xref: /netbsd-src/sys/opencrypto/crypto.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: crypto.c,v 1.27 2008/04/10 22:48:42 tls Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the NetBSD
23  *	Foundation, Inc. and its contributors.
24  * 4. Neither the name of The NetBSD Foundation nor the names of its
25  *    contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*
42  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
43  *
44  * This code was written by Angelos D. Keromytis in Athens, Greece, in
45  * February 2000. Network Security Technologies Inc. (NSTI) kindly
46  * supported the development of this code.
47  *
48  * Copyright (c) 2000, 2001 Angelos D. Keromytis
49  *
50  * Permission to use, copy, and modify this software with or without fee
51  * is hereby granted, provided that this entire notice is included in
52  * all source code copies of any software which is or includes a copy or
53  * modification of this software.
54  *
55  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
56  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
57  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
58  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
59  * PURPOSE.
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.27 2008/04/10 22:48:42 tls Exp $");
64 
65 #include <sys/param.h>
66 #include <sys/reboot.h>
67 #include <sys/systm.h>
68 #include <sys/malloc.h>
69 #include <sys/proc.h>
70 #include <sys/pool.h>
71 #include <sys/kthread.h>
72 #include <sys/once.h>
73 #include <sys/sysctl.h>
74 #include <sys/intr.h>
75 
76 #include "opt_ocf.h"
77 #include <opencrypto/cryptodev.h>
78 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
79 
80 kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82 
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84   #define SWI_CRYPTO 17
85   #define register_swi(lvl, fn)  \
86   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
88   #define setsoftcrypto(x) softint_schedule(x)
89 
90 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
91 
92 /*
93  * Crypto drivers register themselves by allocating a slot in the
94  * crypto_drivers table with crypto_get_driverid() and then registering
95  * each algorithm they support with crypto_register() and crypto_kregister().
96  */
97 static	struct cryptocap *crypto_drivers;
98 static	int crypto_drivers_num;
99 static	void* softintr_cookie;
100 
101 /*
102  * There are two queues for crypto requests; one for symmetric (e.g.
103  * cipher) operations and one for asymmetric (e.g. MOD) operations.
104  * See below for how synchronization is handled.
105  */
106 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
107 		TAILQ_HEAD_INITIALIZER(crp_q);
108 static	TAILQ_HEAD(,cryptkop) crp_kq =
109 		TAILQ_HEAD_INITIALIZER(crp_kq);
110 
111 /*
112  * There are two queues for processing completed crypto requests; one
113  * for the symmetric and one for the asymmetric ops.  We only need one
114  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
115  * for how synchronization is handled.
116  */
117 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
118 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121 
122 /*
123  * XXX these functions are ghastly hacks for when the submission
124  * XXX routines discover a request that was not CBIMM is already
125  * XXX done, and must be yanked from the retq (where _done) put it
126  * XXX as cryptoret won't get the chance.  The queue is walked backwards
127  * XXX as the request is generally the last one queued.
128  *
129  *	 call with the lock held, or else.
130  */
131 int
132 crypto_ret_q_remove(struct cryptop *crp)
133 {
134 	struct cryptop * acrp;
135 
136 	TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
137 		if (acrp == crp) {
138 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 			return 1;
141 		}
142 	}
143 	return 0;
144 }
145 
146 int
147 crypto_ret_kq_remove(struct cryptkop *krp)
148 {
149 	struct cryptkop * akrp;
150 
151 	TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
152 		if (akrp == krp) {
153 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 			return 1;
156 		}
157 	}
158 	return 0;
159 }
160 
161 /*
162  * Crypto op and desciptor data structures are allocated
163  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164  */
165 struct pool cryptop_pool;
166 struct pool cryptodesc_pool;
167 struct pool cryptkop_pool;
168 
169 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
170 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
171 /*
172  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173  * access to hardware versus software transforms as below:
174  *
175  * crypto_devallowsoft < 0:  Force userlevel requests to use software
176  *                              transforms, always
177  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
178  *                              requests for non-accelerated transforms
179  *                              (handling the latter in software)
180  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
181  *                               are hardware-accelerated.
182  */
183 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
184 
185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 {
187 	sysctl_createv(clog, 0, NULL, NULL,
188 		       CTLFLAG_PERMANENT,
189 		       CTLTYPE_NODE, "kern", NULL,
190 		       NULL, 0, NULL, 0,
191 		       CTL_KERN, CTL_EOL);
192 	sysctl_createv(clog, 0, NULL, NULL,
193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 		       CTLTYPE_INT, "usercrypto",
195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
196 			   "crypto support"),
197 		       NULL, 0, &crypto_usercrypto, 0,
198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
199 	sysctl_createv(clog, 0, NULL, NULL,
200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 		       CTLTYPE_INT, "userasymcrypto",
202 		       SYSCTL_DESCR("Enable/disable user-mode access to "
203 			   "asymmetric crypto support"),
204 		       NULL, 0, &crypto_userasymcrypto, 0,
205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
206 	sysctl_createv(clog, 0, NULL, NULL,
207 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
208 		       CTLTYPE_INT, "cryptodevallowsoft",
209 		       SYSCTL_DESCR("Enable/disable use of software "
210 			   "asymmetric crypto support"),
211 		       NULL, 0, &crypto_devallowsoft, 0,
212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
213 }
214 
215 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
216 
217 /*
218  * Synchronization: read carefully, this is non-trivial.
