xref: /netbsd-src/sys/rump/librump/rumpkern/vm.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /*	$NetBSD: vm.c,v 1.120 2011/10/31 13:23:55 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.120 2011/10/31 13:23:55 yamt Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54 
55 #include <machine/pmap.h>
56 
57 #include <rump/rumpuser.h>
58 
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64 
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67 
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70 
71 struct uvmexp uvmexp;
72 struct uvm uvm;
73 
74 #ifdef __uvmexp_pagesize
75 int *uvmexp_pagesize = &uvmexp.pagesize;
76 int *uvmexp_pagemask = &uvmexp.pagemask;
77 int *uvmexp_pageshift = &uvmexp.pageshift;
78 #endif
79 
80 struct vm_map rump_vmmap;
81 static struct vm_map_kernel kmem_map_store;
82 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
83 
84 static struct vm_map_kernel kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
86 
87 static unsigned int pdaemon_waiters;
88 static kmutex_t pdaemonmtx;
89 static kcondvar_t pdaemoncv, oomwait;
90 
91 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
92 static unsigned long curphysmem;
93 static unsigned long dddlim;		/* 90% of memory limit used */
94 #define NEED_PAGEDAEMON() \
95     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
96 
97 /*
98  * Try to free two pages worth of pages from objects.
99  * If this succesfully frees a full page cache page, we'll
100  * free the released page plus PAGE_SIZE/sizeof(vm_page).
101  */
102 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
103 
104 /*
105  * Keep a list of least recently used pages.  Since the only way a
106  * rump kernel can "access" a page is via lookup, we put the page
107  * at the back of queue every time a lookup for it is done.  If the
108  * page is in front of this global queue and we're short of memory,
109  * it's a candidate for pageout.
110  */
111 static struct pglist vmpage_lruqueue;
112 static unsigned vmpage_onqueue;
113 
114 static int
115 pg_compare_key(void *ctx, const void *n, const void *key)
116 {
117 	voff_t a = ((const struct vm_page *)n)->offset;
118 	voff_t b = *(const voff_t *)key;
119 
120 	if (a < b)
121 		return -1;
122 	else if (a > b)
123 		return 1;
124 	else
125 		return 0;
126 }
127 
128 static int
129 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
130 {
131 
132 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
133 }
134 
135 const rb_tree_ops_t uvm_page_tree_ops = {
136 	.rbto_compare_nodes = pg_compare_nodes,
137 	.rbto_compare_key = pg_compare_key,
138 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
139 	.rbto_context = NULL
140 };
141 
142 /*
143  * vm pages
144  */
145 
146 static int
147 pgctor(void *arg, void *obj, int flags)
148 {
149 	struct vm_page *pg = obj;
150 
151 	memset(pg, 0, sizeof(*pg));
152 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
153 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
154 	return pg->uanon == NULL;
155 }
156 
157 static void
158 pgdtor(void *arg, void *obj)
159 {
160 	struct vm_page *pg = obj;
161 
162 	rump_hyperfree(pg->uanon, PAGE_SIZE);
163 }
164 
165 static struct pool_cache pagecache;
166 
167 /*
168  * Called with the object locked.  We don't support anons.
169  */
170 struct vm_page *
171 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
172 	int flags, int strat, int free_list)
173 {
174 	struct vm_page *pg;
175 
176 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
177 	KASSERT(anon == NULL);
178 
179 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
180 	if (__predict_false(pg == NULL)) {
181 		return NULL;
182 	}
183 
184 	pg->offset = off;
185 	pg->uobject = uobj;
186 
187 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
188 	if (flags & UVM_PGA_ZERO) {
189 		uvm_pagezero(pg);
190 	}
191 
192 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
193 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
194 
195 	/*
196 	 * Don't put anons on the LRU page queue.  We can't flush them
197 	 * (there's no concept of swap in a rump kernel), so no reason
198 	 * to bother with them.
