xref: /netbsd-src/sys/opencrypto/crypto.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: crypto.c,v 1.36 2010/08/11 11:49:09 pgoyette Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.36 2010/08/11 11:49:09 pgoyette Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 
69 #include "opt_ocf.h"
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
72 
73 kcondvar_t cryptoret_cv;
74 kmutex_t crypto_mtx;
75 
76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77   #define SWI_CRYPTO 17
78   #define register_swi(lvl, fn)  \
79   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
80   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
81   #define setsoftcrypto(x) softint_schedule(x)
82 
83 int crypto_ret_q_check(struct cryptop *);
84 
85 /*
86  * Crypto drivers register themselves by allocating a slot in the
87  * crypto_drivers table with crypto_get_driverid() and then registering
88  * each algorithm they support with crypto_register() and crypto_kregister().
89  */
90 static	struct cryptocap *crypto_drivers;
91 static	int crypto_drivers_num;
92 static	void* softintr_cookie;
93 
94 /*
95  * There are two queues for crypto requests; one for symmetric (e.g.
96  * cipher) operations and one for asymmetric (e.g. MOD) operations.
97  * See below for how synchronization is handled.
98  */
99 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
100 		TAILQ_HEAD_INITIALIZER(crp_q);
101 static	TAILQ_HEAD(,cryptkop) crp_kq =
102 		TAILQ_HEAD_INITIALIZER(crp_kq);
103 
104 /*
105  * There are two queues for processing completed crypto requests; one
106  * for the symmetric and one for the asymmetric ops.  We only need one
107  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
108  * for how synchronization is handled.
109  */
110 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
111 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
112 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
113 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
114 
115 /*
116  * XXX these functions are ghastly hacks for when the submission
117  * XXX routines discover a request that was not CBIMM is already
118  * XXX done, and must be yanked from the retq (where _done) put it
119  * XXX as cryptoret won't get the chance.  The queue is walked backwards
120  * XXX as the request is generally the last one queued.
121  *
122  *	 call with the lock held, or else.
123  */
124 int
125 crypto_ret_q_remove(struct cryptop *crp)
126 {
127 	struct cryptop * acrp, *next;
128 
129 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
130 		if (acrp == crp) {
131 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
132 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
133 			return 1;
134 		}
135 	}
136 	return 0;
137 }
138 
139 int
140 crypto_ret_kq_remove(struct cryptkop *krp)
141 {
142 	struct cryptkop * akrp, *next;
143 
144 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
145 		if (akrp == krp) {
146 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
147 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
148 			return 1;
149 		}
150 	}
151 	return 0;
152 }
153 
154 /*
155  * Crypto op and desciptor data structures are allocated
156  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
157  */
158 struct pool cryptop_pool;
159 struct pool cryptodesc_pool;
160 struct pool cryptkop_pool;
161 
162 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
163 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
164 /*
165  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
166  * access to hardware versus software transforms as below:
167  *
168  * crypto_devallowsoft < 0:  Force userlevel requests to use software
169  *                              transforms, always
170  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
171  *                              requests for non-accelerated transforms
172  *                              (handling the latter in software)
173  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
174  *                               are hardware-accelerated.
175  */
176 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
177 
178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
179 {
180 	sysctl_createv(clog, 0, NULL, NULL,
181 		       CTLFLAG_PERMANENT,
182 		       CTLTYPE_NODE, "kern", NULL,
183 		       NULL, 0, NULL, 0,
184 		       CTL_KERN, CTL_EOL);
185 	sysctl_createv(clog, 0, NULL, NULL,
186 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
187 		       CTLTYPE_INT, "usercrypto",
188 		       SYSCTL_DESCR("Enable/disable user-mode access to "
189 			   "crypto support"),
190 		       NULL, 0, &crypto_usercrypto, 0,
191 		       CTL_KERN, CTL_CREATE, CTL_EOL);
192 	sysctl_createv(clog, 0, NULL, NULL,
193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 		       CTLTYPE_INT, "userasymcrypto",
195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
196 			   "asymmetric crypto support"),
197 		       NULL, 0, &crypto_userasymcrypto, 0,
198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
199 	sysctl_createv(clog, 0, NULL, NULL,
200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 		       CTLTYPE_INT, "cryptodevallowsoft",
202 		       SYSCTL_DESCR("Enable/disable use of software "
203 			   "asymmetric crypto support"),
204 		       NULL, 0, &crypto_devallowsoft, 0,
205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
206 }
207 
208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
209 
210 /*
211  * Synchronization: read carefully, this is non-trivial.
212  *
213  * Crypto requests are submitted via crypto_dispatch.  Typically
214  * these come in from network protocols at spl0 (output path) or
215  * spl[,soft]net (input path).
216  *
217  * Requests are typically passed on the driver directly, but they
218  * may also be queued for processing by a software interrupt thread,
219  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
220  * the requests to crypto drivers (h/w or s/w) who call crypto_done
221  * when a request is complete.  Hardware crypto drivers are assumed
222  * to register their IRQ's as network devices so their interrupt handlers
223  * and subsequent "done callbacks" happen at spl[imp,net].
