xref: /netbsd-src/sys/rump/librump/rumpkern/vm.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: vm.c,v 1.146 2013/11/23 22:24:31 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.146 2013/11/23 22:24:31 christos Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 
56 #include <machine/pmap.h>
57 
58 #include <rump/rumpuser.h>
59 
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65 
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68 
69 kmutex_t uvm_pageqlock;
70 kmutex_t uvm_swap_data_lock;
71 
72 struct uvmexp uvmexp;
73 struct uvm uvm;
74 
75 #ifdef __uvmexp_pagesize
76 const int * const uvmexp_pagesize = &uvmexp.pagesize;
77 const int * const uvmexp_pagemask = &uvmexp.pagemask;
78 const int * const uvmexp_pageshift = &uvmexp.pageshift;
79 #endif
80 
81 struct vm_map rump_vmmap;
82 
83 static struct vm_map kernel_map_store;
84 struct vm_map *kernel_map = &kernel_map_store;
85 
86 static struct vm_map module_map_store;
87 extern struct vm_map *module_map;
88 
89 vmem_t *kmem_arena;
90 vmem_t *kmem_va_arena;
91 
92 static unsigned int pdaemon_waiters;
93 static kmutex_t pdaemonmtx;
94 static kcondvar_t pdaemoncv, oomwait;
95 
96 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
97 static unsigned long curphysmem;
98 static unsigned long dddlim;		/* 90% of memory limit used */
99 #define NEED_PAGEDAEMON() \
100     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
101 
102 /*
103  * Try to free two pages worth of pages from objects.
104  * If this succesfully frees a full page cache page, we'll
105  * free the released page plus PAGE_SIZE/sizeof(vm_page).
106  */
107 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
108 
109 /*
110  * Keep a list of least recently used pages.  Since the only way a
111  * rump kernel can "access" a page is via lookup, we put the page
112  * at the back of queue every time a lookup for it is done.  If the
113  * page is in front of this global queue and we're short of memory,
114  * it's a candidate for pageout.
115  */
116 static struct pglist vmpage_lruqueue;
117 static unsigned vmpage_onqueue;
118 
119 static int
120 pg_compare_key(void *ctx, const void *n, const void *key)
121 {
122 	voff_t a = ((const struct vm_page *)n)->offset;
123 	voff_t b = *(const voff_t *)key;
124 
125 	if (a < b)
126 		return -1;
127 	else if (a > b)
128 		return 1;
129 	else
130 		return 0;
131 }
132 
133 static int
134 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
135 {
136 
137 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
138 }
139 
140 const rb_tree_ops_t uvm_page_tree_ops = {
141 	.rbto_compare_nodes = pg_compare_nodes,
142 	.rbto_compare_key = pg_compare_key,
143 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
144 	.rbto_context = NULL
145 };
146 
147 /*
148  * vm pages
149  */
150 
151 static int
152 pgctor(void *arg, void *obj, int flags)
153 {
154 	struct vm_page *pg = obj;
155 
156 	memset(pg, 0, sizeof(*pg));
157 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
158 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
159 	return pg->uanon == NULL;
160 }
161 
162 static void
163 pgdtor(void *arg, void *obj)
164 {
165 	struct vm_page *pg = obj;
166 
167 	rump_hyperfree(pg->uanon, PAGE_SIZE);
168 }
169 
170 static struct pool_cache pagecache;
171 
172 /*
173  * Called with the object locked.  We don't support anons.
174  */
175 struct vm_page *
176 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
177 	int flags, int strat, int free_list)
178 {
179 	struct vm_page *pg;
180 
181 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
182 	KASSERT(anon == NULL);
183 
184 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
185 	if (__predict_false(pg == NULL)) {
186 		return NULL;
187 	}
188 
189 	pg->offset = off;
190 	pg->uobject = uobj;
191 
192 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
193 	if (flags & UVM_PGA_ZERO) {
194 		uvm_pagezero(pg);
195 	}
196 
197 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
198 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
199 
200 	/*
201 	 * Don't put anons on the LRU page queue.  We can't flush them
202 	 * (there's no concept of swap in a rump kernel), so no reason
203 	 * to bother with them.
204 	 */
205 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
206 		atomic_inc_uint(&vmpage_onqueue);
207 		mutex_enter(&uvm_pageqlock);
208 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
209 		mutex_exit(&uvm_pageqlock);
210 	}
211 
212 	uobj->uo_npages++;
213 
214 	return pg;
215 }
216 
217 /*
218  * Release a page.
