xref: /netbsd-src/sys/opencrypto/crypto.c (revision dd255ccea4286b0c44fa8fd48a9a19a768afe8e1)
1 /*	$NetBSD: crypto.c,v 1.44 2014/01/14 14:16:47 pgoyette Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.44 2014/01/14 14:16:47 pgoyette Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70 
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74 
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
77 
78 kmutex_t crypto_q_mtx;
79 kmutex_t crypto_ret_q_mtx;
80 kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82 
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84   #define SWI_CRYPTO 17
85   #define register_swi(lvl, fn)  \
86   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
88   #define setsoftcrypto(x) softint_schedule(x)
89 
90 int crypto_ret_q_check(struct cryptop *);
91 
92 /*
93  * Crypto drivers register themselves by allocating a slot in the
94  * crypto_drivers table with crypto_get_driverid() and then registering
95  * each algorithm they support with crypto_register() and crypto_kregister().
96  */
97 static	struct cryptocap *crypto_drivers;
98 static	int crypto_drivers_num;
99 static	void *softintr_cookie;
100 
101 /*
102  * There are two queues for crypto requests; one for symmetric (e.g.
103  * cipher) operations and one for asymmetric (e.g. MOD) operations.
104  * See below for how synchronization is handled.
105  */
106 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
107 		TAILQ_HEAD_INITIALIZER(crp_q);
108 static	TAILQ_HEAD(,cryptkop) crp_kq =
109 		TAILQ_HEAD_INITIALIZER(crp_kq);
110 
111 /*
112  * There are two queues for processing completed crypto requests; one
113  * for the symmetric and one for the asymmetric ops.  We only need one
114  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
115  * for how synchronization is handled.
116  */
117 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
118 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121 
122 /*
123  * XXX these functions are ghastly hacks for when the submission
124  * XXX routines discover a request that was not CBIMM is already
125  * XXX done, and must be yanked from the retq (where _done) put it
126  * XXX as cryptoret won't get the chance.  The queue is walked backwards
127  * XXX as the request is generally the last one queued.
128  *
129  *	 call with the lock held, or else.
130  */
131 int
132 crypto_ret_q_remove(struct cryptop *crp)
133 {
134 	struct cryptop * acrp, *next;
135 
136 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
137 		if (acrp == crp) {
138 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 			return 1;
141 		}
142 	}
143 	return 0;
144 }
145 
146 int
147 crypto_ret_kq_remove(struct cryptkop *krp)
148 {
149 	struct cryptkop * akrp, *next;
150 
151 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
152 		if (akrp == krp) {
153 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 			return 1;
156 		}
157 	}
158 	return 0;
159 }
160 
161 /*
162  * Crypto op and desciptor data structures are allocated
163  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164  */
165 struct pool cryptop_pool;
166 struct pool cryptodesc_pool;
167 struct pool cryptkop_pool;
168 
169 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
170 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
171 /*
172  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173  * access to hardware versus software transforms as below:
174  *
175  * crypto_devallowsoft < 0:  Force userlevel requests to use software
176  *                              transforms, always
177  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
178  *                              requests for non-accelerated transforms
179  *                              (handling the latter in software)
180  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
181  *                               are hardware-accelerated.
182  */
183 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
184 
185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 {
187 	sysctl_createv(clog, 0, NULL, NULL,
188 		       CTLFLAG_PERMANENT,
189 		       CTLTYPE_NODE, "kern", NULL,
190 		       NULL, 0, NULL, 0,
191 		       CTL_KERN, CTL_EOL);
192 	sysctl_createv(clog, 0, NULL, NULL,
193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 		       CTLTYPE_INT, "usercrypto",
195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
196 			   "crypto support"),
197 		       NULL, 0, &crypto_usercrypto, 0,
198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
199 	sysctl_createv(clog, 0, NULL, NULL,
200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 		       CTLTYPE_INT, "userasymcrypto",
202 		       SYSCTL_DESCR("Enable/disable user-mode access to "
203 			   "asymmetric crypto support"),
204 		       NULL, 0, &crypto_userasymcrypto, 0,
205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
206 	sysctl_createv(clog, 0, NULL, NULL,
207 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
208 		       CTLTYPE_INT, "cryptodevallowsoft",
209 		       SYSCTL_DESCR("Enable/disable use of software "
210 			   "asymmetric crypto support"),
211 		       NULL, 0, &crypto_devallowsoft, 0,
212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
213 }
214 
215 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
216 
217 /*
218  * Synchronization: read carefully, this is non-trivial.
219  *
220  * Crypto requests are submitted via crypto_dispatch.  Typically
221  * these come in from network protocols at spl0 (output path) or
222  * spl[,soft]net (input path).
223  *
224  * Requests are typically passed on the driver directly, but they
225  * may also be queued for processing by a software interrupt thread,
226  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
227  * the requests to crypto drivers (h/w or s/w) who call crypto_done
228  * when a request is complete.  Hardware crypto drivers are assumed
229  * to register their IRQ's as network devices so their interrupt handlers
230  * and subsequent "done callbacks" happen at spl[imp,net].