224  *
225  * Completed crypto ops are queued for a separate kernel thread that
226  * handles the callbacks at spl0.  This decoupling insures the crypto
227  * driver interrupt service routine is not delayed while the callback
228  * takes place and that callbacks are delivered after a context switch
229  * (as opposed to a software interrupt that clients must block).
230  *
231  * This scheme is not intended for SMP machines.
232  */
233 static	void cryptointr(void);		/* swi thread to dispatch ops */
234 static	void cryptoret(void);		/* kernel thread for callbacks*/
235 static	struct lwp *cryptothread;
236 static	void crypto_destroy(void);
237 static	int crypto_invoke(struct cryptop *crp, int hint);
238 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
239 
240 static struct cryptostats cryptostats;
241 #ifdef CRYPTO_TIMING
242 static	int crypto_timing = 0;
243 #endif
244 
245 static int
246 crypto_init0(void)
247 {
248 	int error;
249 
250 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
251 	cv_init(&cryptoret_cv, "crypto_w");
252 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
253 		  0, "cryptop", NULL, IPL_NET);
254 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
255 		  0, "cryptodesc", NULL, IPL_NET);
256 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
257 		  0, "cryptkop", NULL, IPL_NET);
258 
259 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
260 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
261 	if (crypto_drivers == NULL) {
262 		printf("crypto_init: cannot malloc driver table\n");
263 		return 0;
264 	}
265 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
266 
267 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
268 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
269 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
270 	if (error) {
271 		printf("crypto_init: cannot start cryptoret thread; error %d",
272 			error);
273 		crypto_destroy();
274 	}
275 
276 	return 0;
277 }
278 
279 void
280 crypto_init(void)
281 {
282 	static ONCE_DECL(crypto_init_once);
283 
284 	RUN_ONCE(&crypto_init_once, crypto_init0);
285 }
286 
287 static void
288 crypto_destroy(void)
289 {
290 	/* XXX no wait to reclaim zones */
291 	if (crypto_drivers != NULL)
292 		free(crypto_drivers, M_CRYPTO_DATA);
293 	unregister_swi(SWI_CRYPTO, cryptointr);
294 }
295 
296 /*
297  * Create a new session.  Must be called with crypto_mtx held.
298  */
299 int
300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
301 {
302 	struct cryptoini *cr;
303 	u_int32_t hid, lid;
304 	int err = EINVAL;
305 
306 	KASSERT(mutex_owned(&crypto_mtx));
307 
308 	if (crypto_drivers == NULL)
309 		goto done;
310 
311 	/*
312 	 * The algorithm we use here is pretty stupid; just use the
313 	 * first driver that supports all the algorithms we need.
314 	 *
315 	 * XXX We need more smarts here (in real life too, but that's
316 	 * XXX another story altogether).
317 	 */
318 
319 	for (hid = 0; hid < crypto_drivers_num; hid++) {
320 		/*
321 		 * If it's not initialized or has remaining sessions
322 		 * referencing it, skip.
323 		 */
324 		if (crypto_drivers[hid].cc_newsession == NULL ||
325 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
326 			continue;
327 
328 		/* Hardware required -- ignore software drivers. */
329 		if (hard > 0 &&
330 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
331 			continue;
332 		/* Software required -- ignore hardware drivers. */
333 		if (hard < 0 &&
334 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
335 			continue;
336 
337 		/* See if all the algorithms are supported. */
338 		for (cr = cri; cr; cr = cr->cri_next)
339 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
340 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
341 				break;
342 			}
343 
344 		if (cr == NULL) {
345 			/* Ok, all algorithms are supported. */
346 
347 			/*
348 			 * Can't do everything in one session.
349 			 *
350 			 * XXX Fix this. We need to inject a "virtual" session layer right
351 			 * XXX about here.
352 			 */
353 
354 			/* Call the driver initialization routine. */
355 			lid = hid;		/* Pass the driver ID. */
356 			err = crypto_drivers[hid].cc_newsession(
357 					crypto_drivers[hid].cc_arg, &lid, cri);
358 			if (err == 0) {
359 				(*sid) = hid;
360 				(*sid) <<= 32;
361 				(*sid) |= (lid & 0xffffffff);
362 				crypto_drivers[hid].cc_sessions++;
363 			}
364 			goto done;
365 			/*break;*/
366 		}
367 	}
368 done:
369 	return err;
370 }
371 
372 /*
373  * Delete an existing session (or a reserved session on an unregistered
374  * driver).  Must be called with crypto_mtx mutex held.
