1 /* $NetBSD: crypto.c,v 1.36 2010/08/11 11:49:09 pgoyette Exp $ */ 2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */ 3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */ 4 5 /*- 6 * Copyright (c) 2008 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Coyote Point Systems, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 36 * 37 * This code was written by Angelos D. Keromytis in Athens, Greece, in 38 * February 2000. Network Security Technologies Inc. (NSTI) kindly 39 * supported the development of this code. 40 * 41 * Copyright (c) 2000, 2001 Angelos D. Keromytis 42 * 43 * Permission to use, copy, and modify this software with or without fee 44 * is hereby granted, provided that this entire notice is included in 45 * all source code copies of any software which is or includes a copy or 46 * modification of this software. 47 * 48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 52 * PURPOSE. 53 */ 54 55 #include <sys/cdefs.h> 56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.36 2010/08/11 11:49:09 pgoyette Exp $"); 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/malloc.h> 62 #include <sys/proc.h> 63 #include <sys/pool.h> 64 #include <sys/kthread.h> 65 #include <sys/once.h> 66 #include <sys/sysctl.h> 67 #include <sys/intr.h> 68 69 #include "opt_ocf.h" 70 #include <opencrypto/cryptodev.h> 71 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 72 73 kcondvar_t cryptoret_cv; 74 kmutex_t crypto_mtx; 75 76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */ 77 #define SWI_CRYPTO 17 78 #define register_swi(lvl, fn) \ 79 softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL) 80 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie) 81 #define setsoftcrypto(x) softint_schedule(x) 82 83 int crypto_ret_q_check(struct cryptop *); 84 85 /* 86 * Crypto drivers register themselves by allocating a slot in the 87 * crypto_drivers table with crypto_get_driverid() and then registering 88 * each algorithm they support with crypto_register() and crypto_kregister(). 89 */ 90 static struct cryptocap *crypto_drivers; 91 static int crypto_drivers_num; 92 static void* softintr_cookie; 93 94 /* 95 * There are two queues for crypto requests; one for symmetric (e.g. 96 * cipher) operations and one for asymmetric (e.g. MOD) operations. 97 * See below for how synchronization is handled. 98 */ 99 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */ 100 TAILQ_HEAD_INITIALIZER(crp_q); 101 static TAILQ_HEAD(,cryptkop) crp_kq = 102 TAILQ_HEAD_INITIALIZER(crp_kq); 103 104 /* 105 * There are two queues for processing completed crypto requests; one 106 * for the symmetric and one for the asymmetric ops. We only need one 107 * but have two to avoid type futzing (cryptop vs. cryptkop). See below 108 * for how synchronization is handled. 109 */ 110 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */ 111 TAILQ_HEAD_INITIALIZER(crp_ret_q); 112 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq = 113 TAILQ_HEAD_INITIALIZER(crp_ret_kq); 114 115 /* 116 * XXX these functions are ghastly hacks for when the submission 117 * XXX routines discover a request that was not CBIMM is already 118 * XXX done, and must be yanked from the retq (where _done) put it 119 * XXX as cryptoret won't get the chance. The queue is walked backwards 120 * XXX as the request is generally the last one queued. 121 * 122 * call with the lock held, or else. 123 */ 124 int 125 crypto_ret_q_remove(struct cryptop *crp) 126 { 127 struct cryptop * acrp, *next; 128 129 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) { 130 if (acrp == crp) { 131 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 132 crp->crp_flags &= (~CRYPTO_F_ONRETQ); 133 return 1; 134 } 135 } 136 return 0; 137 } 138 139 int 140 crypto_ret_kq_remove(struct cryptkop *krp) 141 { 142 struct cryptkop * akrp, *next; 143 144 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) { 145 if (akrp == krp) { 146 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 147 krp->krp_flags &= (~CRYPTO_F_ONRETQ); 148 return 1; 149 } 150 } 151 return 0; 152 } 153 154 /* 155 * Crypto op and desciptor data structures are allocated 156 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) . 