1 /* $NetBSD: locks.c,v 1.80 2018/02/05 05:00:48 ozaki-r Exp $ */ 2 3 /* 4 * Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 16 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __KERNEL_RCSID(0, "$NetBSD: locks.c,v 1.80 2018/02/05 05:00:48 ozaki-r Exp $"); 30 31 #include <sys/param.h> 32 #include <sys/kmem.h> 33 #include <sys/mutex.h> 34 #include <sys/rwlock.h> 35 36 #include <rump-sys/kern.h> 37 38 #include <rump/rumpuser.h> 39 40 #ifdef LOCKDEBUG 41 const int rump_lockdebug = 1; 42 #else 43 const int rump_lockdebug = 0; 44 #endif 45 46 /* 47 * Simple lockdebug. If it's compiled in, it's always active. 48 * Currently available only for mtx/rwlock. 49 */ 50 #ifdef LOCKDEBUG 51 #include <sys/lockdebug.h> 52 53 static lockops_t mutex_spin_lockops = { 54 .lo_name = "mutex", 55 .lo_type = LOCKOPS_SPIN, 56 .lo_dump = NULL, 57 }; 58 static lockops_t mutex_adaptive_lockops = { 59 .lo_name = "mutex", 60 .lo_type = LOCKOPS_SLEEP, 61 .lo_dump = NULL, 62 }; 63 static lockops_t rw_lockops = { 64 .lo_name = "rwlock", 65 .lo_type = LOCKOPS_SLEEP, 66 .lo_dump = NULL, 67 }; 68 69 #define ALLOCK(lock, ops, return_address) \ 70 lockdebug_alloc(__func__, __LINE__, lock, ops, \ 71 return_address) 72 #define FREELOCK(lock) \ 73 lockdebug_free(__func__, __LINE__, lock) 74 #define WANTLOCK(lock, shar) \ 75 lockdebug_wantlock(__func__, __LINE__, lock, \ 76 (uintptr_t)__builtin_return_address(0), shar) 77 #define LOCKED(lock, shar) \ 78 lockdebug_locked(__func__, __LINE__, lock, NULL,\ 79 (uintptr_t)__builtin_return_address(0), shar) 80 #define UNLOCKED(lock, shar) \ 81 lockdebug_unlocked(__func__, __LINE__, lock, \ 82 (uintptr_t)__builtin_return_address(0), shar) 83 #define BARRIER(lock, slp) \ 84 lockdebug_barrier(__func__, __LINE__, lock, slp) 85 #else 86 #define ALLOCK(a, b, c) do {} while (0) 87 #define FREELOCK(a) do {} while (0) 88 #define WANTLOCK(a, b) do {} while (0) 89 #define LOCKED(a, b) do {} while (0) 90 #define UNLOCKED(a, b) do {} while (0) 91 #define BARRIER(a, b) do {} while (0) 92 #endif 93 94 /* 95 * We map locks to pthread routines. The difference between kernel 96 * and rumpuser routines is that while the kernel uses static 97 * storage, rumpuser allocates the object from the heap. This 98 * indirection is necessary because we don't know the size of 99 * pthread objects here. It is also beneficial, since we can 100 * be easily compatible with the kernel ABI because all kernel 101 * objects regardless of machine architecture are always at least 102 * the size of a pointer. The downside, of course, is a performance 103 * penalty. 104 */ 105 106 #define RUMPMTX(mtx) (*(struct rumpuser_mtx *const*)(mtx)) 107 108 void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t); 109 void 110 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl, uintptr_t return_address) 111 { 112 int ruflags = RUMPUSER_MTX_KMUTEX; 113 int isspin; 114 115 CTASSERT(sizeof(kmutex_t) >= sizeof(void *)); 116 117 /* 118 * Try to figure out if the caller wanted a spin mutex or 119 * not with this easy set of conditionals. The difference 120 * between a spin mutex and an adaptive mutex for a rump 121 * kernel is that the hypervisor does not relinquish the 122 * rump kernel CPU context for a spin mutex. The 123 * hypervisor itself may block even when "spinning". 