xref: /netbsd-src/sys/opencrypto/crypto.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: crypto.c,v 1.29 2008/08/03 10:18:12 degroote Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.29 2008/08/03 10:18:12 degroote Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 
69 #include "opt_ocf.h"
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
72 
73 kcondvar_t cryptoret_cv;
74 kmutex_t crypto_mtx;
75 
76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77   #define SWI_CRYPTO 17
78   #define register_swi(lvl, fn)  \
79   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
80   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
81   #define setsoftcrypto(x) softint_schedule(x)
82 
83 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
84 
85 /*
86  * Crypto drivers register themselves by allocating a slot in the
87  * crypto_drivers table with crypto_get_driverid() and then registering
88  * each algorithm they support with crypto_register() and crypto_kregister().
89  */
90 static	struct cryptocap *crypto_drivers;
91 static	int crypto_drivers_num;
92 static	void* softintr_cookie;
93 
94 /*
95  * There are two queues for crypto requests; one for symmetric (e.g.
96  * cipher) operations and one for asymmetric (e.g. MOD) operations.
97  * See below for how synchronization is handled.
98  */
99 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
100 		TAILQ_HEAD_INITIALIZER(crp_q);
101 static	TAILQ_HEAD(,cryptkop) crp_kq =
102 		TAILQ_HEAD_INITIALIZER(crp_kq);
103 
104 /*
105  * There are two queues for processing completed crypto requests; one
106  * for the symmetric and one for the asymmetric ops.  We only need one
107  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
108  * for how synchronization is handled.
109  */
110 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
111 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
112 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
113 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
114 
115 /*
116  * XXX these functions are ghastly hacks for when the submission
117  * XXX routines discover a request that was not CBIMM is already
118  * XXX done, and must be yanked from the retq (where _done) put it
119  * XXX as cryptoret won't get the chance.  The queue is walked backwards
120  * XXX as the request is generally the last one queued.
121  *
122  *	 call with the lock held, or else.
123  */
124 int
125 crypto_ret_q_remove(struct cryptop *crp)
126 {
127 	struct cryptop * acrp;
128 
129 	TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
130 		if (acrp == crp) {
131 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
132 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
133 			return 1;
134 		}
135 	}
136 	return 0;
137 }
138 
139 int
140 crypto_ret_kq_remove(struct cryptkop *krp)
141 {
142 	struct cryptkop * akrp;
143 
144 	TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
145 		if (akrp == krp) {
146 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
147 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
148 			return 1;
149 		}
150 	}
151 	return 0;
152 }
153 
154 /*
155  * Crypto op and desciptor data structures are allocated
156  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
157  */
158 struct pool cryptop_pool;
159 struct pool cryptodesc_pool;
160 struct pool cryptkop_pool;
161 
162 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
163 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
164 /*
165  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
166  * access to hardware versus software transforms as below:
167  *
168  * crypto_devallowsoft < 0:  Force userlevel requests to use software
169  *                              transforms, always
170  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
171  *                              requests for non-accelerated transforms
172  *                              (handling the latter in software)
173  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
174  *                               are hardware-accelerated.
175  */
176 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
177 
178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
179 {
180 	sysctl_createv(clog, 0, NULL, NULL,
181 		       CTLFLAG_PERMANENT,
182 		       CTLTYPE_NODE, "kern", NULL,
183 		       NULL, 0, NULL, 0,
184 		       CTL_KERN, CTL_EOL);
185 	sysctl_createv(clog, 0, NULL, NULL,
186 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
187 		       CTLTYPE_INT, "usercrypto",
188 		       SYSCTL_DESCR("Enable/disable user-mode access to "
189 			   "crypto support"),
190 		       NULL, 0, &crypto_usercrypto, 0,
191 		       CTL_KERN, CTL_CREATE, CTL_EOL);
192 	sysctl_createv(clog, 0, NULL, NULL,
193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 		       CTLTYPE_INT, "userasymcrypto",
195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
196 			   "asymmetric crypto support"),
197 		       NULL, 0, &crypto_userasymcrypto, 0,
198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
199 	sysctl_createv(clog, 0, NULL, NULL,
200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 		       CTLTYPE_INT, "cryptodevallowsoft",
202 		       SYSCTL_DESCR("Enable/disable use of software "
203 			   "asymmetric crypto support"),
204 		       NULL, 0, &crypto_devallowsoft, 0,
205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
206 }
207 
208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
209 
210 /*
211  * Synchronization: read carefully, this is non-trivial.
212  *
213  * Crypto requests are submitted via crypto_dispatch.  Typically
214  * these come in from network protocols at spl0 (output path) or
215  * spl[,soft]net (input path).