219  *
220  * Called with the vm object locked.
221  */
222 void
223 uvm_pagefree(struct vm_page *pg)
224 {
225 	struct uvm_object *uobj = pg->uobject;
226 
227 	KASSERT(mutex_owned(&uvm_pageqlock));
228 	KASSERT(mutex_owned(uobj->vmobjlock));
229 
230 	if (pg->flags & PG_WANTED)
231 		wakeup(pg);
232 
233 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
234 
235 	uobj->uo_npages--;
236 	rb_tree_remove_node(&uobj->rb_tree, pg);
237 
238 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
239 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
240 		atomic_dec_uint(&vmpage_onqueue);
241 	}
242 
243 	pool_cache_put(&pagecache, pg);
244 }
245 
246 void
247 uvm_pagezero(struct vm_page *pg)
248 {
249 
250 	pg->flags &= ~PG_CLEAN;
251 	memset((void *)pg->uanon, 0, PAGE_SIZE);
252 }
253 
254 /*
255  * uvm_page_locked_p: return true if object associated with page is
256  * locked.  this is a weak check for runtime assertions only.
257  */
258 
259 bool
260 uvm_page_locked_p(struct vm_page *pg)
261 {
262 
263 	return mutex_owned(pg->uobject->vmobjlock);
264 }
265 
266 /*
267  * Misc routines
268  */
269 
270 static kmutex_t pagermtx;
271 
272 void
273 uvm_init(void)
274 {
275 	char buf[64];
276 
277 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
278 		unsigned long tmp;
279 		char *ep;
280 		int mult;
281 
282 		tmp = strtoul(buf, &ep, 10);
283 		if (strlen(ep) > 1)
284 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
285 
286 		/* mini-dehumanize-number */
287 		mult = 1;
288 		switch (*ep) {
289 		case 'k':
290 			mult = 1024;
291 			break;
292 		case 'm':
293 			mult = 1024*1024;
294 			break;
295 		case 'g':
296 			mult = 1024*1024*1024;
297 			break;
298 		case 0:
299 			break;
300 		default:
301 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
302 		}
303 		rump_physmemlimit = tmp * mult;
304 
305 		if (rump_physmemlimit / mult != tmp)
306 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
307 		/* it's not like we'd get far with, say, 1 byte, but ... */
308 		if (rump_physmemlimit == 0)
309 			panic("uvm_init: no memory");
310 
311 #define HUMANIZE_BYTES 9
312 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
313 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
314 #undef HUMANIZE_BYTES
315 		dddlim = 9 * (rump_physmemlimit / 10);
316 	} else {
317 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
318 	}
319 	aprint_verbose("total memory = %s\n", buf);
320 
321 	TAILQ_INIT(&vmpage_lruqueue);
322 
323 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
324 
325 #ifndef __uvmexp_pagesize
326 	uvmexp.pagesize = PAGE_SIZE;
327 	uvmexp.pagemask = PAGE_MASK;
328 	uvmexp.pageshift = PAGE_SHIFT;
329 #else
330 #define FAKE_PAGE_SHIFT 12
331 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
332 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
333 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
334 #undef FAKE_PAGE_SHIFT
335 #endif
336 
337 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
338 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
339 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
340 
341 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
342 	cv_init(&pdaemoncv, "pdaemon");
343 	cv_init(&oomwait, "oomwait");
344 
345 	module_map = &module_map_store;
346 
347 	kernel_map->pmap = pmap_kernel();
348 
349 	pool_subsystem_init();
350 
351 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
352 	    NULL, NULL, NULL,
353 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
354 
355 	vmem_subsystem_init(kmem_arena);
356 
357 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
358 	    vmem_alloc, vmem_free, kmem_arena,
359 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
360 
361 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
362 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
363 }
364 
365 void
366 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
367     bool topdown)
368 {
369 
370 	vm->vm_map.pmap = pmap_kernel();
371 	vm->vm_refcnt = 1;
372 }
373 
374 void
375 uvm_pagewire(struct vm_page *pg)
376 {
377 
378 	/* nada */
379 }
380 
381 void
382 uvm_pageunwire(struct vm_page *pg)
383 {
384 
385 	/* nada */
386 }
387 
388 /* where's your schmonz now? */
389 #define PUNLIMIT(a)	\
390 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
391 void
392 uvm_init_limits(struct proc *p)
393 {
394 
395 	PUNLIMIT(RLIMIT_STACK);
396 	PUNLIMIT(RLIMIT_DATA);
397 	PUNLIMIT(RLIMIT_RSS);
398 	PUNLIMIT(RLIMIT_AS);
399 	/* nice, cascade */
400 }
401 #undef PUNLIMIT
402 
403 /*
404  * This satisfies the "disgusting mmap hack" used by proplib.