375  */
376 int
377 crypto_freesession(u_int64_t sid)
378 {
379 	u_int32_t hid;
380 	int err = 0;
381 
382 	KASSERT(mutex_owned(&crypto_mtx));
383 
384 	if (crypto_drivers == NULL) {
385 		err = EINVAL;
386 		goto done;
387 	}
388 
389 	/* Determine two IDs. */
390 	hid = CRYPTO_SESID2HID(sid);
391 
392 	if (hid >= crypto_drivers_num) {
393 		err = ENOENT;
394 		goto done;
395 	}
396 
397 	if (crypto_drivers[hid].cc_sessions)
398 		crypto_drivers[hid].cc_sessions--;
399 
400 	/* Call the driver cleanup routine, if available. */
401 	if (crypto_drivers[hid].cc_freesession) {
402 		err = crypto_drivers[hid].cc_freesession(
403 				crypto_drivers[hid].cc_arg, sid);
404 	}
405 	else
406 		err = 0;
407 
408 	/*
409 	 * If this was the last session of a driver marked as invalid,
410 	 * make the entry available for reuse.
411 	 */
412 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
413 	    crypto_drivers[hid].cc_sessions == 0)
414 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
415 
416 done:
417 	return err;
418 }
419 
420 /*
421  * Return an unused driver id.  Used by drivers prior to registering
422  * support for the algorithms they handle.
423  */
424 int32_t
425 crypto_get_driverid(u_int32_t flags)
426 {
427 	struct cryptocap *newdrv;
428 	int i;
429 
430 	crypto_init();		/* XXX oh, this is foul! */
431 
432 	mutex_spin_enter(&crypto_mtx);
433 	for (i = 0; i < crypto_drivers_num; i++)
434 		if (crypto_drivers[i].cc_process == NULL &&
435 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
436 		    crypto_drivers[i].cc_sessions == 0)
437 			break;
438 
439 	/* Out of entries, allocate some more. */
440 	if (i == crypto_drivers_num) {
441 		/* Be careful about wrap-around. */
442 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
443 			mutex_spin_exit(&crypto_mtx);
444 			printf("crypto: driver count wraparound!\n");
445 			return -1;
446 		}
447 
448 		newdrv = malloc(2 * crypto_drivers_num *
449 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
450 		if (newdrv == NULL) {
451 			mutex_spin_exit(&crypto_mtx);
452 			printf("crypto: no space to expand driver table!\n");
453 			return -1;
454 		}
455 
456 		memcpy(newdrv, crypto_drivers,
457 		    crypto_drivers_num * sizeof(struct cryptocap));
458 
459 		crypto_drivers_num *= 2;
460 
461 		free(crypto_drivers, M_CRYPTO_DATA);
462 		crypto_drivers = newdrv;
463 	}
464 
465 	/* NB: state is zero'd on free */
466 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
467 	crypto_drivers[i].cc_flags = flags;
468 
469 	if (bootverbose)
470 		printf("crypto: assign driver %u, flags %u\n", i, flags);
471 
472 	mutex_spin_exit(&crypto_mtx);
473 
474 	return i;
475 }
476 
477 static struct cryptocap *
478 crypto_checkdriver(u_int32_t hid)
479 {
480 	if (crypto_drivers == NULL)
481 		return NULL;
482 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
483 }
484 
485 /*
486  * Register support for a key-related algorithm.  This routine
487  * is called once for each algorithm supported a driver.
488  */
489 int
490 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
491     int (*kprocess)(void*, struct cryptkop *, int),
492     void *karg)
493 {
494 	struct cryptocap *cap;
495 	int err;
496 
497 	mutex_spin_enter(&crypto_mtx);
498 
499 	cap = crypto_checkdriver(driverid);
500 	if (cap != NULL &&
501 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
502 		/*
503 		 * XXX Do some performance testing to determine placing.
504 		 * XXX We probably need an auxiliary data structure that
505 		 * XXX describes relative performances.
506 		 */
507 
508 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
509 		if (bootverbose) {
510 			printf("crypto: driver %u registers key alg %u "
511 			       " flags %u\n",
512 				driverid,
513 				kalg,
514 				flags
515 			);
516 		}
517 
518 		if (cap->cc_kprocess == NULL) {
519 			cap->cc_karg = karg;
520 			cap->cc_kprocess = kprocess;
521 		}
522 		err = 0;
523 	} else
524 		err = EINVAL;
525 
526 	mutex_spin_exit(&crypto_mtx);
527 	return err;
528 }
529 
530 /*
531  * Register support for a non-key-related algorithm.  This routine
532  * is called once for each such algorithm supported by a driver.
533  */
534 int
535 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
536     u_int32_t flags,
537     int (*newses)(void*, u_int32_t*, struct cryptoini*),
538     int (*freeses)(void*, u_int64_t),
539     int (*process)(void*, struct cryptop *, int),
540     void *arg)
541 {
542 	struct cryptocap *cap;
543 	int err;
544 
545 	mutex_spin_enter(&crypto_mtx);
546 
547 	cap = crypto_checkdriver(driverid);
548 	/* NB: algorithms are in the range [1..max] */
549 	if (cap != NULL &&
550 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
551 		/*
552 		 * XXX Do some performance testing to determine placing.
