xref: /netbsd-src/sys/rump/librump/rumpkern/vm.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /*	$NetBSD: vm.c,v 1.156 2014/04/25 13:20:45 pooka Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Development of this software was supported by
7  * The Finnish Cultural Foundation and the Research Foundation of
8  * The Helsinki University of Technology.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * Virtual memory emulation routines.
34  */
35 
36 /*
37  * XXX: we abuse pg->uanon for the virtual address of the storage
38  * for each page.  phys_addr would fit the job description better,
39  * except that it will create unnecessary lossage on some platforms
40  * due to not being a pointer type.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.156 2014/04/25 13:20:45 pooka Exp $");
45 
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/vmem.h>
52 #include <sys/mman.h>
53 #include <sys/null.h>
54 #include <sys/vnode.h>
55 
56 #include <machine/pmap.h>
57 
58 #include <rump/rumpuser.h>
59 
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_ddb.h>
62 #include <uvm/uvm_pdpolicy.h>
63 #include <uvm/uvm_prot.h>
64 #include <uvm/uvm_readahead.h>
65 
66 #include "rump_private.h"
67 #include "rump_vfs_private.h"
68 
69 kmutex_t uvm_pageqlock; /* non-free page lock */
70 kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
71 kmutex_t uvm_swap_data_lock;
72 
73 struct uvmexp uvmexp;
74 struct uvm uvm;
75 
76 #ifdef __uvmexp_pagesize
77 const int * const uvmexp_pagesize = &uvmexp.pagesize;
78 const int * const uvmexp_pagemask = &uvmexp.pagemask;
79 const int * const uvmexp_pageshift = &uvmexp.pageshift;
80 #endif
81 
82 struct vm_map rump_vmmap;
83 
84 static struct vm_map kernel_map_store;
85 struct vm_map *kernel_map = &kernel_map_store;
86 
87 static struct vm_map module_map_store;
88 extern struct vm_map *module_map;
89 
90 vmem_t *kmem_arena;
91 vmem_t *kmem_va_arena;
92 
93 static unsigned int pdaemon_waiters;
94 static kmutex_t pdaemonmtx;
95 static kcondvar_t pdaemoncv, oomwait;
96 
97 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
98 static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
99 static unsigned long curphysmem;
100 static unsigned long dddlim;		/* 90% of memory limit used */
101 #define NEED_PAGEDAEMON() \
102     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
103 
104 /*
105  * Try to free two pages worth of pages from objects.
106  * If this succesfully frees a full page cache page, we'll
107  * free the released page plus PAGE_SIZE/sizeof(vm_page).
108  */
109 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
110 
111 /*
112  * Keep a list of least recently used pages.  Since the only way a
113  * rump kernel can "access" a page is via lookup, we put the page
114  * at the back of queue every time a lookup for it is done.  If the
115  * page is in front of this global queue and we're short of memory,
116  * it's a candidate for pageout.
117  */
118 static struct pglist vmpage_lruqueue;
119 static unsigned vmpage_onqueue;
120 
121 static int
122 pg_compare_key(void *ctx, const void *n, const void *key)
123 {
124 	voff_t a = ((const struct vm_page *)n)->offset;
125 	voff_t b = *(const voff_t *)key;
126 
127 	if (a < b)
128 		return -1;
129 	else if (a > b)
130 		return 1;
131 	else
132 		return 0;
133 }
134 
135 static int
136 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
137 {
138 
139 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
140 }
141 
142 const rb_tree_ops_t uvm_page_tree_ops = {
143 	.rbto_compare_nodes = pg_compare_nodes,
144 	.rbto_compare_key = pg_compare_key,
145 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
146 	.rbto_context = NULL
147 };
148 
149 /*
150  * vm pages
151  */
152 
153 static int
154 pgctor(void *arg, void *obj, int flags)
155 {
156 	struct vm_page *pg = obj;
157 
158 	memset(pg, 0, sizeof(*pg));
159 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
160 	    (flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
161 	return pg->uanon == NULL;
162 }
163 
164 static void
165 pgdtor(void *arg, void *obj)
166 {
167 	struct vm_page *pg = obj;
168 
169 	rump_hyperfree(pg->uanon, PAGE_SIZE);
170 }
171 
172 static struct pool_cache pagecache;
173 
174 /*
175  * Called with the object locked.  We don't support anons.