219  *
220  * Crypto requests are submitted via crypto_dispatch.  Typically
221  * these come in from network protocols at spl0 (output path) or
222  * spl[,soft]net (input path).
223  *
224  * Requests are typically passed on the driver directly, but they
225  * may also be queued for processing by a software interrupt thread,
226  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
227  * the requests to crypto drivers (h/w or s/w) who call crypto_done
228  * when a request is complete.  Hardware crypto drivers are assumed
229  * to register their IRQ's as network devices so their interrupt handlers
230  * and subsequent "done callbacks" happen at spl[imp,net].
231  *
232  * Completed crypto ops are queued for a separate kernel thread that
233  * handles the callbacks at spl0.  This decoupling insures the crypto
234  * driver interrupt service routine is not delayed while the callback
235  * takes place and that callbacks are delivered after a context switch
236  * (as opposed to a software interrupt that clients must block).
237  *
238  * This scheme is not intended for SMP machines.
239  */
240 static	void cryptointr(void);		/* swi thread to dispatch ops */
241 static	void cryptoret(void);		/* kernel thread for callbacks*/
242 static	struct lwp *cryptothread;
243 static	void crypto_destroy(void);
244 static	int crypto_invoke(struct cryptop *crp, int hint);
245 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
246 
247 static struct cryptostats cryptostats;
248 #ifdef CRYPTO_TIMING
249 static	int crypto_timing = 0;
250 #endif
251 
252 static int
253 crypto_init0(void)
254 {
255 	int error;
256 
257 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
258 	cv_init(&cryptoret_cv, "crypto_wait");
259 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
260 		  0, "cryptop", NULL, IPL_NET);
261 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
262 		  0, "cryptodesc", NULL, IPL_NET);
263 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
264 		  0, "cryptkop", NULL, IPL_NET);
265 
266 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
267 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
268 	if (crypto_drivers == NULL) {
269 		printf("crypto_init: cannot malloc driver table\n");
270 		return 0;
271 	}
272 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
273 
274 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
275 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
276 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
277 	if (error) {
278 		printf("crypto_init: cannot start cryptoret thread; error %d",
279 			error);
280 		crypto_destroy();
281 	}
282 
283 	return 0;
284 }
285 
286 void
287 crypto_init(void)
288 {
289 	static ONCE_DECL(crypto_init_once);
290 
291 	RUN_ONCE(&crypto_init_once, crypto_init0);
292 }
293 
294 static void
295 crypto_destroy(void)
296 {
297 	/* XXX no wait to reclaim zones */
298 	if (crypto_drivers != NULL)
299 		free(crypto_drivers, M_CRYPTO_DATA);
300 	unregister_swi(SWI_CRYPTO, cryptointr);
301 }
302 
303 /*
304  * Create a new session.  Must be called with crypto_mtx held.
305  */
306 int
307 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
308 {
309 	struct cryptoini *cr;
310 	u_int32_t hid, lid;
311 	int err = EINVAL;
312 
313 	KASSERT(mutex_owned(&crypto_mtx));
314 
315 	if (crypto_drivers == NULL)
316 		goto done;
317 
318 	/*
319 	 * The algorithm we use here is pretty stupid; just use the
320 	 * first driver that supports all the algorithms we need.
321 	 *
322 	 * XXX We need more smarts here (in real life too, but that's
323 	 * XXX another story altogether).
324 	 */
325 
326 	for (hid = 0; hid < crypto_drivers_num; hid++) {
327 		/*
328 		 * If it's not initialized or has remaining sessions
329 		 * referencing it, skip.
330 		 */
331 		if (crypto_drivers[hid].cc_newsession == NULL ||
332 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
333 			continue;
334 
335 		/* Hardware required -- ignore software drivers. */
336 		if (hard > 0 &&
337 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
338 			continue;
339 		/* Software required -- ignore hardware drivers. */
340 		if (hard < 0 &&
341 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
342 			continue;
343 
344 		/* See if all the algorithms are supported. */
345 		for (cr = cri; cr; cr = cr->cri_next)
346 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
347 				break;
348 
349 		if (cr == NULL) {
350 			/* Ok, all algorithms are supported. */
351 
352 			/*
353 			 * Can't do everything in one session.
354 			 *
355 			 * XXX Fix this. We need to inject a "virtual" session layer right
356 			 * XXX about here.