405  * We probably should grow some more assertables to make sure we're
406  * not satisfying anything we shouldn't be satisfying.
407  */
408 int
409 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
410 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
411 {
412 	void *uaddr;
413 	int error;
414 
415 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
416 		panic("uvm_mmap() variant unsupported");
417 	if (flags != (MAP_PRIVATE | MAP_ANON))
418 		panic("uvm_mmap() variant unsupported");
419 
420 	/* no reason in particular, but cf. uvm_default_mapaddr() */
421 	if (*addr != 0)
422 		panic("uvm_mmap() variant unsupported");
423 
424 	if (RUMP_LOCALPROC_P(curproc)) {
425 		error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
426 	} else {
427 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
428 		    size, &uaddr);
429 	}
430 	if (error)
431 		return error;
432 
433 	*addr = (vaddr_t)uaddr;
434 	return 0;
435 }
436 
437 struct pagerinfo {
438 	vaddr_t pgr_kva;
439 	int pgr_npages;
440 	struct vm_page **pgr_pgs;
441 	bool pgr_read;
442 
443 	LIST_ENTRY(pagerinfo) pgr_entries;
444 };
445 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
446 
447 /*
448  * Pager "map" in routine.  Instead of mapping, we allocate memory
449  * and copy page contents there.  Not optimal or even strictly
450  * correct (the caller might modify the page contents after mapping
451  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
452  */
453 vaddr_t
454 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
455 {
456 	struct pagerinfo *pgri;
457 	vaddr_t curkva;
458 	int i;
459 
460 	/* allocate structures */
461 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
462 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
463 	pgri->pgr_npages = npages;
464 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
465 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
466 
467 	/* copy contents to "mapped" memory */
468 	for (i = 0, curkva = pgri->pgr_kva;
469 	    i < npages;
470 	    i++, curkva += PAGE_SIZE) {
471 		/*
472 		 * We need to copy the previous contents of the pages to
473 		 * the window even if we are reading from the
474 		 * device, since the device might not fill the contents of
475 		 * the full mapped range and we will end up corrupting
476 		 * data when we unmap the window.
477 		 */
478 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
479 		pgri->pgr_pgs[i] = pgs[i];
480 	}
481 
482 	mutex_enter(&pagermtx);
483 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
484 	mutex_exit(&pagermtx);
485 
486 	return pgri->pgr_kva;
487 }
488 
489 /*
490  * map out the pager window.  return contents from VA to page storage
491  * and free structures.
492  *
493  * Note: does not currently support partial frees
494  */
495 void
496 uvm_pagermapout(vaddr_t kva, int npages)
497 {
498 	struct pagerinfo *pgri;
499 	vaddr_t curkva;
500 	int i;
501 
502 	mutex_enter(&pagermtx);
503 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
504 		if (pgri->pgr_kva == kva)
505 			break;
506 	}
507 	KASSERT(pgri);
508 	if (pgri->pgr_npages != npages)
509 		panic("uvm_pagermapout: partial unmapping not supported");
510 	LIST_REMOVE(pgri, pgr_entries);
511 	mutex_exit(&pagermtx);
512 
513 	if (pgri->pgr_read) {
514 		for (i = 0, curkva = pgri->pgr_kva;
515 		    i < pgri->pgr_npages;
516 		    i++, curkva += PAGE_SIZE) {
517 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
518 		}
519 	}
520 
521 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
522 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
523 	kmem_free(pgri, sizeof(*pgri));
524 }
525 
526 /*
527  * convert va in pager window to page structure.
528  * XXX: how expensive is this (global lock, list traversal)?
529  */
530 struct vm_page *
531 uvm_pageratop(vaddr_t va)
532 {
533 	struct pagerinfo *pgri;
534 	struct vm_page *pg = NULL;
535 	int i;
536 
537 	mutex_enter(&pagermtx);
538 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
539 		if (pgri->pgr_kva <= va
540 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
541 			break;
542 	}
543 	if (pgri) {
544 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
545 		pg = pgri->pgr_pgs[i];
546 	}
547 	mutex_exit(&pagermtx);
548 
549 	return pg;
550 }
551 
552 /*
553  * Called with the vm object locked.
