1 /* $NetBSD: crypto.c,v 1.47 2015/11/28 03:40:43 christos Exp $ */ 2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */ 3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */ 4 5 /*- 6 * Copyright (c) 2008 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Coyote Point Systems, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 36 * 37 * This code was written by Angelos D. Keromytis in Athens, Greece, in 38 * February 2000. Network Security Technologies Inc. (NSTI) kindly 39 * supported the development of this code. 40 * 41 * Copyright (c) 2000, 2001 Angelos D. Keromytis 42 * 43 * Permission to use, copy, and modify this software with or without fee 44 * is hereby granted, provided that this entire notice is included in 45 * all source code copies of any software which is or includes a copy or 46 * modification of this software. 47 * 48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 52 * PURPOSE. 53 */ 54 55 #include <sys/cdefs.h> 56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.47 2015/11/28 03:40:43 christos Exp $"); 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/malloc.h> 62 #include <sys/proc.h> 63 #include <sys/pool.h> 64 #include <sys/kthread.h> 65 #include <sys/once.h> 66 #include <sys/sysctl.h> 67 #include <sys/intr.h> 68 #include <sys/errno.h> 69 #include <sys/module.h> 70 71 #if defined(_KERNEL_OPT) 72 #include "opt_ocf.h" 73 #endif 74 75 #include <opencrypto/cryptodev.h> 76 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 77 78 kmutex_t crypto_q_mtx; 79 kmutex_t crypto_ret_q_mtx; 80 kcondvar_t cryptoret_cv; 81 kmutex_t crypto_mtx; 82 83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */ 84 #define SWI_CRYPTO 17 85 #define register_swi(lvl, fn) \ 86 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL) 87 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie) 88 #define setsoftcrypto(x) softint_schedule(x) 89 90 int crypto_ret_q_check(struct cryptop *); 91 92 /* 93 * Crypto drivers register themselves by allocating a slot in the 94 * crypto_drivers table with crypto_get_driverid() and then registering 95 * each algorithm they support with crypto_register() and crypto_kregister(). 96 */ 97 static struct cryptocap *crypto_drivers; 98 static int crypto_drivers_num; 99 static void *softintr_cookie; 100 static int crypto_exit_flag; 101 102 /* 103 * There are two queues for crypto requests; one for symmetric (e.g. 104 * cipher) operations and one for asymmetric (e.g. MOD) operations. 105 * See below for how synchronization is handled. 106 */ 107 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */ 108 TAILQ_HEAD_INITIALIZER(crp_q); 109 static TAILQ_HEAD(,cryptkop) crp_kq = 110 TAILQ_HEAD_INITIALIZER(crp_kq); 111 112 /* 113 * There are two queues for processing completed crypto requests; one 114 * for the symmetric and one for the asymmetric ops. We only need one 115 * but have two to avoid type futzing (cryptop vs. cryptkop). See below 116 * for how synchronization is handled. 117 */ 118 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */ 119 TAILQ_HEAD_INITIALIZER(crp_ret_q); 120 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq = 121 TAILQ_HEAD_INITIALIZER(crp_ret_kq); 122 123 /* 124 * XXX these functions are ghastly hacks for when the submission 125 * XXX routines discover a request that was not CBIMM is already 126 * XXX done, and must be yanked from the retq (where _done) put it 127 * XXX as cryptoret won't get the chance. The queue is walked backwards 128 * XXX as the request is generally the last one queued. 129 * 130 * call with the lock held, or else. 131 */ 132 int 133 crypto_ret_q_remove(struct cryptop *crp) 134 { 135 struct cryptop * acrp, *next; 136 137 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) { 138 if (acrp == crp) { 139 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 140 crp->crp_flags &= (~CRYPTO_F_ONRETQ); 141 return 1; 142 } 143 } 144 return 0; 145 } 146 147 int 148 crypto_ret_kq_remove(struct cryptkop *krp) 149 { 150 struct cryptkop * akrp, *next; 151 152 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) { 153 if (akrp == krp) { 154 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 155 krp->krp_flags &= (~CRYPTO_F_ONRETQ); 156 return 1; 157 } 158 } 159 return 0; 160 } 161 162 /* 163 * Crypto op and desciptor data structures are allocated 164 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) . 165 */ 166 struct pool cryptop_pool; 167 struct pool cryptodesc_pool; 168 struct pool cryptkop_pool; 169 170 int crypto_usercrypto = 1; /* userland may open /dev/crypto */ 171 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 172 /* 173 * cryptodevallowsoft is (intended to be) sysctl'able, controlling 174 * access to hardware versus software transforms as below: 175 * 176 * crypto_devallowsoft < 0: Force userlevel requests to use software 177 * transforms, always 178 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel 179 * requests for non-accelerated transforms 180 * (handling the latter in software) 181 * crypto_devallowsoft > 0: Allow user requests only for transforms which 182 * are hardware-accelerated. 