199 	 */
200 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
201 		atomic_inc_uint(&vmpage_onqueue);
202 		mutex_enter(&uvm_pageqlock);
203 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
204 		mutex_exit(&uvm_pageqlock);
205 	}
206 
207 	uobj->uo_npages++;
208 
209 	return pg;
210 }
211 
212 /*
213  * Release a page.
214  *
215  * Called with the vm object locked.
216  */
217 void
218 uvm_pagefree(struct vm_page *pg)
219 {
220 	struct uvm_object *uobj = pg->uobject;
221 
222 	KASSERT(mutex_owned(&uvm_pageqlock));
223 	KASSERT(mutex_owned(uobj->vmobjlock));
224 
225 	if (pg->flags & PG_WANTED)
226 		wakeup(pg);
227 
228 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
229 
230 	uobj->uo_npages--;
231 	rb_tree_remove_node(&uobj->rb_tree, pg);
232 
233 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
234 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
235 		atomic_dec_uint(&vmpage_onqueue);
236 	}
237 
238 	pool_cache_put(&pagecache, pg);
239 }
240 
241 void
242 uvm_pagezero(struct vm_page *pg)
243 {
244 
245 	pg->flags &= ~PG_CLEAN;
246 	memset((void *)pg->uanon, 0, PAGE_SIZE);
247 }
248 
249 /*
250  * Misc routines
251  */
252 
253 static kmutex_t pagermtx;
254 
255 void
256 uvm_init(void)
257 {
258 	char buf[64];
259 	int error;
260 
261 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
262 		unsigned long tmp;
263 		char *ep;
264 		int mult;
265 
266 		tmp = strtoul(buf, &ep, 10);
267 		if (strlen(ep) > 1)
268 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
269 
270 		/* mini-dehumanize-number */
271 		mult = 1;
272 		switch (*ep) {
273 		case 'k':
274 			mult = 1024;
275 			break;
276 		case 'm':
277 			mult = 1024*1024;
278 			break;
279 		case 'g':
280 			mult = 1024*1024*1024;
281 			break;
282 		case 0:
283 			break;
284 		default:
285 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
286 		}
287 		rump_physmemlimit = tmp * mult;
288 
289 		if (rump_physmemlimit / mult != tmp)
290 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
291 		/* it's not like we'd get far with, say, 1 byte, but ... */
292 		if (rump_physmemlimit == 0)
293 			panic("uvm_init: no memory");
294 
295 #define HUMANIZE_BYTES 9
296 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
297 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
298 #undef HUMANIZE_BYTES
299 		dddlim = 9 * (rump_physmemlimit / 10);
300 	} else {
301 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
302 	}
303 	aprint_verbose("total memory = %s\n", buf);
304 
305 	TAILQ_INIT(&vmpage_lruqueue);
306 
307 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
308 
309 #ifndef __uvmexp_pagesize
310 	uvmexp.pagesize = PAGE_SIZE;
311 	uvmexp.pagemask = PAGE_MASK;
312 	uvmexp.pageshift = PAGE_SHIFT;
313 #else
314 #define FAKE_PAGE_SHIFT 12
315 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
316 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
317 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
318 #undef FAKE_PAGE_SHIFT
319 #endif
320 
321 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
322 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
323 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
324 
325 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
326 	cv_init(&pdaemoncv, "pdaemon");
327 	cv_init(&oomwait, "oomwait");
328 
329 	kernel_map->pmap = pmap_kernel();
330 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
331 	kmem_map->pmap = pmap_kernel();
332 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
333 
334 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
335 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
336 }
337 
338 void
339 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
340 {
341 
342 	vm->vm_map.pmap = pmap_kernel();
343 	vm->vm_refcnt = 1;
344 }
345 
346 void
347 uvm_pagewire(struct vm_page *pg)
348 {
349 
350 	/* nada */
351 }
352 
353 void
354 uvm_pageunwire(struct vm_page *pg)
355 {
356 
357 	/* nada */
358 }
359 
360 /*
361  * The uvm reclaim hook is not currently necessary because it is
362  * used only by ZFS and implements exactly the same functionality
363  * as the kva reclaim hook which we already run in the pagedaemon
364  * (rump vm does not have a concept of uvm_map(), so we cannot
365  * reclaim kva it when a mapping operation fails due to insufficient
366  * available kva).