231  *
232  * Completed crypto ops are queued for a separate kernel thread that
233  * handles the callbacks at spl0.  This decoupling insures the crypto
234  * driver interrupt service routine is not delayed while the callback
235  * takes place and that callbacks are delivered after a context switch
236  * (as opposed to a software interrupt that clients must block).
237  *
238  * This scheme is not intended for SMP machines.
239  */
240 static	void cryptointr(void);		/* swi thread to dispatch ops */
241 static	void cryptoret(void);		/* kernel thread for callbacks*/
242 static	struct lwp *cryptothread;
243 static	void crypto_destroy(void);
244 static	int crypto_invoke(struct cryptop *crp, int hint);
245 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
246 
247 static struct cryptostats cryptostats;
248 #ifdef CRYPTO_TIMING
249 static	int crypto_timing = 0;
250 #endif
251 
252 #ifdef _MODULE
253 	static struct sysctllog *sysctl_opencrypto_clog;
254 #endif
255 
256 static int
257 crypto_init0(void)
258 {
259 	int error;
260 
261 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
262 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
263 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
264 	cv_init(&cryptoret_cv, "crypto_w");
265 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
266 		  0, "cryptop", NULL, IPL_NET);
267 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
268 		  0, "cryptodesc", NULL, IPL_NET);
269 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
270 		  0, "cryptkop", NULL, IPL_NET);
271 
272 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
273 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
274 	if (crypto_drivers == NULL) {
275 		printf("crypto_init: cannot malloc driver table\n");
276 		return 0;
277 	}
278 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
279 
280 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
281 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
282 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
283 	if (error) {
284 		printf("crypto_init: cannot start cryptoret thread; error %d",
285 			error);
286 		crypto_destroy();
287 	}
288 
289 #ifdef _MODULE
290 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
291 #endif
292 	return 0;
293 }
294 
295 void
296 crypto_init(void)
297 {
298 	static ONCE_DECL(crypto_init_once);
299 
300 	RUN_ONCE(&crypto_init_once, crypto_init0);
301 }
302 
303 static void
304 crypto_destroy(void)
305 {
306 	/* XXX no wait to reclaim zones */
307 	if (crypto_drivers != NULL)
308 		free(crypto_drivers, M_CRYPTO_DATA);
309 	unregister_swi(SWI_CRYPTO, cryptointr);
310 }
311 
312 /*
313  * Create a new session.  Must be called with crypto_mtx held.
314  */
315 int
316 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
317 {
318 	struct cryptoini *cr;
319 	u_int32_t hid, lid;
320 	int err = EINVAL;
321 
322 	mutex_enter(&crypto_mtx);
323 
324 	if (crypto_drivers == NULL)
325 		goto done;
326 
327 	/*
328 	 * The algorithm we use here is pretty stupid; just use the
329 	 * first driver that supports all the algorithms we need.
330 	 *
331 	 * XXX We need more smarts here (in real life too, but that's
332 	 * XXX another story altogether).
333 	 */
334 
335 	for (hid = 0; hid < crypto_drivers_num; hid++) {
336 		/*
337 		 * If it's not initialized or has remaining sessions
338 		 * referencing it, skip.
339 		 */
340 		if (crypto_drivers[hid].cc_newsession == NULL ||
341 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
342 			continue;
343 
344 		/* Hardware required -- ignore software drivers. */
345 		if (hard > 0 &&
346 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
347 			continue;
348 		/* Software required -- ignore hardware drivers. */
349 		if (hard < 0 &&
350 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
351 			continue;
352 
353 		/* See if all the algorithms are supported. */
354 		for (cr = cri; cr; cr = cr->cri_next)
355 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
356 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
357 				break;
358 			}
359 
360 		if (cr == NULL) {
361 			/* Ok, all algorithms are supported. */
362 
363 			/*
364 			 * Can't do everything in one session.
365 			 *
366 			 * XXX Fix this. We need to inject a "virtual" session layer right
367 			 * XXX about here.
368 			 */
369 
370 			/* Call the driver initialization routine. */
371 			lid = hid;		/* Pass the driver ID. */
372 			err = crypto_drivers[hid].cc_newsession(
373 					crypto_drivers[hid].cc_arg, &lid, cri);
374 			if (err == 0) {
375 				(*sid) = hid;
376 				(*sid) <<= 32;
377 				(*sid) |= (lid & 0xffffffff);
378 				crypto_drivers[hid].cc_sessions++;
379 			}
380 			goto done;
381 			/*break;*/
382 		}
383 	}
384 done:
385 	mutex_exit(&crypto_mtx);
386 	return err;
387 }
388 
389 /*
390  * Delete an existing session (or a reserved session on an unregistered
391  * driver).  Must be called with crypto_mtx mutex held.