357 			 */
358 
359 			/* Call the driver initialization routine. */
360 			lid = hid;		/* Pass the driver ID. */
361 			err = crypto_drivers[hid].cc_newsession(
362 					crypto_drivers[hid].cc_arg, &lid, cri);
363 			if (err == 0) {
364 				(*sid) = hid;
365 				(*sid) <<= 32;
366 				(*sid) |= (lid & 0xffffffff);
367 				crypto_drivers[hid].cc_sessions++;
368 			}
369 			goto done;
370 			/*break;*/
371 		}
372 	}
373 done:
374 	return err;
375 }
376 
377 /*
378  * Delete an existing session (or a reserved session on an unregistered
379  * driver).  Must be called with crypto_mtx mutex held.
380  */
381 int
382 crypto_freesession(u_int64_t sid)
383 {
384 	u_int32_t hid;
385 	int err = 0;
386 
387 	KASSERT(mutex_owned(&crypto_mtx));
388 
389 	if (crypto_drivers == NULL) {
390 		err = EINVAL;
391 		goto done;
392 	}
393 
394 	/* Determine two IDs. */
395 	hid = SESID2HID(sid);
396 
397 	if (hid >= crypto_drivers_num) {
398 		err = ENOENT;
399 		goto done;
400 	}
401 
402 	if (crypto_drivers[hid].cc_sessions)
403 		crypto_drivers[hid].cc_sessions--;
404 
405 	/* Call the driver cleanup routine, if available. */
406 	if (crypto_drivers[hid].cc_freesession) {
407 		err = crypto_drivers[hid].cc_freesession(
408 				crypto_drivers[hid].cc_arg, sid);
409 	}
410 	else
411 		err = 0;
412 
413 	/*
414 	 * If this was the last session of a driver marked as invalid,
415 	 * make the entry available for reuse.
416 	 */
417 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
418 	    crypto_drivers[hid].cc_sessions == 0)
419 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
420 
421 done:
422 	return err;
423 }
424 
425 /*
426  * Return an unused driver id.  Used by drivers prior to registering
427  * support for the algorithms they handle.
428  */
429 int32_t
430 crypto_get_driverid(u_int32_t flags)
431 {
432 	struct cryptocap *newdrv;
433 	int i;
434 
435 	crypto_init();		/* XXX oh, this is foul! */
436 
437 	mutex_spin_enter(&crypto_mtx);
438 	for (i = 0; i < crypto_drivers_num; i++)
439 		if (crypto_drivers[i].cc_process == NULL &&
440 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
441 		    crypto_drivers[i].cc_sessions == 0)
442 			break;
443 
444 	/* Out of entries, allocate some more. */
445 	if (i == crypto_drivers_num) {
446 		/* Be careful about wrap-around. */
447 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
448 			mutex_spin_exit(&crypto_mtx);
449 			printf("crypto: driver count wraparound!\n");
450 			return -1;
451 		}
452 
453 		newdrv = malloc(2 * crypto_drivers_num *
454 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
455 		if (newdrv == NULL) {
456 			mutex_spin_exit(&crypto_mtx);
457 			printf("crypto: no space to expand driver table!\n");
458 			return -1;
459 		}
460 
461 		bcopy(crypto_drivers, newdrv,
462 		    crypto_drivers_num * sizeof(struct cryptocap));
463 
464 		crypto_drivers_num *= 2;
465 
466 		free(crypto_drivers, M_CRYPTO_DATA);
467 		crypto_drivers = newdrv;
468 	}
469 
470 	/* NB: state is zero'd on free */
471 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
472 	crypto_drivers[i].cc_flags = flags;
473 
474 	if (bootverbose)
475 		printf("crypto: assign driver %u, flags %u\n", i, flags);
476 
477 	mutex_spin_exit(&crypto_mtx);
478 
479 	return i;
480 }
481 
482 static struct cryptocap *
483 crypto_checkdriver(u_int32_t hid)
484 {
485 	if (crypto_drivers == NULL)
486 		return NULL;
487 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
488 }
489 
490 /*
491  * Register support for a key-related algorithm.  This routine
492  * is called once for each algorithm supported a driver.
493  */
494 int
495 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
496     int (*kprocess)(void*, struct cryptkop *, int),
497     void *karg)
498 {
499 	struct cryptocap *cap;
500 	int err;
501 
502 	mutex_spin_enter(&crypto_mtx);
503 
504 	cap = crypto_checkdriver(driverid);
505 	if (cap != NULL &&
506 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
507 		/*
508 		 * XXX Do some performance testing to determine placing.
509 		 * XXX We probably need an auxiliary data structure that
510 		 * XXX describes relative performances.