216  *
217  * Requests are typically passed on the driver directly, but they
218  * may also be queued for processing by a software interrupt thread,
219  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
220  * the requests to crypto drivers (h/w or s/w) who call crypto_done
221  * when a request is complete.  Hardware crypto drivers are assumed
222  * to register their IRQ's as network devices so their interrupt handlers
223  * and subsequent "done callbacks" happen at spl[imp,net].
224  *
225  * Completed crypto ops are queued for a separate kernel thread that
226  * handles the callbacks at spl0.  This decoupling insures the crypto
227  * driver interrupt service routine is not delayed while the callback
228  * takes place and that callbacks are delivered after a context switch
229  * (as opposed to a software interrupt that clients must block).
230  *
231  * This scheme is not intended for SMP machines.
232  */
233 static	void cryptointr(void);		/* swi thread to dispatch ops */
234 static	void cryptoret(void);		/* kernel thread for callbacks*/
235 static	struct lwp *cryptothread;
236 static	void crypto_destroy(void);
237 static	int crypto_invoke(struct cryptop *crp, int hint);
238 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
239 
240 static struct cryptostats cryptostats;
241 #ifdef CRYPTO_TIMING
242 static	int crypto_timing = 0;
243 #endif
244 
245 static int
246 crypto_init0(void)
247 {
248 	int error;
249 
250 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
251 	cv_init(&cryptoret_cv, "crypto_wait");
252 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
253 		  0, "cryptop", NULL, IPL_NET);
254 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
255 		  0, "cryptodesc", NULL, IPL_NET);
256 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
257 		  0, "cryptkop", NULL, IPL_NET);
258 
259 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
260 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
261 	if (crypto_drivers == NULL) {
262 		printf("crypto_init: cannot malloc driver table\n");
263 		return 0;
264 	}
265 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
266 
267 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
268 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
269 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
270 	if (error) {
271 		printf("crypto_init: cannot start cryptoret thread; error %d",
272 			error);
273 		crypto_destroy();
274 	}
275 
276 	return 0;
277 }
278 
279 void
280 crypto_init(void)
281 {
282 	static ONCE_DECL(crypto_init_once);
283 
284 	RUN_ONCE(&crypto_init_once, crypto_init0);
285 }
286 
287 static void
288 crypto_destroy(void)
289 {
290 	/* XXX no wait to reclaim zones */
291 	if (crypto_drivers != NULL)
292 		free(crypto_drivers, M_CRYPTO_DATA);
293 	unregister_swi(SWI_CRYPTO, cryptointr);
294 }
295 
296 /*
297  * Create a new session.  Must be called with crypto_mtx held.
298  */
299 int
300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
301 {
302 	struct cryptoini *cr;
303 	u_int32_t hid, lid;
304 	int err = EINVAL;
305 
306 	KASSERT(mutex_owned(&crypto_mtx));
307 
308 	if (crypto_drivers == NULL)
309 		goto done;
310 
311 	/*
312 	 * The algorithm we use here is pretty stupid; just use the
313 	 * first driver that supports all the algorithms we need.
314 	 *
315 	 * XXX We need more smarts here (in real life too, but that's
316 	 * XXX another story altogether).
317 	 */
318 
319 	for (hid = 0; hid < crypto_drivers_num; hid++) {
320 		/*
321 		 * If it's not initialized or has remaining sessions
322 		 * referencing it, skip.
323 		 */
324 		if (crypto_drivers[hid].cc_newsession == NULL ||
325 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
326 			continue;
327 
328 		/* Hardware required -- ignore software drivers. */
329 		if (hard > 0 &&
330 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
331 			continue;
332 		/* Software required -- ignore hardware drivers. */
333 		if (hard < 0 &&
334 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
335 			continue;
336 
337 		/* See if all the algorithms are supported. */
338 		for (cr = cri; cr; cr = cr->cri_next)
339 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
340 				break;
341 
342 		if (cr == NULL) {
343 			/* Ok, all algorithms are supported. */
344 
345 			/*
346 			 * Can't do everything in one session.
347 			 *
348 			 * XXX Fix this. We need to inject a "virtual" session layer right
349 			 * XXX about here.
350 			 */
351 
352 			/* Call the driver initialization routine. */
353 			lid = hid;		/* Pass the driver ID. */
354 			err = crypto_drivers[hid].cc_newsession(
355 					crypto_drivers[hid].cc_arg, &lid, cri);
356 			if (err == 0) {
357 				(*sid) = hid;
358 				(*sid) <<= 32;
359 				(*sid) |= (lid & 0xffffffff);
360 				crypto_drivers[hid].cc_sessions++;
361 			}
362 			goto done;
363 			/*break;*/
364 		}
365 	}
366 done:
367 	return err;
368 }
369 
370 /*
371  * Delete an existing session (or a reserved session on an unregistered
372  * driver).  Must be called with crypto_mtx mutex held.