553 		 * XXX We probably need an auxiliary data structure that
554 		 * XXX describes relative performances.
555 		 */
556 
557 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
558 		cap->cc_max_op_len[alg] = maxoplen;
559 		if (bootverbose) {
560 			printf("crypto: driver %u registers alg %u "
561 				"flags %u maxoplen %u\n",
562 				driverid,
563 				alg,
564 				flags,
565 				maxoplen
566 			);
567 		}
568 
569 		if (cap->cc_process == NULL) {
570 			cap->cc_arg = arg;
571 			cap->cc_newsession = newses;
572 			cap->cc_process = process;
573 			cap->cc_freesession = freeses;
574 			cap->cc_sessions = 0;		/* Unmark */
575 		}
576 		err = 0;
577 	} else
578 		err = EINVAL;
579 
580 	mutex_spin_exit(&crypto_mtx);
581 	return err;
582 }
583 
584 /*
585  * Unregister a crypto driver. If there are pending sessions using it,
586  * leave enough information around so that subsequent calls using those
587  * sessions will correctly detect the driver has been unregistered and
588  * reroute requests.
589  */
590 int
591 crypto_unregister(u_int32_t driverid, int alg)
592 {
593 	int i, err;
594 	u_int32_t ses;
595 	struct cryptocap *cap;
596 
597 	mutex_spin_enter(&crypto_mtx);
598 
599 	cap = crypto_checkdriver(driverid);
600 	if (cap != NULL &&
601 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
602 	    cap->cc_alg[alg] != 0) {
603 		cap->cc_alg[alg] = 0;
604 		cap->cc_max_op_len[alg] = 0;
605 
606 		/* Was this the last algorithm ? */
607 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
608 			if (cap->cc_alg[i] != 0)
609 				break;
610 
611 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
612 			ses = cap->cc_sessions;
613 			memset(cap, 0, sizeof(struct cryptocap));
614 			if (ses != 0) {
615 				/*
616 				 * If there are pending sessions, just mark as invalid.
617 				 */
618 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
619 				cap->cc_sessions = ses;
620 			}
621 		}
622 		err = 0;
623 	} else
624 		err = EINVAL;
625 
626 	mutex_spin_exit(&crypto_mtx);
627 	return err;
628 }
629 
630 /*
631  * Unregister all algorithms associated with a crypto driver.
632  * If there are pending sessions using it, leave enough information
633  * around so that subsequent calls using those sessions will
634  * correctly detect the driver has been unregistered and reroute
635  * requests.
636  *
637  * XXX careful.  Don't change this to call crypto_unregister() for each
638  * XXX registered algorithm unless you drop the mutex across the calls;
639  * XXX you can't take it recursively.
640  */
641 int
642 crypto_unregister_all(u_int32_t driverid)
643 {
644 	int i, err;
645 	u_int32_t ses;
646 	struct cryptocap *cap;
647 
648 	mutex_spin_enter(&crypto_mtx);
649 	cap = crypto_checkdriver(driverid);
650 	if (cap != NULL) {
651 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
652 			cap->cc_alg[i] = 0;
653 			cap->cc_max_op_len[i] = 0;
654 		}
655 		ses = cap->cc_sessions;
656 		memset(cap, 0, sizeof(struct cryptocap));
657 		if (ses != 0) {
658 			/*
659 			 * If there are pending sessions, just mark as invalid.
660 			 */
661 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
662 			cap->cc_sessions = ses;
663 		}
664 		err = 0;
665 	} else
666 		err = EINVAL;
667 
668 	mutex_spin_exit(&crypto_mtx);
669 	return err;
670 }
671 
672 /*
673  * Clear blockage on a driver.  The what parameter indicates whether
674  * the driver is now ready for cryptop's and/or cryptokop's.
675  */
676 int
677 crypto_unblock(u_int32_t driverid, int what)
678 {
679 	struct cryptocap *cap;
680 	int needwakeup, err;
681 
682 	mutex_spin_enter(&crypto_mtx);
683 	cap = crypto_checkdriver(driverid);
684 	if (cap != NULL) {
685 		needwakeup = 0;
686 		if (what & CRYPTO_SYMQ) {
687 			needwakeup |= cap->cc_qblocked;
688 			cap->cc_qblocked = 0;
689 		}
690 		if (what & CRYPTO_ASYMQ) {
691 			needwakeup |= cap->cc_kqblocked;
692 			cap->cc_kqblocked = 0;
693 		}
694 		err = 0;
695 		mutex_spin_exit(&crypto_mtx);
696 		if (needwakeup)
697 			setsoftcrypto(softintr_cookie);
698 	} else {
699 		err = EINVAL;
700 		mutex_spin_exit(&crypto_mtx);
701 	}
702 
703 	return err;
704 }
705 
706 /*
707  * Dispatch a crypto request to a driver or queue
708  * it, to be processed by the kernel thread.
