodel=kernel and reserve only 4 bytes for
724 	 * offsets.  If we load code compiled with -mcmodel=kernel
725 	 * anywhere except the lowest or highest 2GB, it will not
726 	 * work.  Since userspace does not have access to the highest
727 	 * 2GB, use the lowest 2GB.
728 	 *
729 	 * Note: this assumes the rump kernel resides in
730 	 * the lowest 2GB as well.
731 	 *
732 	 * Note2: yes, it's a quick hack, but since this the only
733 	 * place where we care about the map we're allocating from,
734 	 * just use a simple "if" instead of coming up with a fancy
735 	 * generic solution.
736 	 */
737 	if (map == module_map) {
738 		desired = (void *)(0x80000000 - size);
739 	}
740 #endif
741 
742 	if (__predict_false(map == module_map)) {
743 		alignbit = 0;
744 		if (align) {
745 			alignbit = ffs(align)-1;
746 		}
747 		error = rumpuser_anonmmap(desired, size, alignbit,
748 		    flags & UVM_KMF_EXEC, &rv);
749 	} else {
750 		error = rumpuser_malloc(size, align, &rv);
751 	}
752 
753 	if (error) {
754 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
755 			return 0;
756 		else
757 			panic("uvm_km_alloc failed");
758 	}
759 
760 	if (flags & UVM_KMF_ZERO)
761 		memset(rv, 0, size);
762 
763 	return (vaddr_t)rv;
764 }
765 
766 void
767 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
768 {
769 
770 	if (__predict_false(map == module_map))
771 		rumpuser_unmap((void *)vaddr, size);
772 	else
773 		rumpuser_free((void *)vaddr, size);
774 }
775 
776 struct vm_map *
777 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
778 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
779 {
780 
781 	return (struct vm_map *)417416;
782 }
783 
784 int
785 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
786     vmem_addr_t *addr)
787 {
788 	vaddr_t va;
789 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
790 	    (flags & VM_SLEEP), "kmalloc");
791 
792 	if (va) {
793 		*addr = va;
794 		return 0;
795 	} else {
796 		return ENOMEM;
797 	}
798 }
799 
800 void
801 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
802 {
803 
804 	rump_hyperfree((void *)addr, size);
805 }
806 
807 /*
808  * VM space locking routines.  We don't really have to do anything,
809  * since the pages are always "wired" (both local and remote processes).
810  */
811 int
812 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
813 {
814 
815 	return 0;
816 }
817 
818 void
819 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
820 {
821 
822 }
823 
824 /*
825  * For the local case the buffer mappers don't need to do anything.
826  * For the remote case we need to reserve space and copy data in or
827  * out, depending on B_READ/B_WRITE.
828  */
829 int
830 vmapbuf(struct buf *bp, vsize_t len)
831 {
832 	int error = 0;
833 
834 	bp->b_saveaddr = bp->b_data;
835 
836 	/* remote case */
837 	if (!RUMP_LOCALPROC_P(curproc)) {
838 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
839 		if (BUF_ISWRITE(bp)) {
840 			error = copyin(bp->b_saveaddr, bp->b_data, len);
841 			if (error) {
842 				rump_hyperfree(bp->b_data, len);
843 				bp->b_data = bp->b_saveaddr;
844 				bp->b_saveaddr = 0;
845 			}
846 		}
847 	}
848 
849 	return error;
850 }
851 
852 void
853 vunmapbuf(struct buf *bp, vsize_t len)
854 {
855 
856 	/* remote case */
857 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
858 		if (BUF_ISREAD(bp)) {
859 			bp->b_error = copyout_proc(bp->b_proc,
860 			    bp->b_data, bp->b_saveaddr, len);
861 		}
862 		rump_hyperfree(bp->b_data, len);
863 	}
864 
865 	bp->b_data = bp->b_saveaddr;
866 	bp->b_saveaddr = 0;
867 }
868 
869 void
870 uvmspace_addref(struct vmspace *vm)
871 {
872 
873 	/*
874 	 * No dynamically allocated vmspaces exist.
875 	 */
876 }
877 
878 void
879 uvmspace_free(struct vmspace *vm)
880 {
881 
882 	/* nothing for now */
883 }
884 
885 /*
886  * page life cycle stuff.  it really doesn't exist, so just stubs.
887  */
888 
889 void
890 uvm_pageactivate(struct vm_page *pg)
891 {
892 
893 	/* nada */
894 }
895 
896 void
897 uvm_pagedeactivate(struct vm_page *pg)
898 {
899 
900 	/* nada */
901 }
902 
903 void
904 uvm_pagedequeue(struct vm_page *pg)
905 {
906 
907 	/* nada*/
908 }
909 
910 void
911 uvm_pageenqueue(struct vm_page *pg)
912 {
913 
914 	/* nada */
915 }
916 
917 void
918 uvmpdpol_anfree(struct vm_anon *an)
919 {
920 
921 	/* nada */
922 }
923 
924 /*
925  * Physical address accessors.