554  *
555  * Put vnode object pages at the end of the access queue to indicate
556  * they have been recently accessed and should not be immediate
557  * candidates for pageout.  Do not do this for lookups done by
558  * the pagedaemon to mimic pmap_kentered mappings which don't track
559  * access information.
560  */
561 struct vm_page *
562 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
563 {
564 	struct vm_page *pg;
565 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
566 
567 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
568 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
569 		mutex_enter(&uvm_pageqlock);
570 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
571 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
572 		mutex_exit(&uvm_pageqlock);
573 	}
574 
575 	return pg;
576 }
577 
578 void
579 uvm_page_unbusy(struct vm_page **pgs, int npgs)
580 {
581 	struct vm_page *pg;
582 	int i;
583 
584 	KASSERT(npgs > 0);
585 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
586 
587 	for (i = 0; i < npgs; i++) {
588 		pg = pgs[i];
589 		if (pg == NULL)
590 			continue;
591 
592 		KASSERT(pg->flags & PG_BUSY);
593 		if (pg->flags & PG_WANTED)
594 			wakeup(pg);
595 		if (pg->flags & PG_RELEASED)
596 			uvm_pagefree(pg);
597 		else
598 			pg->flags &= ~(PG_WANTED|PG_BUSY);
599 	}
600 }
601 
602 void
603 uvm_estimatepageable(int *active, int *inactive)
604 {
605 
606 	/* XXX: guessing game */
607 	*active = 1024;
608 	*inactive = 1024;
609 }
610 
611 bool
612 vm_map_starved_p(struct vm_map *map)
613 {
614 
615 	if (map->flags & VM_MAP_WANTVA)
616 		return true;
617 
618 	return false;
619 }
620 
621 int
622 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
623 {
624 
625 	panic("%s: unimplemented", __func__);
626 }
627 
628 void
629 uvm_unloan(void *v, int npages, int flags)
630 {
631 
632 	panic("%s: unimplemented", __func__);
633 }
634 
635 int
636 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
637 	struct vm_page **opp)
638 {
639 
640 	return EBUSY;
641 }
642 
643 struct vm_page *
644 uvm_loanbreak(struct vm_page *pg)
645 {
646 
647 	panic("%s: unimplemented", __func__);
648 }
649 
650 void
651 ubc_purge(struct uvm_object *uobj)
652 {
653 
654 }
655 
656 #ifdef DEBUGPRINT
657 void
658 uvm_object_printit(struct uvm_object *uobj, bool full,
659 	void (*pr)(const char *, ...))
660 {
661 
662 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
663 }
664 #endif
665 
666 vaddr_t
667 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
668 {
669 
670 	return 0;
671 }
672 
673 int
674 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
675 	vm_prot_t prot, bool set_max)
676 {
677 
678 	return EOPNOTSUPP;
679 }
680 
681 /*
682  * UVM km
683  */
684 
685 vaddr_t
686 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
687 {
688 	void *rv, *desired = NULL;
689 	int alignbit, error;
690 
691 #ifdef __x86_64__
692 	/*
693 	 * On amd64, allocate all module memory from the lowest 2GB.
694 	 * This is because NetBSD kernel modules are compiled
695 	 * with -mcmodel=kernel and reserve only 4 bytes for
696 	 * offsets.  If we load code compiled with -mcmodel=kernel
697 	 * anywhere except the lowest or highest 2GB, it will not
698 	 * work.  Since userspace does not have access to the highest
699 	 * 2GB, use the lowest 2GB.
700 	 *
701 	 * Note: this assumes the rump kernel resides in
702 	 * the lowest 2GB as well.
703 	 *
704 	 * Note2: yes, it's a quick hack, but since this the only
705 	 * place where we care about the map we're allocating from,
706 	 * just use a simple "if" instead of coming up with a fancy
707 	 * generic solution.
