xref: /netbsd-src/sys/opencrypto/xform.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: xform.c,v 1.13 2003/11/18 23:01:39 jonathan Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/xform.c,v 1.1.2.1 2002/11/21 23:34:23 sam Exp $	*/
3 /*	$OpenBSD: xform.c,v 1.19 2002/08/16 22:47:25 dhartmei Exp $	*/
4 
5 /*
6  * The authors of this code are John Ioannidis (ji@tla.org),
7  * Angelos D. Keromytis (kermit@csd.uch.gr) and
8  * Niels Provos (provos@physnet.uni-hamburg.de).
9  *
10  * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
11  * in November 1995.
12  *
13  * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
14  * by Angelos D. Keromytis.
15  *
16  * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
17  * and Niels Provos.
18  *
19  * Additional features in 1999 by Angelos D. Keromytis.
20  *
21  * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
22  * Angelos D. Keromytis and Niels Provos.
23  *
24  * Copyright (C) 2001, Angelos D. Keromytis.
25  *
26  * Permission to use, copy, and modify this software with or without fee
27  * is hereby granted, provided that this entire notice is included in
28  * all copies of any software which is or includes a copy or
29  * modification of this software.
30  * You may use this code under the GNU public license if you so wish. Please
31  * contribute changes back to the authors under this freer than GPL license
32  * so that we may further the use of strong encryption without limitations to
33  * all.
34  *
35  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
36  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
37  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
38  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
39  * PURPOSE.
40  */
41 
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: xform.c,v 1.13 2003/11/18 23:01:39 jonathan Exp $");
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #include <sys/sysctl.h>
49 #include <sys/errno.h>
50 #include <sys/time.h>
51 #include <sys/kernel.h>
52 #include <machine/cpu.h>
53 
54 #include <crypto/blowfish/blowfish.h>
55 #include <crypto/cast128/cast128.h>
56 #include <crypto/des/des.h>
57 #include <crypto/rijndael/rijndael.h>
58 #include <crypto/ripemd160/rmd160.h>
59 #include <crypto/skipjack/skipjack.h>
60 
61 #include <opencrypto/deflate.h>
62 
63 #include <sys/md5.h>
64 #include <sys/sha1.h>
65 
66 #include <opencrypto/cryptodev.h>
67 #include <opencrypto/xform.h>
68 
69 static void null_encrypt(caddr_t, u_int8_t *);
70 static void null_decrypt(caddr_t, u_int8_t *);
71 static int null_setkey(u_int8_t **, const u_int8_t *, int);
72 static void null_zerokey(u_int8_t **);
73 
74 static	int des1_setkey(u_int8_t **, const u_int8_t *, int);
75 static	int des3_setkey(u_int8_t **, const u_int8_t *, int);
76 static	int blf_setkey(u_int8_t **, const u_int8_t *, int);
77 static	int cast5_setkey(u_int8_t **, const u_int8_t *, int);
78 static  int skipjack_setkey(u_int8_t **, const u_int8_t *, int);
79 static  int rijndael128_setkey(u_int8_t **, const u_int8_t *, int);
80 static	void des1_encrypt(caddr_t, u_int8_t *);
81 static	void des3_encrypt(caddr_t, u_int8_t *);
82 static	void blf_encrypt(caddr_t, u_int8_t *);
83 static	void cast5_encrypt(caddr_t, u_int8_t *);
84 static	void skipjack_encrypt(caddr_t, u_int8_t *);
85 static	void rijndael128_encrypt(caddr_t, u_int8_t *);
86 static	void des1_decrypt(caddr_t, u_int8_t *);
87 static	void des3_decrypt(caddr_t, u_int8_t *);
88 static	void blf_decrypt(caddr_t, u_int8_t *);
89 static	void cast5_decrypt(caddr_t, u_int8_t *);
90 static	void skipjack_decrypt(caddr_t, u_int8_t *);