176  */
177 struct vm_page *
178 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
179 	int flags, int strat, int free_list)
180 {
181 	struct vm_page *pg;
182 
183 	KASSERT(uobj && mutex_owned(uobj->vmobjlock));
184 	KASSERT(anon == NULL);
185 
186 	pg = pool_cache_get(&pagecache, PR_NOWAIT);
187 	if (__predict_false(pg == NULL)) {
188 		return NULL;
189 	}
190 
191 	pg->offset = off;
192 	pg->uobject = uobj;
193 
194 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
195 	if (flags & UVM_PGA_ZERO) {
196 		uvm_pagezero(pg);
197 	}
198 
199 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
200 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
201 
202 	/*
203 	 * Don't put anons on the LRU page queue.  We can't flush them
204 	 * (there's no concept of swap in a rump kernel), so no reason
205 	 * to bother with them.
206 	 */
207 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
208 		atomic_inc_uint(&vmpage_onqueue);
209 		mutex_enter(&uvm_pageqlock);
210 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
211 		mutex_exit(&uvm_pageqlock);
212 	}
213 
214 	uobj->uo_npages++;
215 
216 	return pg;
217 }
218 
219 /*
220  * Release a page.
221  *
222  * Called with the vm object locked.
223  */
224 void
225 uvm_pagefree(struct vm_page *pg)
226 {
227 	struct uvm_object *uobj = pg->uobject;
228 
229 	KASSERT(mutex_owned(&uvm_pageqlock));
230 	KASSERT(mutex_owned(uobj->vmobjlock));
231 
232 	if (pg->flags & PG_WANTED)
233 		wakeup(pg);
234 
235 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
236 
237 	uobj->uo_npages--;
238 	rb_tree_remove_node(&uobj->rb_tree, pg);
239 
240 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
241 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
242 		atomic_dec_uint(&vmpage_onqueue);
243 	}
244 
245 	pool_cache_put(&pagecache, pg);
246 }
247 
248 void
249 uvm_pagezero(struct vm_page *pg)
250 {
251 
252 	pg->flags &= ~PG_CLEAN;
253 	memset((void *)pg->uanon, 0, PAGE_SIZE);
254 }
255 
256 /*
257  * uvm_page_locked_p: return true if object associated with page is
258  * locked.  this is a weak check for runtime assertions only.
259  */
260 
261 bool
262 uvm_page_locked_p(struct vm_page *pg)
263 {
264 
265 	return mutex_owned(pg->uobject->vmobjlock);
266 }
267 
268 /*
269  * Misc routines
270  */
271 
272 static kmutex_t pagermtx;
273 
274 void
275 uvm_init(void)
276 {
277 	char buf[64];
278 
279 	if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
280 		unsigned long tmp;
281 		char *ep;
282 		int mult;
283 
284 		tmp = strtoul(buf, &ep, 10);
285 		if (strlen(ep) > 1)
286 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
287 
288 		/* mini-dehumanize-number */
289 		mult = 1;
290 		switch (*ep) {
291 		case 'k':
292 			mult = 1024;
293 			break;
294 		case 'm':
295 			mult = 1024*1024;
296 			break;
297 		case 'g':
298 			mult = 1024*1024*1024;
299 			break;
300 		case 0:
301 			break;
302 		default:
303 			panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
304 		}
305 		rump_physmemlimit = tmp * mult;
306 
307 		if (rump_physmemlimit / mult != tmp)
308 			panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
309 		/* it's not like we'd get far with, say, 1 byte, but ... */
310 		if (rump_physmemlimit < 1024*1024)
311 			printf("uvm_init: WARNING: <1MB RAM limit, "
312 			    "hope you know what you're doing\n");
313 
314 		/* reserve some memory for the pager */
315 		pdlimit = rump_physmemlimit;
316 		rump_physmemlimit -= 2*MAXPHYS;
317 
318 #define HUMANIZE_BYTES 9
319 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
320 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
321 #undef HUMANIZE_BYTES
322 		dddlim = 9 * (rump_physmemlimit / 10);
323 	} else {
324 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
325 	}
326 	aprint_verbose("total memory = %s\n", buf);
327 
328 	TAILQ_INIT(&vmpage_lruqueue);
329 
330 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
331 
332 #ifndef __uvmexp_pagesize
333 	uvmexp.pagesize = PAGE_SIZE;
334 	uvmexp.pagemask = PAGE_MASK;
335 	uvmexp.pageshift = PAGE_SHIFT;
336 #else
337 #define FAKE_PAGE_SHIFT 12
338 	uvmexp.pageshift = FAKE_PAGE_SHIFT;
339 	uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
340 	uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
341 #undef FAKE_PAGE_SHIFT