392  */
393 int
394 crypto_freesession(u_int64_t sid)
395 {
396 	u_int32_t hid;
397 	int err = 0;
398 
399 	mutex_enter(&crypto_mtx);
400 
401 	if (crypto_drivers == NULL) {
402 		err = EINVAL;
403 		goto done;
404 	}
405 
406 	/* Determine two IDs. */
407 	hid = CRYPTO_SESID2HID(sid);
408 
409 	if (hid >= crypto_drivers_num) {
410 		err = ENOENT;
411 		goto done;
412 	}
413 
414 	if (crypto_drivers[hid].cc_sessions)
415 		crypto_drivers[hid].cc_sessions--;
416 
417 	/* Call the driver cleanup routine, if available. */
418 	if (crypto_drivers[hid].cc_freesession) {
419 		err = crypto_drivers[hid].cc_freesession(
420 				crypto_drivers[hid].cc_arg, sid);
421 	}
422 	else
423 		err = 0;
424 
425 	/*
426 	 * If this was the last session of a driver marked as invalid,
427 	 * make the entry available for reuse.
428 	 */
429 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
430 	    crypto_drivers[hid].cc_sessions == 0)
431 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
432 
433 done:
434 	mutex_exit(&crypto_mtx);
435 	return err;
436 }
437 
438 /*
439  * Return an unused driver id.  Used by drivers prior to registering
440  * support for the algorithms they handle.
441  */
442 int32_t
443 crypto_get_driverid(u_int32_t flags)
444 {
445 	struct cryptocap *newdrv;
446 	int i;
447 
448 	crypto_init();		/* XXX oh, this is foul! */
449 
450 	mutex_enter(&crypto_mtx);
451 	for (i = 0; i < crypto_drivers_num; i++)
452 		if (crypto_drivers[i].cc_process == NULL &&
453 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
454 		    crypto_drivers[i].cc_sessions == 0)
455 			break;
456 
457 	/* Out of entries, allocate some more. */
458 	if (i == crypto_drivers_num) {
459 		/* Be careful about wrap-around. */
460 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
461 			mutex_exit(&crypto_mtx);
462 			printf("crypto: driver count wraparound!\n");
463 			return -1;
464 		}
465 
466 		newdrv = malloc(2 * crypto_drivers_num *
467 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
468 		if (newdrv == NULL) {
469 			mutex_exit(&crypto_mtx);
470 			printf("crypto: no space to expand driver table!\n");
471 			return -1;
472 		}
473 
474 		memcpy(newdrv, crypto_drivers,
475 		    crypto_drivers_num * sizeof(struct cryptocap));
476 
477 		crypto_drivers_num *= 2;
478 
479 		free(crypto_drivers, M_CRYPTO_DATA);
480 		crypto_drivers = newdrv;
481 	}
482 
483 	/* NB: state is zero'd on free */
484 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
485 	crypto_drivers[i].cc_flags = flags;
486 
487 	if (bootverbose)
488 		printf("crypto: assign driver %u, flags %u\n", i, flags);
489 
490 	mutex_exit(&crypto_mtx);
491 
492 	return i;
493 }
494 
495 static struct cryptocap *
496 crypto_checkdriver(u_int32_t hid)
497 {
498 	if (crypto_drivers == NULL)
499 		return NULL;
500 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
501 }
502 
503 /*
504  * Register support for a key-related algorithm.  This routine
505  * is called once for each algorithm supported a driver.
506  */
507 int
508 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
509     int (*kprocess)(void *, struct cryptkop *, int),
510     void *karg)
511 {
512 	struct cryptocap *cap;
513 	int err;
514 
515 	mutex_enter(&crypto_mtx);
516 
517 	cap = crypto_checkdriver(driverid);
518 	if (cap != NULL &&
519 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
520 		/*
521 		 * XXX Do some performance testing to determine placing.
522 		 * XXX We probably need an auxiliary data structure that
523 		 * XXX describes relative performances.
524 		 */
525 
526 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
527 		if (bootverbose) {
528 			printf("crypto: driver %u registers key alg %u "
529 			       " flags %u\n",
530 				driverid,
531 				kalg,
532 				flags
533 			);
534 		}
535 
536 		if (cap->cc_kprocess == NULL) {
537 			cap->cc_karg = karg;
538 			cap->cc_kprocess = kprocess;
539 		}
540 		err = 0;
541 	} else
542 		err = EINVAL;
543 
544 	mutex_exit(&crypto_mtx);
545 	return err;
546 }
547 
548 /*
549  * Register support for a non-key-related algorithm.  This routine
550  * is called once for each such algorithm supported by a driver.
551  */
552 int
553 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
554     u_int32_t flags,
555     int (*newses)(void *, u_int32_t*, struct cryptoini*),
556     int (*freeses)(void *, u_int64_t),
557     int (*process)(void *, struct cryptop *, int),
558     void *arg)
559 {
560 	struct cryptocap *cap;
561 	int err;
562 
563 	mutex_enter(&crypto_mtx);
564 
565 	cap = crypto_checkdriver(driverid);
566 	/* NB: algorithms are in the range [1..max] */
567 	if (cap != NULL &&
568 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
569 		/*
570 		 * XXX Do some performance testing to determine placing.
571 		 * XXX We probably need an auxiliary data structure that
572 		 * XXX describes relative performances.