91 static	void rijndael128_decrypt(caddr_t, u_int8_t *);
92 static	void des1_zerokey(u_int8_t **);
93 static	void des3_zerokey(u_int8_t **);
94 static	void blf_zerokey(u_int8_t **);
95 static	void cast5_zerokey(u_int8_t **);
96 static	void skipjack_zerokey(u_int8_t **);
97 static	void rijndael128_zerokey(u_int8_t **);
98 
99 static	void null_init(void *);
100 static	int null_update(void *, const u_int8_t *, u_int16_t);
101 static	void null_final(u_int8_t *, void *);
102 
103 static int	MD5Update_int(void *, const u_int8_t *, u_int16_t);
104 static void	SHA1Init_int(void *);
105 static	int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
106 static	void SHA1Final_int(u_int8_t *, void *);
107 
108 
109 static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
110 static	int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
111 static	void SHA1Final_int(u_int8_t *, void *);
112 static	int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
113 static	int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
114 static	int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
115 static	int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
116 
117 static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
118 static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
119 
120 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
121 
122 /* Encryption instances */
123 struct enc_xform enc_xform_null = {
124 	CRYPTO_NULL_CBC, "NULL",
125 	/* NB: blocksize of 4 is to generate a properly aligned ESP header */
126 	4, 0, 256, /* 2048 bits, max key */
127 	null_encrypt,
128 	null_decrypt,
129 	null_setkey,
130 	null_zerokey,
131 };
132 
133 struct enc_xform enc_xform_des = {
134 	CRYPTO_DES_CBC, "DES",
135 	8, 8, 8,
136 	des1_encrypt,
137 	des1_decrypt,
138 	des1_setkey,
139 	des1_zerokey,
140 };
141 
142 struct enc_xform enc_xform_3des = {
143 	CRYPTO_3DES_CBC, "3DES",
144 	8, 24, 24,
145 	des3_encrypt,
146 	des3_decrypt,
147 	des3_setkey,
148 	des3_zerokey
149 };
150 
151 struct enc_xform enc_xform_blf = {
152 	CRYPTO_BLF_CBC, "Blowfish",
153 	8, 5, 56 /* 448 bits, max key */,
154 	blf_encrypt,
155 	blf_decrypt,
156 	blf_setkey,
157 	blf_zerokey
158 };
159 
160 struct enc_xform enc_xform_cast5 = {
161 	CRYPTO_CAST_CBC, "CAST-128",
162 	8, 5, 16,
163 	cast5_encrypt,
164 	cast5_decrypt,
165 	cast5_setkey,
166 	cast5_zerokey
167 };
168 
169 struct enc_xform enc_xform_skipjack = {
170 	CRYPTO_SKIPJACK_CBC, "Skipjack",
171 	8, 10, 10,
172 	skipjack_encrypt,
173 	skipjack_decrypt,
174 	skipjack_setkey,
175 	skipjack_zerokey
176 };
177 
178 struct enc_xform enc_xform_rijndael128 = {
179 	CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
180 	16, 8, 32,
181 	rijndael128_encrypt,
182 	rijndael128_decrypt,
183 	rijndael128_setkey,
184 	rijndael128_zerokey,
185 };
186 
187 struct enc_xform enc_xform_arc4 = {
188 	CRYPTO_ARC4, "ARC4",
189 	1, 1, 32,
190 	NULL,
191 	NULL,
192 	NULL,
193 	NULL,
194 };
195 
196 /* Authentication instances */
197 struct auth_hash auth_hash_null = {
198 	CRYPTO_NULL_HMAC, "NULL-HMAC",
199 	0, 0, 12, sizeof(int),			/* NB: context isn't used */
200 	null_init, null_update, null_final
201 };
202 
203 struct auth_hash auth_hash_hmac_md5_96 = {
204 	CRYPTO_MD5_HMAC, "HMAC-MD5",
205 	16, 16, 12, sizeof(MD5_CTX),
206 	(void (*) (void *)) MD5Init, MD5Update_int,
207 	(void (*) (u_int8_t *, void *)) MD5Final
208 };
209 
210 struct auth_hash auth_hash_hmac_sha1_96 = {
211 	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
212 	20, 20, 12, sizeof(SHA1_CTX),
213 	SHA1Init_int, SHA1Update_int, SHA1Final_int
214 };
215 