373  */
374 int
375 crypto_freesession(u_int64_t sid)
376 {
377 	u_int32_t hid;
378 	int err = 0;
379 
380 	KASSERT(mutex_owned(&crypto_mtx));
381 
382 	if (crypto_drivers == NULL) {
383 		err = EINVAL;
384 		goto done;
385 	}
386 
387 	/* Determine two IDs. */
388 	hid = SESID2HID(sid);
389 
390 	if (hid >= crypto_drivers_num) {
391 		err = ENOENT;
392 		goto done;
393 	}
394 
395 	if (crypto_drivers[hid].cc_sessions)
396 		crypto_drivers[hid].cc_sessions--;
397 
398 	/* Call the driver cleanup routine, if available. */
399 	if (crypto_drivers[hid].cc_freesession) {
400 		err = crypto_drivers[hid].cc_freesession(
401 				crypto_drivers[hid].cc_arg, sid);
402 	}
403 	else
404 		err = 0;
405 
406 	/*
407 	 * If this was the last session of a driver marked as invalid,
408 	 * make the entry available for reuse.
409 	 */
410 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
411 	    crypto_drivers[hid].cc_sessions == 0)
412 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
413 
414 done:
415 	return err;
416 }
417 
418 /*
419  * Return an unused driver id.  Used by drivers prior to registering
420  * support for the algorithms they handle.
421  */
422 int32_t
423 crypto_get_driverid(u_int32_t flags)
424 {
425 	struct cryptocap *newdrv;
426 	int i;
427 
428 	crypto_init();		/* XXX oh, this is foul! */
429 
430 	mutex_spin_enter(&crypto_mtx);
431 	for (i = 0; i < crypto_drivers_num; i++)
432 		if (crypto_drivers[i].cc_process == NULL &&
433 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
434 		    crypto_drivers[i].cc_sessions == 0)
435 			break;
436 
437 	/* Out of entries, allocate some more. */
438 	if (i == crypto_drivers_num) {
439 		/* Be careful about wrap-around. */
440 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
441 			mutex_spin_exit(&crypto_mtx);
442 			printf("crypto: driver count wraparound!\n");
443 			return -1;
444 		}
445 
446 		newdrv = malloc(2 * crypto_drivers_num *
447 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
448 		if (newdrv == NULL) {
449 			mutex_spin_exit(&crypto_mtx);
450 			printf("crypto: no space to expand driver table!\n");
451 			return -1;
452 		}
453 
454 		bcopy(crypto_drivers, newdrv,
455 		    crypto_drivers_num * sizeof(struct cryptocap));
456 
457 		crypto_drivers_num *= 2;
458 
459 		free(crypto_drivers, M_CRYPTO_DATA);
460 		crypto_drivers = newdrv;
461 	}
462 
463 	/* NB: state is zero'd on free */
464 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
465 	crypto_drivers[i].cc_flags = flags;
466 
467 	if (bootverbose)
468 		printf("crypto: assign driver %u, flags %u\n", i, flags);
469 
470 	mutex_spin_exit(&crypto_mtx);
471 
472 	return i;
473 }
474 
475 static struct cryptocap *
476 crypto_checkdriver(u_int32_t hid)
477 {
478 	if (crypto_drivers == NULL)
479 		return NULL;
480 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
481 }
482 
483 /*
484  * Register support for a key-related algorithm.  This routine
485  * is called once for each algorithm supported a driver.
486  */
487 int
488 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
489     int (*kprocess)(void*, struct cryptkop *, int),
490     void *karg)
491 {
492 	struct cryptocap *cap;
493 	int err;
494 
495 	mutex_spin_enter(&crypto_mtx);
496 
497 	cap = crypto_checkdriver(driverid);
498 	if (cap != NULL &&
499 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
500 		/*
501 		 * XXX Do some performance testing to determine placing.
502 		 * XXX We probably need an auxiliary data structure that
503 		 * XXX describes relative performances.
504 		 */
505 
506 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
507 		if (bootverbose) {
508 			printf("crypto: driver %u registers key alg %u "
509 			       " flags %u\n",
510 				driverid,
511 				kalg,
512 				flags
513 			);
514 		}
515 
516 		if (cap->cc_kprocess == NULL) {
517 			cap->cc_karg = karg;
518 			cap->cc_kprocess = kprocess;
519 		}
520 		err = 0;
521 	} else
522 		err = EINVAL;
523 
524 	mutex_spin_exit(&crypto_mtx);
525 	return err;
526 }
527 
528 /*
529  * Register support for a non-key-related algorithm.  This routine
530  * is called once for each such algorithm supported by a driver.