573 		 */
574 
575 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
576 		cap->cc_max_op_len[alg] = maxoplen;
577 		if (bootverbose) {
578 			printf("crypto: driver %u registers alg %u "
579 				"flags %u maxoplen %u\n",
580 				driverid,
581 				alg,
582 				flags,
583 				maxoplen
584 			);
585 		}
586 
587 		if (cap->cc_process == NULL) {
588 			cap->cc_arg = arg;
589 			cap->cc_newsession = newses;
590 			cap->cc_process = process;
591 			cap->cc_freesession = freeses;
592 			cap->cc_sessions = 0;		/* Unmark */
593 		}
594 		err = 0;
595 	} else
596 		err = EINVAL;
597 
598 	mutex_exit(&crypto_mtx);
599 	return err;
600 }
601 
602 /*
603  * Unregister a crypto driver. If there are pending sessions using it,
604  * leave enough information around so that subsequent calls using those
605  * sessions will correctly detect the driver has been unregistered and
606  * reroute requests.
607  */
608 int
609 crypto_unregister(u_int32_t driverid, int alg)
610 {
611 	int i, err;
612 	u_int32_t ses;
613 	struct cryptocap *cap;
614 
615 	mutex_enter(&crypto_mtx);
616 
617 	cap = crypto_checkdriver(driverid);
618 	if (cap != NULL &&
619 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
620 	    cap->cc_alg[alg] != 0) {
621 		cap->cc_alg[alg] = 0;
622 		cap->cc_max_op_len[alg] = 0;
623 
624 		/* Was this the last algorithm ? */
625 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
626 			if (cap->cc_alg[i] != 0)
627 				break;
628 
629 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
630 			ses = cap->cc_sessions;
631 			memset(cap, 0, sizeof(struct cryptocap));
632 			if (ses != 0) {
633 				/*
634 				 * If there are pending sessions, just mark as invalid.
635 				 */
636 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
637 				cap->cc_sessions = ses;
638 			}
639 		}
640 		err = 0;
641 	} else
642 		err = EINVAL;
643 
644 	mutex_exit(&crypto_mtx);
645 	return err;
646 }
647 
648 /*
649  * Unregister all algorithms associated with a crypto driver.
650  * If there are pending sessions using it, leave enough information
651  * around so that subsequent calls using those sessions will
652  * correctly detect the driver has been unregistered and reroute
653  * requests.
654  *
655  * XXX careful.  Don't change this to call crypto_unregister() for each
656  * XXX registered algorithm unless you drop the mutex across the calls;
657  * XXX you can't take it recursively.
658  */
659 int
660 crypto_unregister_all(u_int32_t driverid)
661 {
662 	int i, err;
663 	u_int32_t ses;
664 	struct cryptocap *cap;
665 
666 	mutex_enter(&crypto_mtx);
667 	cap = crypto_checkdriver(driverid);
668 	if (cap != NULL) {
669 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
670 			cap->cc_alg[i] = 0;
671 			cap->cc_max_op_len[i] = 0;
672 		}
673 		ses = cap->cc_sessions;
674 		memset(cap, 0, sizeof(struct cryptocap));
675 		if (ses != 0) {
676 			/*
677 			 * If there are pending sessions, just mark as invalid.
678 			 */
679 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
680 			cap->cc_sessions = ses;
681 		}
682 		err = 0;
683 	} else
684 		err = EINVAL;
685 
686 	mutex_exit(&crypto_mtx);
687 	return err;
688 }
689 
690 /*
691  * Clear blockage on a driver.  The what parameter indicates whether
692  * the driver is now ready for cryptop's and/or cryptokop's.
693  */
694 int
695 crypto_unblock(u_int32_t driverid, int what)
696 {
697 	struct cryptocap *cap;
698 	int needwakeup, err;
699 
700 	mutex_spin_enter(&crypto_q_mtx);
701 	cap = crypto_checkdriver(driverid);
702 	if (cap != NULL) {
703 		needwakeup = 0;
704 		if (what & CRYPTO_SYMQ) {
705 			needwakeup |= cap->cc_qblocked;
706 			cap->cc_qblocked = 0;
707 		}
708 		if (what & CRYPTO_ASYMQ) {
709 			needwakeup |= cap->cc_kqblocked;
710 			cap->cc_kqblocked = 0;
711 		}
712 		err = 0;
713 		if (needwakeup)
714 			setsoftcrypto(softintr_cookie);
715 		mutex_spin_exit(&crypto_q_mtx);
716 	} else {
717 		err = EINVAL;
718 		mutex_spin_exit(&crypto_q_mtx);
719 	}
720 
721 	return err;
722 }
723 
724 /*
725  * Dispatch a crypto request to a driver or queue
726  * it, to be processed by the kernel thread.
