1 /* $NetBSD: xform.c,v 1.3 2003/08/01 01:47:45 itojun Exp $ */ 2 /* $FreeBSD: src/sys/opencrypto/xform.c,v 1.1.2.1 2002/11/21 23:34:23 sam Exp $ */ 3 /* $OpenBSD: xform.c,v 1.19 2002/08/16 22:47:25 dhartmei Exp $ */ 4 5 /* 6 * The authors of this code are John Ioannidis (ji@tla.org), 7 * Angelos D. Keromytis (kermit@csd.uch.gr) and 8 * Niels Provos (provos@physnet.uni-hamburg.de). 9 * 10 * This code was written by John Ioannidis for BSD/OS in Athens, Greece, 11 * in November 1995. 12 * 13 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, 14 * by Angelos D. Keromytis. 15 * 16 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis 17 * and Niels Provos. 18 * 19 * Additional features in 1999 by Angelos D. Keromytis. 20 * 21 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, 22 * Angelos D. Keromytis and Niels Provos. 23 * 24 * Copyright (C) 2001, Angelos D. Keromytis. 25 * 26 * Permission to use, copy, and modify this software with or without fee 27 * is hereby granted, provided that this entire notice is included in 28 * all copies of any software which is or includes a copy or 29 * modification of this software. 30 * You may use this code under the GNU public license if you so wish. Please 31 * contribute changes back to the authors under this freer than GPL license 32 * so that we may further the use of strong encryption without limitations to 33 * all. 34 * 35 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 36 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 37 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 38 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 39 * PURPOSE. 40 */ 41 42 #include <sys/cdefs.h> 43 __KERNEL_RCSID(0, "$NetBSD: xform.c,v 1.3 2003/08/01 01:47:45 itojun Exp $"); 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/malloc.h> 48 #include <sys/sysctl.h> 49 #include <sys/errno.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <machine/cpu.h> 53 54 #include <crypto/blowfish/blowfish.h> 55 #include <crypto/des/des.h> 56 57 #include <opencrypto/rmd160.h> 58 #include <opencrypto/blf.h> 59 #include <opencrypto/cast.h> 60 #include <opencrypto/deflate.h> 61 #include <opencrypto/rijndael.h> 62 #include <opencrypto/skipjack.h> 63 64 #include <sys/md5.h> 65 #include <sys/sha1.h> 66 67 #include <opencrypto/cryptodev.h> 68 #include <opencrypto/xform.h> 69 70 static void null_encrypt(caddr_t, u_int8_t *); 71 static void null_decrypt(caddr_t, u_int8_t *); 72 static int null_setkey(u_int8_t **, u_int8_t *, int); 73 static void null_zerokey(u_int8_t **); 74 75 static int des1_setkey(u_int8_t **, u_int8_t *, int); 76 static int des3_setkey(u_int8_t **, u_int8_t *, int); 77 static int blf_setkey(u_int8_t **, u_int8_t *, int); 78 static int cast5_setkey(u_int8_t **, u_int8_t *, int); 79 static int skipjack_setkey(u_int8_t **, u_int8_t *, int); 80 static int rijndael128_setkey(u_int8_t **, u_int8_t *, int); 81 static void des1_encrypt(caddr_t, u_int8_t *); 82 static void des3_encrypt(caddr_t, u_int8_t *); 83 static void blf_encrypt(caddr_t, u_int8_t *); 84 static void cast5_encrypt(caddr_t, u_int8_t *); 85 static void skipjack_encrypt(caddr_t, u_int8_t *); 86 static void rijndael128_encrypt(caddr_t, u_int8_t *); 87 static void des1_decrypt(caddr_t, u_int8_t *); 88 static void des3_decrypt(caddr_t, u_int8_t *); 89 static void blf_decrypt(caddr_t, u_int8_t *); 90 static void cast5_decrypt(caddr_t, u_int8_t *); 91 static void