709  */
710 int
711 crypto_dispatch(struct cryptop *crp)
712 {
713 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
714 	int result;
715 
716 	mutex_spin_enter(&crypto_mtx);
717 	DPRINTF(("crypto_dispatch: crp %p, reqid 0x%x, alg %d\n",
718 		crp, crp->crp_reqid, crp->crp_desc->crd_alg));
719 
720 	cryptostats.cs_ops++;
721 
722 #ifdef CRYPTO_TIMING
723 	if (crypto_timing)
724 		nanouptime(&crp->crp_tstamp);
725 #endif
726 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
727 		struct cryptocap *cap;
728 		/*
729 		 * Caller marked the request to be processed
730 		 * immediately; dispatch it directly to the
731 		 * driver unless the driver is currently blocked.
732 		 */
733 		cap = crypto_checkdriver(hid);
734 		if (cap && !cap->cc_qblocked) {
735 			mutex_spin_exit(&crypto_mtx);
736 			result = crypto_invoke(crp, 0);
737 			if (result == ERESTART) {
738 				/*
739 				 * The driver ran out of resources, mark the
740 				 * driver ``blocked'' for cryptop's and put
741 				 * the op on the queue.
742 				 */
743 				mutex_spin_enter(&crypto_mtx);
744 				crypto_drivers[hid].cc_qblocked = 1;
745 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
746 				cryptostats.cs_blocks++;
747 				mutex_spin_exit(&crypto_mtx);
748 			}
749 			goto out_released;
750 		} else {
751 			/*
752 			 * The driver is blocked, just queue the op until
753 			 * it unblocks and the swi thread gets kicked.
754 			 */
755 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
756 			result = 0;
757 		}
758 	} else {
759 		int wasempty = TAILQ_EMPTY(&crp_q);
760 		/*
761 		 * Caller marked the request as ``ok to delay'';
762 		 * queue it for the swi thread.  This is desirable
763 		 * when the operation is low priority and/or suitable
764 		 * for batching.
765 		 */
766 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
767 		if (wasempty) {
768 			mutex_spin_exit(&crypto_mtx);
769 			setsoftcrypto(softintr_cookie);
770 			result = 0;
771 			goto out_released;
772 		}
773 
774 		result = 0;
775 	}
776 
777 	mutex_spin_exit(&crypto_mtx);
778 out_released:
779 	return result;
780 }
781 
782 /*
783  * Add an asymetric crypto request to a queue,
784  * to be processed by the kernel thread.
785  */
786 int
787 crypto_kdispatch(struct cryptkop *krp)
788 {
789 	struct cryptocap *cap;
790 	int result;
791 
792 	mutex_spin_enter(&crypto_mtx);
793 	cryptostats.cs_kops++;
794 
795 	cap = crypto_checkdriver(krp->krp_hid);
796 	if (cap && !cap->cc_kqblocked) {
797 		mutex_spin_exit(&crypto_mtx);
798 		result = crypto_kinvoke(krp, 0);
799 		if (result == ERESTART) {
800 			/*
801 			 * The driver ran out of resources, mark the
802 			 * driver ``blocked'' for cryptop's and put
803 			 * the op on the queue.
804 			 */
805 			mutex_spin_enter(&crypto_mtx);
806 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
807 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
808 			cryptostats.cs_kblocks++;
809 			mutex_spin_exit(&crypto_mtx);
810 		}
811 	} else {
812 		/*
813 		 * The driver is blocked, just queue the op until
814 		 * it unblocks and the swi thread gets kicked.
815 		 */
816 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
817 		result = 0;
818 		mutex_spin_exit(&crypto_mtx);
819 	}
820 
821 	return result;
822 }
823 
824 /*
825  * Dispatch an assymetric crypto request to the appropriate crypto devices.
826  */
827 static int
828 crypto_kinvoke(struct cryptkop *krp, int hint)
829 {
830 	u_int32_t hid;
831 	int error;
832 
833 	/* Sanity checks. */
834 	if (krp == NULL)
835 		return EINVAL;
836 	if (krp->krp_callback == NULL) {
837 		cv_destroy(&krp->krp_cv);
838 		pool_put(&cryptkop_pool, krp);
839 		return EINVAL;
840 	}
841 
842 	for (hid = 0; hid < crypto_drivers_num; hid++) {
843 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
844 		    crypto_devallowsoft == 0)
845 			continue;
846 		if (crypto_drivers[hid].cc_kprocess == NULL)
847 			continue;
848 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
849 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
850 			continue;
851 		break;
852 	}
853 	if (hid < crypto_drivers_num) {
854 		krp->krp_hid = hid;
855 		error = crypto_drivers[hid].cc_kprocess(
856 				crypto_drivers[hid].cc_karg, krp, hint);
857 	} else {
858 		error = ENODEV;
859 	}
860 
861 	if (error) {
862 		krp->krp_status = error;
863 		crypto_kdone(krp);
864 	}
865 	return 0;
866 }
867 
868 #ifdef CRYPTO_TIMING
869 static void
870 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
871 {
872 	struct timespec now, t;
873 
874 	nanouptime(&now);
875 	t.tv_sec = now.tv_sec - tv->tv_sec;
876 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
877 	if (t.tv_nsec < 0) {
878 		t.tv_sec--;
879 		t.tv_nsec += 1000000000;
880 	}
881 	timespecadd(&ts->acc, &t, &t);
882 	if (timespeccmp(&t, &ts->min, <))
883 		ts->min = t;
884 	if (timespeccmp(&t, &ts->max, >))
885 		ts->max = t;
886 	ts->count++;
887 
888 	*tv = now;
889 }
890 #endif
891 
892 /*
893  * Dispatch a crypto request to the appropriate crypto devices.