157 */ 158 struct pool cryptop_pool; 159 struct pool cryptodesc_pool; 160 struct pool cryptkop_pool; 161 162 int crypto_usercrypto = 1; /* userland may open /dev/crypto */ 163 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 164 /* 165 * cryptodevallowsoft is (intended to be) sysctl'able, controlling 166 * access to hardware versus software transforms as below: 167 * 168 * crypto_devallowsoft < 0: Force userlevel requests to use software 169 * transforms, always 170 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel 171 * requests for non-accelerated transforms 172 * (handling the latter in software) 173 * crypto_devallowsoft > 0: Allow user requests only for transforms which 174 * are hardware-accelerated. 175 */ 176 int crypto_devallowsoft = 1; /* only use hardware crypto */ 177 178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup") 179 { 180 sysctl_createv(clog, 0, NULL, NULL, 181 CTLFLAG_PERMANENT, 182 CTLTYPE_NODE, "kern", NULL, 183 NULL, 0, NULL, 0, 184 CTL_KERN, CTL_EOL); 185 sysctl_createv(clog, 0, NULL, NULL, 186 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 187 CTLTYPE_INT, "usercrypto", 188 SYSCTL_DESCR("Enable/disable user-mode access to " 189 "crypto support"), 190 NULL, 0, &crypto_usercrypto, 0, 191 CTL_KERN, CTL_CREATE, CTL_EOL); 192 sysctl_createv(clog, 0, NULL, NULL, 193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 194 CTLTYPE_INT, "userasymcrypto", 195 SYSCTL_DESCR("Enable/disable user-mode access to " 196 "asymmetric crypto support"), 197 NULL, 0, &crypto_userasymcrypto, 0, 198 CTL_KERN, CTL_CREATE, CTL_EOL); 199 sysctl_createv(clog, 0, NULL, NULL, 200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 201 CTLTYPE_INT, "cryptodevallowsoft", 202 SYSCTL_DESCR("Enable/disable use of software " 203 "asymmetric crypto support"), 204 NULL, 0, &crypto_devallowsoft, 0, 205 CTL_KERN, CTL_CREATE, CTL_EOL); 206 } 207 208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 209 210 /* 211 * Synchronization: read carefully, this is non-trivial. 212 * 213 * Crypto requests are submitted via crypto_dispatch. Typically 214 * these come in from network protocols at spl0 (output path) or 215 * spl[,soft]net (input path). 216 * 217 * Requests are typically passed on the driver directly, but they 218 * may also be queued for processing by a software interrupt thread, 219 * cryptointr, that runs at splsoftcrypto. This thread dispatches 220 * the requests to crypto drivers (h/w or s/w) who call crypto_done 221 * when a request is complete. Hardware crypto drivers are assumed 222 * to register their IRQ's as network devices so their interrupt handlers 223 * and subsequent "done callbacks" happen at spl[imp,net]. 224 * 225 * Completed crypto ops are queued for a separate kernel thread that 226 * handles the callbacks at spl0. This decoupling insures the crypto 227 * driver interrupt service routine is not delayed while the callback 228 * takes place and that callbacks are delivered after a context switch 229 * (as opposed to a software interrupt that clients must block). 230 * 231 * This scheme is not intended for SMP machines. 232 */ 233 static void cryptointr(void); /* swi thread to dispatch ops */ 234 static void cryptoret(void); /* kernel thread for callbacks*/ 235 static struct lwp *cryptothread; 236 static void crypto_destroy(void); 237 static int crypto_invoke(struct cryptop *crp, int hint); 238 static int crypto_kinvoke(struct cryptkop *krp, int hint); 239 240 static struct cryptostats cryptostats; 241 #ifdef CRYPTO_TIMING 242 static int crypto_timing = 0; 243 #endif 244 245 static int 246 crypto_init0(void) 247 { 248 int error; 249 250 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET); 251 cv_init(&cryptoret_cv, "crypto_w"); 252 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0, 253 0, "cryptop", NULL, IPL_NET); 254 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0, 255 0, "cryptodesc", NULL, IPL_NET); 256 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0, 257 0, "cryptkop", NULL, IPL_NET); 258 259 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL * 260 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 261 if (crypto_drivers == NULL) { 262 printf("crypto_init: cannot malloc driver table\n"); 263 return 0; 264 } 265 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 266 267 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr); 268 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 269 (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret"); 270 if (error) { 271 printf("crypto_init: cannot start cryptoret thread; error %d", 272 error); 273 crypto_destroy(); 274 } 275 276 return 0; 277 } 278 279 void 280 crypto_init(void) 281 { 282 static ONCE_DECL(crypto_init_once); 283 284 RUN_ONCE(&crypto_init_once, crypto_init0); 285 } 286 287 static void 288 crypto_destroy(void) 289 { 290 /* XXX no wait to reclaim