367  */
368 void
369 uvm_reclaim_hook_add(struct uvm_reclaim_hook *hook_entry)
370 {
371 
372 }
373 __strong_alias(uvm_reclaim_hook_del,uvm_reclaim_hook_add);
374 
375 /* where's your schmonz now? */
376 #define PUNLIMIT(a)	\
377 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
378 void
379 uvm_init_limits(struct proc *p)
380 {
381 
382 	PUNLIMIT(RLIMIT_STACK);
383 	PUNLIMIT(RLIMIT_DATA);
384 	PUNLIMIT(RLIMIT_RSS);
385 	PUNLIMIT(RLIMIT_AS);
386 	/* nice, cascade */
387 }
388 #undef PUNLIMIT
389 
390 /*
391  * This satisfies the "disgusting mmap hack" used by proplib.
392  * We probably should grow some more assertables to make sure we're
393  * not satisfying anything we shouldn't be satisfying.
394  */
395 int
396 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
397 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
398 {
399 	void *uaddr;
400 	int error;
401 
402 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
403 		panic("uvm_mmap() variant unsupported");
404 	if (flags != (MAP_PRIVATE | MAP_ANON))
405 		panic("uvm_mmap() variant unsupported");
406 
407 	/* no reason in particular, but cf. uvm_default_mapaddr() */
408 	if (*addr != 0)
409 		panic("uvm_mmap() variant unsupported");
410 
411 	if (RUMP_LOCALPROC_P(curproc)) {
412 		uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
413 	} else {
414 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
415 		    size, &uaddr);
416 	}
417 	if (uaddr == NULL)
418 		return error;
419 
420 	*addr = (vaddr_t)uaddr;
421 	return 0;
422 }
423 
424 struct pagerinfo {
425 	vaddr_t pgr_kva;
426 	int pgr_npages;
427 	struct vm_page **pgr_pgs;
428 	bool pgr_read;
429 
430 	LIST_ENTRY(pagerinfo) pgr_entries;
431 };
432 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
433 
434 /*
435  * Pager "map" in routine.  Instead of mapping, we allocate memory
436  * and copy page contents there.  Not optimal or even strictly
437  * correct (the caller might modify the page contents after mapping
438  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
439  */
440 vaddr_t
441 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
442 {
443 	struct pagerinfo *pgri;
444 	vaddr_t curkva;
445 	int i;
446 
447 	/* allocate structures */
448 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
449 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
450 	pgri->pgr_npages = npages;
451 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
452 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
453 
454 	/* copy contents to "mapped" memory */
455 	for (i = 0, curkva = pgri->pgr_kva;
456 	    i < npages;
457 	    i++, curkva += PAGE_SIZE) {
458 		/*
459 		 * We need to copy the previous contents of the pages to
460 		 * the window even if we are reading from the
461 		 * device, since the device might not fill the contents of
462 		 * the full mapped range and we will end up corrupting
463 		 * data when we unmap the window.
464 		 */
465 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
466 		pgri->pgr_pgs[i] = pgs[i];
467 	}
468 
469 	mutex_enter(&pagermtx);
470 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
471 	mutex_exit(&pagermtx);
472 
473 	return pgri->pgr_kva;
474 }
475 
476 /*
477  * map out the pager window.  return contents from VA to page storage
478  * and free structures.