727  */
728 int
729 crypto_dispatch(struct cryptop *crp)
730 {
731 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
732 	int result;
733 
734 	mutex_spin_enter(&crypto_q_mtx);
735 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
736 		crp, crp->crp_desc->crd_alg));
737 
738 	cryptostats.cs_ops++;
739 
740 #ifdef CRYPTO_TIMING
741 	if (crypto_timing)
742 		nanouptime(&crp->crp_tstamp);
743 #endif
744 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
745 		struct cryptocap *cap;
746 		/*
747 		 * Caller marked the request to be processed
748 		 * immediately; dispatch it directly to the
749 		 * driver unless the driver is currently blocked.
750 		 */
751 		cap = crypto_checkdriver(hid);
752 		if (cap && !cap->cc_qblocked) {
753 			mutex_spin_exit(&crypto_q_mtx);
754 			result = crypto_invoke(crp, 0);
755 			if (result == ERESTART) {
756 				/*
757 				 * The driver ran out of resources, mark the
758 				 * driver ``blocked'' for cryptop's and put
759 				 * the op on the queue.
760 				 */
761 				mutex_spin_enter(&crypto_q_mtx);
762 				crypto_drivers[hid].cc_qblocked = 1;
763 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
764 				cryptostats.cs_blocks++;
765 				mutex_spin_exit(&crypto_q_mtx);
766 			}
767 			goto out_released;
768 		} else {
769 			/*
770 			 * The driver is blocked, just queue the op until
771 			 * it unblocks and the swi thread gets kicked.
772 			 */
773 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
774 			result = 0;
775 		}
776 	} else {
777 		int wasempty = TAILQ_EMPTY(&crp_q);
778 		/*
779 		 * Caller marked the request as ``ok to delay'';
780 		 * queue it for the swi thread.  This is desirable
781 		 * when the operation is low priority and/or suitable
782 		 * for batching.
783 		 */
784 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
785 		if (wasempty) {
786 			setsoftcrypto(softintr_cookie);
787 			mutex_spin_exit(&crypto_q_mtx);
788 			result = 0;
789 			goto out_released;
790 		}
791 
792 		result = 0;
793 	}
794 
795 	mutex_spin_exit(&crypto_q_mtx);
796 out_released:
797 	return result;
798 }
799 
800 /*
801  * Add an asymetric crypto request to a queue,
802  * to be processed by the kernel thread.
803  */
804 int
805 crypto_kdispatch(struct cryptkop *krp)
806 {
807 	struct cryptocap *cap;
808 	int result;
809 
810 	mutex_spin_enter(&crypto_q_mtx);
811 	cryptostats.cs_kops++;
812 
813 	cap = crypto_checkdriver(krp->krp_hid);
814 	if (cap && !cap->cc_kqblocked) {
815 		mutex_spin_exit(&crypto_q_mtx);
816 		result = crypto_kinvoke(krp, 0);
817 		if (result == ERESTART) {
818 			/*
819 			 * The driver ran out of resources, mark the
820 			 * driver ``blocked'' for cryptop's and put
821 			 * the op on the queue.
822 			 */
823 			mutex_spin_enter(&crypto_q_mtx);
824 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
825 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
826 			cryptostats.cs_kblocks++;
827 			mutex_spin_exit(&crypto_q_mtx);
828 		}
829 	} else {
830 		/*
831 		 * The driver is blocked, just queue the op until
832 		 * it unblocks and the swi thread gets kicked.
833 		 */
834 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
835 		result = 0;
836 		mutex_spin_exit(&crypto_q_mtx);
837 	}
838 
839 	return result;
840 }
841 
842 /*
843  * Dispatch an assymetric crypto request to the appropriate crypto devices.
844  */
845 static int
846 crypto_kinvoke(struct cryptkop *krp, int hint)
847 {
848 	u_int32_t hid;
849 	int error;
850 
851 	/* Sanity checks. */
852 	if (krp == NULL)
853 		return EINVAL;
854 	if (krp->krp_callback == NULL) {
855 		cv_destroy(&krp->krp_cv);
856 		pool_put(&cryptkop_pool, krp);
857 		return EINVAL;
858 	}
859 
860 	mutex_enter(&crypto_mtx);
861 	for (hid = 0; hid < crypto_drivers_num; hid++) {
862 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
863 		    crypto_devallowsoft == 0)
864 			continue;
865 		if (crypto_drivers[hid].cc_kprocess == NULL)
866 			continue;
867 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
868 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
869 			continue;
870 		break;
871 	}
872 	if (hid < crypto_drivers_num) {
873 		int (*process)(void *, struct cryptkop *, int);
874 		void *arg;
875 
876 		process = crypto_drivers[hid].cc_kprocess;
877 		arg = crypto_drivers[hid].cc_karg;
878 		mutex_exit(&crypto_mtx);
879 		krp->krp_hid = hid;
880 		error = (*process)(arg, krp, hint);
881 	} else {
882 		mutex_exit(&crypto_mtx);
883 		error = ENODEV;
884 	}
885 
886 	if (error) {
887 		krp->krp_status = error;
888 		crypto_kdone(krp);
889 	}
890 	return 0;
891 }
892 
893 #ifdef CRYPTO_TIMING
894 static void
895 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
896 {
897 	struct timespec now, t;
898 
899 	nanouptime(&now);
900 	t.tv_sec = now.tv_sec - tv->tv_sec;
901 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
902 	if (t.tv_nsec < 0) {
903 		t.tv_sec--;
904 		t.tv_nsec += 1000000000;
905 	}
906 	timespecadd(&ts->acc, &t, &t);
907 	if (timespeccmp(&t, &ts->min, <))
908 		ts->min = t;
909 	if (timespeccmp(&t, &ts->max, >))
910 		ts->max = t;
911 	ts->count++;
912 
913 	*tv = now;
914 }
915 #endif
916 
917 /*
918  * Dispatch a crypto request to the appropriate crypto devices.