926  */
927 
928 struct vm_page *
929 uvm_phys_to_vm_page(paddr_t pa)
930 {
931 
932 	return NULL;
933 }
934 
935 paddr_t
936 uvm_vm_page_to_phys(const struct vm_page *pg)
937 {
938 
939 	return 0;
940 }
941 
942 vaddr_t
943 uvm_uarea_alloc(void)
944 {
945 
946 	/* non-zero */
947 	return (vaddr_t)11;
948 }
949 
950 void
951 uvm_uarea_free(vaddr_t uarea)
952 {
953 
954 	/* nata, so creamy */
955 }
956 
957 /*
958  * Routines related to the Page Baroness.
959  */
960 
961 void
962 uvm_wait(const char *msg)
963 {
964 
965 	if (__predict_false(rump_threads == 0))
966 		panic("pagedaemon missing (RUMP_THREADS = 0)");
967 
968 	if (curlwp == uvm.pagedaemon_lwp) {
969 		/* is it possible for us to later get memory? */
970 		if (!uvmexp.paging)
971 			panic("pagedaemon out of memory");
972 	}
973 
974 	mutex_enter(&pdaemonmtx);
975 	pdaemon_waiters++;
976 	cv_signal(&pdaemoncv);
977 	cv_wait(&oomwait, &pdaemonmtx);
978 	mutex_exit(&pdaemonmtx);
979 }
980 
981 void
982 uvm_pageout_start(int npages)
983 {
984 
985 	mutex_enter(&pdaemonmtx);
986 	uvmexp.paging += npages;
987 	mutex_exit(&pdaemonmtx);
988 }
989 
990 void
991 uvm_pageout_done(int npages)
992 {
993 
994 	if (!npages)
995 		return;
996 
997 	mutex_enter(&pdaemonmtx);
998 	KASSERT(uvmexp.paging >= npages);
999 	uvmexp.paging -= npages;
1000 
1001 	if (pdaemon_waiters) {
1002 		pdaemon_waiters = 0;
1003 		cv_broadcast(&oomwait);
1004 	}
1005 	mutex_exit(&pdaemonmtx);
1006 }
1007 
1008 static bool
1009 processpage(struct vm_page *pg, bool *lockrunning)
1010 {
1011 	struct uvm_object *uobj;
1012 
1013 	uobj = pg->uobject;
1014 	if (mutex_tryenter(uobj->vmobjlock)) {
1015 		if ((pg->flags & PG_BUSY) == 0) {
1016 			mutex_exit(&uvm_pageqlock);
1017 			uobj->pgops->pgo_put(uobj, pg->offset,
1018 			    pg->offset + PAGE_SIZE,
1019 			    PGO_CLEANIT|PGO_FREE);
1020 			KASSERT(!mutex_owned(uobj->vmobjlock));
1021 			return true;
1022 		} else {
1023 			mutex_exit(uobj->vmobjlock);
1024 		}
1025 	} else if (*lockrunning == false && ncpu > 1) {
1026 		CPU_INFO_ITERATOR cii;
1027 		struct cpu_info *ci;
1028 		struct lwp *l;
1029 
1030 		l = mutex_owner(uobj->vmobjlock);
1031 		for (CPU_INFO_FOREACH(cii, ci)) {
1032 			if (ci->ci_curlwp == l) {
1033 				*lockrunning = true;
1034 				break;
1035 			}
1036 		}
1037 	}
1038 
1039 	return false;
1040 }
1041 
1042 /*
1043  * The Diabolical pageDaemon Director (DDD).
1044  *
1045  * This routine can always use better heuristics.
1046  */
1047 void
1048 uvm_pageout(void *arg)
1049 {
1050 	struct vm_page *pg;
1051 	struct pool *pp, *pp_first;
1052 	int cleaned, skip, skipped;
1053 	bool succ;
1054 	bool lockrunning;
1055 
1056 	mutex_enter(&pdaemonmtx);
1057 	for (;;) {
1058 		if (!NEED_PAGEDAEMON()) {
1059 			kernel_map->flags &= ~VM_MAP_WANTVA;
1060 		}
1061 
1062 		if (pdaemon_waiters) {
1063 			pdaemon_waiters = 0;
1064 			cv_broadcast(&oomwait);
1065 		}
1066 
1067 		cv_wait(&pdaemoncv, &pdaemonmtx);
1068 		uvmexp.pdwoke++;
1069 
1070 		/* tell the world that we are hungry */
1071 		kernel_map->flags |= VM_MAP_WANTVA;
1072 		mutex_exit(&pdaemonmtx);
1073 
1074 		/*
1075 		 * step one: reclaim the page cache.  this should give
1076 		 * us the biggest earnings since whole pages are released
1077 		 * into backing memory.