124 */ 125 if (type == MUTEX_SPIN) { 126 isspin = 1; 127 } else if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK || 128 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET || 129 ipl == IPL_SOFTSERIAL) { 130 isspin = 0; 131 } else { 132 isspin = 1; 133 } 134 135 if (isspin) 136 ruflags |= RUMPUSER_MTX_SPIN; 137 rumpuser_mutex_init((struct rumpuser_mtx **)mtx, ruflags); 138 if (isspin) 139 ALLOCK(mtx, &mutex_spin_lockops, return_address); 140 else 141 ALLOCK(mtx, &mutex_adaptive_lockops, return_address); 142 } 143 144 void 145 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl) 146 { 147 148 _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0)); 149 } 150 151 void 152 mutex_destroy(kmutex_t *mtx) 153 { 154 155 FREELOCK(mtx); 156 rumpuser_mutex_destroy(RUMPMTX(mtx)); 157 } 158 159 void 160 mutex_enter(kmutex_t *mtx) 161 { 162 163 WANTLOCK(mtx, 0); 164 if (!rumpuser_mutex_spin_p(RUMPMTX(mtx))) 165 BARRIER(mtx, 1); 166 rumpuser_mutex_enter(RUMPMTX(mtx)); 167 LOCKED(mtx, false); 168 } 169 170 void 171 mutex_spin_enter(kmutex_t *mtx) 172 { 173 174 KASSERT(rumpuser_mutex_spin_p(RUMPMTX(mtx))); 175 WANTLOCK(mtx, 0); 176 rumpuser_mutex_enter_nowrap(RUMPMTX(mtx)); 177 LOCKED(mtx, false); 178 } 179 180 int 181 mutex_tryenter(kmutex_t *mtx) 182 { 183 int error; 184 185 error = rumpuser_mutex_tryenter(RUMPMTX(mtx)); 186 if (error == 0) { 187 WANTLOCK(mtx, 0); 188 LOCKED(mtx, false); 189 } 190 return error == 0; 191 } 192 193 void 194 mutex_exit(kmutex_t *mtx) 195 { 196 197 #ifndef LOCKDEBUG 198 KASSERT(mutex_owned(mtx)); 199 #endif 200 UNLOCKED(mtx, false); 201 rumpuser_mutex_exit(RUMPMTX(mtx)); 202 } 203 __strong_alias(mutex_spin_exit,mutex_exit); 204 205 int 206 mutex_ownable(const kmutex_t *mtx) 207 { 208 209 #ifdef LOCKDEBUG 210 WANTLOCK(mtx, -1); 211 #endif 212 return 1; 213 } 214 215 int 216 mutex_owned(const kmutex_t *mtx) 217 { 218 219 return mutex_owner(mtx) == curlwp; 220 } 221 222 lwp_t * 223 mutex_owner(const kmutex_t *mtx) 224 { 225 struct lwp *l; 226 227 rumpuser_mutex_owner(RUMPMTX(mtx), &l); 228 return l; 229 } 230 231 #define RUMPRW(rw) (*(struct rumpuser_rw **)(rw)) 232 233 /* reader/writer locks */ 234 235 static enum rumprwlock 236 krw2rumprw(const krw_t op) 237 { 238 239 switch (op) { 240 case RW_READER: 241 return RUMPUSER_RW_READER; 242 case RW_WRITER: 243 return RUMPUSER_RW_WRITER; 244 default: 245 panic("unknown rwlock type"); 246 } 247 } 248 249 void _rw_init(krwlock_t *, uintptr_t); 250 void 251 _rw_init(krwlock_t *rw, uintptr_t return_address) 252 { 253 254 CTASSERT(sizeof(krwlock_t) >= sizeof(void *)); 255 256 rumpuser_rw_init((struct rumpuser_rw **)rw); 257 ALLOCK(rw, &rw_lockops, return_address); 258 } 259 260 void 261 rw_init(krwlock_t *rw) 262 { 263 264 _rw_init(rw, (uintptr_t)__builtin_return_address(0)); 265 } 266 267 void 268 rw_destroy(krwlock_t *rw) 269 { 270 271 FREELOCK(rw); 272 rumpuser_rw_destroy(RUMPRW(rw)); 273 } 274 275 void 276 rw_enter(krwlock_t *rw, const krw_t op) 277 { 278 279 WANTLOCK(rw, op == RW_READER); 280 BARRIER(rw, 1); 281 rumpuser_rw_enter(krw2rumprw(op), RUMPRW(rw)); 282 LOCKED(rw, op == RW_READER); 283 } 284 285 int 286 rw_tryenter(krwlock_t *rw, const krw_t op) 287 { 288 int error; 289 290 error = rumpuser_rw_tryenter(krw2rumprw(op), RUMPRW(rw)); 291 if (error == 0) { 292 WANTLOCK(rw, op == RW_READER); 293 LOCKED(rw, op == RW_READER); 294 } 295 return error == 0; 296 } 297 298 void 299 rw_exit(krwlock_t *rw) 300 { 301 302 #ifdef LOCKDEBUG 303 bool shared = !rw_write_held(rw); 304 305 if (shared) 306 KASSERT(rw_read_held(rw)); 307 UNLOCKED(rw, shared); 308 #endif 309 rumpuser_rw_exit(RUMPRW(rw)); 310 } 311 312 int 313 rw_tryupgrade(krwlock_t *rw) 314 { 315 int rv; 316 317 rv = rumpuser_rw_tryupgrade(RUMPRW(rw)); 318 if (rv == 0) { 319 UNLOCKED(rw, 1); 320 WANTLOCK(rw, 0); 321 LOCKED(rw, 