708 	 */
709 	if (map == module_map) {
710 		desired = (void *)(0x80000000 - size);
711 	}
712 #endif
713 
714 	if (__predict_false(map == module_map)) {
715 		alignbit = 0;
716 		if (align) {
717 			alignbit = ffs(align)-1;
718 		}
719 		error = rumpuser_anonmmap(desired, size, alignbit,
720 		    flags & UVM_KMF_EXEC, &rv);
721 	} else {
722 		error = rumpuser_malloc(size, align, &rv);
723 	}
724 
725 	if (error) {
726 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
727 			return 0;
728 		else
729 			panic("uvm_km_alloc failed");
730 	}
731 
732 	if (flags & UVM_KMF_ZERO)
733 		memset(rv, 0, size);
734 
735 	return (vaddr_t)rv;
736 }
737 
738 void
739 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
740 {
741 
742 	if (__predict_false(map == module_map))
743 		rumpuser_unmap((void *)vaddr, size);
744 	else
745 		rumpuser_free((void *)vaddr, size);
746 }
747 
748 struct vm_map *
749 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
750 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
751 {
752 
753 	return (struct vm_map *)417416;
754 }
755 
756 int
757 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
758     vmem_addr_t *addr)
759 {
760 	vaddr_t va;
761 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
762 	    (flags & VM_SLEEP), "kmalloc");
763 
764 	if (va) {
765 		*addr = va;
766 		return 0;
767 	} else {
768 		return ENOMEM;
769 	}
770 }
771 
772 void
773 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
774 {
775 
776 	rump_hyperfree((void *)addr, size);
777 }
778 
779 /*
780  * VM space locking routines.  We don't really have to do anything,
781  * since the pages are always "wired" (both local and remote processes).
782  */
783 int
784 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
785 {
786 
787 	return 0;
788 }
789 
790 void
791 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
792 {
793 
794 }
795 
796 /*
797  * For the local case the buffer mappers don't need to do anything.
798  * For the remote case we need to reserve space and copy data in or
799  * out, depending on B_READ/B_WRITE.
800  */
801 int
802 vmapbuf(struct buf *bp, vsize_t len)
803 {
804 	int error = 0;
805 
806 	bp->b_saveaddr = bp->b_data;
807 
808 	/* remote case */
809 	if (!RUMP_LOCALPROC_P(curproc)) {
810 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
811 		if (BUF_ISWRITE(bp)) {
812 			error = copyin(bp->b_saveaddr, bp->b_data, len);
813 			if (error) {
814 				rump_hyperfree(bp->b_data, len);
815 				bp->b_data = bp->b_saveaddr;
816 				bp->b_saveaddr = 0;
817 			}
818 		}
819 	}
820 
821 	return error;
822 }
823 
824 void
825 vunmapbuf(struct buf *bp, vsize_t len)
826 {
827 
828 	/* remote case */
829 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
830 		if (BUF_ISREAD(bp)) {
831 			bp->b_error = copyout_proc(bp->b_proc,
832 			    bp->b_data, bp->b_saveaddr, len);
833 		}
834 		rump_hyperfree(bp->b_data, len);
835 	}
836 
837 	bp->b_data = bp->b_saveaddr;
838 	bp->b_saveaddr = 0;
839 }
840 
841 void
842 uvmspace_addref(struct vmspace *vm)
843 {
844 
845 	/*
846 	 * No dynamically allocated vmspaces exist.
847 	 */
848 }
849 
850 void
851 uvmspace_free(struct vmspace *vm)
852 {
853 
854 	/* nothing for now */
855 }
856 
857 /*
858  * page life cycle stuff.  it really doesn't exist, so just stubs.
859  */
860 
861 void
862 uvm_pageactivate(struct vm_page *pg)
863 {
864 
865 	/* nada */
866 }
867 
868 void
869 uvm_pagedeactivate(struct vm_page *pg)
870 {
871 
872 	/* nada */
873 }
874 
875 void
876 uvm_pagedequeue(struct vm_page *pg)
877 {
878 
879 	/* nada*/
880 }
881 
882 void
883 uvm_pageenqueue(struct vm_page *pg)
884 {
885 
886 	/* nada */
887 }
888 
889 void
890 uvmpdpol_anfree(struct vm_anon *an)
891 {
892 
893 	/* nada */
894 }
895 
896 /*
897  * Physical address accessors.
898  */
899 
900 struct vm_page *
901 uvm_phys_to_vm_page(paddr_t pa)
902 {
903 
904 	return NULL;
905 }
906 
907 paddr_t
908 uvm_vm_page_to_phys(const struct vm_page *pg)
909 {
910 
911 	return 0;
912 }
913 
914 /*
915  * Routines related to the Page Baroness.