216 struct auth_hash auth_hash_hmac_ripemd_160_96 = {
217 	CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
218 	20, 20, 12, sizeof(RMD160_CTX),
219 	(void (*)(void *)) RMD160Init, RMD160Update_int,
220 	(void (*)(u_int8_t *, void *)) RMD160Final
221 };
222 
223 struct auth_hash auth_hash_key_md5 = {
224 	CRYPTO_MD5_KPDK, "Keyed MD5",
225 	0, 16, 16, sizeof(MD5_CTX),
226 	(void (*)(void *)) MD5Init, MD5Update_int,
227 	(void (*)(u_int8_t *, void *)) MD5Final
228 };
229 
230 struct auth_hash auth_hash_key_sha1 = {
231 	CRYPTO_SHA1_KPDK, "Keyed SHA1",
232 	0, 20, 20, sizeof(SHA1_CTX),
233 	SHA1Init_int, SHA1Update_int, SHA1Final_int
234 };
235 
236 struct auth_hash auth_hash_md5 = {
237 	CRYPTO_MD5, "MD5",
238 	0, 16, 16, sizeof(MD5_CTX),
239 	(void (*) (void *)) MD5Init, MD5Update_int,
240 	(void (*) (u_int8_t *, void *)) MD5Final
241 };
242 
243 struct auth_hash auth_hash_sha1 = {
244 	CRYPTO_SHA1, "SHA1",
245 	0, 20, 20, sizeof(SHA1_CTX),
246 	(void (*)(void *)) SHA1Init, SHA1Update_int,
247 	(void (*)(u_int8_t *, void *)) SHA1Final
248 };
249 
250 struct auth_hash auth_hash_hmac_sha2_256 = {
251 	CRYPTO_SHA2_HMAC, "HMAC-SHA2",
252 	32, 32, 12, sizeof(SHA256_CTX),
253 	(void (*)(void *)) SHA256_Init, SHA256Update_int,
254 	(void (*)(u_int8_t *, void *)) SHA256_Final
255 };
256 
257 struct auth_hash auth_hash_hmac_sha2_384 = {
258 	CRYPTO_SHA2_HMAC, "HMAC-SHA2-384",
259 	48, 48, 12, sizeof(SHA384_CTX),
260 	(void (*)(void *)) SHA384_Init, SHA384Update_int,
261 	(void (*)(u_int8_t *, void *)) SHA384_Final
262 };
263 
264 struct auth_hash auth_hash_hmac_sha2_512 = {
265 	CRYPTO_SHA2_HMAC, "HMAC-SHA2-512",
266 	64, 64, 12, sizeof(SHA512_CTX),
267 	(void (*)(void *)) SHA512_Init, SHA512Update_int,
268 	(void (*)(u_int8_t *, void *)) SHA512_Final
269 };
270 
271 /* Compression instance */
272 struct comp_algo comp_algo_deflate = {
273 	CRYPTO_DEFLATE_COMP, "Deflate",
274 	90, deflate_compress,
275 	deflate_decompress
276 };
277 
278 /*
279  * Encryption wrapper routines.
280  */
281 static void
282 null_encrypt(caddr_t key, u_int8_t *blk)
283 {
284 }
285 static void
286 null_decrypt(caddr_t key, u_int8_t *blk)
287 {
288 }
289 static int
290 null_setkey(u_int8_t **sched, const u_int8_t *key, int len)
291 {
292 	*sched = NULL;
293 	return 0;
294 }
295 static void
296 null_zerokey(u_int8_t **sched)
297 {
298 	*sched = NULL;
299 }
300 
301 static void
302 des1_encrypt(caddr_t key, u_int8_t *blk)
303 {
304 	des_cblock *cb = (des_cblock *) blk;
305 	des_key_schedule *p = (des_key_schedule *) key;
306 
307 	des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
308 }
309 
310 static void
311 des1_decrypt(caddr_t key, u_int8_t *blk)
312 {
313 	des_cblock *cb = (des_cblock *) blk;
314 	des_key_schedule *p = (des_key_schedule *) key;
315 
316 	des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
317 }
318 
319 static int
320 des1_setkey(u_int8_t **sched, const u_int8_t *key, int len)
321 {
322 	des_key_schedule *p;
323 	int err;
324 
325 	MALLOC(p, des_key_schedule *, sizeof (des_key_schedule),
326 		M_CRYPTO_DATA, M_NOWAIT);
327 	if (p != NULL) {
328 		bzero(p, sizeof(des_key_schedule));
329 		des_set_key((des_cblock *) key, p[0]);
330 		err = 0;
331 	} else
332 		err = ENOMEM;
333 	*sched = (u_int8_t *) p;
334 	return err;
335 }
336 
337 static void
338 des1_zerokey(u_int8_t **sched)
339 {
340 	bzero(*sched, sizeof (des_key_schedule));
341 	FREE(*sched, M_CRYPTO_DATA);
342 	*sched = NULL;
343 }
344 
345 static void
346 des3_encrypt(caddr_t key, u_int8_t *blk)
347 {
348 	des_cblock *cb = (des_cblock *) blk;
349 	des_key_schedule *p = (des_key_schedule *) key;
350 