511 		 */
512 
513 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
514 		if (bootverbose) {
515 			printf("crypto: driver %u registers key alg %u "
516 			       " flags %u\n",
517 				driverid,
518 				kalg,
519 				flags
520 			);
521 		}
522 
523 		if (cap->cc_kprocess == NULL) {
524 			cap->cc_karg = karg;
525 			cap->cc_kprocess = kprocess;
526 		}
527 		err = 0;
528 	} else
529 		err = EINVAL;
530 
531 	mutex_spin_exit(&crypto_mtx);
532 	return err;
533 }
534 
535 /*
536  * Register support for a non-key-related algorithm.  This routine
537  * is called once for each such algorithm supported by a driver.
538  */
539 int
540 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
541     u_int32_t flags,
542     int (*newses)(void*, u_int32_t*, struct cryptoini*),
543     int (*freeses)(void*, u_int64_t),
544     int (*process)(void*, struct cryptop *, int),
545     void *arg)
546 {
547 	struct cryptocap *cap;
548 	int err;
549 
550 	mutex_spin_enter(&crypto_mtx);
551 
552 	cap = crypto_checkdriver(driverid);
553 	/* NB: algorithms are in the range [1..max] */
554 	if (cap != NULL &&
555 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
556 		/*
557 		 * XXX Do some performance testing to determine placing.
558 		 * XXX We probably need an auxiliary data structure that
559 		 * XXX describes relative performances.
560 		 */
561 
562 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
563 		cap->cc_max_op_len[alg] = maxoplen;
564 		if (bootverbose) {
565 			printf("crypto: driver %u registers alg %u "
566 				"flags %u maxoplen %u\n",
567 				driverid,
568 				alg,
569 				flags,
570 				maxoplen
571 			);
572 		}
573 
574 		if (cap->cc_process == NULL) {
575 			cap->cc_arg = arg;
576 			cap->cc_newsession = newses;
577 			cap->cc_process = process;
578 			cap->cc_freesession = freeses;
579 			cap->cc_sessions = 0;		/* Unmark */
580 		}
581 		err = 0;
582 	} else
583 		err = EINVAL;
584 
585 	mutex_spin_exit(&crypto_mtx);
586 	return err;
587 }
588 
589 /*
590  * Unregister a crypto driver. If there are pending sessions using it,
591  * leave enough information around so that subsequent calls using those
592  * sessions will correctly detect the driver has been unregistered and
593  * reroute requests.
594  */
595 int
596 crypto_unregister(u_int32_t driverid, int alg)
597 {
598 	int i, err;
599 	u_int32_t ses;
600 	struct cryptocap *cap;
601 
602 	mutex_spin_enter(&crypto_mtx);
603 
604 	cap = crypto_checkdriver(driverid);
605 	if (cap != NULL &&
606 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
607 	    cap->cc_alg[alg] != 0) {
608 		cap->cc_alg[alg] = 0;
609 		cap->cc_max_op_len[alg] = 0;
610 
611 		/* Was this the last algorithm ? */
612 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
613 			if (cap->cc_alg[i] != 0)
614 				break;
615 
616 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
617 			ses = cap->cc_sessions;
618 			bzero(cap, sizeof(struct cryptocap));
619 			if (ses != 0) {
620 				/*
621 				 * If there are pending sessions, just mark as invalid.
622 				 */
623 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
624 				cap->cc_sessions = ses;
625 			}
626 		}
627 		err = 0;
628 	} else
629 		err = EINVAL;
630 
631 	mutex_spin_exit(&crypto_mtx);
632 	return err;
633 }
634 
635 /*
636  * Unregister all algorithms associated with a crypto driver.
637  * If there are pending sessions using it, leave enough information
638  * around so that subsequent calls using those sessions will
639  * correctly detect the driver has been unregistered and reroute
640  * requests.
641  *
642  * XXX careful.  Don't change this to call crypto_unregister() for each
643  * XXX registered algorithm unless you drop the mutex across the calls;
644  * XXX you can't take it recursively.
645  */
646 int
647 crypto_unregister_all(u_int32_t driverid)
648 {
649 	int i, err;
650 	u_int32_t ses;
651 	struct cryptocap *cap;
652 
653 	mutex_spin_enter(&crypto_mtx);
654 	cap = crypto_checkdriver(driverid);
655 	if (cap != NULL) {
656 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
657 			cap->cc_alg[i] = 0;
658 			cap->cc_max_op_len[i] = 0;
659 		}
660 		ses = cap->cc_sessions;
661 		bzero(cap, sizeof(struct cryptocap));
662 		if (ses != 0) {
663 			/*
664 			 * If there are pending sessions, just mark as invalid.
665 			 */
666 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
667 			cap->cc_sessions = ses;
668 		}
669 		err = 0;
670 	} else
671 		err = EINVAL;
672 
673 	mutex_spin_exit(&crypto_mtx);
674 	return err;
675 }
676 
677 /*
678  * Clear blockage on a driver.  The what parameter indicates whether
679  * the driver is now ready for cryptop's and/or cryptokop's.