skipjack_decrypt(caddr_t, u_int8_t *); 92 static void rijndael128_decrypt(caddr_t, u_int8_t *); 93 static void des1_zerokey(u_int8_t **); 94 static void des3_zerokey(u_int8_t **); 95 static void blf_zerokey(u_int8_t **); 96 static void cast5_zerokey(u_int8_t **); 97 static void skipjack_zerokey(u_int8_t **); 98 static void rijndael128_zerokey(u_int8_t **); 99 100 static void null_init(void *); 101 static int null_update(void *, u_int8_t *, u_int16_t); 102 static void null_final(u_int8_t *, void *); 103 104 static int MD5Update_int(void *, u_int8_t *, u_int16_t); 105 static void SHA1Init_int(void *); 106 static int SHA1Update_int(void *, u_int8_t *, u_int16_t); 107 static void SHA1Final_int(u_int8_t *, void *); 108 109 110 static int RMD160Update_int(void *, u_int8_t *, u_int16_t); 111 static int SHA1Update_int(void *, u_int8_t *, u_int16_t); 112 static void SHA1Final_int(u_int8_t *, void *); 113 static int RMD160Update_int(void *, u_int8_t *, u_int16_t); 114 static int SHA256Update_int(void *, u_int8_t *, u_int16_t); 115 static int SHA384Update_int(void *, u_int8_t *, u_int16_t); 116 static int SHA512Update_int(void *, u_int8_t *, u_int16_t); 117 118 static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **); 119 static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **); 120 121 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers"); 122 123 /* Encryption instances */ 124 struct enc_xform enc_xform_null = { 125 CRYPTO_NULL_CBC, "NULL", 126 /* NB: blocksize of 4 is to generate a properly aligned ESP header */ 127 4, 0, 256, /* 2048 bits, max key */ 128 null_encrypt, 129 null_decrypt, 130 null_setkey, 131 null_zerokey, 132 }; 133 134 struct enc_xform enc_xform_des = { 135 CRYPTO_DES_CBC, "DES", 136 8, 8, 8, 137 des1_encrypt, 138 des1_decrypt, 139 des1_setkey, 140 des1_zerokey, 141 }; 142 143 struct enc_xform enc_xform_3des = { 144 CRYPTO_3DES_CBC, "3DES", 145 8, 24, 24, 146 des3_encrypt, 147 des3_decrypt, 148 des3_setkey, 149 des3_zerokey 150 }; 151 152 struct enc_xform enc_xform_blf = { 153 CRYPTO_BLF_CBC, "Blowfish", 154 8, 5, 56 /* 448 bits, max key */, 155 blf_encrypt, 156 blf_decrypt, 157 blf_setkey, 158 blf_zerokey 159 }; 160 161 struct enc_xform enc_xform_cast5 = { 162 CRYPTO_CAST_CBC, "CAST-128", 163 8, 5, 16, 164 cast5_encrypt, 165 cast5_decrypt, 166 cast5_setkey, 167 cast5_zerokey 168 }; 169 170 struct enc_xform enc_xform_skipjack = { 171 CRYPTO_SKIPJACK_CBC, "Skipjack", 172 8, 10, 10, 173 skipjack_encrypt, 174 skipjack_decrypt, 175 skipjack_setkey, 176 skipjack_zerokey 177 }; 178 179 struct enc_xform enc_xform_rijndael128 = { 180 CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES", 181 16, 8, 32, 182 rijndael128_encrypt, 183 rijndael128_decrypt, 184 rijndael128_setkey, 185 rijndael128_zerokey, 186 }; 187 188 struct enc_xform enc_xform_arc4 = { 189 CRYPTO_ARC4, "ARC4", 190 1, 1, 32, 191 NULL, 192 NULL, 193 NULL, 194 NULL, 195 }; 196 197 /* Authentication instances */ 198 struct auth_hash auth_hash_null = { 199 CRYPTO_NULL_HMAC, "NULL-HMAC", 200 0, 0, 12, sizeof(int), /* NB: context isn't used */ 201 null_init, null_update, null_final 202 }; 203 204 struct auth_hash auth_hash_hmac_md5_96 = { 205 CRYPTO_MD5_HMAC, "HMAC-MD5", 206 16, 16, 12, sizeof(MD5_CTX), 207 (void (*) (void *)) MD5Init, MD5Update_int, 208 (void (*) (u_int8_t *, void *)) MD5Final 209 }; 210 211 struct auth_hash auth_hash_hmac_sha1_96 = { 212 CRYPTO_SHA1_HMAC, "HMAC-SHA1", 213 