zones */ 291 if (crypto_drivers != NULL) 292 free(crypto_drivers, M_CRYPTO_DATA); 293 unregister_swi(SWI_CRYPTO, cryptointr); 294 } 295 296 /* 297 * Create a new session. Must be called with crypto_mtx held. 298 */ 299 int 300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard) 301 { 302 struct cryptoini *cr; 303 u_int32_t hid, lid; 304 int err = EINVAL; 305 306 KASSERT(mutex_owned(&crypto_mtx)); 307 308 if (crypto_drivers == NULL) 309 goto done; 310 311 /* 312 * The algorithm we use here is pretty stupid; just use the 313 * first driver that supports all the algorithms we need. 314 * 315 * XXX We need more smarts here (in real life too, but that's 316 * XXX another story altogether). 317 */ 318 319 for (hid = 0; hid < crypto_drivers_num; hid++) { 320 /* 321 * If it's not initialized or has remaining sessions 322 * referencing it, skip. 323 */ 324 if (crypto_drivers[hid].cc_newsession == NULL || 325 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)) 326 continue; 327 328 /* Hardware required -- ignore software drivers. */ 329 if (hard > 0 && 330 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE)) 331 continue; 332 /* Software required -- ignore hardware drivers. */ 333 if (hard < 0 && 334 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) 335 continue; 336 337 /* See if all the algorithms are supported. */ 338 for (cr = cri; cr; cr = cr->cri_next) 339 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) { 340 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg)); 341 break; 342 } 343 344 if (cr == NULL) { 345 /* Ok, all algorithms are supported. */ 346 347 /* 348 * Can't do everything in one session. 349 * 350 * XXX Fix this. We need to inject a "virtual" session layer right 351 * XXX about here. 352 */ 353 354 /* Call the driver initialization routine. */ 355 lid = hid; /* Pass the driver ID. */ 356 err = crypto_drivers[hid].cc_newsession( 357 crypto_drivers[hid].cc_arg, &lid, cri); 358 if (err == 0) { 359 (*sid) = hid; 360 (*sid) <<= 32; 361 (*sid) |= (lid & 0xffffffff); 362 crypto_drivers[hid].cc_sessions++; 363 } 364 goto done; 365 /*break;*/ 366 } 367 } 368 done: 369 return err; 370 } 371 372 /* 373 * Delete an existing session (or a reserved session on an unregistered 374 * driver). Must be called with crypto_mtx mutex held. 375 */ 376 int 377 crypto_freesession(u_int64_t sid) 378 { 379 u_int32_t hid; 380 int err = 0; 381 382 KASSERT(mutex_owned(&crypto_mtx)); 383 384 if (crypto_drivers == NULL) { 385 err = EINVAL; 386 goto done; 387 } 388 389 /* Determine two IDs. */ 390 hid = CRYPTO_SESID2HID(sid); 391 392 if (hid >= crypto_drivers_num) { 393 err = ENOENT; 394 goto done; 395 } 396 397 if (crypto_drivers[hid].cc_sessions) 398 crypto_drivers[hid].cc_sessions--; 399 400 /* Call the driver cleanup routine, if available. */ 401 if (crypto_drivers[hid].cc_freesession) { 402 err = crypto_drivers[hid].cc_freesession( 403 crypto_drivers[hid].cc_arg, sid); 404 } 405 else 406 err = 0; 407 408 /* 409 * If this was the last session of a driver marked as invalid, 410 * make the entry available for reuse. 411 */ 412 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) && 413 crypto_drivers[hid].cc_sessions == 0) 414 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap)); 415 416 done: 417 return err; 418 } 419 420 /* 421 * Return an unused driver id. Used by drivers prior to registering 422 * support for the algorithms they handle. 423 */ 424 int32_t 425 crypto_get_driverid(u_int32_t flags) 426 { 427 struct cryptocap *newdrv; 428 int i; 429 430 crypto_init(); /* XXX oh, this is foul! */ 431 432 mutex_spin_enter(&crypto_mtx); 433 for (i = 0; i < crypto_drivers_num; i++) 434 if (crypto_drivers[i].cc_process == NULL && 435 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 && 436 crypto_drivers[i].cc_sessions == 0) 437 break; 438 439 /* Out of entries, allocate some more. */ 440 if (i == crypto_drivers_num) { 441 /* Be careful about wrap-around. */ 442 if (2 * crypto_drivers_num <= crypto_drivers_num) { 443 mutex_spin_exit(&crypto_mtx); 444 printf("crypto: driver count wraparound!\n"); 445 return -1; 446 } 447 448 newdrv = malloc(2 * crypto_drivers_num * 449 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 450 if (newdrv == NULL) { 451 mutex_spin_exit(&crypto_mtx); 452 printf("crypto: no space to expand driver table!