479  *
480  * Note: does not currently support partial frees
481  */
482 void
483 uvm_pagermapout(vaddr_t kva, int npages)
484 {
485 	struct pagerinfo *pgri;
486 	vaddr_t curkva;
487 	int i;
488 
489 	mutex_enter(&pagermtx);
490 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
491 		if (pgri->pgr_kva == kva)
492 			break;
493 	}
494 	KASSERT(pgri);
495 	if (pgri->pgr_npages != npages)
496 		panic("uvm_pagermapout: partial unmapping not supported");
497 	LIST_REMOVE(pgri, pgr_entries);
498 	mutex_exit(&pagermtx);
499 
500 	if (pgri->pgr_read) {
501 		for (i = 0, curkva = pgri->pgr_kva;
502 		    i < pgri->pgr_npages;
503 		    i++, curkva += PAGE_SIZE) {
504 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
505 		}
506 	}
507 
508 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
509 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
510 	kmem_free(pgri, sizeof(*pgri));
511 }
512 
513 /*
514  * convert va in pager window to page structure.
515  * XXX: how expensive is this (global lock, list traversal)?
516  */
517 struct vm_page *
518 uvm_pageratop(vaddr_t va)
519 {
520 	struct pagerinfo *pgri;
521 	struct vm_page *pg = NULL;
522 	int i;
523 
524 	mutex_enter(&pagermtx);
525 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
526 		if (pgri->pgr_kva <= va
527 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
528 			break;
529 	}
530 	if (pgri) {
531 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
532 		pg = pgri->pgr_pgs[i];
533 	}
534 	mutex_exit(&pagermtx);
535 
536 	return pg;
537 }
538 
539 /*
540  * Called with the vm object locked.
541  *
542  * Put vnode object pages at the end of the access queue to indicate
543  * they have been recently accessed and should not be immediate
544  * candidates for pageout.  Do not do this for lookups done by
545  * the pagedaemon to mimic pmap_kentered mappings which don't track
546  * access information.
547  */
548 struct vm_page *
549 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
550 {
551 	struct vm_page *pg;
552 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
553 
554 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
555 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
556 		mutex_enter(&uvm_pageqlock);
557 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
558 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
559 		mutex_exit(&uvm_pageqlock);
560 	}
561 
562 	return pg;
563 }
564 
565 void
566 uvm_page_unbusy(struct vm_page **pgs, int npgs)
567 {
568 	struct vm_page *pg;
569 	int i;
570 
571 	KASSERT(npgs > 0);
572 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
573 
574 	for (i = 0; i < npgs; i++) {
575 		pg = pgs[i];
576 		if (pg == NULL)
577 			continue;
578 
579 		KASSERT(pg->flags & PG_BUSY);
580 		if (pg->flags & PG_WANTED)
581 			wakeup(pg);
582 		if (pg->flags & PG_RELEASED)
583 			uvm_pagefree(pg);
584 		else
585 			pg->flags &= ~(PG_WANTED|PG_BUSY);
586 	}
587 }
588 
589 void
590 uvm_estimatepageable(int *active, int *inactive)
591 {
592 
593 	/* XXX: guessing game */
594 	*active = 1024;
595 	*inactive = 1024;
596 }
597 
598 struct vm_map_kernel *
599 vm_map_to_kernel(struct vm_map *map)
600 {
601 
602 	return (struct vm_map_kernel *)map;
603 }
604 
605 bool
606 vm_map_starved_p(struct vm_map *map)
607 {
608 
609 	if (map->flags & VM_MAP_WANTVA)
610 		return true;
611 
612 	return false;
613 }
614 
615 int
616 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
617 {
618 
619 	panic("%s: unimplemented", __func__);
620 }
621 
622 void
623 uvm_unloan(void *v, int npages, int flags)
624 {
625 
626 	panic("%s: unimplemented", __func__);
627 }
628 
629 int
630 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
631 	struct vm_page **opp)
632 {
633 
634 	return EBUSY;
635 }
636 
637 struct vm_page *
638 uvm_loanbreak(struct vm_page *pg)
639 {
640 
641 	panic("%s: unimplemented", __func__);
642 }
643 
644 void
645 ubc_purge(struct uvm_object *uobj)
646 {
647 
648 }
649 
650 #ifdef DEBUGPRINT
651 void
652 uvm_object_printit(struct uvm_object *uobj, bool full,
653 	void (*pr)(const char *, ...))
