xref: /netbsd-src/sys/rump/librump/rumpkern/locks.c (revision e8bec33be121040b935e764acaa45ddbf4d7353c)
1 /*	$NetBSD: locks.c,v 1.55 2011/12/06 18:04:31 njoly Exp $	*/
2 
3 /*
4  * Copyright (c) 2007-2011 Antti Kantee.  All Rights Reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
16  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.55 2011/12/06 18:04:31 njoly Exp $");
30 
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35 
36 #include <rump/rumpuser.h>
37 
38 #include "rump_private.h"
39 
40 /*
41  * Simple lockdebug.  If it's compiled in, it's always active.
42  * Currently available only for mtx/rwlock.
43  */
44 #ifdef LOCKDEBUG
45 #include <sys/lockdebug.h>
46 
47 static lockops_t mutex_lockops = {
48 	"mutex",
49 	LOCKOPS_SLEEP,
50 	NULL
51 };
52 static lockops_t rw_lockops = {
53 	"rwlock",
54 	LOCKOPS_SLEEP,
55 	NULL
56 };
57 
58 #define ALLOCK(lock, ops)		\
59     lockdebug_alloc(lock, ops, (uintptr_t)__builtin_return_address(0))
60 #define FREELOCK(lock)			\
61     lockdebug_free(lock)
62 #define WANTLOCK(lock, shar, try)	\
63     lockdebug_wantlock(lock, (uintptr_t)__builtin_return_address(0), shar, try)
64 #define LOCKED(lock, shar)		\
65     lockdebug_locked(lock, NULL, (uintptr_t)__builtin_return_address(0), shar)
66 #define UNLOCKED(lock, shar)		\
67     lockdebug_unlocked(lock, (uintptr_t)__builtin_return_address(0), shar)
68 #else
69 #define ALLOCK(a, b)
70 #define FREELOCK(a)
71 #define WANTLOCK(a, b, c)
72 #define LOCKED(a, b)
73 #define UNLOCKED(a, b)
74 #endif
75 
76 /*
77  * We map locks to pthread routines.  The difference between kernel
78  * and rumpuser routines is that while the kernel uses static
79  * storage, rumpuser allocates the object from the heap.  This
80  * indirection is necessary because we don't know the size of
81  * pthread objects here.  It is also beneficial, since we can
82  * be easily compatible with the kernel ABI because all kernel
83  * objects regardless of machine architecture are always at least
84  * the size of a pointer.  The downside, of course, is a performance
85  * penalty.
86  */
87 
88 #define RUMPMTX(mtx) (*(struct rumpuser_mtx **)(mtx))
89 
90 void
91 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
92 {
93 
94 	CTASSERT(sizeof(kmutex_t) >= sizeof(void *));
95 
96 	rumpuser_mutex_init_kmutex((struct rumpuser_mtx **)mtx);
97 	ALLOCK(mtx, &mutex_lockops);
98 }
99 
100 void
101 mutex_destroy(kmutex_t *mtx)
102 {
103 
104 	FREELOCK(mtx);
105 	rumpuser_mutex_destroy(RUMPMTX(mtx));
106 }
107 
108 void
109 mutex_enter(kmutex_t *mtx)
110 {
111 
112 	WANTLOCK(mtx, false, false);
113 	rumpuser_mutex_enter(RUMPMTX(mtx));
114 	LOCKED(mtx, false);
115 }
116 __strong_alias(mutex_spin_enter,mutex_enter);
117 
118 int
119 mutex_tryenter(kmutex_t *mtx)
120 {
121 	int rv;
122 
123 	rv = rumpuser_mutex_tryenter(RUMPMTX(mtx));
124 	if (rv) {
125 		WANTLOCK(mtx, false, true);
126 		LOCKED(mtx, false);
127 	}
128 	return rv;
129 }
130 
131 void
132 mutex_exit(kmutex_t *mtx)
133 {
134 
135 	UNLOCKED(mtx, false);
136 	rumpuser_mutex_exit(RUMPMTX(mtx));
137 }
138 __strong_alias(mutex_spin_exit,mutex_exit);
139 
140 int
141 mutex_owned(kmutex_t *mtx)
142 {
143 
144 	return mutex_owner(mtx) == curlwp;
145 }
146 
147 struct lwp *
148 mutex_owner(kmutex_t *mtx)
149 {
150 
151 	return rumpuser_mutex_owner(RUMPMTX(mtx));
152 }
153 
154 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw))
155 
156 /* reader/writer locks */
157 
158 void
159 rw_init(krwlock_t *rw)
160 {
161 
162 	CTASSERT(sizeof(krwlock_t) >= sizeof(void *));
163 
164 	rumpuser_rw_init((struct rumpuser_rw **)rw);
165 	ALLOCK(rw, &rw_lockops);
166 }
167 
168 void
169 rw_destroy(krwlock_t *rw)
170 {
171 
172 	FREELOCK(rw);
173 	rumpuser_rw_destroy(RUMPRW(rw));
174 }
175 
176 void
177 rw_enter(krwlock_t *rw, const krw_t op)
178 {
179 
180 
181 	WANTLOCK(rw, op == RW_READER, false);
182 	rumpuser_rw_enter(RUMPRW(rw), op == RW_WRITER);
183 	LOCKED(rw, op == RW_READER);
184 }
185 
186 int
187 rw_tryenter(krwlock_t *rw, const krw_t op)
188 {
189 	int rv;
190 
191 	rv = rumpuser_rw_tryenter(RUMPRW(rw), op == RW_WRITER);
192 	if (rv) {
193 		WANTLOCK(rw, op == RW_READER, true);
194 		LOCKED(rw, op == RW_READER);
195 	}
196 	return rv;
197 }
198 
199 void
200 rw_exit(krwlock_t *rw)
201 {
202 
203 #ifdef LOCKDEBUG
204 	bool shared = !rw_write_held(rw);
205 
206 	if (shared)
207 		KASSERT(rw_read_held(rw));
208 	UNLOCKED(rw, shared);
209 #endif
210 	rumpuser_rw_exit(RUMPRW(rw));
211 }
212 
213 /* always fails */
214 int
215 rw_tryupgrade(krwlock_t *rw)
216 {
217 
218 	return 0;
219 }
220 
221 void
222 rw_downgrade(krwlock_t *rw)
223 {
224 
225 	/*
226 	 * XXX HACK: How we can downgrade re lock in rump properly.