0); 322 } 323 return rv == 0; 324 } 325 326 void 327 rw_downgrade(krwlock_t *rw) 328 { 329 330 rumpuser_rw_downgrade(RUMPRW(rw)); 331 UNLOCKED(rw, 0); 332 WANTLOCK(rw, 1); 333 LOCKED(rw, 1); 334 } 335 336 int 337 rw_read_held(krwlock_t *rw) 338 { 339 int rv; 340 341 rumpuser_rw_held(RUMPUSER_RW_READER, RUMPRW(rw), &rv); 342 return rv; 343 } 344 345 int 346 rw_write_held(krwlock_t *rw) 347 { 348 int rv; 349 350 rumpuser_rw_held(RUMPUSER_RW_WRITER, RUMPRW(rw), &rv); 351 return rv; 352 } 353 354 int 355 rw_lock_held(krwlock_t *rw) 356 { 357 358 return rw_read_held(rw) || rw_write_held(rw); 359 } 360 361 /* curriculum vitaes */ 362 363 #define RUMPCV(cv) (*(struct rumpuser_cv **)(cv)) 364 365 void 366 cv_init(kcondvar_t *cv, const char *msg) 367 { 368 369 CTASSERT(sizeof(kcondvar_t) >= sizeof(void *)); 370 371 rumpuser_cv_init((struct rumpuser_cv **)cv); 372 } 373 374 void 375 cv_destroy(kcondvar_t *cv) 376 { 377 378 rumpuser_cv_destroy(RUMPCV(cv)); 379 } 380 381 static int 382 docvwait(kcondvar_t *cv, kmutex_t *mtx, struct timespec *ts) 383 { 384 struct lwp *l = curlwp; 385 int rv; 386 387 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) { 388 /* 389 * yield() here, someone might want the cpu 390 * to set a condition. otherwise we'll just 391 * loop forever. 392 */ 393 yield(); 394 return EINTR; 395 } 396 397 UNLOCKED(mtx, false); 398 399 l->l_private = cv; 400 rv = 0; 401 if (ts) { 402 if (rumpuser_cv_timedwait(RUMPCV(cv), RUMPMTX(mtx), 403 ts->tv_sec, ts->tv_nsec)) 404 rv = EWOULDBLOCK; 405 } else { 406 rumpuser_cv_wait(RUMPCV(cv), RUMPMTX(mtx)); 407 } 408 409 LOCKED(mtx, false); 410 411 /* 412 * Check for QEXIT. if so, we need to wait here until we 413 * are allowed to exit. 414 */ 415 if (__predict_false(l->l_flag & LW_RUMP_QEXIT)) { 416 struct proc *p = l->l_proc; 417 418 mutex_exit(mtx); /* drop and retake later */ 419 420 mutex_enter(p->p_lock); 421 while ((p->p_sflag & PS_RUMP_LWPEXIT) == 0) { 422 /* avoid recursion */ 423 rumpuser_cv_wait(RUMPCV(&p->p_waitcv), 424 RUMPMTX(p->p_lock)); 425 } 426 KASSERT(p->p_sflag & PS_RUMP_LWPEXIT); 427 mutex_exit(p->p_lock); 428 429 /* ok, we can exit and remove "reference" to l->private */ 430 431 mutex_enter(mtx); 432 rv = EINTR; 433 } 434 l->l_private = NULL; 435 436 return rv; 437 } 438 439 void 440 cv_wait(kcondvar_t *cv, kmutex_t *mtx) 441 { 442 443 if (__predict_false(rump_threads == 0)) 444 panic("cv_wait without threads"); 445 (void) docvwait(cv, mtx, NULL); 446 } 447 448 int 449 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx) 450 { 451 452 if (__predict_false(rump_threads == 0)) 453 panic("cv_wait without threads"); 454 return docvwait(cv, mtx, NULL); 455 } 456 457 int 458 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int ticks) 459 { 460 struct timespec ts; 461 extern int hz; 462 int rv; 463 464 if (ticks == 0) { 465 rv = cv_wait_sig(cv, mtx); 466 } else { 467 ts.tv_sec = ticks / hz; 468 ts.tv_nsec = (ticks % hz) * (1000000000/hz); 469 rv = docvwait(cv, mtx, &ts); 470 } 471 472 return rv; 473 } 474 __strong_alias(cv_timedwait_sig,cv_timedwait); 475 476 void 477 cv_signal(kcondvar_t *cv) 478 { 479 480 rumpuser_cv_signal(RUMPCV(cv)); 481 } 482 483 void 484 cv_broadcast(kcondvar_t *cv) 485 { 486 487 rumpuser_cv_broadcast(RUMPCV(cv)); 488 } 489 490 bool 491 cv_has_waiters(kcondvar_t *cv) 492 { 493 int rv; 494 495 rumpuser_cv_has_waiters(RUMPCV(cv), &rv); 496 return rv != 0; 497 } 498 499 /* this is not much of an attempt, but ... */ 500 bool 501 cv_is_valid(kcondvar_t *cv) 502 { 503 504 return RUMPCV(cv) != NULL; 505 } 506