531  */
532 int
533 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
534     u_int32_t flags,
535     int (*newses)(void*, u_int32_t*, struct cryptoini*),
536     int (*freeses)(void*, u_int64_t),
537     int (*process)(void*, struct cryptop *, int),
538     void *arg)
539 {
540 	struct cryptocap *cap;
541 	int err;
542 
543 	mutex_spin_enter(&crypto_mtx);
544 
545 	cap = crypto_checkdriver(driverid);
546 	/* NB: algorithms are in the range [1..max] */
547 	if (cap != NULL &&
548 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
549 		/*
550 		 * XXX Do some performance testing to determine placing.
551 		 * XXX We probably need an auxiliary data structure that
552 		 * XXX describes relative performances.
553 		 */
554 
555 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
556 		cap->cc_max_op_len[alg] = maxoplen;
557 		if (bootverbose) {
558 			printf("crypto: driver %u registers alg %u "
559 				"flags %u maxoplen %u\n",
560 				driverid,
561 				alg,
562 				flags,
563 				maxoplen
564 			);
565 		}
566 
567 		if (cap->cc_process == NULL) {
568 			cap->cc_arg = arg;
569 			cap->cc_newsession = newses;
570 			cap->cc_process = process;
571 			cap->cc_freesession = freeses;
572 			cap->cc_sessions = 0;		/* Unmark */
573 		}
574 		err = 0;
575 	} else
576 		err = EINVAL;
577 
578 	mutex_spin_exit(&crypto_mtx);
579 	return err;
580 }
581 
582 /*
583  * Unregister a crypto driver. If there are pending sessions using it,
584  * leave enough information around so that subsequent calls using those
585  * sessions will correctly detect the driver has been unregistered and
586  * reroute requests.
587  */
588 int
589 crypto_unregister(u_int32_t driverid, int alg)
590 {
591 	int i, err;
592 	u_int32_t ses;
593 	struct cryptocap *cap;
594 
595 	mutex_spin_enter(&crypto_mtx);
596 
597 	cap = crypto_checkdriver(driverid);
598 	if (cap != NULL &&
599 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
600 	    cap->cc_alg[alg] != 0) {
601 		cap->cc_alg[alg] = 0;
602 		cap->cc_max_op_len[alg] = 0;
603 
604 		/* Was this the last algorithm ? */
605 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
606 			if (cap->cc_alg[i] != 0)
607 				break;
608 
609 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
610 			ses = cap->cc_sessions;
611 			bzero(cap, sizeof(struct cryptocap));
612 			if (ses != 0) {
613 				/*
614 				 * If there are pending sessions, just mark as invalid.
615 				 */
616 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
617 				cap->cc_sessions = ses;
618 			}
619 		}
620 		err = 0;
621 	} else
622 		err = EINVAL;
623 
624 	mutex_spin_exit(&crypto_mtx);
625 	return err;
626 }
627 
628 /*
629  * Unregister all algorithms associated with a crypto driver.
630  * If there are pending sessions using it, leave enough information
631  * around so that subsequent calls using those sessions will
632  * correctly detect the driver has been unregistered and reroute
633  * requests.
634  *
635  * XXX careful.  Don't change this to call crypto_unregister() for each
636  * XXX registered algorithm unless you drop the mutex across the calls;
637  * XXX you can't take it recursively.
638  */
639 int
640 crypto_unregister_all(u_int32_t driverid)
641 {
642 	int i, err;
643 	u_int32_t ses;
644 	struct cryptocap *cap;
645 
646 	mutex_spin_enter(&crypto_mtx);
647 	cap = crypto_checkdriver(driverid);
648 	if (cap != NULL) {
649 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
650 			cap->cc_alg[i] = 0;
651 			cap->cc_max_op_len[i] = 0;
652 		}
653 		ses = cap->cc_sessions;
654 		bzero(cap, sizeof(struct cryptocap));
655 		if (ses != 0) {
656 			/*
657 			 * If there are pending sessions, just mark as invalid.
658 			 */
659 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
660 			cap->cc_sessions = ses;
661 		}
662 		err = 0;
663 	} else
664 		err = EINVAL;
665 
666 	mutex_spin_exit(&crypto_mtx);
667 	return err;
668 }
669 
670 /*
671  * Clear blockage on a driver.  The what parameter indicates whether
672  * the driver is now ready for cryptop's and/or cryptokop's.
673  */
674 int
675 crypto_unblock(u_int32_t driverid, int what)
676 {
677 	struct cryptocap *cap;
678 	int needwakeup, err;
679 
680 	mutex_spin_enter(&crypto_mtx);
681 	cap = crypto_checkdriver(driverid);
682 	if (cap != NULL) {
683 		needwakeup = 0;
684 		if (what & CRYPTO_SYMQ) {
685 			needwakeup |= cap->cc_qblocked;
686 			cap->cc_qblocked = 0;
687 		}
688 		if (what & CRYPTO_ASYMQ) {
689 			needwakeup |= cap->cc_kqblocked;
690 			cap->cc_kqblocked = 0;
691 		}
692 		err = 0;
693 		mutex_spin_exit(&crypto_mtx);
694 		if (needwakeup)
695 			setsoftcrypto(softintr_cookie);
696 	} else {
697 		err = EINVAL;
698 		mutex_spin_exit(&crypto_mtx);
699 	}
700 
701 	return err;
702 }
703 
704 /*
705  * Dispatch a crypto request to a driver or queue
706  * it, to be processed by the kernel thread.