183 */ 184 int crypto_devallowsoft = 1; /* only use hardware crypto */ 185 186 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup") 187 { 188 189 sysctl_createv(clog, 0, NULL, NULL, 190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 191 CTLTYPE_INT, "usercrypto", 192 SYSCTL_DESCR("Enable/disable user-mode access to " 193 "crypto support"), 194 NULL, 0, &crypto_usercrypto, 0, 195 CTL_KERN, CTL_CREATE, CTL_EOL); 196 sysctl_createv(clog, 0, NULL, NULL, 197 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 198 CTLTYPE_INT, "userasymcrypto", 199 SYSCTL_DESCR("Enable/disable user-mode access to " 200 "asymmetric crypto support"), 201 NULL, 0, &crypto_userasymcrypto, 0, 202 CTL_KERN, CTL_CREATE, CTL_EOL); 203 sysctl_createv(clog, 0, NULL, NULL, 204 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 205 CTLTYPE_INT, "cryptodevallowsoft", 206 SYSCTL_DESCR("Enable/disable use of software " 207 "asymmetric crypto support"), 208 NULL, 0, &crypto_devallowsoft, 0, 209 CTL_KERN, CTL_CREATE, CTL_EOL); 210 } 211 212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 213 214 /* 215 * Synchronization: read carefully, this is non-trivial. 216 * 217 * Crypto requests are submitted via crypto_dispatch. Typically 218 * these come in from network protocols at spl0 (output path) or 219 * spl[,soft]net (input path). 220 * 221 * Requests are typically passed on the driver directly, but they 222 * may also be queued for processing by a software interrupt thread, 223 * cryptointr, that runs at splsoftcrypto. This thread dispatches 224 * the requests to crypto drivers (h/w or s/w) who call crypto_done 225 * when a request is complete. Hardware crypto drivers are assumed 226 * to register their IRQ's as network devices so their interrupt handlers 227 * and subsequent "done callbacks" happen at spl[imp,net]. 228 * 229 * Completed crypto ops are queued for a separate kernel thread that 230 * handles the callbacks at spl0. This decoupling insures the crypto 231 * driver interrupt service routine is not delayed while the callback 232 * takes place and that callbacks are delivered after a context switch 233 * (as opposed to a software interrupt that clients must block). 234 * 235 * This scheme is not intended for SMP machines. 236 */ 237 static void cryptointr(void); /* swi thread to dispatch ops */ 238 static void cryptoret(void); /* kernel thread for callbacks*/ 239 static struct lwp *cryptothread; 240 static int crypto_destroy(bool); 241 static int crypto_invoke(struct cryptop *crp, int hint); 242 static int crypto_kinvoke(struct cryptkop *krp, int hint); 243 244 static struct cryptostats cryptostats; 245 #ifdef CRYPTO_TIMING 246 static int crypto_timing = 0; 247 #endif 248 249 #ifdef _MODULE 250 static struct sysctllog *sysctl_opencrypto_clog; 251 #endif 252 253 static int 254 crypto_init0(void) 255 { 256 int error; 257 258 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE); 259 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET); 260 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET); 261 cv_init(&cryptoret_cv, "crypto_w"); 262 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0, 263 0, "cryptop", NULL, IPL_NET); 264 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0, 265 0, "cryptodesc", NULL, IPL_NET); 266 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0, 267 0, "cryptkop", NULL, IPL_NET); 268 269 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL * 270 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 271 if (crypto_drivers == NULL) { 272 printf("crypto_init: cannot malloc driver table\n"); 273 return ENOMEM; 274 } 275 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 276 277 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr); 278 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 279 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret"); 280 if (error) { 281 printf("crypto_init: cannot start cryptoret thread; error %d", 282 error); 283 return crypto_destroy(false); 284 } 285 286 #ifdef _MODULE 287 sysctl_opencrypto_setup(&sysctl_opencrypto_clog); 288 #endif 289 return 0; 290 } 291 292 int 293 crypto_init(void) 294 { 295 static ONCE_DECL(crypto_init_once); 296 297 return RUN_ONCE(&crypto_init_once, crypto_init0); 298 } 299 300 static int 301 crypto_destroy(bool exit_kthread) 302 { 303 int i; 304 305 if (exit_kthread) { 306 mutex_spin_enter(&crypto_ret_q_mtx); 307 308 /* if we have any in-progress requests, don't unload */ 309 if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) 310 return EBUSY; 