654 {
655 
656 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
657 }
658 #endif
659 
660 vaddr_t
661 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
662 {
663 
664 	return 0;
665 }
666 
667 int
668 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
669 	vm_prot_t prot, bool set_max)
670 {
671 
672 	return EOPNOTSUPP;
673 }
674 
675 /*
676  * UVM km
677  */
678 
679 vaddr_t
680 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
681 {
682 	void *rv, *desired = NULL;
683 	int alignbit, error;
684 
685 #ifdef __x86_64__
686 	/*
687 	 * On amd64, allocate all module memory from the lowest 2GB.
688 	 * This is because NetBSD kernel modules are compiled
689 	 * with -mcmodel=kernel and reserve only 4 bytes for
690 	 * offsets.  If we load code compiled with -mcmodel=kernel
691 	 * anywhere except the lowest or highest 2GB, it will not
692 	 * work.  Since userspace does not have access to the highest
693 	 * 2GB, use the lowest 2GB.
694 	 *
695 	 * Note: this assumes the rump kernel resides in
696 	 * the lowest 2GB as well.
697 	 *
698 	 * Note2: yes, it's a quick hack, but since this the only
699 	 * place where we care about the map we're allocating from,
700 	 * just use a simple "if" instead of coming up with a fancy
701 	 * generic solution.
702 	 */
703 	extern struct vm_map *module_map;
704 	if (map == module_map) {
705 		desired = (void *)(0x80000000 - size);
706 	}
707 #endif
708 
709 	alignbit = 0;
710 	if (align) {
711 		alignbit = ffs(align)-1;
712 	}
713 
714 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
715 	    &error);
716 	if (rv == NULL) {
717 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
718 			return 0;
719 		else
720 			panic("uvm_km_alloc failed");
721 	}
722 
723 	if (flags & UVM_KMF_ZERO)
724 		memset(rv, 0, size);
725 
726 	return (vaddr_t)rv;
727 }
728 
729 void
730 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
731 {
732 
733 	rumpuser_unmap((void *)vaddr, size);
734 }
735 
736 struct vm_map *
737 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
738 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
739 {
740 
741 	return (struct vm_map *)417416;
742 }
743 
744 vaddr_t
745 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
746 {
747 
748 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
749 	    waitok, "kmalloc");
750 }
751 
752 void
753 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
754 {
755 
756 	rump_hyperfree((void *)addr, PAGE_SIZE);
757 }
758 
759 vaddr_t
760 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
761 {
762 
763 	return uvm_km_alloc_poolpage(map, waitok);
764 }
765 
766 void
767 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
768 {
769 
770 	uvm_km_free_poolpage(map, vaddr);
771 }
772 
773 void
774 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
775 {
776 
777 	/* we eventually maybe want some model for available memory */
778 }
779 
780 /*
781  * VM space locking routines.  We don't really have to do anything,
782  * since the pages are always "wired" (both local and remote processes).
783  */
784 int
785 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
786 {
787 
788 	return 0;
789 }
790 
791 void
792 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
793 {
794 
795 }
796 
797 /*
798  * For the local case the buffer mappers don't need to do anything.
799  * For the remote case we need to reserve space and copy data in or
800  * out, depending on B_READ/B_WRITE.