707  */
708 int
709 crypto_dispatch(struct cryptop *crp)
710 {
711 	u_int32_t hid = SESID2HID(crp->crp_sid);
712 	int result;
713 
714 	mutex_spin_enter(&crypto_mtx);
715 
716 	cryptostats.cs_ops++;
717 
718 #ifdef CRYPTO_TIMING
719 	if (crypto_timing)
720 		nanouptime(&crp->crp_tstamp);
721 #endif
722 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
723 		struct cryptocap *cap;
724 		/*
725 		 * Caller marked the request to be processed
726 		 * immediately; dispatch it directly to the
727 		 * driver unless the driver is currently blocked.
728 		 */
729 		cap = crypto_checkdriver(hid);
730 		if (cap && !cap->cc_qblocked) {
731 			mutex_spin_exit(&crypto_mtx);
732 			result = crypto_invoke(crp, 0);
733 			if (result == ERESTART) {
734 				/*
735 				 * The driver ran out of resources, mark the
736 				 * driver ``blocked'' for cryptop's and put
737 				 * the op on the queue.
738 				 */
739 				mutex_spin_enter(&crypto_mtx);
740 				crypto_drivers[hid].cc_qblocked = 1;
741 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
742 				cryptostats.cs_blocks++;
743 				mutex_spin_exit(&crypto_mtx);
744 			}
745 			goto out_released;
746 		} else {
747 			/*
748 			 * The driver is blocked, just queue the op until
749 			 * it unblocks and the swi thread gets kicked.
750 			 */
751 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
752 			result = 0;
753 		}
754 	} else {
755 		int wasempty = TAILQ_EMPTY(&crp_q);
756 		/*
757 		 * Caller marked the request as ``ok to delay'';
758 		 * queue it for the swi thread.  This is desirable
759 		 * when the operation is low priority and/or suitable
760 		 * for batching.
761 		 */
762 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
763 		if (wasempty) {
764 			mutex_spin_exit(&crypto_mtx);
765 			setsoftcrypto(softintr_cookie);
766 			result = 0;
767 			goto out_released;
768 		}
769 
770 		result = 0;
771 	}
772 
773 	mutex_spin_exit(&crypto_mtx);
774 out_released:
775 	return result;
776 }
777 
778 /*
779  * Add an asymetric crypto request to a queue,
780  * to be processed by the kernel thread.
781  */
782 int
783 crypto_kdispatch(struct cryptkop *krp)
784 {
785 	struct cryptocap *cap;
786 	int result;
787 
788 	mutex_spin_enter(&crypto_mtx);
789 	cryptostats.cs_kops++;
790 
791 	cap = crypto_checkdriver(krp->krp_hid);
792 	if (cap && !cap->cc_kqblocked) {
793 		mutex_spin_exit(&crypto_mtx);
794 		result = crypto_kinvoke(krp, 0);
795 		if (result == ERESTART) {
796 			/*
797 			 * The driver ran out of resources, mark the
798 			 * driver ``blocked'' for cryptop's and put
799 			 * the op on the queue.
800 			 */
801 			mutex_spin_enter(&crypto_mtx);
802 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
803 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
804 			cryptostats.cs_kblocks++;
805 			mutex_spin_exit(&crypto_mtx);
806 		}
807 	} else {
808 		/*
809 		 * The driver is blocked, just queue the op until
810 		 * it unblocks and the swi thread gets kicked.
811 		 */
812 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
813 		result = 0;
814 		mutex_spin_exit(&crypto_mtx);
815 	}
816 
817 	return result;
818 }
819 
820 /*
821  * Dispatch an assymetric crypto request to the appropriate crypto devices.