\n"); 453 return -1; 454 } 455 456 memcpy(newdrv, crypto_drivers, 457 crypto_drivers_num * sizeof(struct cryptocap)); 458 459 crypto_drivers_num *= 2; 460 461 free(crypto_drivers, M_CRYPTO_DATA); 462 crypto_drivers = newdrv; 463 } 464 465 /* NB: state is zero'd on free */ 466 crypto_drivers[i].cc_sessions = 1; /* Mark */ 467 crypto_drivers[i].cc_flags = flags; 468 469 if (bootverbose) 470 printf("crypto: assign driver %u, flags %u\n", i, flags); 471 472 mutex_spin_exit(&crypto_mtx); 473 474 return i; 475 } 476 477 static struct cryptocap * 478 crypto_checkdriver(u_int32_t hid) 479 { 480 if (crypto_drivers == NULL) 481 return NULL; 482 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 483 } 484 485 /* 486 * Register support for a key-related algorithm. This routine 487 * is called once for each algorithm supported a driver. 488 */ 489 int 490 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags, 491 int (*kprocess)(void*, struct cryptkop *, int), 492 void *karg) 493 { 494 struct cryptocap *cap; 495 int err; 496 497 mutex_spin_enter(&crypto_mtx); 498 499 cap = crypto_checkdriver(driverid); 500 if (cap != NULL && 501 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 502 /* 503 * XXX Do some performance testing to determine placing. 504 * XXX We probably need an auxiliary data structure that 505 * XXX describes relative performances. 506 */ 507 508 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 509 if (bootverbose) { 510 printf("crypto: driver %u registers key alg %u " 511 " flags %u\n", 512 driverid, 513 kalg, 514 flags 515 ); 516 } 517 518 if (cap->cc_kprocess == NULL) { 519 cap->cc_karg = karg; 520 cap->cc_kprocess = kprocess; 521 } 522 err = 0; 523 } else 524 err = EINVAL; 525 526 mutex_spin_exit(&crypto_mtx); 527 return err; 528 } 529 530 /* 531 * Register support for a non-key-related algorithm. This routine 532 * is called once for each such algorithm supported by a driver. 533 */ 534 int 535 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 536 u_int32_t flags, 537 int (*newses)(void*, u_int32_t*, struct cryptoini*), 538 int (*freeses)(void*, u_int64_t), 539 int (*process)(void*, struct cryptop *, int), 540 void *arg) 541 { 542 struct cryptocap *cap; 543 int err; 544 545 mutex_spin_enter(&crypto_mtx); 546 547 cap = crypto_checkdriver(driverid); 548 /* NB: algorithms are in the range [1..max] */ 549 if (cap != NULL && 550 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 551 /* 552 * XXX Do some performance testing to determine placing. 553 * XXX We probably need an auxiliary data structure that 554 * XXX describes relative performances. 555 */ 556 557 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 558 cap->cc_max_op_len[alg] = maxoplen; 559 if (bootverbose) { 560 printf("crypto: driver %u registers alg %u " 561 "flags %u maxoplen %u\n", 562 driverid, 563 alg, 564 flags, 565 maxoplen 566 ); 567 } 568 569 if (cap->cc_process == NULL) { 570 cap->cc_arg = arg; 571 cap->cc_newsession = newses; 572 cap->cc_process = process; 573 cap->cc_freesession = freeses; 574 cap->cc_sessions = 0; /* Unmark */ 575 } 576 err = 0; 577 } else 578 err = EINVAL; 579 580 mutex_spin_exit(&crypto_mtx); 581 return err; 582 } 583 584 /* 585 * Unregister a crypto driver. If there are pending sessions using it, 586 * leave enough information around so that subsequent calls using those 587 * sessions will correctly detect the driver has been unregistered and 588 * reroute requests. 589 */ 590 int 591 crypto_unregister(u_int32_t driverid, int alg) 592 { 593 int i, err; 594 u_int32_t ses; 595 struct cryptocap *cap; 596 597 mutex_spin_enter(&crypto_mtx); 598 599 cap = crypto_checkdriver(driverid); 600 if (cap != NULL && 601 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 602 cap->cc_alg[alg] != 0) { 603 cap->cc_alg[alg] = 0; 604 cap->cc_max_op_len[alg] = 0; 605 606 /* Was this the last algorithm ? */ 607 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 608 if (cap->cc_alg[i] != 0) 609 break; 610 611 if (i == CRYPTO_ALGORITHM_MAX + 1) { 612 ses = cap->cc_sessions; 613 memset(cap, 0, sizeof(struct cryptocap)); 614 if (ses != 0) { 615 /* 616 * If there are pending sessions, just mark as invalid. 617 */ 618 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 619 cap->cc_sessions = ses; 620 } 621 } 622 err = 0; 623 } else 624 err = EINVAL; 625 626 mutex_spin_exit(&crypto_mtx); 627 return err; 628 } 629 630 /* 631 * Unregister all algorithms associated with a crypto driver. 632 * If there are pending sessions using it, leave enough information 633 * around so that subsequent calls using those sessions will 634 * correctly detect the driver has been unregistered and reroute 635 * requests. 