311 312 for (i = 0; i < crypto_drivers_num; i++) 313 if (crypto_drivers[i].cc_sessions != 0) 314 break; 315 if (i < crypto_drivers_num) 316 return EBUSY; 317 318 /* kick the cryptoret thread and wait for it to exit */ 319 crypto_exit_flag = 1; 320 cv_signal(&cryptoret_cv); 321 322 while (crypto_exit_flag != 0) 323 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx); 324 mutex_spin_exit(&crypto_ret_q_mtx); 325 } 326 327 #ifdef _MODULE 328 if (sysctl_opencrypto_clog != NULL) 329 sysctl_teardown(&sysctl_opencrypto_clog); 330 #endif 331 332 unregister_swi(SWI_CRYPTO, cryptointr); 333 334 if (crypto_drivers != NULL) 335 free(crypto_drivers, M_CRYPTO_DATA); 336 337 pool_destroy(&cryptop_pool); 338 pool_destroy(&cryptodesc_pool); 339 pool_destroy(&cryptkop_pool); 340 341 cv_destroy(&cryptoret_cv); 342 343 mutex_destroy(&crypto_ret_q_mtx); 344 mutex_destroy(&crypto_q_mtx); 345 mutex_destroy(&crypto_mtx); 346 347 return 0; 348 } 349 350 /* 351 * Create a new session. Must be called with crypto_mtx held. 352 */ 353 int 354 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard) 355 { 356 struct cryptoini *cr; 357 u_int32_t hid, lid; 358 int err = EINVAL; 359 360 mutex_enter(&crypto_mtx); 361 362 if (crypto_drivers == NULL) 363 goto done; 364 365 /* 366 * The algorithm we use here is pretty stupid; just use the 367 * first driver that supports all the algorithms we need. 368 * 369 * XXX We need more smarts here (in real life too, but that's 370 * XXX another story altogether). 371 */ 372 373 for (hid = 0; hid < crypto_drivers_num; hid++) { 374 /* 375 * If it's not initialized or has remaining sessions 376 * referencing it, skip. 377 */ 378 if (crypto_drivers[hid].cc_newsession == NULL || 379 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)) 380 continue; 381 382 /* Hardware required -- ignore software drivers. */ 383 if (hard > 0 && 384 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE)) 385 continue; 386 /* Software required -- ignore hardware drivers. */ 387 if (hard < 0 && 388 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) 389 continue; 390 391 /* See if all the algorithms are supported. */ 392 for (cr = cri; cr; cr = cr->cri_next) 393 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) { 394 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg)); 395 break; 396 } 397 398 if (cr == NULL) { 399 /* Ok, all algorithms are supported. */ 400 401 /* 402 * Can't do everything in one session. 403 * 404 * XXX Fix this. We need to inject a "virtual" session layer right 405 * XXX about here. 406 */ 407 408 /* Call the driver initialization routine. */ 409 lid = hid; /* Pass the driver ID. */ 410 err = crypto_drivers[hid].cc_newsession( 411 crypto_drivers[hid].cc_arg, &lid, cri); 412 if (err == 0) { 413 (*sid) = hid; 414 (*sid) <<= 32; 415 (*sid) |= (lid & 0xffffffff); 416 crypto_drivers[hid].cc_sessions++; 417 } 418 goto done; 419 /*break;*/ 420 } 421 } 422 done: 423 mutex_exit(&crypto_mtx); 424 return err; 425 } 426 427 /* 428 * Delete an existing session (or a reserved session on an unregistered 429 * driver). Must be called with crypto_mtx mutex held. 430 */ 431 int 432 crypto_freesession(u_int64_t sid) 433 { 434 u_int32_t hid; 435 int err = 0; 436 437 mutex_enter(&crypto_mtx); 438 439 if (crypto_drivers == NULL) { 440 err = EINVAL; 441 goto done; 442 } 443 444 /* Determine two IDs. */ 445 hid = CRYPTO_SESID2HID(sid); 446 447 if (hid >= crypto_drivers_num) { 448 err = ENOENT; 449 goto done; 450 } 451 452 if (crypto_drivers[hid].cc_sessions) 453 crypto_drivers[hid].cc_sessions--; 454 455 /* Call the driver cleanup routine, if available. */ 456 if (crypto_drivers[hid].cc_freesession) { 457 err = crypto_drivers[hid].cc_freesession( 458 crypto_drivers[hid].cc_arg, sid); 459 } 460 else 461 err = 0; 462 463 /* 464 * If this was the last session of a driver marked as invalid, 465 * make the entry available for reuse. 466 */ 467 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) && 468 crypto_drivers[hid].cc_sessions == 0) 469 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap)); 470 471 done: 472 mutex_exit(&crypto_mtx); 473 return err; 474 } 475 476 /* 477 * Return an unused driver id. Used by drivers prior to registering 478 * support for the algorithms they handle. 479 */ 480 int32_t 481 crypto_get_driverid(u_int32_t flags) 482 { 483 struct cryptocap *newdrv; 484 int i; 485 486 (void)crypto_init(); /* XXX oh, this is foul! */ 487 488 mutex_enter(&crypto_mtx); 489 for (i = 0; i < crypto_drivers_num; i++) 490 if (crypto_drivers[i].cc_process == NULL && 491 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 && 492 crypto_drivers[i].cc_sessions == 0) 493 break; 494 495 /* Out of entries, allocate some more. */ 496 if (i == crypto_drivers_num) { 497 /* Be careful about wrap-around. */ 498 if (2 * crypto_drivers_num <= crypto_drivers_num) { 499 mutex_exit(&crypto_mtx); 500 printf("crypto: driver count wraparound!