916  */
917 
918 void
919 uvm_wait(const char *msg)
920 {
921 
922 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
923 		panic("pagedaemon out of memory");
924 	if (__predict_false(rump_threads == 0))
925 		panic("pagedaemon missing (RUMP_THREADS = 0)");
926 
927 	mutex_enter(&pdaemonmtx);
928 	pdaemon_waiters++;
929 	cv_signal(&pdaemoncv);
930 	cv_wait(&oomwait, &pdaemonmtx);
931 	mutex_exit(&pdaemonmtx);
932 }
933 
934 void
935 uvm_pageout_start(int npages)
936 {
937 
938 	mutex_enter(&pdaemonmtx);
939 	uvmexp.paging += npages;
940 	mutex_exit(&pdaemonmtx);
941 }
942 
943 void
944 uvm_pageout_done(int npages)
945 {
946 
947 	if (!npages)
948 		return;
949 
950 	mutex_enter(&pdaemonmtx);
951 	KASSERT(uvmexp.paging >= npages);
952 	uvmexp.paging -= npages;
953 
954 	if (pdaemon_waiters) {
955 		pdaemon_waiters = 0;
956 		cv_broadcast(&oomwait);
957 	}
958 	mutex_exit(&pdaemonmtx);
959 }
960 
961 static bool
962 processpage(struct vm_page *pg, bool *lockrunning)
963 {
964 	struct uvm_object *uobj;
965 
966 	uobj = pg->uobject;
967 	if (mutex_tryenter(uobj->vmobjlock)) {
968 		if ((pg->flags & PG_BUSY) == 0) {
969 			mutex_exit(&uvm_pageqlock);
970 			uobj->pgops->pgo_put(uobj, pg->offset,
971 			    pg->offset + PAGE_SIZE,
972 			    PGO_CLEANIT|PGO_FREE);
973 			KASSERT(!mutex_owned(uobj->vmobjlock));
974 			return true;
975 		} else {
976 			mutex_exit(uobj->vmobjlock);
977 		}
978 	} else if (*lockrunning == false && ncpu > 1) {
979 		CPU_INFO_ITERATOR cii;
980 		struct cpu_info *ci;
981 		struct lwp *l;
982 
983 		l = mutex_owner(uobj->vmobjlock);
984 		for (CPU_INFO_FOREACH(cii, ci)) {
985 			if (ci->ci_curlwp == l) {
986 				*lockrunning = true;
987 				break;
988 			}
989 		}
990 	}
991 
992 	return false;
993 }
994 
995 /*
996  * The Diabolical pageDaemon Director (DDD).
997  *
998  * This routine can always use better heuristics.
999  */
1000 void
1001 uvm_pageout(void *arg)
1002 {
1003 	struct vm_page *pg;
1004 	struct pool *pp, *pp_first;
1005 	int cleaned, skip, skipped;
1006 	bool succ;
1007 	bool lockrunning;
1008 
1009 	mutex_enter(&pdaemonmtx);
1010 	for (;;) {
1011 		if (!NEED_PAGEDAEMON()) {
1012 			kernel_map->flags &= ~VM_MAP_WANTVA;
1013 		}
1014 
1015 		if (pdaemon_waiters) {
1016 			pdaemon_waiters = 0;
1017 			cv_broadcast(&oomwait);
1018 		}
1019 
1020 		cv_wait(&pdaemoncv, &pdaemonmtx);
1021 		uvmexp.pdwoke++;
1022 
1023 		/* tell the world that we are hungry */
1024 		kernel_map->flags |= VM_MAP_WANTVA;
1025 		mutex_exit(&pdaemonmtx);
1026 
1027 		/*
1028 		 * step one: reclaim the page cache.  this should give
1029 		 * us the biggest earnings since whole pages are released
1030 		 * into backing memory.
1031 		 */
1032 		pool_cache_reclaim(&pagecache);
1033 		if (!NEED_PAGEDAEMON()) {
1034 			mutex_enter(&pdaemonmtx);
1035 			continue;
1036 		}
1037 
1038 		/*
1039 		 * Ok, so that didn't help.  Next, try to hunt memory
1040 		 * by pushing out vnode pages.  The pages might contain
1041 		 * useful cached data, but we need the memory.