342 #endif
343 
344 	mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
345 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
346 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
347 
348 	/* just to appease linkage */
349 	mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
350 
351 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
352 	cv_init(&pdaemoncv, "pdaemon");
353 	cv_init(&oomwait, "oomwait");
354 
355 	module_map = &module_map_store;
356 
357 	kernel_map->pmap = pmap_kernel();
358 
359 	pool_subsystem_init();
360 
361 	kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
362 	    NULL, NULL, NULL,
363 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
364 
365 	vmem_subsystem_init(kmem_arena);
366 
367 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
368 	    vmem_alloc, vmem_free, kmem_arena,
369 	    8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
370 
371 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
372 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
373 }
374 
375 void
376 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
377     bool topdown)
378 {
379 
380 	vm->vm_map.pmap = pmap_kernel();
381 	vm->vm_refcnt = 1;
382 }
383 
384 void
385 uvm_pagewire(struct vm_page *pg)
386 {
387 
388 	/* nada */
389 }
390 
391 void
392 uvm_pageunwire(struct vm_page *pg)
393 {
394 
395 	/* nada */
396 }
397 
398 /* where's your schmonz now? */
399 #define PUNLIMIT(a)	\
400 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
401 void
402 uvm_init_limits(struct proc *p)
403 {
404 
405 #ifndef DFLSSIZ
406 #define DFLSSIZ (16*1024*1024)
407 #endif
408 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
409 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
410 	PUNLIMIT(RLIMIT_DATA);
411 	PUNLIMIT(RLIMIT_RSS);
412 	PUNLIMIT(RLIMIT_AS);
413 	/* nice, cascade */
414 }
415 #undef PUNLIMIT
416 
417 /*
418  * This satisfies the "disgusting mmap hack" used by proplib.
419  * We probably should grow some more assertables to make sure we're
420  * not satisfying anything we shouldn't be satisfying.
421  */
422 int
423 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
424 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
425 {
426 	void *uaddr;
427 	int error;
428 
429 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
430 		panic("uvm_mmap() variant unsupported");
431 	if (flags != (MAP_PRIVATE | MAP_ANON))
432 		panic("uvm_mmap() variant unsupported");
433 
434 	/* no reason in particular, but cf. uvm_default_mapaddr() */
435 	if (*addr != 0)
436 		panic("uvm_mmap() variant unsupported");
437 
438 	if (RUMP_LOCALPROC_P(curproc)) {
439 		error = rumpuser_anonmmap(NULL, size, 0, 0, &uaddr);
440 	} else {
441 		error = rumpuser_sp_anonmmap(curproc->p_vmspace->vm_map.pmap,
442 		    size, &uaddr);
443 	}
444 	if (error)
445 		return error;
446 
447 	*addr = (vaddr_t)uaddr;
448 	return 0;
449 }
450 
451 struct pagerinfo {
452 	vaddr_t pgr_kva;
453 	int pgr_npages;
454 	struct vm_page **pgr_pgs;
455 	bool pgr_read;
456 
457 	LIST_ENTRY(pagerinfo) pgr_entries;
458 };
459 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
460 
461 /*
462  * Pager "map" in routine.  Instead of mapping, we allocate memory
463  * and copy page contents there.  Not optimal or even strictly
464  * correct (the caller might modify the page contents after mapping
465  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
466  */
467 vaddr_t
468 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
469 {
470 	struct pagerinfo *pgri;
471 	vaddr_t curkva;
472 	int i;
473 
474 	/* allocate structures */
475 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
476 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
477 	pgri->pgr_npages = npages;
478 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
479 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
480 
481 	/* copy contents to "mapped" memory */
482 	for (i = 0, curkva = pgri->pgr_kva;
483 	    i < npages;
484 	    i++, curkva += PAGE_SIZE) {
485 		/*
486 		 * We need to copy the previous contents of the pages to
487 		 * the window even if we are reading from the
488 		 * device, since the device might not fill the contents of
489 		 * the full mapped range and we will end up corrupting
490 		 * data when we unmap the window.