\n"); 501 return -1; 502 } 503 504 newdrv = malloc(2 * crypto_drivers_num * 505 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 506 if (newdrv == NULL) { 507 mutex_exit(&crypto_mtx); 508 printf("crypto: no space to expand driver table!\n"); 509 return -1; 510 } 511 512 memcpy(newdrv, crypto_drivers, 513 crypto_drivers_num * sizeof(struct cryptocap)); 514 515 crypto_drivers_num *= 2; 516 517 free(crypto_drivers, M_CRYPTO_DATA); 518 crypto_drivers = newdrv; 519 } 520 521 /* NB: state is zero'd on free */ 522 crypto_drivers[i].cc_sessions = 1; /* Mark */ 523 crypto_drivers[i].cc_flags = flags; 524 525 if (bootverbose) 526 printf("crypto: assign driver %u, flags %u\n", i, flags); 527 528 mutex_exit(&crypto_mtx); 529 530 return i; 531 } 532 533 static struct cryptocap * 534 crypto_checkdriver(u_int32_t hid) 535 { 536 if (crypto_drivers == NULL) 537 return NULL; 538 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 539 } 540 541 /* 542 * Register support for a key-related algorithm. This routine 543 * is called once for each algorithm supported a driver. 544 */ 545 int 546 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags, 547 int (*kprocess)(void *, struct cryptkop *, int), 548 void *karg) 549 { 550 struct cryptocap *cap; 551 int err; 552 553 mutex_enter(&crypto_mtx); 554 555 cap = crypto_checkdriver(driverid); 556 if (cap != NULL && 557 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 558 /* 559 * XXX Do some performance testing to determine placing. 560 * XXX We probably need an auxiliary data structure that 561 * XXX describes relative performances. 562 */ 563 564 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 565 if (bootverbose) { 566 printf("crypto: driver %u registers key alg %u " 567 " flags %u\n", 568 driverid, 569 kalg, 570 flags 571 ); 572 } 573 574 if (cap->cc_kprocess == NULL) { 575 cap->cc_karg = karg; 576 cap->cc_kprocess = kprocess; 577 } 578 err = 0; 579 } else 580 err = EINVAL; 581 582 mutex_exit(&crypto_mtx); 583 return err; 584 } 585 586 /* 587 * Register support for a non-key-related algorithm. This routine 588 * is called once for each such algorithm supported by a driver. 589 */ 590 int 591 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 592 u_int32_t flags, 593 int (*newses)(void *, u_int32_t*, struct cryptoini*), 594 int (*freeses)(void *, u_int64_t), 595 int (*process)(void *, struct cryptop *, int), 596 void *arg) 597 { 598 struct cryptocap *cap; 599 int err; 600 601 mutex_enter(&crypto_mtx); 602 603 cap = crypto_checkdriver(driverid); 604 /* NB: algorithms are in the range [1..max] */ 605 if (cap != NULL && 606 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 607 /* 608 * XXX Do some performance testing to determine placing. 609 * XXX We probably need an auxiliary data structure that 610 * XXX describes relative performances. 611 */ 612 613 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 614 cap->cc_max_op_len[alg] = maxoplen; 615 if (bootverbose) { 616 printf("crypto: driver %u registers alg %u " 617 "flags %u maxoplen %u\n", 618 driverid, 619 alg, 620 flags, 621 maxoplen 622 ); 623 } 624 625 if (cap->cc_process == NULL) { 626 cap->cc_arg = arg; 627 cap->cc_newsession = newses; 628 cap->cc_process = process; 629 cap->cc_freesession = freeses; 630 cap->cc_sessions = 0; /* Unmark */ 631 } 632 err = 0; 633 } else 634 err = EINVAL; 635 636 mutex_exit(&crypto_mtx); 637 return err; 638 } 639 640 /* 641 * Unregister a crypto driver. If there are pending sessions using it, 642 * leave enough information around so that subsequent calls using those 643 * sessions will correctly detect the driver has been unregistered and 644 * reroute requests. 645 */ 646 int 647 crypto_unregister(u_int32_t driverid, int alg) 648 { 649 int i, err; 650 u_int32_t ses; 651 struct cryptocap *cap; 652 653 mutex_enter(&crypto_mtx); 654 655 cap = crypto_checkdriver(driverid); 656 if (cap != NULL && 657 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 658 cap->cc_alg[alg] != 0) { 659 cap->cc_alg[alg] = 0; 660 cap->cc_max_op_len[alg] = 0; 661 662 /* Was this the last algorithm ? */ 663 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 664 if (cap->cc_alg[i] != 0) 665 break; 666 667 if (i == CRYPTO_ALGORITHM_MAX + 1) { 668 ses = cap->cc_sessions; 669 memset(cap, 0, sizeof(struct cryptocap)); 670 if (ses != 0) { 671 /* 672 * If there are pending sessions, just mark as invalid. 673 */ 674 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 675 cap->cc_sessions = ses; 676 } 677 } 678 err = 0; 679 } else 680 err = EINVAL; 681 682 mutex_exit(&crypto_mtx); 683 return err; 684 } 685 686 /* 687 * Unregister all algorithms associated with a crypto driver. 