894  */
895 static int
896 crypto_invoke(struct cryptop *crp, int hint)
897 {
898 	u_int32_t hid;
899 	int (*process)(void*, struct cryptop *, int);
900 
901 #ifdef CRYPTO_TIMING
902 	if (crypto_timing)
903 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
904 #endif
905 	/* Sanity checks. */
906 	if (crp == NULL)
907 		return EINVAL;
908 	if (crp->crp_callback == NULL) {
909 		return EINVAL;
910 	}
911 	if (crp->crp_desc == NULL) {
912 		crp->crp_etype = EINVAL;
913 		crypto_done(crp);
914 		return 0;
915 	}
916 
917 	hid = CRYPTO_SESID2HID(crp->crp_sid);
918 	if (hid < crypto_drivers_num) {
919 		mutex_spin_enter(&crypto_mtx);
920 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
921 			crypto_freesession(crp->crp_sid);
922 		process = crypto_drivers[hid].cc_process;
923 		mutex_spin_exit(&crypto_mtx);
924 	} else {
925 		process = NULL;
926 	}
927 
928 	if (process == NULL) {
929 		struct cryptodesc *crd;
930 		u_int64_t nid = 0;
931 
932 		/*
933 		 * Driver has unregistered; migrate the session and return
934 		 * an error to the caller so they'll resubmit the op.
935 		 */
936 		mutex_spin_enter(&crypto_mtx);
937 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
938 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
939 
940 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
941 			crp->crp_sid = nid;
942 
943 		crp->crp_etype = EAGAIN;
944 		mutex_spin_exit(&crypto_mtx);
945 
946 		crypto_done(crp);
947 		return 0;
948 	} else {
949 		/*
950 		 * Invoke the driver to process the request.
951 		 */
952 		DPRINTF(("calling process for %p\n", crp));
953 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
954 	}
955 }
956 
957 /*
958  * Release a set of crypto descriptors.
959  */
960 void
961 crypto_freereq(struct cryptop *crp)
962 {
963 	struct cryptodesc *crd;
964 
965 	if (crp == NULL)
966 		return;
967 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
968 		CRYPTO_SESID2LID(crp->crp_sid), crp));
969 
970 	/* sanity check */
971 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
972 		panic("crypto_freereq() freeing crp on RETQ\n");
973 	}
974 
975 	while ((crd = crp->crp_desc) != NULL) {
976 		crp->crp_desc = crd->crd_next;
977 		pool_put(&cryptodesc_pool, crd);
978 	}
979 	cv_destroy(&crp->crp_cv);
980 	pool_put(&cryptop_pool, crp);
981 }
982 
983 /*
984  * Acquire a set of crypto descriptors.
985  */
986 struct cryptop *
987 crypto_getreq(int num)
988 {
989 	struct cryptodesc *crd;
990 	struct cryptop *crp;
991 
992 	crp = pool_get(&cryptop_pool, 0);
993 	if (crp == NULL) {
994 		return NULL;
995 	}
996 	memset(crp, 0, sizeof(struct cryptop));
997 	cv_init(&crp->crp_cv, "crydev");
998 
999 	while (num--) {
1000 		crd = pool_get(&cryptodesc_pool, 0);
1001 		if (crd == NULL) {
1002 			crypto_freereq(crp);
1003 			return NULL;
1004 		}
1005 
1006 		memset(crd, 0, sizeof(struct cryptodesc));
1007 		crd->crd_next = crp->crp_desc;
1008 		crp->crp_desc = crd;
1009 	}
1010 
1011 	return crp;
1012 }
1013 
1014 /*
1015  * Invoke the callback on behalf of the driver.
1016  */
1017 void
1018 crypto_done(struct cryptop *crp)
1019 {
1020 	int wasempty;
1021 
1022 	if (crp->crp_etype != 0)
1023 		cryptostats.cs_errs++;
1024 #ifdef CRYPTO_TIMING
1025 	if (crypto_timing)
1026 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1027 #endif
1028 	DPRINTF(("crypto_done[%u]: crp %p\n",
1029 		CRYPTO_SESID2LID(crp->crp_sid), crp));
1030 
1031 	/*
1032 	 * Normal case; queue the callback for the thread.