491 		 */
492 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
493 		pgri->pgr_pgs[i] = pgs[i];
494 	}
495 
496 	mutex_enter(&pagermtx);
497 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
498 	mutex_exit(&pagermtx);
499 
500 	return pgri->pgr_kva;
501 }
502 
503 /*
504  * map out the pager window.  return contents from VA to page storage
505  * and free structures.
506  *
507  * Note: does not currently support partial frees
508  */
509 void
510 uvm_pagermapout(vaddr_t kva, int npages)
511 {
512 	struct pagerinfo *pgri;
513 	vaddr_t curkva;
514 	int i;
515 
516 	mutex_enter(&pagermtx);
517 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
518 		if (pgri->pgr_kva == kva)
519 			break;
520 	}
521 	KASSERT(pgri);
522 	if (pgri->pgr_npages != npages)
523 		panic("uvm_pagermapout: partial unmapping not supported");
524 	LIST_REMOVE(pgri, pgr_entries);
525 	mutex_exit(&pagermtx);
526 
527 	if (pgri->pgr_read) {
528 		for (i = 0, curkva = pgri->pgr_kva;
529 		    i < pgri->pgr_npages;
530 		    i++, curkva += PAGE_SIZE) {
531 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
532 		}
533 	}
534 
535 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
536 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
537 	kmem_free(pgri, sizeof(*pgri));
538 }
539 
540 /*
541  * convert va in pager window to page structure.
542  * XXX: how expensive is this (global lock, list traversal)?
543  */
544 struct vm_page *
545 uvm_pageratop(vaddr_t va)
546 {
547 	struct pagerinfo *pgri;
548 	struct vm_page *pg = NULL;
549 	int i;
550 
551 	mutex_enter(&pagermtx);
552 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
553 		if (pgri->pgr_kva <= va
554 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
555 			break;
556 	}
557 	if (pgri) {
558 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
559 		pg = pgri->pgr_pgs[i];
560 	}
561 	mutex_exit(&pagermtx);
562 
563 	return pg;
564 }
565 
566 /*
567  * Called with the vm object locked.
568  *
569  * Put vnode object pages at the end of the access queue to indicate
570  * they have been recently accessed and should not be immediate
571  * candidates for pageout.  Do not do this for lookups done by
572  * the pagedaemon to mimic pmap_kentered mappings which don't track
573  * access information.