688 * If there are pending sessions using it, leave enough information 689 * around so that subsequent calls using those sessions will 690 * correctly detect the driver has been unregistered and reroute 691 * requests. 692 * 693 * XXX careful. Don't change this to call crypto_unregister() for each 694 * XXX registered algorithm unless you drop the mutex across the calls; 695 * XXX you can't take it recursively. 696 */ 697 int 698 crypto_unregister_all(u_int32_t driverid) 699 { 700 int i, err; 701 u_int32_t ses; 702 struct cryptocap *cap; 703 704 mutex_enter(&crypto_mtx); 705 cap = crypto_checkdriver(driverid); 706 if (cap != NULL) { 707 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) { 708 cap->cc_alg[i] = 0; 709 cap->cc_max_op_len[i] = 0; 710 } 711 ses = cap->cc_sessions; 712 memset(cap, 0, sizeof(struct cryptocap)); 713 if (ses != 0) { 714 /* 715 * If there are pending sessions, just mark as invalid. 716 */ 717 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 718 cap->cc_sessions = ses; 719 } 720 err = 0; 721 } else 722 err = EINVAL; 723 724 mutex_exit(&crypto_mtx); 725 return err; 726 } 727 728 /* 729 * Clear blockage on a driver. The what parameter indicates whether 730 * the driver is now ready for cryptop's and/or cryptokop's. 731 */ 732 int 733 crypto_unblock(u_int32_t driverid, int what) 734 { 735 struct cryptocap *cap; 736 int needwakeup, err; 737 738 mutex_spin_enter(&crypto_q_mtx); 739 cap = crypto_checkdriver(driverid); 740 if (cap != NULL) { 741 needwakeup = 0; 742 if (what & CRYPTO_SYMQ) { 743 needwakeup |= cap->cc_qblocked; 744 cap->cc_qblocked = 0; 745 } 746 if (what & CRYPTO_ASYMQ) { 747 needwakeup |= cap->cc_kqblocked; 748 cap->cc_kqblocked = 0; 749 } 750 err = 0; 751 if (needwakeup) 752 setsoftcrypto(softintr_cookie); 753 mutex_spin_exit(&crypto_q_mtx); 754 } else { 755 err = EINVAL; 756 mutex_spin_exit(&crypto_q_mtx); 757 } 758 759 return err; 760 } 761 762 /* 763 * Dispatch a crypto request to a driver or queue 764 * it, to be processed by the kernel thread. 765 */ 766 int 767 crypto_dispatch(struct cryptop *crp) 768 { 769 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 770 int result; 771 772 mutex_spin_enter(&crypto_q_mtx); 773 DPRINTF(("crypto_dispatch: crp %p, alg %d\n", 774 crp, crp->crp_desc->crd_alg)); 775 776 cryptostats.cs_ops++; 777 778 #ifdef CRYPTO_TIMING 779 if (crypto_timing) 780 nanouptime(&crp->crp_tstamp); 781 #endif 782 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 783 struct cryptocap *cap; 784 /* 785 * Caller marked the request to be processed 786 * immediately; dispatch it directly to the 787 * driver unless the driver is currently blocked. 788 */ 789 cap = crypto_checkdriver(hid); 790 if (cap && !cap->cc_qblocked) { 791 mutex_spin_exit(&crypto_q_mtx); 792 result = crypto_invoke(crp, 0); 793 if (result == ERESTART) { 794 /* 795 * The driver ran out of resources, mark the 796 * driver ``blocked'' for cryptop's and put 797 * the op on the queue. 798 */ 799 mutex_spin_enter(&crypto_q_mtx); 800 crypto_drivers[hid].cc_qblocked = 1; 801 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next); 802 cryptostats.cs_blocks++; 803 mutex_spin_exit(&crypto_q_mtx); 804 } 805 goto out_released; 806 } else { 807 /* 808 * The driver is blocked, just queue the op until 809 * it unblocks and the swi thread gets kicked. 810 */ 811 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 812 result = 0; 813 } 814 } else { 815 int wasempty = TAILQ_EMPTY(&crp_q); 816 /* 817 * Caller marked the request as ``ok to delay''; 818 * queue it for the swi thread. This is desirable 819 * when the operation is low priority and/or suitable 820 * for batching. 821 */ 822 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 823 if (wasempty) { 824 setsoftcrypto(softintr_cookie); 825 mutex_spin_exit(&crypto_q_mtx); 826 result = 0; 827 goto out_released; 828 } 829 830 result = 0; 831 } 832 833 mutex_spin_exit(&crypto_q_mtx); 834 out_released: 835 return result; 836 } 837 838 /* 839 * Add an asymetric crypto request to a queue, 840 * to be processed by the kernel thread. 841 */ 842 int 843 crypto_kdispatch(struct cryptkop *krp) 844 { 845 struct cryptocap *cap; 846 int result; 847 848 mutex_spin_enter(&crypto_q_mtx); 849 cryptostats.cs_kops++; 850 851 cap = crypto_checkdriver(krp->krp_hid); 852 if (cap && !cap->cc_kqblocked) { 853 mutex_spin_exit(&crypto_q_mtx); 854 result = crypto_kinvoke(krp, 0); 855 if (result == ERESTART) { 856 /* 857 * The driver ran out of resources, mark the 858 * driver ``blocked'' for cryptop's and put 859 * the op on the queue. 860 */ 861 mutex_spin_enter(&crypto_q_mtx); 862 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 863 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 864 cryptostats.cs_kblocks++; 865 mutex_spin_exit(&crypto_q_mtx); 866 } 867 } else { 868 /* 869 * The driver is blocked, just queue the op until 870 * it unblocks and the swi thread gets kicked. 