822  */
823 static int
824 crypto_kinvoke(struct cryptkop *krp, int hint)
825 {
826 	u_int32_t hid;
827 	int error;
828 
829 	/* Sanity checks. */
830 	if (krp == NULL)
831 		return EINVAL;
832 	if (krp->krp_callback == NULL) {
833 		pool_put(&cryptkop_pool, krp);
834 		return EINVAL;
835 	}
836 
837 	for (hid = 0; hid < crypto_drivers_num; hid++) {
838 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
839 		    crypto_devallowsoft == 0)
840 			continue;
841 		if (crypto_drivers[hid].cc_kprocess == NULL)
842 			continue;
843 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
844 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
845 			continue;
846 		break;
847 	}
848 	if (hid < crypto_drivers_num) {
849 		krp->krp_hid = hid;
850 		error = crypto_drivers[hid].cc_kprocess(
851 				crypto_drivers[hid].cc_karg, krp, hint);
852 	} else {
853 		error = ENODEV;
854 	}
855 
856 	if (error) {
857 		krp->krp_status = error;
858 		crypto_kdone(krp);
859 	}
860 	return 0;
861 }
862 
863 #ifdef CRYPTO_TIMING
864 static void
865 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
866 {
867 	struct timespec now, t;
868 
869 	nanouptime(&now);
870 	t.tv_sec = now.tv_sec - tv->tv_sec;
871 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
872 	if (t.tv_nsec < 0) {
873 		t.tv_sec--;
874 		t.tv_nsec += 1000000000;
875 	}
876 	timespecadd(&ts->acc, &t, &t);
877 	if (timespeccmp(&t, &ts->min, <))
878 		ts->min = t;
879 	if (timespeccmp(&t, &ts->max, >))
880 		ts->max = t;
881 	ts->count++;
882 
883 	*tv = now;
884 }
885 #endif
886 
887 /*
888  * Dispatch a crypto request to the appropriate crypto devices.
889  */
890 static int
891 crypto_invoke(struct cryptop *crp, int hint)
892 {
893 	u_int32_t hid;
894 	int (*process)(void*, struct cryptop *, int);
895 
896 #ifdef CRYPTO_TIMING
897 	if (crypto_timing)
898 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
899 #endif
900 	/* Sanity checks. */
901 	if (crp == NULL)
902 		return EINVAL;
903 	if (crp->crp_callback == NULL) {
904 		crypto_freereq(crp);
905 		return EINVAL;
906 	}
907 	if (crp->crp_desc == NULL) {
908 		crp->crp_etype = EINVAL;
909 		crypto_done(crp);
910 		return 0;
911 	}
912 
913 	hid = SESID2HID(crp->crp_sid);
914 	if (hid < crypto_drivers_num) {
915 		mutex_enter(&crypto_mtx);
916 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
917 			crypto_freesession(crp->crp_sid);
918 		process = crypto_drivers[hid].cc_process;
919 		mutex_exit(&crypto_mtx);
920 	} else {
921 		process = NULL;
922 	}
923 
924 	if (process == NULL) {
925 		struct cryptodesc *crd;
926 		u_int64_t nid = 0;
927 
928 		/*
929 		 * Driver has unregistered; migrate the session and return
930 		 * an error to the caller so they'll resubmit the op.
931 		 */
932 		mutex_enter(&crypto_mtx);
933 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
934 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
935 
936 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
937 			crp->crp_sid = nid;
938 
939 		crp->crp_etype = EAGAIN;
940 		mutex_exit(&crypto_mtx);
941 
942 		crypto_done(crp);
943 		return 0;
944 	} else {
945 		/*
946 		 * Invoke the driver to process the request.
947 		 */
948 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
949 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
950 	}
951 }
952 
953 /*
954  * Release a set of crypto descriptors.
955  */
956 void
957 crypto_freereq(struct cryptop *crp)
958 {
959 	struct cryptodesc *crd;
960 
961 	if (crp == NULL)
962 		return;
963 
964 	while ((crd = crp->crp_desc) != NULL) {
965 		crp->crp_desc = crd->crd_next;
966 		pool_put(&cryptodesc_pool, crd);
967 	}
968 	cv_destroy(&crp->crp_cv);
969 	pool_put(&cryptop_pool, crp);
970 }
971 
972 /*
973  * Acquire a set of crypto descriptors.
974  */
975 struct cryptop *
976 crypto_getreq(int num)
977 {
978 	struct cryptodesc *crd;
979 	struct cryptop *crp;
980 
981 	crp = pool_get(&cryptop_pool, 0);
982 	if (crp == NULL) {
983 		return NULL;
984 	}
985 	bzero(crp, sizeof(struct cryptop));
986 	cv_init(&crp->crp_cv, "crydev");
987 
988 	while (num--) {
989 		crd = pool_get(&cryptodesc_pool, 0);
990 		if (crd == NULL) {
991 			crypto_freereq(crp);
992 			return NULL;
993 		}
994 
995 		bzero(crd, sizeof(struct cryptodesc));
996 		crd->crd_next = crp->crp_desc;
997 		crp->crp_desc = crd;
998 	}
999 
1000 	return crp;
1001 }
1002 
1003 /*
1004  * Invoke the callback on behalf of the driver.