574  */
575 struct vm_page *
576 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
577 {
578 	struct vm_page *pg;
579 	bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
580 
581 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
582 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
583 		mutex_enter(&uvm_pageqlock);
584 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
585 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
586 		mutex_exit(&uvm_pageqlock);
587 	}
588 
589 	return pg;
590 }
591 
592 void
593 uvm_page_unbusy(struct vm_page **pgs, int npgs)
594 {
595 	struct vm_page *pg;
596 	int i;
597 
598 	KASSERT(npgs > 0);
599 	KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
600 
601 	for (i = 0; i < npgs; i++) {
602 		pg = pgs[i];
603 		if (pg == NULL)
604 			continue;
605 
606 		KASSERT(pg->flags & PG_BUSY);
607 		if (pg->flags & PG_WANTED)
608 			wakeup(pg);
609 		if (pg->flags & PG_RELEASED)
610 			uvm_pagefree(pg);
611 		else
612 			pg->flags &= ~(PG_WANTED|PG_BUSY);
613 	}
614 }
615 
616 void
617 uvm_estimatepageable(int *active, int *inactive)
618 {
619 
620 	/* XXX: guessing game */
621 	*active = 1024;
622 	*inactive = 1024;
623 }
624 
625 bool
626 vm_map_starved_p(struct vm_map *map)
627 {
628 
629 	if (map->flags & VM_MAP_WANTVA)
630 		return true;
631 
632 	return false;
633 }
634 
635 int
636 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
637 {
638 
639 	panic("%s: unimplemented", __func__);
640 }
641 
642 void
643 uvm_unloan(void *v, int npages, int flags)
644 {
645 
646 	panic("%s: unimplemented", __func__);
647 }
648 
649 int
650 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
651 	struct vm_page **opp)
652 {
653 
654 	return EBUSY;
655 }
656 
657 struct vm_page *
658 uvm_loanbreak(struct vm_page *pg)
659 {
660 
661 	panic("%s: unimplemented", __func__);
662 }
663 
664 void
665 ubc_purge(struct uvm_object *uobj)
666 {
667 
668 }
669 
670 vaddr_t
671 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
672 {
673 
674 	return 0;
675 }
676 
677 int
678 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
679 	vm_prot_t prot, bool set_max)
680 {
681 
682 	return EOPNOTSUPP;
683 }
684 
685 /*
686  * UVM km
687  */
688 
689 vaddr_t
690 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
691 {
692 	void *rv, *desired = NULL;
693 	int alignbit, error;
694 
695 #ifdef __x86_64__
696 	/*
697 	 * On amd64, allocate all module memory from the lowest 2GB.
698 	 * This is because NetBSD kernel modules are compiled
699 	 * with -mcmodel=kernel and reserve only 4 bytes for
700 	 * offsets.  If we load code compiled with -mcmodel=kernel
701 	 * anywhere except the lowest or highest 2GB, it will not
702 	 * work.  Since userspace does not have access to the highest
703 	 * 2GB, use the lowest 2GB.
704 	 *
705 	 * Note: this assumes the rump kernel resides in
706 	 * the lowest 2GB as well.
707 	 *
708 	 * Note2: yes, it's a quick hack, but since this the only
709 	 * place where we care about the map we're allocating from,
710 	 * just use a simple "if" instead of coming up with a fancy
711 	 * generic solution.
712 	 */
713 	if (map == module_map) {
714 		desired = (void *)(0x80000000 - size);
715 	}
716 #endif
717 
718 	if (__predict_false(map == module_map)) {
719 		alignbit = 0;
720 		if (align) {
721 			alignbit = ffs(align)-1;
722 		}
723 		error = rumpuser_anonmmap(desired, size, alignbit,
724 		    flags & UVM_KMF_EXEC, &rv);
725 	} else {
726 		error = rumpuser_malloc(size, align, &rv);
727 	}
728 
729 	if (error) {
730 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
731 			return 0;
732 		else
733 			panic("uvm_km_alloc failed");
734 	}
735 
736 	if (flags & UVM_KMF_ZERO)
737 		memset(rv, 0, size);
738 
739 	return (vaddr_t)rv;
740 }
741 
742 void
743 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
744 {
745 
746 	if (__predict_false(map == module_map))
747 		rumpuser_unmap((void *)vaddr, size);
748 	else
749 		rumpuser_free((void *)vaddr, size);
750 }
751 
752 struct vm_map *
753 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
754 	vsize_t size, int pageable, bool fixed, struct vm_map *submap)
755 {
756 
757 	return (struct vm_map *)417416;
758 }
759 
760 int
761 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
762     vmem_addr_t *addr)
763 {
764 	vaddr_t va;
765 	va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
766 	    (flags & VM_SLEEP), "kmalloc");
767 
768 	if (va) {
769 		*addr = va;
770 		return 0;
771 	} else {
772 		return ENOMEM;
773 	}
774 }
775 
776 void
777 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
778 {
779 
780 	rump_hyperfree((void *)addr, size);
781 }
782 
783 /*
784  * VM space locking routines.  We don't really have to do anything,
785  * since the pages are always "wired" (both local and remote processes).