801  */
802 int
803 vmapbuf(struct buf *bp, vsize_t len)
804 {
805 	int error = 0;
806 
807 	bp->b_saveaddr = bp->b_data;
808 
809 	/* remote case */
810 	if (!RUMP_LOCALPROC_P(curproc)) {
811 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
812 		if (BUF_ISWRITE(bp)) {
813 			error = copyin(bp->b_saveaddr, bp->b_data, len);
814 			if (error) {
815 				rump_hyperfree(bp->b_data, len);
816 				bp->b_data = bp->b_saveaddr;
817 				bp->b_saveaddr = 0;
818 			}
819 		}
820 	}
821 
822 	return error;
823 }
824 
825 void
826 vunmapbuf(struct buf *bp, vsize_t len)
827 {
828 
829 	/* remote case */
830 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
831 		if (BUF_ISREAD(bp)) {
832 			bp->b_error = copyout_proc(bp->b_proc,
833 			    bp->b_data, bp->b_saveaddr, len);
834 		}
835 		rump_hyperfree(bp->b_data, len);
836 	}
837 
838 	bp->b_data = bp->b_saveaddr;
839 	bp->b_saveaddr = 0;
840 }
841 
842 void
843 uvmspace_addref(struct vmspace *vm)
844 {
845 
846 	/*
847 	 * No dynamically allocated vmspaces exist.
848 	 */
849 }
850 
851 void
852 uvmspace_free(struct vmspace *vm)
853 {
854 
855 	/* nothing for now */
856 }
857 
858 /*
859  * page life cycle stuff.  it really doesn't exist, so just stubs.
860  */
861 
862 void
863 uvm_pageactivate(struct vm_page *pg)
864 {
865 
866 	/* nada */
867 }
868 
869 void
870 uvm_pagedeactivate(struct vm_page *pg)
871 {
872 
873 	/* nada */
874 }
875 
876 void
877 uvm_pagedequeue(struct vm_page *pg)
878 {
879 
880 	/* nada*/
881 }
882 
883 void
884 uvm_pageenqueue(struct vm_page *pg)
885 {
886 
887 	/* nada */
888 }
889 
890 void
891 uvmpdpol_anfree(struct vm_anon *an)
892 {
893 
894 	/* nada */
895 }
896 
897 /*
898  * Physical address accessors.
899  */
900 
901 struct vm_page *
902 uvm_phys_to_vm_page(paddr_t pa)
903 {
904 
905 	return NULL;
906 }
907 
908 paddr_t
909 uvm_vm_page_to_phys(const struct vm_page *pg)
910 {
911 
912 	return 0;
913 }
914 
915 /*
916  * Routines related to the Page Baroness.
917  */
918 
919 void
920 uvm_wait(const char *msg)
921 {
922 
923 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
924 		panic("pagedaemon out of memory");
925 	if (__predict_false(rump_threads == 0))
926 		panic("pagedaemon missing (RUMP_THREADS = 0)");
927 
928 	mutex_enter(&pdaemonmtx);
929 	pdaemon_waiters++;
930 	cv_signal(&pdaemoncv);
931 	cv_wait(&oomwait, &pdaemonmtx);
932 	mutex_exit(&pdaemonmtx);
933 }
934 
935 void
936 uvm_pageout_start(int npages)
937 {
938 
939 	mutex_enter(&pdaemonmtx);
940 	uvmexp.paging += npages;
941 	mutex_exit(&pdaemonmtx);
942 }
943 
944 void
945 uvm_pageout_done(int npages)
946 {
947 
948 	if (!npages)
949 		return;
950 
951 	mutex_enter(&pdaemonmtx);
952 	KASSERT(uvmexp.paging >= npages);
953 	uvmexp.paging -= npages;
954 
955 	if (pdaemon_waiters) {
956 		pdaemon_waiters = 0;
957 		cv_broadcast(&oomwait);
958 	}
959 	mutex_exit(&pdaemonmtx);
960 }
961 
962 static bool
963 processpage(struct vm_page *pg, bool *lockrunning)
964 {
965 	struct uvm_object *uobj;
966 
967 	uobj = pg->uobject;
968 	if (mutex_tryenter(uobj->vmobjlock)) {
969 		if ((pg->flags & PG_BUSY) == 0) {
970 			mutex_exit(&uvm_pageqlock);
971 			uobj->pgops->pgo_put(uobj, pg->offset,
972 			    pg->offset + PAGE_SIZE,
973 			    PGO_CLEANIT|PGO_FREE);
974 			KASSERT(!mutex_owned(uobj->vmobjlock));
975 			return true;
976 		} else {
977 			mutex_exit(uobj->vmobjlock);
978 		}
979 	} else if (*lockrunning == false && ncpu > 1) {
980 		CPU_INFO_ITERATOR cii;
981 		struct cpu_info *ci;
982 		struct lwp *l;
983 
984 		l = mutex_owner(uobj->vmobjlock);
985 		for (CPU_INFO_FOREACH(cii, ci)) {
986 			if (ci->ci_curlwp == l) {
987 				*lockrunning = true;
988 				break;
989 			}
990 		}
991 	}
992 
993 	return false;
994 }
995 
996 /*
997  * The Diabolical pageDaemon Director (DDD).