680  */
681 int
682 crypto_unblock(u_int32_t driverid, int what)
683 {
684 	struct cryptocap *cap;
685 	int needwakeup, err;
686 
687 	mutex_spin_enter(&crypto_mtx);
688 	cap = crypto_checkdriver(driverid);
689 	if (cap != NULL) {
690 		needwakeup = 0;
691 		if (what & CRYPTO_SYMQ) {
692 			needwakeup |= cap->cc_qblocked;
693 			cap->cc_qblocked = 0;
694 		}
695 		if (what & CRYPTO_ASYMQ) {
696 			needwakeup |= cap->cc_kqblocked;
697 			cap->cc_kqblocked = 0;
698 		}
699 		err = 0;
700 		mutex_spin_exit(&crypto_mtx);
701 		if (needwakeup)
702 			setsoftcrypto(softintr_cookie);
703 	} else {
704 		err = EINVAL;
705 		mutex_spin_exit(&crypto_mtx);
706 	}
707 
708 	return err;
709 }
710 
711 /*
712  * Dispatch a crypto request to a driver or queue
713  * it, to be processed by the kernel thread.
714  */
715 int
716 crypto_dispatch(struct cryptop *crp)
717 {
718 	u_int32_t hid = SESID2HID(crp->crp_sid);
719 	int result;
720 
721 	mutex_spin_enter(&crypto_mtx);
722 
723 	cryptostats.cs_ops++;
724 
725 #ifdef CRYPTO_TIMING
726 	if (crypto_timing)
727 		nanouptime(&crp->crp_tstamp);
728 #endif
729 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
730 		struct cryptocap *cap;
731 		/*
732 		 * Caller marked the request to be processed
733 		 * immediately; dispatch it directly to the
734 		 * driver unless the driver is currently blocked.
735 		 */
736 		cap = crypto_checkdriver(hid);
737 		if (cap && !cap->cc_qblocked) {
738 			mutex_spin_exit(&crypto_mtx);
739 			result = crypto_invoke(crp, 0);
740 			if (result == ERESTART) {
741 				/*
742 				 * The driver ran out of resources, mark the
743 				 * driver ``blocked'' for cryptop's and put
744 				 * the op on the queue.
745 				 */
746 				mutex_spin_enter(&crypto_mtx);
747 				crypto_drivers[hid].cc_qblocked = 1;
748 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
749 				cryptostats.cs_blocks++;
750 				mutex_spin_exit(&crypto_mtx);
751 			}
752 			goto out_released;
753 		} else {
754 			/*
755 			 * The driver is blocked, just queue the op until
756 			 * it unblocks and the swi thread gets kicked.
757 			 */
758 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
759 			result = 0;
760 		}
761 	} else {
762 		int wasempty = TAILQ_EMPTY(&crp_q);
763 		/*
764 		 * Caller marked the request as ``ok to delay'';
765 		 * queue it for the swi thread.  This is desirable
766 		 * when the operation is low priority and/or suitable
767 		 * for batching.
768 		 */
769 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
770 		if (wasempty) {
771 			mutex_spin_exit(&crypto_mtx);
772 			setsoftcrypto(softintr_cookie);
773 			result = 0;
774 			goto out_released;
775 		}
776 
777 		result = 0;
778 	}
779 
780 	mutex_spin_exit(&crypto_mtx);
781 out_released:
782 	return result;
783 }
784 
785 /*
786  * Add an asymetric crypto request to a queue,
787  * to be processed by the kernel thread.
788  */
789 int
790 crypto_kdispatch(struct cryptkop *krp)
791 {
792 	struct cryptocap *cap;
793 	int result;
794 
795 	mutex_spin_enter(&crypto_mtx);
796 	cryptostats.cs_kops++;
797 
798 	cap = crypto_checkdriver(krp->krp_hid);
799 	if (cap && !cap->cc_kqblocked) {
800 		mutex_spin_exit(&crypto_mtx);
801 		result = crypto_kinvoke(krp, 0);
802 		if (result == ERESTART) {
803 			/*
804 			 * The driver ran out of resources, mark the
805 			 * driver ``blocked'' for cryptop's and put
806 			 * the op on the queue.
807 			 */
808 			mutex_spin_enter(&crypto_mtx);
809 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
810 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
811 			cryptostats.cs_kblocks++;
812 			mutex_spin_exit(&crypto_mtx);
813 		}
814 	} else {
815 		/*
816 		 * The driver is blocked, just queue the op until
817 		 * it unblocks and the swi thread gets kicked.
818 		 */
819 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
820 		result = 0;
821 		mutex_spin_exit(&crypto_mtx);
822 	}
823 
824 	return result;
825 }
826 
827 /*
828  * Dispatch an assymetric crypto request to the appropriate crypto devices.