786  */
787 int
788 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
789 {
790 
791 	return 0;
792 }
793 
794 void
795 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
796 {
797 
798 }
799 
800 /*
801  * For the local case the buffer mappers don't need to do anything.
802  * For the remote case we need to reserve space and copy data in or
803  * out, depending on B_READ/B_WRITE.
804  */
805 int
806 vmapbuf(struct buf *bp, vsize_t len)
807 {
808 	int error = 0;
809 
810 	bp->b_saveaddr = bp->b_data;
811 
812 	/* remote case */
813 	if (!RUMP_LOCALPROC_P(curproc)) {
814 		bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
815 		if (BUF_ISWRITE(bp)) {
816 			error = copyin(bp->b_saveaddr, bp->b_data, len);
817 			if (error) {
818 				rump_hyperfree(bp->b_data, len);
819 				bp->b_data = bp->b_saveaddr;
820 				bp->b_saveaddr = 0;
821 			}
822 		}
823 	}
824 
825 	return error;
826 }
827 
828 void
829 vunmapbuf(struct buf *bp, vsize_t len)
830 {
831 
832 	/* remote case */
833 	if (!RUMP_LOCALPROC_P(bp->b_proc)) {
834 		if (BUF_ISREAD(bp)) {
835 			bp->b_error = copyout_proc(bp->b_proc,
836 			    bp->b_data, bp->b_saveaddr, len);
837 		}
838 		rump_hyperfree(bp->b_data, len);
839 	}
840 
841 	bp->b_data = bp->b_saveaddr;
842 	bp->b_saveaddr = 0;
843 }
844 
845 void
846 uvmspace_addref(struct vmspace *vm)
847 {
848 
849 	/*
850 	 * No dynamically allocated vmspaces exist.
851 	 */
852 }
853 
854 void
855 uvmspace_free(struct vmspace *vm)
856 {
857 
858 	/* nothing for now */
859 }
860 
861 /*
862  * page life cycle stuff.  it really doesn't exist, so just stubs.
863  */
864 
865 void
866 uvm_pageactivate(struct vm_page *pg)
867 {
868 
869 	/* nada */
870 }
871 
872 void
873 uvm_pagedeactivate(struct vm_page *pg)
874 {
875 
876 	/* nada */
877 }
878 
879 void
880 uvm_pagedequeue(struct vm_page *pg)
881 {
882 
883 	/* nada*/
884 }
885 
886 void
887 uvm_pageenqueue(struct vm_page *pg)
888 {
889 
890 	/* nada */
891 }
892 
893 void
894 uvmpdpol_anfree(struct vm_anon *an)
895 {
896 
897 	/* nada */
898 }
899 
900 /*
901  * Physical address accessors.
902  */
903 
904 struct vm_page *
905 uvm_phys_to_vm_page(paddr_t pa)
906 {
907 
908 	return NULL;
909 }
910 
911 paddr_t
912 uvm_vm_page_to_phys(const struct vm_page *pg)
913 {
914 
915 	return 0;
916 }
917 
918 vaddr_t
919 uvm_uarea_alloc(void)
920 {
921 
922 	/* non-zero */
923 	return (vaddr_t)11;
924 }
925 
926 void
927 uvm_uarea_free(vaddr_t uarea)
928 {
929 
930 	/* nata, so creamy */
931 }
932 
933 /*
934  * Routines related to the Page Baroness.