1033 	 *
1034 	 * The return queue is manipulated by the swi thread
1035 	 * and, potentially, by crypto device drivers calling
1036 	 * back to mark operations completed.  Thus we need
1037 	 * to mask both while manipulating the return queue.
1038 	 */
1039   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1040 		/*
1041 	 	* Do the callback directly.  This is ok when the
1042   	 	* callback routine does very little (e.g. the
1043 	 	* /dev/crypto callback method just does a wakeup).
1044 	 	*/
1045 		mutex_spin_enter(&crypto_mtx);
1046 		crp->crp_flags |= CRYPTO_F_DONE;
1047 		mutex_spin_exit(&crypto_mtx);
1048 
1049 #ifdef CRYPTO_TIMING
1050 		if (crypto_timing) {
1051 			/*
1052 		 	* NB: We must copy the timestamp before
1053 		 	* doing the callback as the cryptop is
1054 		 	* likely to be reclaimed.
1055 		 	*/
1056 			struct timespec t = crp->crp_tstamp;
1057 			crypto_tstat(&cryptostats.cs_cb, &t);
1058 			crp->crp_callback(crp);
1059 			crypto_tstat(&cryptostats.cs_finis, &t);
1060 		} else
1061 #endif
1062 		crp->crp_callback(crp);
1063 	} else {
1064 		mutex_spin_enter(&crypto_mtx);
1065 		crp->crp_flags |= CRYPTO_F_DONE;
1066 
1067 		if (crp->crp_flags & CRYPTO_F_USER) {
1068 			/* the request has completed while
1069 			 * running in the user context
1070 			 * so don't queue it - the user
1071 			 * thread won't sleep when it sees
1072 			 * the CRYPTO_F_DONE flag.
1073 			 * This is an optimization to avoid
1074 			 * unecessary context switches.
1075 			 */
1076 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1077 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1078 		} else {
1079 			wasempty = TAILQ_EMPTY(&crp_ret_q);
1080 			DPRINTF(("crypto_done[%u]: queueing %p\n",
1081 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1082 			crp->crp_flags |= CRYPTO_F_ONRETQ;
1083 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1084 			if (wasempty) {
1085 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
1086 					"crp %p hit empty queue\n.",
1087 					CRYPTO_SESID2LID(crp->crp_sid), crp));
1088 				cv_signal(&cryptoret_cv);
1089 			}
1090 		}
1091 		mutex_spin_exit(&crypto_mtx);
1092 	}
1093 }
1094 
1095 /*
1096  * Invoke the callback on behalf of the driver.
1097  */
1098 void
1099 crypto_kdone(struct cryptkop *krp)
1100 {
1101 	int wasempty;
1102 
1103 	if (krp->krp_status != 0)
1104 		cryptostats.cs_kerrs++;
1105 
1106 	krp->krp_flags |= CRYPTO_F_DONE;
1107 
1108 	/*
1109 	 * The return queue is manipulated by the swi thread
1110 	 * and, potentially, by crypto device drivers calling
1111 	 * back to mark operations completed.  Thus we need
1112 	 * to mask both while manipulating the return queue.
1113 	 */
1114 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1115 		krp->krp_callback(krp);
1116 	} else {
1117 		mutex_spin_enter(&crypto_mtx);
1118 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1119 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1120 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1121 		if (wasempty)
1122 			cv_signal(&cryptoret_cv);
1123 		mutex_spin_exit(&crypto_mtx);
1124 	}
1125 }
1126 
1127 int
1128 crypto_getfeat(int *featp)
1129 {
1130 	int hid, kalg, feat = 0;
1131 
1132 	mutex_spin_enter(&crypto_mtx);
1133 
1134 	if (crypto_userasymcrypto == 0)
1135 		goto out;
1136 
1137 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1138 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1139 		    crypto_devallowsoft == 0) {
1140 			continue;
1141 		}
1142 		if (crypto_drivers[hid].cc_kprocess == NULL)
1143 			continue;
1144 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1145 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1146 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1147 				feat |=  1 << kalg;
1148 	}
1149 out:
1150 	mutex_spin_exit(&crypto_mtx);
1151 	*featp = feat;
1152 	return (0);
1153 }
1154 
1155 /*
1156  * Software interrupt thread to dispatch crypto requests.
1157  */
1158 static void
1159 cryptointr(void)
1160 {
1161 	struct cryptop *crp, *submit, *cnext;
1162 	struct cryptkop *krp, *knext;
1163 	struct cryptocap *cap;
1164 	int result, hint;
1165 
1166 	cryptostats.cs_intrs++;
1167 	mutex_spin_enter(&crypto_mtx);
1168 	do {
1169 		/*
1170 		 * Find the first element in the queue that can be
1171 		 * processed and look-ahead to see if multiple ops
1172 		 * are ready for the same driver.