919  */
920 static int
921 crypto_invoke(struct cryptop *crp, int hint)
922 {
923 	u_int32_t hid;
924 
925 #ifdef CRYPTO_TIMING
926 	if (crypto_timing)
927 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
928 #endif
929 	/* Sanity checks. */
930 	if (crp == NULL)
931 		return EINVAL;
932 	if (crp->crp_callback == NULL) {
933 		return EINVAL;
934 	}
935 	if (crp->crp_desc == NULL) {
936 		crp->crp_etype = EINVAL;
937 		crypto_done(crp);
938 		return 0;
939 	}
940 
941 	hid = CRYPTO_SESID2HID(crp->crp_sid);
942 
943 	if (hid < crypto_drivers_num) {
944 		int (*process)(void *, struct cryptop *, int);
945 		void *arg;
946 
947 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
948 			mutex_exit(&crypto_mtx);
949 			crypto_freesession(crp->crp_sid);
950 			mutex_enter(&crypto_mtx);
951 		}
952 		process = crypto_drivers[hid].cc_process;
953 		arg = crypto_drivers[hid].cc_arg;
954 
955 		/*
956 		 * Invoke the driver to process the request.
957 		 */
958 		DPRINTF(("calling process for %p\n", crp));
959 		return (*process)(arg, crp, hint);
960 	} else {
961 		struct cryptodesc *crd;
962 		u_int64_t nid = 0;
963 
964 		/*
965 		 * Driver has unregistered; migrate the session and return
966 		 * an error to the caller so they'll resubmit the op.
967 		 */
968 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
969 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
970 
971 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
972 			crp->crp_sid = nid;
973 
974 		crp->crp_etype = EAGAIN;
975 
976 		crypto_done(crp);
977 		return 0;
978 	}
979 }
980 
981 /*
982  * Release a set of crypto descriptors.
983  */
984 void
985 crypto_freereq(struct cryptop *crp)
986 {
987 	struct cryptodesc *crd;
988 
989 	if (crp == NULL)
990 		return;
991 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
992 		CRYPTO_SESID2LID(crp->crp_sid), crp));
993 
994 	/* sanity check */
995 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
996 		panic("crypto_freereq() freeing crp on RETQ\n");
997 	}
998 
999 	while ((crd = crp->crp_desc) != NULL) {
1000 		crp->crp_desc = crd->crd_next;
1001 		pool_put(&cryptodesc_pool, crd);
1002 	}
1003 	pool_put(&cryptop_pool, crp);
1004 }
1005 
1006 /*
1007  * Acquire a set of crypto descriptors.
1008  */
1009 struct cryptop *
1010 crypto_getreq(int num)
1011 {
1012 	struct cryptodesc *crd;
1013 	struct cryptop *crp;
1014 
1015 	crp = pool_get(&cryptop_pool, 0);
1016 	if (crp == NULL) {
1017 		return NULL;
1018 	}
1019 	memset(crp, 0, sizeof(struct cryptop));
1020 
1021 	while (num--) {
1022 		crd = pool_get(&cryptodesc_pool, 0);
1023 		if (crd == NULL) {
1024 			crypto_freereq(crp);
1025 			return NULL;
1026 		}
1027 
1028 		memset(crd, 0, sizeof(struct cryptodesc));
1029 		crd->crd_next = crp->crp_desc;
1030 		crp->crp_desc = crd;
1031 	}
1032 
1033 	return crp;
1034 }
1035 
1036 /*
1037  * Invoke the callback on behalf of the driver.
1038  */
1039 void
1040 crypto_done(struct cryptop *crp)
1041 {
1042 	int wasempty;
1043 
1044 	if (crp->crp_etype != 0)
1045 		cryptostats.cs_errs++;
1046 #ifdef CRYPTO_TIMING
1047 	if (crypto_timing)
1048 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1049 #endif
1050 	DPRINTF(("crypto_done[%u]: crp %p\n",
1051 		CRYPTO_SESID2LID(crp->crp_sid), crp));
1052 
1053 	/*
1054 	 * Normal case; queue the callback for the thread.
1055 	 *
1056 	 * The return queue is manipulated by the swi thread
1057 	 * and, potentially, by crypto device drivers calling
1058 	 * back to mark operations completed.  Thus we need
1059 	 * to mask both while manipulating the return queue.
1060 	 */
1061   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1062 		/*
1063 	 	* Do the callback directly.  This is ok when the
1064   	 	* callback routine does very little (e.g. the
1065 	 	* /dev/crypto callback method just does a wakeup).