636 * 637 * XXX careful. Don't change this to call crypto_unregister() for each 638 * XXX registered algorithm unless you drop the mutex across the calls; 639 * XXX you can't take it recursively. 640 */ 641 int 642 crypto_unregister_all(u_int32_t driverid) 643 { 644 int i, err; 645 u_int32_t ses; 646 struct cryptocap *cap; 647 648 mutex_spin_enter(&crypto_mtx); 649 cap = crypto_checkdriver(driverid); 650 if (cap != NULL) { 651 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) { 652 cap->cc_alg[i] = 0; 653 cap->cc_max_op_len[i] = 0; 654 } 655 ses = cap->cc_sessions; 656 memset(cap, 0, sizeof(struct cryptocap)); 657 if (ses != 0) { 658 /* 659 * If there are pending sessions, just mark as invalid. 660 */ 661 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 662 cap->cc_sessions = ses; 663 } 664 err = 0; 665 } else 666 err = EINVAL; 667 668 mutex_spin_exit(&crypto_mtx); 669 return err; 670 } 671 672 /* 673 * Clear blockage on a driver. The what parameter indicates whether 674 * the driver is now ready for cryptop's and/or cryptokop's. 675 */ 676 int 677 crypto_unblock(u_int32_t driverid, int what) 678 { 679 struct cryptocap *cap; 680 int needwakeup, err; 681 682 mutex_spin_enter(&crypto_mtx); 683 cap = crypto_checkdriver(driverid); 684 if (cap != NULL) { 685 needwakeup = 0; 686 if (what & CRYPTO_SYMQ) { 687 needwakeup |= cap->cc_qblocked; 688 cap->cc_qblocked = 0; 689 } 690 if (what & CRYPTO_ASYMQ) { 691 needwakeup |= cap->cc_kqblocked; 692 cap->cc_kqblocked = 0; 693 } 694 err = 0; 695 mutex_spin_exit(&crypto_mtx); 696 if (needwakeup) 697 setsoftcrypto(softintr_cookie); 698 } else { 699 err = EINVAL; 700 mutex_spin_exit(&crypto_mtx); 701 } 702 703 return err; 704 } 705 706 /* 707 * Dispatch a crypto request to a driver or queue 708 * it, to be processed by the kernel thread. 709 */ 710 int 711 crypto_dispatch(struct cryptop *crp) 712 { 713 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 714 int result; 715 716 mutex_spin_enter(&crypto_mtx); 717 DPRINTF(("crypto_dispatch: crp %p, reqid 0x%x, alg %d\n", 718 crp, crp->crp_reqid, crp->crp_desc->crd_alg)); 719 720 cryptostats.cs_ops++; 721 722 #ifdef CRYPTO_TIMING 723 if (crypto_timing) 724 nanouptime(&crp->crp_tstamp); 725 #endif 726 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 727 struct cryptocap *cap; 728 /* 729 * Caller marked the request to be processed 730 * immediately; dispatch it directly to the 731 * driver unless the driver is currently blocked. 732 */ 733 cap = crypto_checkdriver(hid); 734 if (cap && !cap->cc_qblocked) { 735 mutex_spin_exit(&crypto_mtx); 736 result = crypto_invoke(crp, 0); 737 if (result == ERESTART) { 738 /* 739 * The driver ran out of resources, mark the 740 * driver ``blocked'' for cryptop's and put 741 * the op on the queue. 742 */ 743 mutex_spin_enter(&crypto_mtx); 744 crypto_drivers[hid].cc_qblocked = 1; 745 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next); 746 cryptostats.cs_blocks++; 747 mutex_spin_exit(&crypto_mtx); 748 } 749 goto out_released; 750 } else { 751 /* 752 * The driver is blocked, just queue the op until 753 * it unblocks and the swi thread gets kicked. 754 */ 755 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 756 result = 0; 757 } 758 } else { 759 int wasempty = TAILQ_EMPTY(&crp_q); 760 /* 761 * Caller marked the request as ``ok to delay''; 762 * queue it for the swi thread. This is desirable 763 * when the operation is low priority and/or suitable 764 * for batching. 765 */ 766 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 767 if (wasempty) { 768 mutex_spin_exit(&crypto_mtx); 769 setsoftcrypto(softintr_cookie); 770 result = 0; 771 goto out_released; 772 } 773 774 result = 0; 775 } 776 777 mutex_spin_exit(&crypto_mtx); 778 out_released: 779 return result; 780 } 781 782 /* 783 * Add an asymetric crypto request to a queue, 784 * to be processed by the kernel thread. 785 */ 786 int 787 crypto_kdispatch(struct cryptkop *krp) 788 { 789 struct cryptocap *cap; 790 int result; 791 792 mutex_spin_enter(&crypto_mtx); 793 cryptostats.cs_kops++; 794 795 cap = crypto_checkdriver(krp->krp_hid); 796 if (cap && !cap->cc_kqblocked) { 797 mutex_spin_exit(&crypto_mtx); 798 result = crypto_kinvoke(krp, 0); 799 if (result == ERESTART) { 800 /* 801 * The driver ran out of resources, mark the 802 * driver ``blocked'' for cryptop's and put 803 * the op on the queue. 804 */ 805 mutex_spin_enter(&crypto_mtx); 806 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 807 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 808 cryptostats.cs_kblocks++; 809 mutex_spin_exit(&crypto_mtx); 810 } 811 } else { 812 /* 813 * The driver is blocked, just queue the op until 814 * it unblocks and the swi thread gets kicked. 