1078 		 */
1079 		pool_cache_reclaim(&pagecache);
1080 		if (!NEED_PAGEDAEMON()) {
1081 			mutex_enter(&pdaemonmtx);
1082 			continue;
1083 		}
1084 
1085 		/*
1086 		 * Ok, so that didn't help.  Next, try to hunt memory
1087 		 * by pushing out vnode pages.  The pages might contain
1088 		 * useful cached data, but we need the memory.
1089 		 */
1090 		cleaned = 0;
1091 		skip = 0;
1092 		lockrunning = false;
1093  again:
1094 		mutex_enter(&uvm_pageqlock);
1095 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1096 			skipped = 0;
1097 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1098 
1099 				/*
1100 				 * skip over pages we _might_ have tried
1101 				 * to handle earlier.  they might not be
1102 				 * exactly the same ones, but I'm not too
1103 				 * concerned.
1104 				 */
1105 				while (skipped++ < skip)
1106 					continue;
1107 
1108 				if (processpage(pg, &lockrunning)) {
1109 					cleaned++;
1110 					goto again;
1111 				}
1112 
1113 				skip++;
1114 			}
1115 			break;
1116 		}
1117 		mutex_exit(&uvm_pageqlock);
1118 
1119 		/*
1120 		 * Ok, someone is running with an object lock held.
1121 		 * We want to yield the host CPU to make sure the
1122 		 * thread is not parked on the host.  Since sched_yield()
1123 		 * doesn't appear to do anything on NetBSD, nanosleep
1124 		 * for the smallest possible time and hope we're back in
1125 		 * the game soon.
1126 		 */
1127 		if (cleaned == 0 && lockrunning) {
1128 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1129 
1130 			lockrunning = false;
1131 			skip = 0;
1132 
1133 			/* and here we go again */
1134 			goto again;
1135 		}
1136 
1137 		/*
1138 		 * And of course we need to reclaim the page cache
1139 		 * again to actually release memory.
1140 		 */
1141 		pool_cache_reclaim(&pagecache);
1142 		if (!NEED_PAGEDAEMON()) {
1143 			mutex_enter(&pdaemonmtx);
1144 			continue;
1145 		}
1146 
1147 		/*
1148 		 * And then drain the pools.  Wipe them out ... all of them.
1149 		 */
1150 		for (pp_first = NULL;;) {
1151 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
1152 
1153 			succ = pool_drain(&pp);
1154 			if (succ || pp == pp_first)
1155 				break;
1156 
1157 			if (pp_first == NULL)
1158 				pp_first = pp;
1159 		}
1160 
1161 		/*
1162 		 * Need to use PYEC on our bag of tricks.
1163 		 * Unfortunately, the wife just borrowed it.
1164 		 */
1165 
1166 		mutex_enter(&pdaemonmtx);
1167 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1168 		    uvmexp.paging == 0) {
1169 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
1170 			    "memory ... sleeping (deadlock?)\n");
1171 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1172 		}
1173 	}
1174 
1175 	panic("you can swap out any time you like, but you can never leave");
1176 }
1177 
1178 void
1179 uvm_kick_pdaemon()
1180 {
1181 
1182 	/*
1183 	 * Wake up the diabolical pagedaemon director if we are over
1184 	 * 90% of the memory limit.  This is a complete and utter
1185 	 * stetson-harrison decision which you are allowed to finetune.
1186 	 * Don't bother locking.  If we have some unflushed caches,
1187 	 * other waker-uppers will deal with the issue.
1188 	 */
1189 	if (NEED_PAGEDAEMON()) {
1190 		cv_signal(&pdaemoncv);
1191 	}
1192 }
1193 
1194 void *
1195 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1196 {
1197 	const unsigned long thelimit =
1198 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1199 	unsigned long newmem;
1200 	void *rv;
1201 	int error;
1202 
1203 	uvm_kick_pdaemon(); /* ouch */
1204 
1205 	/* first we must be within the limit */
1206  limitagain:
1207 	if (thelimit != RUMPMEM_UNLIMITED) {
1208 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1209 		if (newmem > thelimit) {
1210 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1211 			if (!waitok) {
1212 				return NULL;
1213 			}
1214 			uvm_wait(wmsg);
1215 			goto limitagain;
1216 		}
1217 	}
1218 
1219 	/* second, we must get something from the backend */
1220  again:
1221 	error = rumpuser_malloc(howmuch, alignment, &rv);
1222 	if (__predict_false(error && waitok)) {
1223 		uvm_wait(wmsg);
1224 		goto again;
1225 	}
1226 
1227 	return rv;
1228 }
1229 
1230 void
1231 rump_hyperfree(void *what, size_t size)
1232 {
1233 
1234 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1235 		atomic_add_long(&curphysmem, -size);
1236 	}
1237 	rumpuser_free(what, size);
1238 }
1239