1005  */
1006 void
1007 crypto_done(struct cryptop *crp)
1008 {
1009 	int wasempty;
1010 
1011 	if (crp->crp_etype != 0)
1012 		cryptostats.cs_errs++;
1013 #ifdef CRYPTO_TIMING
1014 	if (crypto_timing)
1015 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1016 #endif
1017 
1018 	crp->crp_flags |= CRYPTO_F_DONE;
1019 
1020 	/*
1021 	 * Normal case; queue the callback for the thread.
1022 	 *
1023 	 * The return queue is manipulated by the swi thread
1024 	 * and, potentially, by crypto device drivers calling
1025 	 * back to mark operations completed.  Thus we need
1026 	 * to mask both while manipulating the return queue.
1027 	 */
1028   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1029 		/*
1030 	 	* Do the callback directly.  This is ok when the
1031   	 	* callback routine does very little (e.g. the
1032 	 	* /dev/crypto callback method just does a wakeup).
1033 	 	*/
1034 #ifdef CRYPTO_TIMING
1035 		if (crypto_timing) {
1036 			/*
1037 		 	* NB: We must copy the timestamp before
1038 		 	* doing the callback as the cryptop is
1039 		 	* likely to be reclaimed.
1040 		 	*/
1041 			struct timespec t = crp->crp_tstamp;
1042 			crypto_tstat(&cryptostats.cs_cb, &t);
1043 			crp->crp_callback(crp);
1044 			crypto_tstat(&cryptostats.cs_finis, &t);
1045 		} else
1046 #endif
1047 		crp->crp_callback(crp);
1048 	} else {
1049 		mutex_spin_enter(&crypto_mtx);
1050 		wasempty = TAILQ_EMPTY(&crp_ret_q);
1051 		DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
1052 		crp->crp_flags |= CRYPTO_F_ONRETQ;
1053 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1054 		if (wasempty) {
1055 			DPRINTF(("crypto_done: waking cryptoret, %08x " \
1056 				"hit empty queue\n.", (uint32_t)crp));
1057 			cv_signal(&cryptoret_cv);
1058 		}
1059 		mutex_spin_exit(&crypto_mtx);
1060 	}
1061 }
1062 
1063 /*
1064  * Invoke the callback on behalf of the driver.
1065  */
1066 void
1067 crypto_kdone(struct cryptkop *krp)
1068 {
1069 	int wasempty;
1070 
1071 	if (krp->krp_status != 0)
1072 		cryptostats.cs_kerrs++;
1073 
1074 	krp->krp_flags |= CRYPTO_F_DONE;
1075 
1076 	/*
1077 	 * The return queue is manipulated by the swi thread
1078 	 * and, potentially, by crypto device drivers calling
1079 	 * back to mark operations completed.  Thus we need
1080 	 * to mask both while manipulating the return queue.
1081 	 */
1082 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1083 		krp->krp_callback(krp);
1084 	} else {
1085 		mutex_spin_enter(&crypto_mtx);
1086 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1087 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1088 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1089 		if (wasempty)
1090 			cv_signal(&cryptoret_cv);
1091 		mutex_spin_exit(&crypto_mtx);
1092 	}
1093 }
1094 
1095 int
1096 crypto_getfeat(int *featp)
1097 {
1098 	int hid, kalg, feat = 0;
1099 
1100 	mutex_spin_enter(&crypto_mtx);
1101 
1102 	if (crypto_userasymcrypto == 0)
1103 		goto out;
1104 
1105 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1106 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1107 		    crypto_devallowsoft == 0) {
1108 			continue;
1109 		}
1110 		if (crypto_drivers[hid].cc_kprocess == NULL)
1111 			continue;
1112 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1113 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1114 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1115 				feat |=  1 << kalg;
1116 	}
1117 out:
1118 	mutex_spin_exit(&crypto_mtx);
1119 	*featp = feat;
1120 	return (0);
1121 }
1122 
1123 /*
1124  * Software interrupt thread to dispatch crypto requests.
1125  */
1126 static void
1127 cryptointr(void)
1128 {
1129 	struct cryptop *crp, *submit;
1130 	struct cryptkop *krp;
1131 	struct cryptocap *cap;
1132 	int result, hint;
1133 
1134 	printf("crypto softint\n");
1135 	cryptostats.cs_intrs++;
1136 	mutex_spin_enter(&crypto_mtx);
1137 	do {
1138 		/*
1139 		 * Find the first element in the queue that can be
1140 		 * processed and look-ahead to see if multiple ops
1141 		 * are ready for the same driver.