20, 20, 12, sizeof(SHA1_CTX), 214 SHA1Init_int, SHA1Update_int, SHA1Final_int 215 }; 216 217 struct auth_hash auth_hash_hmac_ripemd_160_96 = { 218 CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160", 219 20, 20, 12, sizeof(RMD160_CTX), 220 (void (*)(void *)) RMD160Init, RMD160Update_int, 221 (void (*)(u_int8_t *, void *)) RMD160Final 222 }; 223 224 struct auth_hash auth_hash_key_md5 = { 225 CRYPTO_MD5_KPDK, "Keyed MD5", 226 0, 16, 16, sizeof(MD5_CTX), 227 (void (*)(void *)) MD5Init, MD5Update_int, 228 (void (*)(u_int8_t *, void *)) MD5Final 229 }; 230 231 struct auth_hash auth_hash_key_sha1 = { 232 CRYPTO_SHA1_KPDK, "Keyed SHA1", 233 0, 20, 20, sizeof(SHA1_CTX), 234 SHA1Init_int, SHA1Update_int, SHA1Final_int 235 }; 236 237 struct auth_hash auth_hash_md5 = { 238 CRYPTO_MD5, "MD5", 239 0, 16, 16, sizeof(MD5_CTX), 240 (void (*) (void *)) MD5Init, MD5Update_int, 241 (void (*) (u_int8_t *, void *)) MD5Final 242 }; 243 244 struct auth_hash auth_hash_sha1 = { 245 CRYPTO_SHA1, "SHA1", 246 0, 20, 20, sizeof(SHA1_CTX), 247 (void (*)(void *)) SHA1Init, SHA1Update_int, 248 (void (*)(u_int8_t *, void *)) SHA1Final 249 }; 250 251 struct auth_hash auth_hash_hmac_sha2_256 = { 252 CRYPTO_SHA2_HMAC, "HMAC-SHA2", 253 32, 32, 12, sizeof(SHA256_CTX), 254 (void (*)(void *)) SHA256_Init, SHA256Update_int, 255 (void (*)(u_int8_t *, void *)) SHA256_Final 256 }; 257 258 struct auth_hash auth_hash_hmac_sha2_384 = { 259 CRYPTO_SHA2_HMAC, "HMAC-SHA2-384", 260 48, 48, 12, sizeof(SHA384_CTX), 261 (void (*)(void *)) SHA384_Init, SHA384Update_int, 262 (void (*)(u_int8_t *, void *)) SHA384_Final 263 }; 264 265 struct auth_hash auth_hash_hmac_sha2_512 = { 266 CRYPTO_SHA2_HMAC, "HMAC-SHA2-512", 267 64, 64, 12, sizeof(SHA512_CTX), 268 (void (*)(void *)) SHA512_Init, SHA512Update_int, 269 (void (*)(u_int8_t *, void *)) SHA512_Final 270 }; 271 272 /* Compression instance */ 273 struct comp_algo comp_algo_deflate = { 274 CRYPTO_DEFLATE_COMP, "Deflate", 275 90, deflate_compress, 276 deflate_decompress 277 }; 278 279 /* 280 * Encryption wrapper routines. 281 */ 282 static void 283 null_encrypt(caddr_t key, u_int8_t *blk) 284 { 285 } 286 static void 287 null_decrypt(caddr_t key, u_int8_t *blk) 288 { 289 } 290 static int 291 null_setkey(u_int8_t **sched, u_int8_t *key, int len) 292 { 293 *sched = NULL; 294 return 0; 295 } 296 static void 297 null_zerokey(u_int8_t **sched) 298 { 299 *sched = NULL; 300 } 301 302 static void 303 des1_encrypt(caddr_t key, u_int8_t *blk) 304 { 305 des_cblock *cb = (des_cblock *) blk; 306 des_key_schedule *p = (des_key_schedule *) key; 307 308 des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT); 309 } 310 311 static void 312 des1_decrypt(caddr_t key, u_int8_t *blk) 313 { 314 des_cblock *cb = (des_cblock *) blk; 315 des_key_schedule *p = (des_key_schedule *) key; 316 317 des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT); 318 } 319 320 static int 321 des1_setkey(u_int8_t **sched, u_int8_t *key, int len) 322 { 323 des_key_schedule *p; 324 int err; 325 326 MALLOC(p, des_key_schedule *, sizeof (des_key_schedule), 327 M_CRYPTO_DATA, M_NOWAIT); 328 if (p != NULL) { 329 bzero(p, sizeof(des_key_schedule)); 330 des_set_key((des_cblock *) key, p[0]); 331 err = 0; 332 } else 333 err = ENOMEM; 334 *sched = (u_int8_t *) p; 335 return err; 336 } 337 338 static void 339 des1_zerokey(u_int8_t **sched) 340 { 341 bzero(*sched, sizeof (des_key_schedule)); 342 FREE(*sched, M_CRYPTO_DATA); 