829  */
830 static int
831 crypto_kinvoke(struct cryptkop *krp, int hint)
832 {
833 	u_int32_t hid;
834 	int error;
835 
836 	/* Sanity checks. */
837 	if (krp == NULL)
838 		return EINVAL;
839 	if (krp->krp_callback == NULL) {
840 		pool_put(&cryptkop_pool, krp);
841 		return EINVAL;
842 	}
843 
844 	for (hid = 0; hid < crypto_drivers_num; hid++) {
845 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
846 		    crypto_devallowsoft == 0)
847 			continue;
848 		if (crypto_drivers[hid].cc_kprocess == NULL)
849 			continue;
850 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
851 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
852 			continue;
853 		break;
854 	}
855 	if (hid < crypto_drivers_num) {
856 		krp->krp_hid = hid;
857 		error = crypto_drivers[hid].cc_kprocess(
858 				crypto_drivers[hid].cc_karg, krp, hint);
859 	} else {
860 		error = ENODEV;
861 	}
862 
863 	if (error) {
864 		krp->krp_status = error;
865 		crypto_kdone(krp);
866 	}
867 	return 0;
868 }
869 
870 #ifdef CRYPTO_TIMING
871 static void
872 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
873 {
874 	struct timespec now, t;
875 
876 	nanouptime(&now);
877 	t.tv_sec = now.tv_sec - tv->tv_sec;
878 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
879 	if (t.tv_nsec < 0) {
880 		t.tv_sec--;
881 		t.tv_nsec += 1000000000;
882 	}
883 	timespecadd(&ts->acc, &t, &t);
884 	if (timespeccmp(&t, &ts->min, <))
885 		ts->min = t;
886 	if (timespeccmp(&t, &ts->max, >))
887 		ts->max = t;
888 	ts->count++;
889 
890 	*tv = now;
891 }
892 #endif
893 
894 /*
895  * Dispatch a crypto request to the appropriate crypto devices.
896  */
897 static int
898 crypto_invoke(struct cryptop *crp, int hint)
899 {
900 	u_int32_t hid;
901 	int (*process)(void*, struct cryptop *, int);
902 
903 #ifdef CRYPTO_TIMING
904 	if (crypto_timing)
905 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
906 #endif
907 	/* Sanity checks. */
908 	if (crp == NULL)
909 		return EINVAL;
910 	if (crp->crp_callback == NULL) {
911 		crypto_freereq(crp);
912 		return EINVAL;
913 	}
914 	if (crp->crp_desc == NULL) {
915 		crp->crp_etype = EINVAL;
916 		crypto_done(crp);
917 		return 0;
918 	}
919 
920 	hid = SESID2HID(crp->crp_sid);
921 	if (hid < crypto_drivers_num) {
922 		mutex_enter(&crypto_mtx);
923 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
924 			crypto_freesession(crp->crp_sid);
925 		process = crypto_drivers[hid].cc_process;
926 		mutex_exit(&crypto_mtx);
927 	} else {
928 		process = NULL;
929 	}
930 
931 	if (process == NULL) {
932 		struct cryptodesc *crd;
933 		u_int64_t nid = 0;
934 
935 		/*
936 		 * Driver has unregistered; migrate the session and return
937 		 * an error to the caller so they'll resubmit the op.
938 		 */
939 		mutex_enter(&crypto_mtx);
940 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
941 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
942 
943 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
944 			crp->crp_sid = nid;
945 
946 		crp->crp_etype = EAGAIN;
947 		mutex_exit(&crypto_mtx);
948 
949 		crypto_done(crp);
950 		return 0;
951 	} else {
952 		/*
953 		 * Invoke the driver to process the request.
954 		 */
955 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
956 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
957 	}
958 }
959 
960 /*
961  * Release a set of crypto descriptors.
962  */
963 void
964 crypto_freereq(struct cryptop *crp)
965 {
966 	struct cryptodesc *crd;
967 
968 	if (crp == NULL)
969 		return;
970 
971 	while ((crd = crp->crp_desc) != NULL) {
972 		crp->crp_desc = crd->crd_next;
973 		pool_put(&cryptodesc_pool, crd);
974 	}
975 	pool_put(&cryptop_pool, crp);
976 }
977 
978 /*
979  * Acquire a set of crypto descriptors.
980  */
981 struct cryptop *
982 crypto_getreq(int num)
983 {
984 	struct cryptodesc *crd;
985 	struct cryptop *crp;
986 
987 	crp = pool_get(&cryptop_pool, 0);
988 	if (crp == NULL) {
989 		return NULL;
990 	}
991 	bzero(crp, sizeof(struct cryptop));
992 	cv_init(&crp->crp_cv, "crydev");
993 
994 	while (num--) {
995 		crd = pool_get(&cryptodesc_pool, 0);
996 		if (crd == NULL) {
997 			crypto_freereq(crp);
998 			return NULL;
999 		}
1000 
1001 		bzero(crd, sizeof(struct cryptodesc));
1002 		crd->crd_next = crp->crp_desc;
1003 		crp->crp_desc = crd;
1004 	}
1005 
1006 	return crp;
1007 }
1008 
1009 /*
1010  * Invoke the callback on behalf of the driver.