1173 		 */
1174 		submit = NULL;
1175 		hint = 0;
1176 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1177 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1178 			cap = crypto_checkdriver(hid);
1179 			if (cap == NULL || cap->cc_process == NULL) {
1180 				/* Op needs to be migrated, process it. */
1181 				if (submit == NULL)
1182 					submit = crp;
1183 				break;
1184 			}
1185 			if (!cap->cc_qblocked) {
1186 				if (submit != NULL) {
1187 					/*
1188 					 * We stop on finding another op,
1189 					 * regardless whether its for the same
1190 					 * driver or not.  We could keep
1191 					 * searching the queue but it might be
1192 					 * better to just use a per-driver
1193 					 * queue instead.
1194 					 */
1195 					if (CRYPTO_SESID2HID(submit->crp_sid)
1196 					    == hid)
1197 						hint = CRYPTO_HINT_MORE;
1198 					break;
1199 				} else {
1200 					submit = crp;
1201 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1202 						break;
1203 					/* keep scanning for more are q'd */
1204 				}
1205 			}
1206 		}
1207 		if (submit != NULL) {
1208 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1209 			mutex_spin_exit(&crypto_mtx);
1210 			result = crypto_invoke(submit, hint);
1211 			/* we must take here as the TAILQ op or kinvoke
1212 			   may need this mutex below.  sigh. */
1213 			mutex_spin_enter(&crypto_mtx);
1214 			if (result == ERESTART) {
1215 				/*
1216 				 * The driver ran out of resources, mark the
1217 				 * driver ``blocked'' for cryptop's and put
1218 				 * the request back in the queue.  It would
1219 				 * best to put the request back where we got
1220 				 * it but that's hard so for now we put it
1221 				 * at the front.  This should be ok; putting
1222 				 * it at the end does not work.
1223 				 */
1224 				/* XXX validate sid again? */
1225 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1226 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1227 				cryptostats.cs_blocks++;
1228 			}
1229 		}
1230 
1231 		/* As above, but for key ops */
1232 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1233 			cap = crypto_checkdriver(krp->krp_hid);
1234 			if (cap == NULL || cap->cc_kprocess == NULL) {
1235 				/* Op needs to be migrated, process it. */
1236 				break;
1237 			}
1238 			if (!cap->cc_kqblocked)
1239 				break;
1240 		}
1241 		if (krp != NULL) {
1242 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1243 			mutex_spin_exit(&crypto_mtx);
1244 			result = crypto_kinvoke(krp, 0);
1245 			/* the next iteration will want the mutex. :-/ */
1246 			mutex_spin_enter(&crypto_mtx);
1247 			if (result == ERESTART) {
1248 				/*
1249 				 * The driver ran out of resources, mark the
1250 				 * driver ``blocked'' for cryptkop's and put
1251 				 * the request back in the queue.  It would
1252 				 * best to put the request back where we got
1253 				 * it but that's hard so for now we put it
1254 				 * at the front.  This should be ok; putting
1255 				 * it at the end does not work.
1256 				 */
1257 				/* XXX validate sid again? */
1258 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1259 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1260 				cryptostats.cs_kblocks++;
1261 			}
1262 		}
1263 	} while (submit != NULL || krp != NULL);
1264 	mutex_spin_exit(&crypto_mtx);
1265 }
1266 
1267 /*
1268  * Kernel thread to do callbacks.
1269  */
1270 static void
1271 cryptoret(void)
1272 {
1273 	struct cryptop *crp;
1274 	struct cryptkop *krp;
1275 
1276 	mutex_spin_enter(&crypto_mtx);
1277 	for (;;) {
1278 		crp = TAILQ_FIRST(&crp_ret_q);
1279 		if (crp != NULL) {
1280 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1281 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1282 		}
1283 		krp = TAILQ_FIRST(&crp_ret_kq);
1284 		if (krp != NULL) {
1285 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1286 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1287 		}
1288 
1289 		/* drop before calling any callbacks. */
1290 		if (crp == NULL && krp == NULL) {
1291 			cryptostats.cs_rets++;
1292 			cv_wait(&cryptoret_cv, &crypto_mtx);
1293 			continue;
1294 		}
1295 
1296 		mutex_spin_exit(&crypto_mtx);
1297 
1298 		if (crp != NULL) {
1299 #ifdef CRYPTO_TIMING
1300 			if (crypto_timing) {
1301 				/*
1302 				 * NB: We must copy the timestamp before
1303 				 * doing the callback as the cryptop is
1304 				 * likely to be reclaimed.
1305 				 */
1306 				struct timespec t = crp->crp_tstamp;
1307 				crypto_tstat(&cryptostats.cs_cb, &t);
1308 				crp->crp_callback(crp);
1309 				crypto_tstat(&cryptostats.cs_finis, &t);
1310 			} else
1311 #endif
1312 			{
1313 				crp->crp_callback(crp);
1314 			}
1315 		}
1316 		if (krp != NULL)
1317 			krp->krp_callback(krp);
1318 
1319 		mutex_spin_enter(&crypto_mtx);
1320 	}
1321 }
1322