1042 		 */
1043 		cleaned = 0;
1044 		skip = 0;
1045 		lockrunning = false;
1046  again:
1047 		mutex_enter(&uvm_pageqlock);
1048 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1049 			skipped = 0;
1050 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1051 
1052 				/*
1053 				 * skip over pages we _might_ have tried
1054 				 * to handle earlier.  they might not be
1055 				 * exactly the same ones, but I'm not too
1056 				 * concerned.
1057 				 */
1058 				while (skipped++ < skip)
1059 					continue;
1060 
1061 				if (processpage(pg, &lockrunning)) {
1062 					cleaned++;
1063 					goto again;
1064 				}
1065 
1066 				skip++;
1067 			}
1068 			break;
1069 		}
1070 		mutex_exit(&uvm_pageqlock);
1071 
1072 		/*
1073 		 * Ok, someone is running with an object lock held.
1074 		 * We want to yield the host CPU to make sure the
1075 		 * thread is not parked on the host.  Since sched_yield()
1076 		 * doesn't appear to do anything on NetBSD, nanosleep
1077 		 * for the smallest possible time and hope we're back in
1078 		 * the game soon.
1079 		 */
1080 		if (cleaned == 0 && lockrunning) {
1081 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1082 
1083 			lockrunning = false;
1084 			skip = 0;
1085 
1086 			/* and here we go again */
1087 			goto again;
1088 		}
1089 
1090 		/*
1091 		 * And of course we need to reclaim the page cache
1092 		 * again to actually release memory.
1093 		 */
1094 		pool_cache_reclaim(&pagecache);
1095 		if (!NEED_PAGEDAEMON()) {
1096 			mutex_enter(&pdaemonmtx);
1097 			continue;
1098 		}
1099 
1100 		/*
1101 		 * And then drain the pools.  Wipe them out ... all of them.
1102 		 */
1103 		for (pp_first = NULL;;) {
1104 			if (rump_vfs_drainbufs)
1105 				rump_vfs_drainbufs(10 /* XXX: estimate! */);
1106 
1107 			succ = pool_drain(&pp);
1108 			if (succ || pp == pp_first)
1109 				break;
1110 
1111 			if (pp_first == NULL)
1112 				pp_first = pp;
1113 		}
1114 
1115 		/*
1116 		 * Need to use PYEC on our bag of tricks.
1117 		 * Unfortunately, the wife just borrowed it.
1118 		 */
1119 
1120 		mutex_enter(&pdaemonmtx);
1121 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1122 		    uvmexp.paging == 0) {
1123 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
1124 			    "memory ... sleeping (deadlock?)\n");
1125 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1126 		}
1127 	}
1128 
1129 	panic("you can swap out any time you like, but you can never leave");
1130 }
1131 
1132 void
1133 uvm_kick_pdaemon()
1134 {
1135 
1136 	/*
1137 	 * Wake up the diabolical pagedaemon director if we are over
1138 	 * 90% of the memory limit.  This is a complete and utter
1139 	 * stetson-harrison decision which you are allowed to finetune.
1140 	 * Don't bother locking.  If we have some unflushed caches,
1141 	 * other waker-uppers will deal with the issue.
1142 	 */
1143 	if (NEED_PAGEDAEMON()) {
1144 		cv_signal(&pdaemoncv);
1145 	}
1146 }
1147 
1148 void *
1149 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1150 {
1151 	unsigned long newmem;
1152 	void *rv;
1153 	int error;
1154 
1155 	uvm_kick_pdaemon(); /* ouch */
1156 
1157 	/* first we must be within the limit */
1158  limitagain:
1159 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1160 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1161 		if (newmem > rump_physmemlimit) {
1162 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1163 			if (!waitok) {
1164 				return NULL;
1165 			}
1166 			uvm_wait(wmsg);
1167 			goto limitagain;
1168 		}
1169 	}
1170 
1171 	/* second, we must get something from the backend */
1172  again:
1173 	error = rumpuser_malloc(howmuch, alignment, &rv);
1174 	if (__predict_false(error && waitok)) {
1175 		uvm_wait(wmsg);
1176 		goto again;
1177 	}
1178 
1179 	return rv;
1180 }
1181 
1182 void
1183 rump_hyperfree(void *what, size_t size)
1184 {
1185 
1186 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1187 		atomic_add_long(&curphysmem, -size);
1188 	}
1189 	rumpuser_free(what, size);
1190 }
1191 
1192 void
1193 uvm_swap_shutdown(struct lwp *lwp)
1194 {
1195 }
1196