1011  */
1012 void
1013 crypto_done(struct cryptop *crp)
1014 {
1015 	int wasempty;
1016 
1017 	if (crp->crp_etype != 0)
1018 		cryptostats.cs_errs++;
1019 #ifdef CRYPTO_TIMING
1020 	if (crypto_timing)
1021 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1022 #endif
1023 
1024 	crp->crp_flags |= CRYPTO_F_DONE;
1025 
1026 	/*
1027 	 * Normal case; queue the callback for the thread.
1028 	 *
1029 	 * The return queue is manipulated by the swi thread
1030 	 * and, potentially, by crypto device drivers calling
1031 	 * back to mark operations completed.  Thus we need
1032 	 * to mask both while manipulating the return queue.
1033 	 */
1034   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1035 		/*
1036 	 	* Do the callback directly.  This is ok when the
1037   	 	* callback routine does very little (e.g. the
1038 	 	* /dev/crypto callback method just does a wakeup).
1039 	 	*/
1040 #ifdef CRYPTO_TIMING
1041 		if (crypto_timing) {
1042 			/*
1043 		 	* NB: We must copy the timestamp before
1044 		 	* doing the callback as the cryptop is
1045 		 	* likely to be reclaimed.
1046 		 	*/
1047 			struct timespec t = crp->crp_tstamp;
1048 			crypto_tstat(&cryptostats.cs_cb, &t);
1049 			crp->crp_callback(crp);
1050 			crypto_tstat(&cryptostats.cs_finis, &t);
1051 		} else
1052 #endif
1053 		crp->crp_callback(crp);
1054 	} else {
1055 		mutex_spin_enter(&crypto_mtx);
1056 		wasempty = TAILQ_EMPTY(&crp_ret_q);
1057 		DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
1058 		crp->crp_flags |= CRYPTO_F_ONRETQ;
1059 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1060 		if (wasempty) {
1061 			DPRINTF(("crypto_done: waking cryptoret, %08x " \
1062 				"hit empty queue\n.", (uint32_t)crp));
1063 			cv_signal(&cryptoret_cv);
1064 		}
1065 		mutex_spin_exit(&crypto_mtx);
1066 	}
1067 }
1068 
1069 /*
1070  * Invoke the callback on behalf of the driver.
1071  */
1072 void
1073 crypto_kdone(struct cryptkop *krp)
1074 {
1075 	int wasempty;
1076 
1077 	if (krp->krp_status != 0)
1078 		cryptostats.cs_kerrs++;
1079 
1080 	krp->krp_flags |= CRYPTO_F_DONE;
1081 
1082 	/*
1083 	 * The return queue is manipulated by the swi thread
1084 	 * and, potentially, by crypto device drivers calling
1085 	 * back to mark operations completed.  Thus we need
1086 	 * to mask both while manipulating the return queue.
1087 	 */
1088 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1089 		krp->krp_callback(krp);
1090 	} else {
1091 		mutex_spin_enter(&crypto_mtx);
1092 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1093 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1094 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1095 		if (wasempty)
1096 			cv_signal(&cryptoret_cv);
1097 		mutex_spin_exit(&crypto_mtx);
1098 	}
1099 }
1100 
1101 int
1102 crypto_getfeat(int *featp)
1103 {
1104 	int hid, kalg, feat = 0;
1105 
1106 	mutex_spin_enter(&crypto_mtx);
1107 
1108 	if (crypto_userasymcrypto == 0)
1109 		goto out;
1110 
1111 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1112 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1113 		    crypto_devallowsoft == 0) {
1114 			continue;
1115 		}
1116 		if (crypto_drivers[hid].cc_kprocess == NULL)
1117 			continue;
1118 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1119 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1120 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1121 				feat |=  1 << kalg;
1122 	}
1123 out:
1124 	mutex_spin_exit(&crypto_mtx);
1125 	*featp = feat;
1126 	return (0);
1127 }
1128 
1129 /*
1130  * Software interrupt thread to dispatch crypto requests.
1131  */
1132 static void
1133 cryptointr(void)
1134 {
1135 	struct cryptop *crp, *submit;
1136 	struct cryptkop *krp;
1137 	struct cryptocap *cap;
1138 	int result, hint;
1139 
1140 	printf("crypto softint\n");
1141 	cryptostats.cs_intrs++;
1142 	mutex_spin_enter(&crypto_mtx);
1143 	do {
1144 		/*
1145 		 * Find the first element in the queue that can be
1146 		 * processed and look-ahead to see if multiple ops
1147 		 * are ready for the same driver.
