1 /* $NetBSD: crypto.c,v 1.42 2014/01/01 16:06:01 pgoyette Exp $ */ 2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */ 3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */ 4 5 /*- 6 * Copyright (c) 2008 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Coyote Point Systems, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 36 * 37 * This code was written by Angelos D. Keromytis in Athens, Greece, in 38 * February 2000. Network Security Technologies Inc. (NSTI) kindly 39 * supported the development of this code. 40 * 41 * Copyright (c) 2000, 2001 Angelos D. Keromytis 42 * 43 * Permission to use, copy, and modify this software with or without fee 44 * is hereby granted, provided that this entire notice is included in 45 * all source code copies of any software which is or includes a copy or 46 * modification of this software. 47 * 48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 52 * PURPOSE. 53 */ 54 55 #include <sys/cdefs.h> 56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.42 2014/01/01 16:06:01 pgoyette Exp $"); 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/malloc.h> 62 #include <sys/proc.h> 63 #include <sys/pool.h> 64 #include <sys/kthread.h> 65 #include <sys/once.h> 66 #include <sys/sysctl.h> 67 #include <sys/intr.h> 68 #include <sys/errno.h> 69 #include <sys/module.h> 70 71 #if defined(_KERNEL_OPT) 72 #include "opt_ocf.h" 73 #endif 74 75 #include <opencrypto/cryptodev.h> 76 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 77 78 kmutex_t crypto_q_mtx; 79 kmutex_t crypto_ret_q_mtx; 80 kcondvar_t cryptoret_cv; 81 kmutex_t crypto_mtx; 82 83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */ 84 #define SWI_CRYPTO 17 85 #define register_swi(lvl, fn) \ 86 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL) 87 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie) 88 #define setsoftcrypto(x) softint_schedule(x) 89 90 int crypto_ret_q_check(struct cryptop *); 91 92 /* 93 * Crypto drivers register themselves by allocating a slot in the 94 * crypto_drivers table with crypto_get_driverid() and then registering 95 * each algorithm they support with crypto_register() and crypto_kregister(). 96 */ 97 static struct cryptocap *crypto_drivers; 98 static int crypto_drivers_num; 99 static void *softintr_cookie; 100 101 /* 102 * There are two queues for crypto requests; one for symmetric (e.g. 103 * cipher) operations and one for asymmetric (e.g. MOD) operations. 104 * See below for how synchronization is handled. 105 */ 106 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */ 107 TAILQ_HEAD_INITIALIZER(crp_q); 108 static TAILQ_HEAD(,cryptkop) crp_kq = 109 TAILQ_HEAD_INITIALIZER(crp_kq); 110 111 /* 112 * There are two queues for processing completed crypto requests; one 113 * for the symmetric and one for the asymmetric ops. We only need one 114 * but have two to avoid type futzing (cryptop vs. cryptkop). See below 115 * for how synchronization is handled. 116 */ 117 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */ 118 TAILQ_HEAD_INITIALIZER(crp_ret_q); 119 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq = 120 TAILQ_HEAD_INITIALIZER(crp_ret_kq); 121 122 /* 123 * XXX these functions are ghastly hacks for when the submission 124 * XXX routines discover a request that was not CBIMM is already 125 * XXX done, and must be yanked from the retq (where _done) put it 126 * XXX as cryptoret won't get the chance. The queue is walked backwards 127 * XXX as the request is generally the last one queued. 128 * 129 * call with the lock held, or else. 130 */ 131 int 132 crypto_ret_q_remove(struct cryptop *crp) 133 { 134 struct cryptop * acrp, *next; 135 136 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) { 137 if (acrp == crp) { 138 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 139 crp->crp_flags &= (~CRYPTO_F_ONRETQ); 140 return 1; 141 } 142 } 143 return 0; 144 } 145 146 int 147 crypto_ret_kq_remove(struct cryptkop *krp) 148 { 149 struct cryptkop * akrp, *next; 150 151 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) { 152 if (akrp == krp) { 153 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 154 krp->krp_flags &= (~CRYPTO_F_ONRETQ); 155 return 1; 156 } 157 } 158 return 0; 159 } 160 161 /* 162 * Crypto op and desciptor data structures are allocated 163 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) . 