351 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
352 }
353 
354 static void
355 des3_decrypt(caddr_t key, u_int8_t *blk)
356 {
357 	des_cblock *cb = (des_cblock *) blk;
358 	des_key_schedule *p = (des_key_schedule *) key;
359 
360 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
361 }
362 
363 static int
364 des3_setkey(u_int8_t **sched, const u_int8_t *key, int len)
365 {
366 	des_key_schedule *p;
367 	int err;
368 
369 	MALLOC(p, des_key_schedule *, 3*sizeof (des_key_schedule),
370 		M_CRYPTO_DATA, M_NOWAIT);
371 	if (p != NULL) {
372 		bzero(p, 3*sizeof(des_key_schedule));
373 		des_set_key((des_cblock *)(key +  0), p[0]);
374 		des_set_key((des_cblock *)(key +  8), p[1]);
375 		des_set_key((des_cblock *)(key + 16), p[2]);
376 		err = 0;
377 	} else
378 		err = ENOMEM;
379 	*sched = (u_int8_t *) p;
380 	return err;
381 }
382 
383 static void
384 des3_zerokey(u_int8_t **sched)
385 {
386 	bzero(*sched, 3*sizeof (des_key_schedule));
387 	FREE(*sched, M_CRYPTO_DATA);
388 	*sched = NULL;
389 }
390 
391 static void
392 blf_encrypt(caddr_t key, u_int8_t *blk)
393 {
394 
395 #if defined(__NetBSD__)
396 	BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 1);
397 #else
398 	blf_ecb_encrypt((blf_ctx *) key, blk, 8);
399 #endif
400 }
401 
402 static void
403 blf_decrypt(caddr_t key, u_int8_t *blk)
404 {
405 
406 #if defined(__NetBSD__)
407 	BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 0);
408 #else
409 	blf_ecb_decrypt((blf_ctx *) key, blk, 8);
410 #endif
411 }
412 
413 static int
414 blf_setkey(u_int8_t **sched, const u_int8_t *key, int len)
415 {
416 	int err;
417 
418 #if defined(__FreeBSD__) || defined(__NetBSD__)
419 #define	BLF_SIZ	sizeof(BF_KEY)
420 #else
421 #define	BLF_SIZ	sizeof(blf_ctx)
422 #endif
423 
424 	MALLOC(*sched, u_int8_t *, BLF_SIZ,
425 		M_CRYPTO_DATA, M_NOWAIT);
426 	if (*sched != NULL) {
427 		bzero(*sched, BLF_SIZ);
428 #if defined(__FreeBSD__) || defined(__NetBSD__)
429 		BF_set_key((BF_KEY *) *sched, len, key);
430 #else
431 		blf_key((blf_ctx *)*sched, key, len);
432 #endif
433 		err = 0;
434 	} else
435 		err = ENOMEM;
436 	return err;
437 }
438 
439 static void
440 blf_zerokey(u_int8_t **sched)
441 {
442 	bzero(*sched, BLF_SIZ);
443 	FREE(*sched, M_CRYPTO_DATA);
444 	*sched = NULL;
445 }
446 
447 static void
448 cast5_encrypt(caddr_t key, u_int8_t *blk)
449 {
450 	cast128_encrypt((cast128_key *) key, blk, blk);
451 }
452 
453 static void
454 cast5_decrypt(caddr_t key, u_int8_t *blk)
455 {
456 	cast128_decrypt((cast128_key *) key, blk, blk);
457 }
458 
459 static int
460 cast5_setkey(u_int8_t **sched, const u_int8_t *key, int len)
461 {
462 	int err;
463 
464 	MALLOC(*sched, u_int8_t *, sizeof(cast128_key), M_CRYPTO_DATA,
465 	       M_NOWAIT);
466 	if (*sched != NULL) {
467 		bzero(*sched, sizeof(cast128_key));
468 		cast128_setkey((cast128_key *)*sched, key, len);
469 		err = 0;
470 	} else
471 		err = ENOMEM;
472 	return err;
473 }
474 
475 static void
476 cast5_zerokey(u_int8_t **sched)
477 {
478 	bzero(*sched, sizeof(cast128_key));
479 	FREE(*sched, M_CRYPTO_DATA);
480 	*sched = NULL;
481 }
482 
483 static void
484 skipjack_encrypt(caddr_t key, u_int8_t *blk)
485 {
486 	skipjack_forwards(blk, blk, (u_int8_t **) key);
487 }
488 
489 static void
490 skipjack_decrypt(caddr_t key, u_int8_t *blk)
491 {
492 	skipjack_backwards(blk, blk, (u_int8_t **) key);
493 }
494 
495 static int
496 skipjack_setkey(u_int8_t **sched, const u_int8_t *key, int len)
497 {
498 	int err;
499 
500 	/* NB: allocate all the memory that's needed at once */
501 	/* XXX assumes bytes are aligned on sizeof(u_char) == 1 boundaries.