815 */ 816 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 817 result = 0; 818 mutex_spin_exit(&crypto_mtx); 819 } 820 821 return result; 822 } 823 824 /* 825 * Dispatch an assymetric crypto request to the appropriate crypto devices. 826 */ 827 static int 828 crypto_kinvoke(struct cryptkop *krp, int hint) 829 { 830 u_int32_t hid; 831 int error; 832 833 /* Sanity checks. */ 834 if (krp == NULL) 835 return EINVAL; 836 if (krp->krp_callback == NULL) { 837 cv_destroy(&krp->krp_cv); 838 pool_put(&cryptkop_pool, krp); 839 return EINVAL; 840 } 841 842 for (hid = 0; hid < crypto_drivers_num; hid++) { 843 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 844 crypto_devallowsoft == 0) 845 continue; 846 if (crypto_drivers[hid].cc_kprocess == NULL) 847 continue; 848 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] & 849 CRYPTO_ALG_FLAG_SUPPORTED) == 0) 850 continue; 851 break; 852 } 853 if (hid < crypto_drivers_num) { 854 krp->krp_hid = hid; 855 error = crypto_drivers[hid].cc_kprocess( 856 crypto_drivers[hid].cc_karg, krp, hint); 857 } else { 858 error = ENODEV; 859 } 860 861 if (error) { 862 krp->krp_status = error; 863 crypto_kdone(krp); 864 } 865 return 0; 866 } 867 868 #ifdef CRYPTO_TIMING 869 static void 870 crypto_tstat(struct cryptotstat *ts, struct timespec *tv) 871 { 872 struct timespec now, t; 873 874 nanouptime(&now); 875 t.tv_sec = now.tv_sec - tv->tv_sec; 876 t.tv_nsec = now.tv_nsec - tv->tv_nsec; 877 if (t.tv_nsec < 0) { 878 t.tv_sec--; 879 t.tv_nsec += 1000000000; 880 } 881 timespecadd(&ts->acc, &t, &t); 882 if (timespeccmp(&t, &ts->min, <)) 883 ts->min = t; 884 if (timespeccmp(&t, &ts->max, >)) 885 ts->max = t; 886 ts->count++; 887 888 *tv = now; 889 } 890 #endif 891 892 /* 893 * Dispatch a crypto request to the appropriate crypto devices. 894 */ 895 static int 896 crypto_invoke(struct cryptop *crp, int hint) 897 { 898 u_int32_t hid; 899 int (*process)(void*, struct cryptop *, int); 900 901 #ifdef CRYPTO_TIMING 902 if (crypto_timing) 903 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 904 #endif 905 /* Sanity checks. */ 906 if (crp == NULL) 907 return EINVAL; 908 if (crp->crp_callback == NULL) { 909 return EINVAL; 910 } 911 if (crp->crp_desc == NULL) { 912 crp->crp_etype = EINVAL; 913 crypto_done(crp); 914 return 0; 915 } 916 917 hid = CRYPTO_SESID2HID(crp->crp_sid); 918 if (hid < crypto_drivers_num) { 919 mutex_spin_enter(&crypto_mtx); 920 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) 921 crypto_freesession(crp->crp_sid); 922 process = crypto_drivers[hid].cc_process; 923 mutex_spin_exit(&crypto_mtx); 924 } else { 925 process = NULL; 926 } 927 928 if (process == NULL) { 929 struct cryptodesc *crd; 930 u_int64_t nid = 0; 931 932 /* 933 * Driver has unregistered; migrate the session and return 934 * an error to the caller so they'll resubmit the op. 935 */ 936 mutex_spin_enter(&crypto_mtx); 937 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 938 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 939 940 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0) 941 crp->crp_sid = nid; 942 943 crp->crp_etype = EAGAIN; 944 mutex_spin_exit(&crypto_mtx); 945 946 crypto_done(crp); 947 return 0; 948 } else { 949 /* 950 * Invoke the driver to process the request. 951 */ 952 DPRINTF(("calling process for %p\n", crp)); 953 return (*process)(crypto_drivers[hid].cc_arg, crp, hint); 954 } 955 } 956 957 /* 958 * Release a set of crypto descriptors. 959 */ 960 void 961 crypto_freereq(struct cryptop *crp) 962 { 963 struct cryptodesc *crd; 964 965 if (crp == NULL) 966 return; 967 DPRINTF(("crypto_freereq[%u]: crp %p\n", 968 CRYPTO_SESID2LID(crp->crp_sid), crp)); 969 970 /* sanity check */ 971 if (crp->crp_flags & CRYPTO_F_ONRETQ) { 972 panic("crypto_freereq() freeing crp on RETQ\n"); 973 } 974 975 while ((crd = crp->crp_desc) != NULL) { 976 crp->crp_desc = crd->crd_next; 977 pool_put(&cryptodesc_pool, crd); 978 } 979 cv_destroy(&crp->crp_cv); 980 pool_put(&cryptop_pool, crp); 981 } 982 983 /* 984 * Acquire a set of crypto descriptors. 985 */ 986 struct cryptop * 987 crypto_getreq(int num) 988 { 989 struct cryptodesc *crd; 990 struct cryptop *crp; 991 992 crp = pool_get(&cryptop_pool, 0); 993 if (crp == NULL) { 994 return NULL; 995 } 996 memset(crp, 0, sizeof(struct cryptop)); 997 cv_init(&crp->crp_cv, "crydev"); 998 999 while (num--) { 1000 crd = pool_get(&cryptodesc_pool, 0); 1001 if (crd == NULL) { 1002 crypto_freereq(crp); 1003 return NULL; 1004 } 1005 1006 memset(crd, 0, sizeof(struct cryptodesc)); 1007 crd->crd_next = crp->crp_desc; 1008 crp->crp_desc = crd; 1009 } 1010 1011 return crp; 1012 } 1013 1014 /* 1015 * Invoke the callback on behalf of the driver. 