1148 		 */
1149 		submit = NULL;
1150 		hint = 0;
1151 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1152 			u_int32_t hid = SESID2HID(crp->crp_sid);
1153 			cap = crypto_checkdriver(hid);
1154 			if (cap == NULL || cap->cc_process == NULL) {
1155 				/* Op needs to be migrated, process it. */
1156 				if (submit == NULL)
1157 					submit = crp;
1158 				break;
1159 			}
1160 			if (!cap->cc_qblocked) {
1161 				if (submit != NULL) {
1162 					/*
1163 					 * We stop on finding another op,
1164 					 * regardless whether its for the same
1165 					 * driver or not.  We could keep
1166 					 * searching the queue but it might be
1167 					 * better to just use a per-driver
1168 					 * queue instead.
1169 					 */
1170 					if (SESID2HID(submit->crp_sid) == hid)
1171 						hint = CRYPTO_HINT_MORE;
1172 					break;
1173 				} else {
1174 					submit = crp;
1175 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1176 						break;
1177 					/* keep scanning for more are q'd */
1178 				}
1179 			}
1180 		}
1181 		if (submit != NULL) {
1182 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1183 			mutex_spin_exit(&crypto_mtx);
1184 			result = crypto_invoke(submit, hint);
1185 			/* we must take here as the TAILQ op or kinvoke
1186 			   may need this mutex below.  sigh. */
1187 			mutex_spin_enter(&crypto_mtx);
1188 			if (result == ERESTART) {
1189 				/*
1190 				 * The driver ran out of resources, mark the
1191 				 * driver ``blocked'' for cryptop's and put
1192 				 * the request back in the queue.  It would
1193 				 * best to put the request back where we got
1194 				 * it but that's hard so for now we put it
1195 				 * at the front.  This should be ok; putting
1196 				 * it at the end does not work.
1197 				 */
1198 				/* XXX validate sid again? */
1199 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1200 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1201 				cryptostats.cs_blocks++;
1202 			}
1203 		}
1204 
1205 		/* As above, but for key ops */
1206 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1207 			cap = crypto_checkdriver(krp->krp_hid);
1208 			if (cap == NULL || cap->cc_kprocess == NULL) {
1209 				/* Op needs to be migrated, process it. */
1210 				break;
1211 			}
1212 			if (!cap->cc_kqblocked)
1213 				break;
1214 		}
1215 		if (krp != NULL) {
1216 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1217 			mutex_spin_exit(&crypto_mtx);
1218 			result = crypto_kinvoke(krp, 0);
1219 			/* the next iteration will want the mutex. :-/ */
1220 			mutex_spin_enter(&crypto_mtx);
1221 			if (result == ERESTART) {
1222 				/*
1223 				 * The driver ran out of resources, mark the
1224 				 * driver ``blocked'' for cryptkop's and put
1225 				 * the request back in the queue.  It would
1226 				 * best to put the request back where we got
1227 				 * it but that's hard so for now we put it
1228 				 * at the front.  This should be ok; putting
1229 				 * it at the end does not work.
1230 				 */
1231 				/* XXX validate sid again? */
1232 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1233 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1234 				cryptostats.cs_kblocks++;
1235 			}
1236 		}
1237 	} while (submit != NULL || krp != NULL);
1238 	mutex_spin_exit(&crypto_mtx);
1239 }
1240 
1241 /*
1242  * Kernel thread to do callbacks.
1243  */
1244 static void
1245 cryptoret(void)
1246 {
1247 	struct cryptop *crp;
1248 	struct cryptkop *krp;
1249 
1250 	mutex_spin_enter(&crypto_mtx);
1251 	for (;;) {
1252 		crp = TAILQ_FIRST(&crp_ret_q);
1253 		if (crp != NULL) {
1254 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1255 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1256 		}
1257 		krp = TAILQ_FIRST(&crp_ret_kq);
1258 		if (krp != NULL) {
1259 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1260 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1261 		}
1262 
1263 		/* drop before calling any callbacks. */
1264 		if (crp == NULL && krp == NULL) {
1265 			cryptostats.cs_rets++;
1266 			cv_wait(&cryptoret_cv, &crypto_mtx);
1267 			continue;
1268 		}
1269 
1270 		mutex_spin_exit(&crypto_mtx);
1271 
1272 		if (crp != NULL) {
1273 #ifdef CRYPTO_TIMING
1274 			if (crypto_timing) {
1275 				/*
1276 				 * NB: We must copy the timestamp before
1277 				 * doing the callback as the cryptop is
1278 				 * likely to be reclaimed.
1279 				 */
1280 				struct timespec t = crp->crp_tstamp;
1281 				crypto_tstat(&cryptostats.cs_cb, &t);
1282 				crp->crp_callback(crp);
1283 				crypto_tstat(&cryptostats.cs_finis, &t);
1284 			} else
1285 #endif
1286 			{
1287 				crp->crp_callback(crp);
1288 			}
1289 		}
1290 		if (krp != NULL)
1291 			krp->krp_callback(krp);
1292 
1293 		mutex_spin_enter(&crypto_mtx);
1294 	}
1295 }
1296