935  */
936 
937 void
938 uvm_wait(const char *msg)
939 {
940 
941 	if (__predict_false(rump_threads == 0))
942 		panic("pagedaemon missing (RUMP_THREADS = 0)");
943 
944 	if (curlwp == uvm.pagedaemon_lwp) {
945 		/* is it possible for us to later get memory? */
946 		if (!uvmexp.paging)
947 			panic("pagedaemon out of memory");
948 	}
949 
950 	mutex_enter(&pdaemonmtx);
951 	pdaemon_waiters++;
952 	cv_signal(&pdaemoncv);
953 	cv_wait(&oomwait, &pdaemonmtx);
954 	mutex_exit(&pdaemonmtx);
955 }
956 
957 void
958 uvm_pageout_start(int npages)
959 {
960 
961 	mutex_enter(&pdaemonmtx);
962 	uvmexp.paging += npages;
963 	mutex_exit(&pdaemonmtx);
964 }
965 
966 void
967 uvm_pageout_done(int npages)
968 {
969 
970 	if (!npages)
971 		return;
972 
973 	mutex_enter(&pdaemonmtx);
974 	KASSERT(uvmexp.paging >= npages);
975 	uvmexp.paging -= npages;
976 
977 	if (pdaemon_waiters) {
978 		pdaemon_waiters = 0;
979 		cv_broadcast(&oomwait);
980 	}
981 	mutex_exit(&pdaemonmtx);
982 }
983 
984 static bool
985 processpage(struct vm_page *pg, bool *lockrunning)
986 {
987 	struct uvm_object *uobj;
988 
989 	uobj = pg->uobject;
990 	if (mutex_tryenter(uobj->vmobjlock)) {
991 		if ((pg->flags & PG_BUSY) == 0) {
992 			mutex_exit(&uvm_pageqlock);
993 			uobj->pgops->pgo_put(uobj, pg->offset,
994 			    pg->offset + PAGE_SIZE,
995 			    PGO_CLEANIT|PGO_FREE);
996 			KASSERT(!mutex_owned(uobj->vmobjlock));
997 			return true;
998 		} else {
999 			mutex_exit(uobj->vmobjlock);
1000 		}
1001 	} else if (*lockrunning == false && ncpu > 1) {
1002 		CPU_INFO_ITERATOR cii;
1003 		struct cpu_info *ci;
1004 		struct lwp *l;
1005 
1006 		l = mutex_owner(uobj->vmobjlock);
1007 		for (CPU_INFO_FOREACH(cii, ci)) {
1008 			if (ci->ci_curlwp == l) {
1009 				*lockrunning = true;
1010 				break;
1011 			}
1012 		}
1013 	}
1014 
1015 	return false;
1016 }
1017 
1018 /*
1019  * The Diabolical pageDaemon Director (DDD).
1020  *
1021  * This routine can always use better heuristics.
1022  */
1023 void
1024 uvm_pageout(void *arg)
1025 {
1026 	struct vm_page *pg;
1027 	struct pool *pp, *pp_first;
1028 	int cleaned, skip, skipped;
1029 	bool succ;
1030 	bool lockrunning;
1031 
1032 	mutex_enter(&pdaemonmtx);
1033 	for (;;) {
1034 		if (!NEED_PAGEDAEMON()) {
1035 			kernel_map->flags &= ~VM_MAP_WANTVA;
1036 		}
1037 
1038 		if (pdaemon_waiters) {
1039 			pdaemon_waiters = 0;
1040 			cv_broadcast(&oomwait);
1041 		}
1042 
1043 		cv_wait(&pdaemoncv, &pdaemonmtx);
1044 		uvmexp.pdwoke++;
1045 
1046 		/* tell the world that we are hungry */
1047 		kernel_map->flags |= VM_MAP_WANTVA;
1048 		mutex_exit(&pdaemonmtx);
1049 
1050 		/*
1051 		 * step one: reclaim the page cache.  this should give
1052 		 * us the biggest earnings since whole pages are released
1053 		 * into backing memory.
1054 		 */
1055 		pool_cache_reclaim(&pagecache);
1056 		if (!NEED_PAGEDAEMON()) {
1057 			mutex_enter(&pdaemonmtx);
1058 			continue;
1059 		}
1060 
1061 		/*
1062 		 * Ok, so that didn't help.  Next, try to hunt memory
1063 		 * by pushing out vnode pages.  The pages might contain
1064 		 * useful cached data, but we need the memory.
1065 		 */
1066 		cleaned = 0;
1067 		skip = 0;
1068 		lockrunning = false;
1069  again:
1070 		mutex_enter(&uvm_pageqlock);
1071 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
1072 			skipped = 0;
1073 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
1074 
1075 				/*
1076 				 * skip over pages we _might_ have tried
1077 				 * to handle earlier.  they might not be
1078 				 * exactly the same ones, but I'm not too
1079 				 * concerned.