998  *
999  * This routine can always use better heuristics.
1000  */
1001 void
1002 uvm_pageout(void *arg)
1003 {
1004 	struct vm_page *pg;
1005 	struct pool *pp, *pp_first;
1006 	uint64_t where;
1007 	int cleaned, skip, skipped;
1008 	int waspaging;
1009 	bool succ;
1010 	bool lockrunning;
1011 
1012 	mutex_enter(&pdaemonmtx);
1013 	for (;;) {
1014 		if (!NEED_PAGEDAEMON()) {
1015 			kernel_map->flags &= ~VM_MAP_WANTVA;
1016 			kmem_map->flags &= ~VM_MAP_WANTVA;
1017 		}
1018 
1019 		if (pdaemon_waiters) {
1020 			pdaemon_waiters = 0;
1021 			cv_broadcast(&oomwait);
1022 		}
1023 
1024 		cv_wait(&pdaemoncv, &pdaemonmtx);
1025 		uvmexp.pdwoke++;
1026 		waspaging = uvmexp.paging;
1027 
1028 		/* tell the world that we are hungry */
1029 		kernel_map->flags |= VM_MAP_WANTVA;
1030 		kmem_map->flags |= VM_MAP_WANTVA;
1031 		mutex_exit(&pdaemonmtx);
1032 
1033 		/*
1034 		 * step one: reclaim the page cache.  this should give
1035 		 * us the biggest earnings since whole pages are released
1036 		 * into backing memory.
1037 		 */
1038 		pool_cache_reclaim(&pagecache);
1039 		if (!NEED_PAGEDAEMON()) {
1040 			mutex_enter(&pdaemonmtx);
1041 			continue;
1042 		}
1043 
1044 		/*
1045 		 * Ok, so that didn't help.  Next, try to hunt memory
1046 		 * by pushing out vnode pages.  The pages might contain
1047 		 * useful cached data, but we need the memory.
1048 		 */
1049 		cleaned = 0;
1050 		skip = 0;
1051 		lockrunning = false;
1052  again:
1053 		mutex_enter(&uvm_pageqlock);
1054 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1055 			skipped = 0;
1056 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1057 
1058 				/*
1059 				 * skip over pages we _might_ have tried
1060 				 * to handle earlier.  they might not be
1061 				 * exactly the same ones, but I'm not too
1062 				 * concerned.
1063 				 */
1064 				while (skipped++ < skip)
1065 					continue;
1066 
1067 				if (processpage(pg, &lockrunning)) {
1068 					cleaned++;
1069 					goto again;
1070 				}
1071 
1072 				skip++;
1073 			}
1074 			break;
1075 		}
1076 		mutex_exit(&uvm_pageqlock);
1077 
1078 		/*
1079 		 * Ok, someone is running with an object lock held.