1142 		 */
1143 		submit = NULL;
1144 		hint = 0;
1145 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1146 			u_int32_t hid = SESID2HID(crp->crp_sid);
1147 			cap = crypto_checkdriver(hid);
1148 			if (cap == NULL || cap->cc_process == NULL) {
1149 				/* Op needs to be migrated, process it. */
1150 				if (submit == NULL)
1151 					submit = crp;
1152 				break;
1153 			}
1154 			if (!cap->cc_qblocked) {
1155 				if (submit != NULL) {
1156 					/*
1157 					 * We stop on finding another op,
1158 					 * regardless whether its for the same
1159 					 * driver or not.  We could keep
1160 					 * searching the queue but it might be
1161 					 * better to just use a per-driver
1162 					 * queue instead.
1163 					 */
1164 					if (SESID2HID(submit->crp_sid) == hid)
1165 						hint = CRYPTO_HINT_MORE;
1166 					break;
1167 				} else {
1168 					submit = crp;
1169 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1170 						break;
1171 					/* keep scanning for more are q'd */
1172 				}
1173 			}
1174 		}
1175 		if (submit != NULL) {
1176 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1177 			mutex_spin_exit(&crypto_mtx);
1178 			result = crypto_invoke(submit, hint);
1179 			/* we must take here as the TAILQ op or kinvoke
1180 			   may need this mutex below.  sigh. */
1181 			mutex_spin_enter(&crypto_mtx);
1182 			if (result == ERESTART) {
1183 				/*
1184 				 * The driver ran out of resources, mark the
1185 				 * driver ``blocked'' for cryptop's and put
1186 				 * the request back in the queue.  It would
1187 				 * best to put the request back where we got
1188 				 * it but that's hard so for now we put it
1189 				 * at the front.  This should be ok; putting
1190 				 * it at the end does not work.
1191 				 */
1192 				/* XXX validate sid again? */
1193 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1194 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1195 				cryptostats.cs_blocks++;
1196 			}
1197 		}
1198 
1199 		/* As above, but for key ops */
1200 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1201 			cap = crypto_checkdriver(krp->krp_hid);
1202 			if (cap == NULL || cap->cc_kprocess == NULL) {
1203 				/* Op needs to be migrated, process it. */
1204 				break;
1205 			}
1206 			if (!cap->cc_kqblocked)
1207 				break;
1208 		}
1209 		if (krp != NULL) {
1210 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1211 			mutex_spin_exit(&crypto_mtx);
1212 			result = crypto_kinvoke(krp, 0);
1213 			/* the next iteration will want the mutex. :-/ */
1214 			mutex_spin_enter(&crypto_mtx);
1215 			if (result == ERESTART) {
1216 				/*
1217 				 * The driver ran out of resources, mark the
1218 				 * driver ``blocked'' for cryptkop's and put
1219 				 * the request back in the queue.  It would
1220 				 * best to put the request back where we got
1221 				 * it but that's hard so for now we put it
1222 				 * at the front.  This should be ok; putting
1223 				 * it at the end does not work.
1224 				 */
1225 				/* XXX validate sid again? */
1226 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1227 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1228 				cryptostats.cs_kblocks++;
1229 			}
1230 		}
1231 	} while (submit != NULL || krp != NULL);
1232 	mutex_spin_exit(&crypto_mtx);
1233 }
1234 
1235 /*
1236  * Kernel thread to do callbacks.
1237  */
1238 static void
1239 cryptoret(void)
1240 {
1241 	struct cryptop *crp;
1242 	struct cryptkop *krp;
1243 
1244 	mutex_spin_enter(&crypto_mtx);
1245 	for (;;) {
1246 		crp = TAILQ_FIRST(&crp_ret_q);
1247 		if (crp != NULL) {
1248 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1249 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1250 		}
1251 		krp = TAILQ_FIRST(&crp_ret_kq);
1252 		if (krp != NULL) {
1253 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1254 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1255 		}
1256 
1257 		/* drop before calling any callbacks. */
1258 		if (crp == NULL && krp == NULL) {
1259 			cryptostats.cs_rets++;
1260 			cv_wait(&cryptoret_cv, &crypto_mtx);
1261 			continue;
1262 		}
1263 
1264 		mutex_spin_exit(&crypto_mtx);
1265 
1266 		if (crp != NULL) {
1267 #ifdef CRYPTO_TIMING
1268 			if (crypto_timing) {
1269 				/*
1270 				 * NB: We must copy the timestamp before
1271 				 * doing the callback as the cryptop is
1272 				 * likely to be reclaimed.
1273 				 */
1274 				struct timespec t = crp->crp_tstamp;
1275 				crypto_tstat(&cryptostats.cs_cb, &t);
1276 				crp->crp_callback(crp);
1277 				crypto_tstat(&cryptostats.cs_finis, &t);
1278 			} else
1279 #endif
1280 			{
1281 				crp->crp_callback(crp);
1282 			}
1283 		}
1284 		if (krp != NULL)
1285 			krp->krp_callback(krp);
1286 
1287 		mutex_spin_enter(&crypto_mtx);
1288 	}
1289 }
1290