343 *sched = NULL; 344 } 345 346 static void 347 des3_encrypt(caddr_t key, u_int8_t *blk) 348 { 349 des_cblock *cb = (des_cblock *) blk; 350 des_key_schedule *p = (des_key_schedule *) key; 351 352 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT); 353 } 354 355 static void 356 des3_decrypt(caddr_t key, u_int8_t *blk) 357 { 358 des_cblock *cb = (des_cblock *) blk; 359 des_key_schedule *p = (des_key_schedule *) key; 360 361 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT); 362 } 363 364 static int 365 des3_setkey(u_int8_t **sched, u_int8_t *key, int len) 366 { 367 des_key_schedule *p; 368 int err; 369 370 MALLOC(p, des_key_schedule *, 3*sizeof (des_key_schedule), 371 M_CRYPTO_DATA, M_NOWAIT); 372 if (p != NULL) { 373 bzero(p, 3*sizeof(des_key_schedule)); 374 des_set_key((des_cblock *)(key + 0), p[0]); 375 des_set_key((des_cblock *)(key + 8), p[1]); 376 des_set_key((des_cblock *)(key + 16), p[2]); 377 err = 0; 378 } else 379 err = ENOMEM; 380 *sched = (u_int8_t *) p; 381 return err; 382 } 383 384 static void 385 des3_zerokey(u_int8_t **sched) 386 { 387 bzero(*sched, 3*sizeof (des_key_schedule)); 388 FREE(*sched, M_CRYPTO_DATA); 389 *sched = NULL; 390 } 391 392 static void 393 blf_encrypt(caddr_t key, u_int8_t *blk) 394 { 395 blf_ecb_encrypt((blf_ctx *) key, blk, 8); 396 } 397 398 static void 399 blf_decrypt(caddr_t key, u_int8_t *blk) 400 { 401 blf_ecb_decrypt((blf_ctx *) key, blk, 8); 402 } 403 404 static int 405 blf_setkey(u_int8_t **sched, u_int8_t *key, int len) 406 { 407 int err; 408 409 #ifdef __FreeBSD__ 410 #define BLF_SIZ sizeof(BF_KEY) 411 #else 412 #define BLF_SIZ sizeof(blf_ctx) 413 #endif 414 415 MALLOC(*sched, u_int8_t *, BLF_SIZ, 416 M_CRYPTO_DATA, M_NOWAIT); 417 if (*sched != NULL) { 418 bzero(*sched, BLF_SIZ); 419 #ifdef _FreeBSD__ 420 BF_set_key((BF_KEY *) *sched, len, key); 421 #else 422 blf_key((blf_ctx *)*sched, key, len); 423 #endif 424 err = 0; 425 } else 426 err = ENOMEM; 427 return err; 428 } 429 430 static void 431 blf_zerokey(u_int8_t **sched) 432 { 433 bzero(*sched, BLF_SIZ); 434 FREE(*sched, M_CRYPTO_DATA); 435 *sched = NULL; 436 } 437 438 static void 439 cast5_encrypt(caddr_t key, u_int8_t *blk) 440 { 441 cast_encrypt((cast_key *) key, blk, blk); 442 } 443 444 static void 445 cast5_decrypt(caddr_t key, u_int8_t *blk) 446 { 447 cast_decrypt((cast_key *) key, blk, blk); 448 } 449 450 static int 451 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len) 452 { 453 int err; 454 455 MALLOC(*sched, u_int8_t *, sizeof(cast_key), M_CRYPTO_DATA, 456 M_NOWAIT); 457 if (*sched != NULL) { 458 bzero(*sched, sizeof(cast_key)); 459 cast_setkey((cast_key *)*sched, key, len); 460 err = 0; 461 } else 462 err = ENOMEM; 463 return err; 464 } 465 466 static void 467 cast5_zerokey(u_int8_t **sched) 468 { 469 bzero(*sched, sizeof(cast_key)); 470 FREE(*sched, M_CRYPTO_DATA); 471 *sched = NULL; 472 } 473 474 static void 475 skipjack_encrypt(caddr_t key, u_int8_t *blk) 476 { 477 skipjack_forwards(blk, blk, (u_int8_t **) key); 478 } 479 480 static void 481 skipjack_decrypt(caddr_t key, u_int8_t *blk) 482 { 483 skipjack_backwards(blk, blk, (u_int8_t **) key); 484 } 485 486 static int 487 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len) 488 { 489 int err; 490 491 /* NB: allocate all the memory that's needed at once */ 492 /* XXX assumes bytes are aligned on sizeof(u_char) == 1 boundaries. 