871 */ 872 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 873 result = 0; 874 mutex_spin_exit(&crypto_q_mtx); 875 } 876 877 return result; 878 } 879 880 /* 881 * Dispatch an assymetric crypto request to the appropriate crypto devices. 882 */ 883 static int 884 crypto_kinvoke(struct cryptkop *krp, int hint) 885 { 886 u_int32_t hid; 887 int error; 888 889 /* Sanity checks. */ 890 if (krp == NULL) 891 return EINVAL; 892 if (krp->krp_callback == NULL) { 893 cv_destroy(&krp->krp_cv); 894 pool_put(&cryptkop_pool, krp); 895 return EINVAL; 896 } 897 898 mutex_enter(&crypto_mtx); 899 for (hid = 0; hid < crypto_drivers_num; hid++) { 900 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 901 crypto_devallowsoft == 0) 902 continue; 903 if (crypto_drivers[hid].cc_kprocess == NULL) 904 continue; 905 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] & 906 CRYPTO_ALG_FLAG_SUPPORTED) == 0) 907 continue; 908 break; 909 } 910 if (hid < crypto_drivers_num) { 911 int (*process)(void *, struct cryptkop *, int); 912 void *arg; 913 914 process = crypto_drivers[hid].cc_kprocess; 915 arg = crypto_drivers[hid].cc_karg; 916 mutex_exit(&crypto_mtx); 917 krp->krp_hid = hid; 918 error = (*process)(arg, krp, hint); 919 } else { 920 mutex_exit(&crypto_mtx); 921 error = ENODEV; 922 } 923 924 if (error) { 925 krp->krp_status = error; 926 crypto_kdone(krp); 927 } 928 return 0; 929 } 930 931 #ifdef CRYPTO_TIMING 932 static void 933 crypto_tstat(struct cryptotstat *ts, struct timespec *tv) 934 { 935 struct timespec now, t; 936 937 nanouptime(&now); 938 t.tv_sec = now.tv_sec - tv->tv_sec; 939 t.tv_nsec = now.tv_nsec - tv->tv_nsec; 940 if (t.tv_nsec < 0) { 941 t.tv_sec--; 942 t.tv_nsec += 1000000000; 943 } 944 timespecadd(&ts->acc, &t, &t); 945 if (timespeccmp(&t, &ts->min, <)) 946 ts->min = t; 947 if (timespeccmp(&t, &ts->max, >)) 948 ts->max = t; 949 ts->count++; 950 951 *tv = now; 952 } 953 #endif 954 955 /* 956 * Dispatch a crypto request to the appropriate crypto devices. 957 */ 958 static int 959 crypto_invoke(struct cryptop *crp, int hint) 960 { 961 u_int32_t hid; 962 963 #ifdef CRYPTO_TIMING 964 if (crypto_timing) 965 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 966 #endif 967 /* Sanity checks. */ 968 if (crp == NULL) 969 return EINVAL; 970 if (crp->crp_callback == NULL) { 971 return EINVAL; 972 } 973 if (crp->crp_desc == NULL) { 974 crp->crp_etype = EINVAL; 975 crypto_done(crp); 976 return 0; 977 } 978 979 hid = CRYPTO_SESID2HID(crp->crp_sid); 980 981 if (hid < crypto_drivers_num) { 982 int (*process)(void *, struct cryptop *, int); 983 void *arg; 984 985 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) { 986 mutex_exit(&crypto_mtx); 987 crypto_freesession(crp->crp_sid); 988 mutex_enter(&crypto_mtx); 989 } 990 process = crypto_drivers[hid].cc_process; 991 arg = crypto_drivers[hid].cc_arg; 992 993 /* 994 * Invoke the driver to process the request. 995 */ 996 DPRINTF(("calling process for %p\n", crp)); 997 return (*process)(arg, crp, hint); 998 } else { 999 struct cryptodesc *crd; 1000 u_int64_t nid = 0; 1001 1002 /* 1003 * Driver has unregistered; migrate the session and return 1004 * an error to the caller so they'll resubmit the op. 1005 */ 1006 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 1007 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 1008 1009 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0) 1010 crp->crp_sid = nid; 1011 1012 crp->crp_etype = EAGAIN; 1013 1014 crypto_done(crp); 1015 return 0; 1016 } 1017 } 1018 1019 /* 1020 * Release a set of crypto descriptors. 1021 */ 1022 void 1023 crypto_freereq(struct cryptop *crp) 1024 { 1025 struct cryptodesc *crd; 1026 1027 if (crp == NULL) 1028 return; 1029 DPRINTF(("crypto_freereq[%u]: crp %p\n", 1030 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1031 1032 /* sanity check */ 1033 if (crp->crp_flags & CRYPTO_F_ONRETQ) { 1034 panic("crypto_freereq() freeing crp on RETQ\n"); 1035 } 1036 1037 while ((crd = crp->crp_desc) != NULL) { 1038 crp->crp_desc = crd->crd_next; 1039 pool_put(&cryptodesc_pool, crd); 1040 } 1041 pool_put(&cryptop_pool, crp); 1042 } 1043 1044 /* 1045 * Acquire a set of crypto descriptors. 1046 */ 1047 struct cryptop * 1048 crypto_getreq(int num) 1049 { 1050 struct cryptodesc *crd; 1051 struct cryptop *crp; 1052 1053 crp = pool_get(&cryptop_pool, 0); 1054 if (crp == NULL) { 1055 return NULL; 1056 } 1057 memset(crp, 0, sizeof(struct cryptop)); 1058 1059 while (num--) { 1060 crd = pool_get(&cryptodesc_pool, 0); 1061 if (crd == NULL) { 1062 crypto_freereq(crp); 1063 return NULL; 1064 } 1065 1066 memset(crd, 0, sizeof(struct cryptodesc)); 1067 crd->crd_next = crp->crp_desc; 1068 crp->crp_desc = crd; 1069 } 1070 1071 return crp; 1072 } 1073 1074 /* 1075 * Invoke the callback on behalf of the driver. 