1080 		 * We want to yield the host CPU to make sure the
1081 		 * thread is not parked on the host.  Since sched_yield()
1082 		 * doesn't appear to do anything on NetBSD, nanosleep
1083 		 * for the smallest possible time and hope we're back in
1084 		 * the game soon.
1085 		 */
1086 		if (cleaned == 0 && lockrunning) {
1087 			uint64_t sec, nsec;
1088 
1089 			sec = 0;
1090 			nsec = 1;
1091 			rumpuser_nanosleep(&sec, &nsec, NULL);
1092 
1093 			lockrunning = false;
1094 			skip = 0;
1095 
1096 			/* and here we go again */
1097 			goto again;
1098 		}
1099 
1100 		/*
1101 		 * And of course we need to reclaim the page cache
1102 		 * again to actually release memory.
1103 		 */
1104 		pool_cache_reclaim(&pagecache);
1105 		if (!NEED_PAGEDAEMON()) {
1106 			mutex_enter(&pdaemonmtx);
1107 			continue;
1108 		}
1109 
1110 		/*
1111 		 * Still not there?  sleeves come off right about now.
1112 		 * First: do reclaim on kernel/kmem map.
1113 		 */
1114 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
1115 		    NULL);
1116 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
1117 		    NULL);
1118 
1119 		/*
1120 		 * And then drain the pools.  Wipe them out ... all of them.
1121 		 */
1122 
1123 		pool_drain_start(&pp_first, &where);
1124 		pp = pp_first;
1125 		for (;;) {
1126 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
1127 			succ = pool_drain_end(pp, where);
1128 			if (succ)
1129 				break;
1130 			pool_drain_start(&pp, &where);
1131 			if (pp == pp_first) {
1132 				succ = pool_drain_end(pp, where);
1133 				break;
1134 			}
1135 		}
1136 
1137 		/*
1138 		 * Need to use PYEC on our bag of tricks.
1139 		 * Unfortunately, the wife just borrowed it.
1140 		 */
1141 
1142 		mutex_enter(&pdaemonmtx);
1143 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1144 		    uvmexp.paging == 0) {
1145 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
1146 			    "memory ... sleeping (deadlock?)\n");
1147 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1148 			mutex_enter(&pdaemonmtx);
1149 		}
1150 	}
1151 
1152 	panic("you can swap out any time you like, but you can never leave");
1153 }
1154 
1155 void
1156 uvm_kick_pdaemon()
1157 {
1158 
1159 	/*
1160 	 * Wake up the diabolical pagedaemon director if we are over
1161 	 * 90% of the memory limit.  This is a complete and utter
1162 	 * stetson-harrison decision which you are allowed to finetune.
1163 	 * Don't bother locking.  If we have some unflushed caches,
1164 	 * other waker-uppers will deal with the issue.
1165 	 */
1166 	if (NEED_PAGEDAEMON()) {
1167 		cv_signal(&pdaemoncv);
1168 	}
1169 }
1170 
1171 void *
1172 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1173 {
1174 	unsigned long newmem;
1175 	void *rv;
1176 
1177 	uvm_kick_pdaemon(); /* ouch */
1178 
1179 	/* first we must be within the limit */
1180  limitagain:
1181 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1182 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1183 		if (newmem > rump_physmemlimit) {
1184 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1185 			if (!waitok) {
1186 				return NULL;
1187 			}
1188 			uvm_wait(wmsg);
1189 			goto limitagain;
1190 		}
1191 	}
1192 
1193 	/* second, we must get something from the backend */
1194  again:
1195 	rv = rumpuser_malloc(howmuch, alignment);
1196 	if (__predict_false(rv == NULL && waitok)) {
1197 		uvm_wait(wmsg);
1198 		goto again;
1199 	}
1200 
1201 	return rv;
1202 }
1203 
1204 void
1205 rump_hyperfree(void *what, size_t size)
1206 {
1207 
1208 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1209 		atomic_add_long(&curphysmem, -size);
1210 	}
1211 	rumpuser_free(what);
1212 }
1213