1016 */ 1017 void 1018 crypto_done(struct cryptop *crp) 1019 { 1020 int wasempty; 1021 1022 if (crp->crp_etype != 0) 1023 cryptostats.cs_errs++; 1024 #ifdef CRYPTO_TIMING 1025 if (crypto_timing) 1026 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1027 #endif 1028 DPRINTF(("crypto_done[%u]: crp %p\n", 1029 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1030 1031 /* 1032 * Normal case; queue the callback for the thread. 1033 * 1034 * The return queue is manipulated by the swi thread 1035 * and, potentially, by crypto device drivers calling 1036 * back to mark operations completed. Thus we need 1037 * to mask both while manipulating the return queue. 1038 */ 1039 if (crp->crp_flags & CRYPTO_F_CBIMM) { 1040 /* 1041 * Do the callback directly. This is ok when the 1042 * callback routine does very little (e.g. the 1043 * /dev/crypto callback method just does a wakeup). 1044 */ 1045 mutex_spin_enter(&crypto_mtx); 1046 crp->crp_flags |= CRYPTO_F_DONE; 1047 mutex_spin_exit(&crypto_mtx); 1048 1049 #ifdef CRYPTO_TIMING 1050 if (crypto_timing) { 1051 /* 1052 * NB: We must copy the timestamp before 1053 * doing the callback as the cryptop is 1054 * likely to be reclaimed. 1055 */ 1056 struct timespec t = crp->crp_tstamp; 1057 crypto_tstat(&cryptostats.cs_cb, &t); 1058 crp->crp_callback(crp); 1059 crypto_tstat(&cryptostats.cs_finis, &t); 1060 } else 1061 #endif 1062 crp->crp_callback(crp); 1063 } else { 1064 mutex_spin_enter(&crypto_mtx); 1065 crp->crp_flags |= CRYPTO_F_DONE; 1066 1067 if (crp->crp_flags & CRYPTO_F_USER) { 1068 /* the request has completed while 1069 * running in the user context 1070 * so don't queue it - the user 1071 * thread won't sleep when it sees 1072 * the CRYPTO_F_DONE flag. 1073 * This is an optimization to avoid 1074 * unecessary context switches. 1075 */ 1076 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n", 1077 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1078 } else { 1079 wasempty = TAILQ_EMPTY(&crp_ret_q); 1080 DPRINTF(("crypto_done[%u]: queueing %p\n", 1081 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1082 crp->crp_flags |= CRYPTO_F_ONRETQ; 1083 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 1084 if (wasempty) { 1085 DPRINTF(("crypto_done[%u]: waking cryptoret, " 1086 "crp %p hit empty queue\n.", 1087 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1088 cv_signal(&cryptoret_cv); 1089 } 1090 } 1091 mutex_spin_exit(&crypto_mtx); 1092 } 1093 } 1094 1095 /* 1096 * Invoke the callback on behalf of the driver. 1097 */ 1098 void 1099 crypto_kdone(struct cryptkop *krp) 1100 { 1101 int wasempty; 1102 1103 if (krp->krp_status != 0) 1104 cryptostats.cs_kerrs++; 1105 1106 krp->krp_flags |= CRYPTO_F_DONE; 1107 1108 /* 1109 * The return queue is manipulated by the swi thread 1110 * and, potentially, by crypto device drivers calling 1111 * back to mark operations completed. Thus we need 1112 * to mask both while manipulating the return queue. 1113 */ 1114 if (krp->krp_flags & CRYPTO_F_CBIMM) { 1115 krp->krp_callback(krp); 1116 } else { 1117 mutex_spin_enter(&crypto_mtx); 1118 wasempty = TAILQ_EMPTY(&crp_ret_kq); 1119 krp->krp_flags |= CRYPTO_F_ONRETQ; 1120 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1121 if (wasempty) 1122 cv_signal(&cryptoret_cv); 1123 mutex_spin_exit(&crypto_mtx); 1124 } 1125 } 1126 1127 int 1128 crypto_getfeat(int *featp) 1129 { 1130 int hid, kalg, feat = 0; 1131 1132 mutex_spin_enter(&crypto_mtx); 1133 1134 if (crypto_userasymcrypto == 0) 1135 goto out; 1136 1137 for (hid = 0; hid < crypto_drivers_num; hid++) { 1138 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 1139 crypto_devallowsoft == 0) { 1140 continue; 1141 } 1142 if (crypto_drivers[hid].cc_kprocess == NULL) 1143 continue; 1144 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1145 if ((crypto_drivers[hid].cc_kalg[kalg] & 1146 CRYPTO_ALG_FLAG_SUPPORTED) != 0) 1147 feat |= 1 << kalg; 1148 } 1149 out: 1150 mutex_spin_exit(&crypto_mtx); 1151 *featp = feat; 1152 return (0); 1153 } 1154 1155 /* 1156 * Software interrupt thread to dispatch crypto requests. 