502 	 * Will this break a pdp-10, Cray-1, or GE-645 port?
503 	 */
504 	MALLOC(*sched, u_int8_t *, 10 * (sizeof(u_int8_t *) + 0x100),
505 		M_CRYPTO_DATA, M_NOWAIT);
506 
507 	if (*sched != NULL) {
508 
509 		u_int8_t** key_tables = (u_int8_t**) *sched;
510 		u_int8_t* table = (u_int8_t*) &key_tables[10];
511 		int k;
512 
513 		bzero(*sched, 10 * sizeof(u_int8_t *)+0x100);
514 
515 		for (k = 0; k < 10; k++) {
516 			key_tables[k] = table;
517 			table += 0x100;
518 		}
519 		subkey_table_gen(key, (u_int8_t **) *sched);
520 		err = 0;
521 	} else
522 		err = ENOMEM;
523 	return err;
524 }
525 
526 static void
527 skipjack_zerokey(u_int8_t **sched)
528 {
529 	bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
530 	FREE(*sched, M_CRYPTO_DATA);
531 	*sched = NULL;
532 }
533 
534 static void
535 rijndael128_encrypt(caddr_t key, u_int8_t *blk)
536 {
537 	rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
538 }
539 
540 static void
541 rijndael128_decrypt(caddr_t key, u_int8_t *blk)
542 {
543 	rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk,
544 	    (u_char *) blk);
545 }
546 
547 static int
548 rijndael128_setkey(u_int8_t **sched, const u_int8_t *key, int len)
549 {
550 	int err;
551 
552 	MALLOC(*sched, u_int8_t *, sizeof(rijndael_ctx), M_CRYPTO_DATA,
553 	    M_WAITOK);
554 	if (*sched != NULL) {
555 		bzero(*sched, sizeof(rijndael_ctx));
556 		rijndael_set_key((rijndael_ctx *) *sched, key, len * 8);
557 		err = 0;
558 	} else
559 		err = ENOMEM;
560 	return err;
561 }
562 
563 static void
564 rijndael128_zerokey(u_int8_t **sched)
565 {
566 	bzero(*sched, sizeof(rijndael_ctx));
567 	FREE(*sched, M_CRYPTO_DATA);
568 	*sched = NULL;
569 }
570 
571 /*
572  * And now for auth.
573  */
574 
575 static void
576 null_init(void *ctx)
577 {
578 }
579 
580 static int
581 null_update(void *ctx, const u_int8_t *buf, u_int16_t len)
582 {
583 	return 0;
584 }
585 
586 static void
587 null_final(u_int8_t *buf, void *ctx)
588 {
589 	if (buf != (u_int8_t *) 0)
590 		bzero(buf, 12);
591 }
592 
593 static int
594 RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
595 {
596 	RMD160Update(ctx, buf, len);
597 	return 0;
598 }
599 
600 static int
601 MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
602 {
603 	MD5Update(ctx, buf, len);
604 	return 0;
605 }
606 
607 static void
608 SHA1Init_int(void *ctx)
609 {
610 	SHA1Init(ctx);
611 }
612 
613 static int
614 SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
615 {
616 	SHA1Update(ctx, buf, len);
617 	return 0;
618 }
619 
620 static void
621 SHA1Final_int(u_int8_t *blk, void *ctx)
622 {
623 	SHA1Final(blk, ctx);
624 }
625 
626 static int
627 SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
628 {
629 	SHA256_Update(ctx, buf, len);
630 	return 0;
631 }
632 
633 static int
634 SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
635 {
636 	SHA384_Update(ctx, buf, len);
637 	return 0;
638 }
639 
640 static int
641 SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
642 {
643 	SHA512_Update(ctx, buf, len);
644 	return 0;
645 }
646 
647 /*
648  * And compression
649  */
650 
651 static u_int32_t
652 deflate_compress(data, size, out)
653 	u_int8_t *data;
654 	u_int32_t size;
655 	u_int8_t **out;
656 {
657 	return deflate_global(data, size, 0, out);
658 }
659 
660 static u_int32_t
661 deflate_decompress(data, size, out)
662 	u_int8_t *data;
663 	u_int32_t size;
664 	u_int8_t **out;
665 {
666 	return deflate_global(data, size, 1, out);
667 }
668