1076 */ 1077 void 1078 crypto_done(struct cryptop *crp) 1079 { 1080 int wasempty; 1081 1082 if (crp->crp_etype != 0) 1083 cryptostats.cs_errs++; 1084 #ifdef CRYPTO_TIMING 1085 if (crypto_timing) 1086 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1087 #endif 1088 DPRINTF(("crypto_done[%u]: crp %p\n", 1089 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1090 1091 /* 1092 * Normal case; queue the callback for the thread. 1093 * 1094 * The return queue is manipulated by the swi thread 1095 * and, potentially, by crypto device drivers calling 1096 * back to mark operations completed. Thus we need 1097 * to mask both while manipulating the return queue. 1098 */ 1099 if (crp->crp_flags & CRYPTO_F_CBIMM) { 1100 /* 1101 * Do the callback directly. This is ok when the 1102 * callback routine does very little (e.g. the 1103 * /dev/crypto callback method just does a wakeup). 1104 */ 1105 mutex_spin_enter(&crypto_ret_q_mtx); 1106 crp->crp_flags |= CRYPTO_F_DONE; 1107 mutex_spin_exit(&crypto_ret_q_mtx); 1108 1109 #ifdef CRYPTO_TIMING 1110 if (crypto_timing) { 1111 /* 1112 * NB: We must copy the timestamp before 1113 * doing the callback as the cryptop is 1114 * likely to be reclaimed. 1115 */ 1116 struct timespec t = crp->crp_tstamp; 1117 crypto_tstat(&cryptostats.cs_cb, &t); 1118 crp->crp_callback(crp); 1119 crypto_tstat(&cryptostats.cs_finis, &t); 1120 } else 1121 #endif 1122 crp->crp_callback(crp); 1123 } else { 1124 mutex_spin_enter(&crypto_ret_q_mtx); 1125 crp->crp_flags |= CRYPTO_F_DONE; 1126 1127 if (crp->crp_flags & CRYPTO_F_USER) { 1128 /* the request has completed while 1129 * running in the user context 1130 * so don't queue it - the user 1131 * thread won't sleep when it sees 1132 * the CRYPTO_F_DONE flag. 1133 * This is an optimization to avoid 1134 * unecessary context switches. 1135 */ 1136 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n", 1137 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1138 } else { 1139 wasempty = TAILQ_EMPTY(&crp_ret_q); 1140 DPRINTF(("crypto_done[%u]: queueing %p\n", 1141 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1142 crp->crp_flags |= CRYPTO_F_ONRETQ; 1143 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 1144 if (wasempty) { 1145 DPRINTF(("crypto_done[%u]: waking cryptoret, " 1146 "crp %p hit empty queue\n.", 1147 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1148 cv_signal(&cryptoret_cv); 1149 } 1150 } 1151 mutex_spin_exit(&crypto_ret_q_mtx); 1152 } 1153 } 1154 1155 /* 1156 * Invoke the callback on behalf of the driver. 1157 */ 1158 void 1159 crypto_kdone(struct cryptkop *krp) 1160 { 1161 int wasempty; 1162 1163 if (krp->krp_status != 0) 1164 cryptostats.cs_kerrs++; 1165 1166 krp->krp_flags |= CRYPTO_F_DONE; 1167 1168 /* 1169 * The return queue is manipulated by the swi thread 1170 * and, potentially, by crypto device drivers calling 1171 * back to mark operations completed. Thus we need 1172 * to mask both while manipulating the return queue. 1173 */ 1174 if (krp->krp_flags & CRYPTO_F_CBIMM) { 1175 krp->krp_callback(krp); 1176 } else { 1177 mutex_spin_enter(&crypto_ret_q_mtx); 1178 wasempty = TAILQ_EMPTY(&crp_ret_kq); 1179 krp->krp_flags |= CRYPTO_F_ONRETQ; 1180 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1181 if (wasempty) 1182 cv_signal(&cryptoret_cv); 1183 mutex_spin_exit(&crypto_ret_q_mtx); 1184 } 1185 } 1186 1187 int 1188 crypto_getfeat(int *featp) 1189 { 1190 int hid, kalg, feat = 0; 1191 1192 mutex_enter(&crypto_mtx); 1193 1194 if (crypto_userasymcrypto == 0) 1195 goto out; 1196 1197 for (hid = 0; hid < crypto_drivers_num; hid++) { 1198 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 1199 crypto_devallowsoft == 0) { 1200 continue; 1201 } 1202 if (crypto_drivers[hid].cc_kprocess == NULL) 1203 continue; 1204 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1205 if ((crypto_drivers[hid].cc_kalg[kalg] & 1206 CRYPTO_ALG_FLAG_SUPPORTED) != 0) 1207 feat |= 1 << kalg; 1208 } 1209 out: 1210 mutex_exit(&crypto_mtx); 1211 *featp = feat; 1212 return (0); 1213 } 1214 1215 /* 1216 * Software interrupt thread to dispatch crypto requests. 1217 */ 1218 static void 1219 cryptointr(void) 1220 { 1221 struct cryptop *crp, *submit, *cnext; 1222 struct cryptkop *krp, *knext; 1223 struct cryptocap *cap; 1224 int result, hint; 1225 1226 cryptostats.cs_intrs++; 1227 mutex_spin_enter(&crypto_q_mtx); 1228 do { 1229 /* 1230 * Find the first element in the queue that can be 1231 * processed and look-ahead to see if multiple ops 1232 * are ready for the same driver. 