1157 */ 1158 static void 1159 cryptointr(void) 1160 { 1161 struct cryptop *crp, *submit, *cnext; 1162 struct cryptkop *krp, *knext; 1163 struct cryptocap *cap; 1164 int result, hint; 1165 1166 cryptostats.cs_intrs++; 1167 mutex_spin_enter(&crypto_mtx); 1168 do { 1169 /* 1170 * Find the first element in the queue that can be 1171 * processed and look-ahead to see if multiple ops 1172 * are ready for the same driver. 1173 */ 1174 submit = NULL; 1175 hint = 0; 1176 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) { 1177 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 1178 cap = crypto_checkdriver(hid); 1179 if (cap == NULL || cap->cc_process == NULL) { 1180 /* Op needs to be migrated, process it. */ 1181 if (submit == NULL) 1182 submit = crp; 1183 break; 1184 } 1185 if (!cap->cc_qblocked) { 1186 if (submit != NULL) { 1187 /* 1188 * We stop on finding another op, 1189 * regardless whether its for the same 1190 * driver or not. We could keep 1191 * searching the queue but it might be 1192 * better to just use a per-driver 1193 * queue instead. 1194 */ 1195 if (CRYPTO_SESID2HID(submit->crp_sid) 1196 == hid) 1197 hint = CRYPTO_HINT_MORE; 1198 break; 1199 } else { 1200 submit = crp; 1201 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1202 break; 1203 /* keep scanning for more are q'd */ 1204 } 1205 } 1206 } 1207 if (submit != NULL) { 1208 TAILQ_REMOVE(&crp_q, submit, crp_next); 1209 mutex_spin_exit(&crypto_mtx); 1210 result = crypto_invoke(submit, hint); 1211 /* we must take here as the TAILQ op or kinvoke 1212 may need this mutex below. sigh. */ 1213 mutex_spin_enter(&crypto_mtx); 1214 if (result == ERESTART) { 1215 /* 1216 * The driver ran out of resources, mark the 1217 * driver ``blocked'' for cryptop's and put 1218 * the request back in the queue. It would 1219 * best to put the request back where we got 1220 * it but that's hard so for now we put it 1221 * at the front. This should be ok; putting 1222 * it at the end does not work. 1223 */ 1224 /* XXX validate sid again? */ 1225 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1226 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1227 cryptostats.cs_blocks++; 1228 } 1229 } 1230 1231 /* As above, but for key ops */ 1232 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) { 1233 cap = crypto_checkdriver(krp->krp_hid); 1234 if (cap == NULL || cap->cc_kprocess == NULL) { 1235 /* Op needs to be migrated, process it. */ 1236 break; 1237 } 1238 if (!cap->cc_kqblocked) 1239 break; 1240 } 1241 if (krp != NULL) { 1242 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1243 mutex_spin_exit(&crypto_mtx); 1244 result = crypto_kinvoke(krp, 0); 1245 /* the next iteration will want the mutex. :-/ */ 1246 mutex_spin_enter(&crypto_mtx); 1247 if (result == ERESTART) { 1248 /* 1249 * The driver ran out of resources, mark the 1250 * driver ``blocked'' for cryptkop's and put 1251 * the request back in the queue. It would 1252 * best to put the request back where we got 1253 * it but that's hard so for now we put it 1254 * at the front. This should be ok; putting 1255 * it at the end does not work. 1256 */ 1257 /* XXX validate sid again? */ 1258 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1259 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1260 cryptostats.cs_kblocks++; 1261 } 1262 } 1263 } while (submit != NULL || krp != NULL); 1264 mutex_spin_exit(&crypto_mtx); 1265 } 1266 1267 /* 1268 * Kernel thread to do callbacks. 1269 */ 1270 static void 1271 cryptoret(void) 1272 { 1273 struct cryptop *crp; 1274 struct cryptkop *krp; 1275 1276 mutex_spin_enter(&crypto_mtx); 1277 for (;;) { 1278 crp = TAILQ_FIRST(&crp_ret_q); 1279 if (crp != NULL) { 1280 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 1281 crp->crp_flags &= ~CRYPTO_F_ONRETQ; 1282 } 1283 krp = TAILQ_FIRST(&crp_ret_kq); 1284 if (krp != NULL) { 1285 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 1286 krp->krp_flags &= ~CRYPTO_F_ONRETQ; 1287 } 1288 1289 /* drop before calling any callbacks. */ 1290 if (crp == NULL && krp == NULL) { 1291 cryptostats.cs_rets++; 1292 cv_wait(&cryptoret_cv, &crypto_mtx); 1293 continue; 1294 } 1295 1296 mutex_spin_exit(&crypto_mtx); 1297 1298 if (crp != NULL) { 1299 #ifdef CRYPTO_TIMING 1300 if (crypto_timing) { 1301 /* 1302 * NB: We must copy the timestamp before 1303 * doing the callback as the cryptop is 1304 * likely to be reclaimed. 1305 */ 1306 struct timespec t = crp->crp_tstamp; 1307 crypto_tstat(&cryptostats.cs_cb, &t); 1308 crp->crp_callback(crp); 1309 crypto_tstat(&cryptostats.cs_finis, &t); 1310 } else 1311 #endif 1312 { 1313 crp->crp_callback(crp); 1314 } 1315 } 1316 if (krp != NULL) 1317 krp->krp_callback(krp); 1318 1319 mutex_spin_enter(&crypto_mtx); 1320 } 1321 } 1322