1080 				 */
1081 				while (skipped++ < skip)
1082 					continue;
1083 
1084 				if (processpage(pg, &lockrunning)) {
1085 					cleaned++;
1086 					goto again;
1087 				}
1088 
1089 				skip++;
1090 			}
1091 			break;
1092 		}
1093 		mutex_exit(&uvm_pageqlock);
1094 
1095 		/*
1096 		 * Ok, someone is running with an object lock held.
1097 		 * We want to yield the host CPU to make sure the
1098 		 * thread is not parked on the host.  Since sched_yield()
1099 		 * doesn't appear to do anything on NetBSD, nanosleep
1100 		 * for the smallest possible time and hope we're back in
1101 		 * the game soon.
1102 		 */
1103 		if (cleaned == 0 && lockrunning) {
1104 			rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
1105 
1106 			lockrunning = false;
1107 			skip = 0;
1108 
1109 			/* and here we go again */
1110 			goto again;
1111 		}
1112 
1113 		/*
1114 		 * And of course we need to reclaim the page cache
1115 		 * again to actually release memory.
1116 		 */
1117 		pool_cache_reclaim(&pagecache);
1118 		if (!NEED_PAGEDAEMON()) {
1119 			mutex_enter(&pdaemonmtx);
1120 			continue;
1121 		}
1122 
1123 		/*
1124 		 * And then drain the pools.  Wipe them out ... all of them.
1125 		 */
1126 		for (pp_first = NULL;;) {
1127 			rump_vfs_drainbufs(10 /* XXX: estimate! */);
1128 
1129 			succ = pool_drain(&pp);
1130 			if (succ || pp == pp_first)
1131 				break;
1132 
1133 			if (pp_first == NULL)
1134 				pp_first = pp;
1135 		}
1136 
1137 		/*
1138 		 * Need to use PYEC on our bag of tricks.
1139 		 * Unfortunately, the wife just borrowed it.
1140 		 */
1141 
1142 		mutex_enter(&pdaemonmtx);
1143 		if (!succ && cleaned == 0 && pdaemon_waiters &&
1144 		    uvmexp.paging == 0) {
1145 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
1146 			    "memory ... sleeping (deadlock?)\n");
1147 			cv_timedwait(&pdaemoncv, &pdaemonmtx, hz);
1148 		}
1149 	}
1150 
1151 	panic("you can swap out any time you like, but you can never leave");
1152 }
1153 
1154 void
1155 uvm_kick_pdaemon()
1156 {
1157 
1158 	/*
1159 	 * Wake up the diabolical pagedaemon director if we are over
1160 	 * 90% of the memory limit.  This is a complete and utter
1161 	 * stetson-harrison decision which you are allowed to finetune.
1162 	 * Don't bother locking.  If we have some unflushed caches,
1163 	 * other waker-uppers will deal with the issue.
1164 	 */
1165 	if (NEED_PAGEDAEMON()) {
1166 		cv_signal(&pdaemoncv);
1167 	}
1168 }
1169 
1170 void *
1171 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
1172 {
1173 	const unsigned long thelimit =
1174 	    curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
1175 	unsigned long newmem;
1176 	void *rv;
1177 	int error;
1178 
1179 	uvm_kick_pdaemon(); /* ouch */
1180 
1181 	/* first we must be within the limit */
1182  limitagain:
1183 	if (thelimit != RUMPMEM_UNLIMITED) {
1184 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
1185 		if (newmem > thelimit) {
1186 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
1187 			if (!waitok) {
1188 				return NULL;
1189 			}
1190 			uvm_wait(wmsg);
1191 			goto limitagain;
1192 		}
1193 	}
1194 
1195 	/* second, we must get something from the backend */
1196  again:
1197 	error = rumpuser_malloc(howmuch, alignment, &rv);
1198 	if (__predict_false(error && waitok)) {
1199 		uvm_wait(wmsg);
1200 		goto again;
1201 	}
1202 
1203 	return rv;
1204 }
1205 
1206 void
1207 rump_hyperfree(void *what, size_t size)
1208 {
1209 
1210 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1211 		atomic_add_long(&curphysmem, -size);
1212 	}
1213 	rumpuser_free(what, size);
1214 }
1215