1066 	 	*/
1067 		mutex_spin_enter(&crypto_ret_q_mtx);
1068 		crp->crp_flags |= CRYPTO_F_DONE;
1069 		mutex_spin_exit(&crypto_ret_q_mtx);
1070 
1071 #ifdef CRYPTO_TIMING
1072 		if (crypto_timing) {
1073 			/*
1074 		 	* NB: We must copy the timestamp before
1075 		 	* doing the callback as the cryptop is
1076 		 	* likely to be reclaimed.
1077 		 	*/
1078 			struct timespec t = crp->crp_tstamp;
1079 			crypto_tstat(&cryptostats.cs_cb, &t);
1080 			crp->crp_callback(crp);
1081 			crypto_tstat(&cryptostats.cs_finis, &t);
1082 		} else
1083 #endif
1084 		crp->crp_callback(crp);
1085 	} else {
1086 		mutex_spin_enter(&crypto_ret_q_mtx);
1087 		crp->crp_flags |= CRYPTO_F_DONE;
1088 
1089 		if (crp->crp_flags & CRYPTO_F_USER) {
1090 			/* the request has completed while
1091 			 * running in the user context
1092 			 * so don't queue it - the user
1093 			 * thread won't sleep when it sees
1094 			 * the CRYPTO_F_DONE flag.
1095 			 * This is an optimization to avoid
1096 			 * unecessary context switches.
1097 			 */
1098 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1099 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1100 		} else {
1101 			wasempty = TAILQ_EMPTY(&crp_ret_q);
1102 			DPRINTF(("crypto_done[%u]: queueing %p\n",
1103 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1104 			crp->crp_flags |= CRYPTO_F_ONRETQ;
1105 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1106 			if (wasempty) {
1107 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
1108 					"crp %p hit empty queue\n.",
1109 					CRYPTO_SESID2LID(crp->crp_sid), crp));
1110 				cv_signal(&cryptoret_cv);
1111 			}
1112 		}
1113 		mutex_spin_exit(&crypto_ret_q_mtx);
1114 	}
1115 }
1116 
1117 /*
1118  * Invoke the callback on behalf of the driver.
1119  */
1120 void
1121 crypto_kdone(struct cryptkop *krp)
1122 {
1123 	int wasempty;
1124 
1125 	if (krp->krp_status != 0)
1126 		cryptostats.cs_kerrs++;
1127 
1128 	krp->krp_flags |= CRYPTO_F_DONE;
1129 
1130 	/*
1131 	 * The return queue is manipulated by the swi thread
1132 	 * and, potentially, by crypto device drivers calling
1133 	 * back to mark operations completed.  Thus we need
1134 	 * to mask both while manipulating the return queue.
1135 	 */
1136 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1137 		krp->krp_callback(krp);
1138 	} else {
1139 		mutex_spin_enter(&crypto_ret_q_mtx);
1140 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1141 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1142 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1143 		if (wasempty)
1144 			cv_signal(&cryptoret_cv);
1145 		mutex_spin_exit(&crypto_ret_q_mtx);
1146 	}
1147 }
1148 
1149 int
1150 crypto_getfeat(int *featp)
1151 {
1152 	int hid, kalg, feat = 0;
1153 
1154 	mutex_enter(&crypto_mtx);
1155 
1156 	if (crypto_userasymcrypto == 0)
1157 		goto out;
1158 
1159 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1160 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1161 		    crypto_devallowsoft == 0) {
1162 			continue;
1163 		}
1164 		if (crypto_drivers[hid].cc_kprocess == NULL)
1165 			continue;
1166 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1167 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1168 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1169 				feat |=  1 << kalg;
1170 	}
1171 out:
1172 	mutex_exit(&crypto_mtx);
1173 	*featp = feat;
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Software interrupt thread to dispatch crypto requests.
1179  */
1180 static void
1181 cryptointr(void)
1182 {
1183 	struct cryptop *crp, *submit, *cnext;
1184 	struct cryptkop *krp, *knext;
1185 	struct cryptocap *cap;
1186 	int result, hint;
1187 
1188 	cryptostats.cs_intrs++;
1189 	mutex_spin_enter(&crypto_q_mtx);
1190 	do {
1191 		/*
1192 		 * Find the first element in the queue that can be
1193 		 * processed and look-ahead to see if multiple ops
1194 		 * are ready for the same driver.
1195 		 */
1196 		submit = NULL;
1197 		hint = 0;
1198 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1199 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1200 			cap = crypto_checkdriver(hid);
1201 			if (cap == NULL || cap->cc_process == NULL) {
1202 				/* Op needs to be migrated, process it. */
1203 				if (submit == NULL)
1204 					submit = crp;
1205 				break;
1206 			}
1207 			if (!cap->cc_qblocked) {
1208 				if (submit != NULL) {
1209 					/*
1210 					 * We stop on finding another op,
1211 					 * regardless whether its for the same
1212 					 * driver or not.  We could keep
1213 					 * searching the queue but it might be
1214 					 * better to just use a per-driver
1215 					 * queue instead.