493 * Will this break a pdp-10, Cray-1, or GE-645 port? 494 */ 495 MALLOC(*sched, u_int8_t *, 10 * (sizeof(u_int8_t *) + 0x100), 496 M_CRYPTO_DATA, M_NOWAIT); 497 498 if (*sched != NULL) { 499 500 u_int8_t** key_tables = (u_int8_t**) *sched; 501 u_int8_t* table = (u_int8_t*) &key_tables[10]; 502 int k; 503 504 bzero(*sched, 10 * sizeof(u_int8_t *)+0x100); 505 506 for (k = 0; k < 10; k++) { 507 key_tables[k] = table; 508 table += 0x100; 509 } 510 subkey_table_gen(key, (u_int8_t **) *sched); 511 err = 0; 512 } else 513 err = ENOMEM; 514 return err; 515 } 516 517 static void 518 skipjack_zerokey(u_int8_t **sched) 519 { 520 bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100)); 521 FREE(*sched, M_CRYPTO_DATA); 522 *sched = NULL; 523 } 524 525 static void 526 rijndael128_encrypt(caddr_t key, u_int8_t *blk) 527 { 528 rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); 529 } 530 531 static void 532 rijndael128_decrypt(caddr_t key, u_int8_t *blk) 533 { 534 rijndael_decrypt(((rijndael_ctx *) key) + 1, (u_char *) blk, 535 (u_char *) blk); 536 } 537 538 static int 539 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len) 540 { 541 int err; 542 543 MALLOC(*sched, u_int8_t *, 2 * sizeof(rijndael_ctx), M_CRYPTO_DATA, 544 M_WAITOK); 545 if (*sched != NULL) { 546 bzero(*sched, 2 * sizeof(rijndael_ctx)); 547 rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key, len * 8, 1); 548 rijndael_set_key(((rijndael_ctx *) *sched) + 1, (u_char *) key, 549 len * 8, 0); 550 err = 0; 551 } else 552 err = ENOMEM; 553 return err; 554 } 555 556 static void 557 rijndael128_zerokey(u_int8_t **sched) 558 { 559 bzero(*sched, 2 * sizeof(rijndael_ctx)); 560 FREE(*sched, M_CRYPTO_DATA); 561 *sched = NULL; 562 } 563 564 /* 565 * And now for auth. 566 */ 567 568 static void 569 null_init(void *ctx) 570 { 571 } 572 573 static int 574 null_update(void *ctx, u_int8_t *buf, u_int16_t len) 575 { 576 return 0; 577 } 578 579 static void 580 null_final(u_int8_t *buf, void *ctx) 581 { 582 if (buf != (u_int8_t *) 0) 583 bzero(buf, 12); 584 } 585 586 static int 587 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len) 588 { 589 RMD160Update(ctx, buf, len); 590 return 0; 591 } 592 593 static int 594 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len) 595 { 596 MD5Update(ctx, buf, len); 597 return 0; 598 } 599 600 static void 601 SHA1Init_int(void *ctx) 602 { 603 SHA1Init(ctx); 604 } 605 606 static int 607 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len) 608 { 609 SHA1Update(ctx, buf, len); 610 return 0; 611 } 612 613 static void 614 SHA1Final_int(u_int8_t *blk, void *ctx) 615 { 616 SHA1Final(blk, ctx); 617 } 618 619 static int 620 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len) 621 { 622 SHA256_Update(ctx, buf, len); 623 return 0; 624 } 625 626 static int 627 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len) 628 { 629 SHA384_Update(ctx, buf, len); 630 return 0; 631 } 632 633 static int 634 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len) 635 { 636 SHA512_Update(ctx, buf, len); 637 return 0; 638 } 639 640 /* 641 * And compression 642 */ 643 644 static u_int32_t 645 deflate_compress(data, size, out) 646 u_int8_t *data; 647 u_int32_t size; 648 u_int8_t **out; 649 { 650 return deflate_global(data, size, 0, out); 651 } 652 653 static u_int32_t 654 deflate_decompress(data, size, out) 655 u_int8_t *data; 656 u_int32_t size; 657 u_int8_t **out; 658 { 659 return deflate_global(data, size, 1, out); 660 } 661