227 	 */
228 	rw_exit(rw);
229 	rw_enter(rw, RW_READER);
230 	return;
231 }
232 
233 int
234 rw_write_held(krwlock_t *rw)
235 {
236 
237 	return rumpuser_rw_wrheld(RUMPRW(rw));
238 }
239 
240 int
241 rw_read_held(krwlock_t *rw)
242 {
243 
244 	return rumpuser_rw_rdheld(RUMPRW(rw));
245 }
246 
247 int
248 rw_lock_held(krwlock_t *rw)
249 {
250 
251 	return rumpuser_rw_held(RUMPRW(rw));
252 }
253 
254 /* curriculum vitaes */
255 
256 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv))
257 
258 void
259 cv_init(kcondvar_t *cv, const char *msg)
260 {
261 
262 	CTASSERT(sizeof(kcondvar_t) >= sizeof(void *));
263 
264 	rumpuser_cv_init((struct rumpuser_cv **)cv);
265 }
266 
267 void
268 cv_destroy(kcondvar_t *cv)
269 {
270 
271 	rumpuser_cv_destroy(RUMPCV(cv));
272 }
273 
274 static int
275 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts)
276 {
277 	struct lwp *l = curlwp;
278 	int rv;
279 
280 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
281 		/*
282 		 * yield() here, someone might want the cpu
283 		 * to set a condition.  otherwise we'll just
284 		 * loop forever.
285 		 */
286 		yield();
287 		return EINTR;
288 	}
289 
290 	UNLOCKED(mtx, false);
291 
292 	l->l_private = cv;
293 	rv = 0;
294 	if (ts) {
295 		if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx),
296 		    ts->tv_sec, ts->tv_nsec))
297 			rv = EWOULDBLOCK;
298 	} else {
299 		rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx));
300 	}
301 
302 	LOCKED(mtx, false);
303 
304 	/*
305 	 * Check for QEXIT.  if so, we need to wait here until we
306 	 * are allowed to exit.
307 	 */
308 	if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) {
309 		struct proc *p = l->l_proc;
310 
311 		UNLOCKED(mtx, false);
312 		mutex_exit(mtx); /* drop and retake later */
313 
314 		mutex_enter(p->p_lock);
315 		while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) {
316 			/* avoid recursion */
317 			rumpuser_cv_wait(RUMPCV(&p->p_waitcv),
318 			    RUMPMTX(p->p_lock));
319 		}
320 		KASSERT(p->p_sflag & PS_RUMP_LWPEXIT);
321 		mutex_exit(p->p_lock);
322 
323 		/* ok, we can exit and remove "reference" to l->private */
324 
325 		mutex_enter(mtx);
326 		LOCKED(mtx, false);
327 		rv = EINTR;
328 	}
329 	l->l_private = NULL;
330 
331 	return rv;
332 }
333 
334 void
335 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
336 {
337 
338 	if (__predict_false(rump_threads == 0))
339 		panic("cv_wait without threads");
340 	(void) docvwait(cv, mtx, NULL);
341 }
342 
343 int
344 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
345 {
346 
347 	if (__predict_false(rump_threads == 0))
348 		panic("cv_wait without threads");
349 	return docvwait(cv, mtx, NULL);
350 }
351 
352 int
353 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks)
354 {
355 	struct timespec ts, tick;
356 	extern int hz;
357 	int rv;
358 
359 	if (ticks == 0) {
360 		rv = cv_wait_sig(cv, mtx);
361 	} else {
362 		/*
363 		 * XXX: this fetches rump kernel time, but
364 		 * rumpuser_cv_timedwait uses host time.
365 		 */
366 		nanotime(&ts);
367 		tick.tv_sec = ticks / hz;
368 		tick.tv_nsec = (ticks % hz) * (1000000000/hz);
369 		timespecadd(&ts, &tick, &ts);
370 
371 		rv = docvwait(cv, mtx, &ts);
372 	}
373 
374 	return rv;
375 }
376 __strong_alias(cv_timedwait_sig,cv_timedwait);
377 
378 void
379 cv_signal(kcondvar_t *cv)
380 {
381 
382 	rumpuser_cv_signal(RUMPCV(cv));
383 }
384 
385 void
386 cv_broadcast(kcondvar_t *cv)
387 {
388 
389 	rumpuser_cv_broadcast(RUMPCV(cv));
390 }
391 
392 bool
393 cv_has_waiters(kcondvar_t *cv)
394 {
395 
396 	return rumpuser_cv_has_waiters(RUMPCV(cv));
397 }
398 
399 /* this is not much of an attempt, but ... */
400 bool
401 cv_is_valid(kcondvar_t *cv)
402 {
403 
404 	return RUMPCV(cv) != NULL;
405 }
406