1233 */ 1234 submit = NULL; 1235 hint = 0; 1236 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) { 1237 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 1238 cap = crypto_checkdriver(hid); 1239 if (cap == NULL || cap->cc_process == NULL) { 1240 /* Op needs to be migrated, process it. */ 1241 if (submit == NULL) 1242 submit = crp; 1243 break; 1244 } 1245 if (!cap->cc_qblocked) { 1246 if (submit != NULL) { 1247 /* 1248 * We stop on finding another op, 1249 * regardless whether its for the same 1250 * driver or not. We could keep 1251 * searching the queue but it might be 1252 * better to just use a per-driver 1253 * queue instead. 1254 */ 1255 if (CRYPTO_SESID2HID(submit->crp_sid) 1256 == hid) 1257 hint = CRYPTO_HINT_MORE; 1258 break; 1259 } else { 1260 submit = crp; 1261 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1262 break; 1263 /* keep scanning for more are q'd */ 1264 } 1265 } 1266 } 1267 if (submit != NULL) { 1268 TAILQ_REMOVE(&crp_q, submit, crp_next); 1269 mutex_spin_exit(&crypto_q_mtx); 1270 result = crypto_invoke(submit, hint); 1271 /* we must take here as the TAILQ op or kinvoke 1272 may need this mutex below. sigh. */ 1273 mutex_spin_enter(&crypto_q_mtx); 1274 if (result == ERESTART) { 1275 /* 1276 * The driver ran out of resources, mark the 1277 * driver ``blocked'' for cryptop's and put 1278 * the request back in the queue. It would 1279 * best to put the request back where we got 1280 * it but that's hard so for now we put it 1281 * at the front. This should be ok; putting 1282 * it at the end does not work. 1283 */ 1284 /* XXX validate sid again? */ 1285 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1286 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1287 cryptostats.cs_blocks++; 1288 } 1289 } 1290 1291 /* As above, but for key ops */ 1292 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) { 1293 cap = crypto_checkdriver(krp->krp_hid); 1294 if (cap == NULL || cap->cc_kprocess == NULL) { 1295 /* Op needs to be migrated, process it. */ 1296 break; 1297 } 1298 if (!cap->cc_kqblocked) 1299 break; 1300 } 1301 if (krp != NULL) { 1302 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1303 mutex_spin_exit(&crypto_q_mtx); 1304 result = crypto_kinvoke(krp, 0); 1305 /* the next iteration will want the mutex. :-/ */ 1306 mutex_spin_enter(&crypto_q_mtx); 1307 if (result == ERESTART) { 1308 /* 1309 * The driver ran out of resources, mark the 1310 * driver ``blocked'' for cryptkop's and put 1311 * the request back in the queue. It would 1312 * best to put the request back where we got 1313 * it but that's hard so for now we put it 1314 * at the front. This should be ok; putting 1315 * it at the end does not work. 1316 */ 1317 /* XXX validate sid again? */ 1318 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1319 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1320 cryptostats.cs_kblocks++; 1321 } 1322 } 1323 } while (submit != NULL || krp != NULL); 1324 mutex_spin_exit(&crypto_q_mtx); 1325 } 1326 1327 /* 1328 * Kernel thread to do callbacks. 1329 */ 1330 static void 1331 cryptoret(void) 1332 { 1333 struct cryptop *crp; 1334 struct cryptkop *krp; 1335 1336 mutex_spin_enter(&crypto_ret_q_mtx); 1337 for (;;) { 1338 crp = TAILQ_FIRST(&crp_ret_q); 1339 if (crp != NULL) { 1340 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 1341 crp->crp_flags &= ~CRYPTO_F_ONRETQ; 1342 } 1343 krp = TAILQ_FIRST(&crp_ret_kq); 1344 if (krp != NULL) { 1345 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 1346 krp->krp_flags &= ~CRYPTO_F_ONRETQ; 1347 } 1348 1349 /* drop before calling any callbacks. */ 1350 if (crp == NULL && krp == NULL) { 1351 1352 /* Check for the exit condition. */ 1353 if (crypto_exit_flag != 0) { 1354 1355 /* Time to die. */ 1356 crypto_exit_flag = 0; 1357 cv_broadcast(&cryptoret_cv); 1358 mutex_spin_exit(&crypto_ret_q_mtx); 1359 kthread_exit(0); 1360 } 1361 1362 cryptostats.cs_rets++; 1363 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx); 1364 continue; 1365 } 1366 1367 mutex_spin_exit(&crypto_ret_q_mtx); 1368 1369 if (crp != NULL) { 1370 #ifdef CRYPTO_TIMING 1371 if (crypto_timing) { 1372 /* 1373 * NB: We must copy the timestamp before 1374 * doing the callback as the cryptop is 1375 * likely to be reclaimed. 1376 */ 1377 struct timespec t = crp->crp_tstamp; 1378 crypto_tstat(&cryptostats.cs_cb, &t); 1379 crp->crp_callback(crp); 1380 crypto_tstat(&cryptostats.cs_finis, &t); 1381 } else 1382 #endif 1383 { 1384 crp->crp_callback(crp); 1385 } 1386 } 1387 if (krp != NULL) 1388 krp->krp_callback(krp); 1389 1390 mutex_spin_enter(&crypto_ret_q_mtx); 1391 } 1392 } 1393 1394 /* NetBSD module interface */ 1395 1396 MODULE(MODULE_CLASS_MISC, opencrypto, NULL); 1397 1398 static int 1399 opencrypto_modcmd(modcmd_t cmd, void *opaque) 1400 { 1401 int error = 0; 1402 1403 switch (cmd) { 1404 case MODULE_CMD_INIT: 1405 #ifdef _MODULE 1406 error = crypto_init(); 1407 #endif 1408 break; 1409 case MODULE_CMD_FINI: 1410 #ifdef _MODULE 1411 error = crypto_destroy(true); 1412 #endif 1413 break; 1414 default: 1415 error = ENOTTY; 1416 } 1417 return error; 1418 } 1419