1216 					 */
1217 					if (CRYPTO_SESID2HID(submit->crp_sid)
1218 					    == hid)
1219 						hint = CRYPTO_HINT_MORE;
1220 					break;
1221 				} else {
1222 					submit = crp;
1223 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1224 						break;
1225 					/* keep scanning for more are q'd */
1226 				}
1227 			}
1228 		}
1229 		if (submit != NULL) {
1230 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1231 			mutex_spin_exit(&crypto_q_mtx);
1232 			result = crypto_invoke(submit, hint);
1233 			/* we must take here as the TAILQ op or kinvoke
1234 			   may need this mutex below.  sigh. */
1235 			mutex_spin_enter(&crypto_q_mtx);
1236 			if (result == ERESTART) {
1237 				/*
1238 				 * The driver ran out of resources, mark the
1239 				 * driver ``blocked'' for cryptop's and put
1240 				 * the request back in the queue.  It would
1241 				 * best to put the request back where we got
1242 				 * it but that's hard so for now we put it
1243 				 * at the front.  This should be ok; putting
1244 				 * it at the end does not work.
1245 				 */
1246 				/* XXX validate sid again? */
1247 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1248 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1249 				cryptostats.cs_blocks++;
1250 			}
1251 		}
1252 
1253 		/* As above, but for key ops */
1254 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1255 			cap = crypto_checkdriver(krp->krp_hid);
1256 			if (cap == NULL || cap->cc_kprocess == NULL) {
1257 				/* Op needs to be migrated, process it. */
1258 				break;
1259 			}
1260 			if (!cap->cc_kqblocked)
1261 				break;
1262 		}
1263 		if (krp != NULL) {
1264 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1265 			mutex_spin_exit(&crypto_q_mtx);
1266 			result = crypto_kinvoke(krp, 0);
1267 			/* the next iteration will want the mutex. :-/ */
1268 			mutex_spin_enter(&crypto_q_mtx);
1269 			if (result == ERESTART) {
1270 				/*
1271 				 * The driver ran out of resources, mark the
1272 				 * driver ``blocked'' for cryptkop's and put
1273 				 * the request back in the queue.  It would
1274 				 * best to put the request back where we got
1275 				 * it but that's hard so for now we put it
1276 				 * at the front.  This should be ok; putting
1277 				 * it at the end does not work.
1278 				 */
1279 				/* XXX validate sid again? */
1280 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1281 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1282 				cryptostats.cs_kblocks++;
1283 			}
1284 		}
1285 	} while (submit != NULL || krp != NULL);
1286 	mutex_spin_exit(&crypto_q_mtx);
1287 }
1288 
1289 /*
1290  * Kernel thread to do callbacks.
1291  */
1292 static void
1293 cryptoret(void)
1294 {
1295 	struct cryptop *crp;
1296 	struct cryptkop *krp;
1297 
1298 	mutex_spin_enter(&crypto_ret_q_mtx);
1299 	for (;;) {
1300 		crp = TAILQ_FIRST(&crp_ret_q);
1301 		if (crp != NULL) {
1302 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1303 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1304 		}
1305 		krp = TAILQ_FIRST(&crp_ret_kq);
1306 		if (krp != NULL) {
1307 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1308 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1309 		}
1310 
1311 		/* drop before calling any callbacks. */
1312 		if (crp == NULL && krp == NULL) {
1313 			cryptostats.cs_rets++;
1314 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1315 			continue;
1316 		}
1317 
1318 		mutex_spin_exit(&crypto_ret_q_mtx);
1319 
1320 		if (crp != NULL) {
1321 #ifdef CRYPTO_TIMING
1322 			if (crypto_timing) {
1323 				/*
1324 				 * NB: We must copy the timestamp before
1325 				 * doing the callback as the cryptop is
1326 				 * likely to be reclaimed.
1327 				 */
1328 				struct timespec t = crp->crp_tstamp;
1329 				crypto_tstat(&cryptostats.cs_cb, &t);
1330 				crp->crp_callback(crp);
1331 				crypto_tstat(&cryptostats.cs_finis, &t);
1332 			} else
1333 #endif
1334 			{
1335 				crp->crp_callback(crp);
1336 			}
1337 		}
1338 		if (krp != NULL)
1339 			krp->krp_callback(krp);
1340 
1341 		mutex_spin_enter(&crypto_ret_q_mtx);
1342 	}
1343 }
1344 
1345 /* NetBSD module interface */
1346 
1347 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1348 
1349 static int
1350 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1351 {
1352 
1353 	switch (cmd) {
1354 	case MODULE_CMD_INIT:
1355 #ifdef _MODULE
1356 		crypto_init();
1357 #endif
1358 		return 0;
1359 	case MODULE_CMD_FINI:
1360 #ifdef _MODULE
1361 		sysctl_teardown(&sysctl_opencrypto_clog);
1362 #endif
1363 		return 0;
1364 	default:
1365 		return ENOTTY;
1366 	}
1367 }
1368