164 */ 165 struct pool cryptop_pool; 166 struct pool cryptodesc_pool; 167 struct pool cryptkop_pool; 168 169 int crypto_usercrypto = 1; /* userland may open /dev/crypto */ 170 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 171 /* 172 * cryptodevallowsoft is (intended to be) sysctl'able, controlling 173 * access to hardware versus software transforms as below: 174 * 175 * crypto_devallowsoft < 0: Force userlevel requests to use software 176 * transforms, always 177 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel 178 * requests for non-accelerated transforms 179 * (handling the latter in software) 180 * crypto_devallowsoft > 0: Allow user requests only for transforms which 181 * are hardware-accelerated. 182 */ 183 int crypto_devallowsoft = 1; /* only use hardware crypto */ 184 185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup") 186 { 187 sysctl_createv(clog, 0, NULL, NULL, 188 CTLFLAG_PERMANENT, 189 CTLTYPE_NODE, "kern", NULL, 190 NULL, 0, NULL, 0, 191 CTL_KERN, CTL_EOL); 192 sysctl_createv(clog, 0, NULL, NULL, 193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 194 CTLTYPE_INT, "usercrypto", 195 SYSCTL_DESCR("Enable/disable user-mode access to " 196 "crypto support"), 197 NULL, 0, &crypto_usercrypto, 0, 198 CTL_KERN, CTL_CREATE, CTL_EOL); 199 sysctl_createv(clog, 0, NULL, NULL, 200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 201 CTLTYPE_INT, "userasymcrypto", 202 SYSCTL_DESCR("Enable/disable user-mode access to " 203 "asymmetric crypto support"), 204 NULL, 0, &crypto_userasymcrypto, 0, 205 CTL_KERN, CTL_CREATE, CTL_EOL); 206 sysctl_createv(clog, 0, NULL, NULL, 207 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 208 CTLTYPE_INT, "cryptodevallowsoft", 209 SYSCTL_DESCR("Enable/disable use of software " 210 "asymmetric crypto support"), 211 NULL, 0, &crypto_devallowsoft, 0, 212 CTL_KERN, CTL_CREATE, CTL_EOL); 213 } 214 215 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 216 217 /* 218 * Synchronization: read carefully, this is non-trivial. 219 * 220 * Crypto requests are submitted via crypto_dispatch. Typically 221 * these come in from network protocols at spl0 (output path) or 222 * spl[,soft]net (input path). 223 * 224 * Requests are typically passed on the driver directly, but they 225 * may also be queued for processing by a software interrupt thread, 226 * cryptointr, that runs at splsoftcrypto. This thread dispatches 227 * the requests to crypto drivers (h/w or s/w) who call crypto_done 228 * when a request is complete. Hardware crypto drivers are assumed 229 * to register their IRQ's as network devices so their interrupt handlers 230 * and subsequent "done callbacks" happen at spl[imp,net]. 231 * 232 * Completed crypto ops are queued for a separate kernel thread that 233 * handles the callbacks at spl0. This decoupling insures the crypto 234 * driver interrupt service routine is not delayed while the callback 235 * takes place and that callbacks are delivered after a context switch 236 * (as opposed to a software interrupt that clients must block). 237 * 238 * This scheme is not intended for SMP machines. 239 */ 240 static void cryptointr(void); /* swi thread to dispatch ops */ 241 static void cryptoret(void); /* kernel thread for callbacks*/ 242 static struct lwp *cryptothread; 243 static void crypto_destroy(void); 244 static int crypto_invoke(struct cryptop *crp, int hint); 245 static int crypto_kinvoke(struct cryptkop *krp, int hint); 246 247 static struct cryptostats cryptostats; 248 #ifdef CRYPTO_TIMING 249 static int crypto_timing = 0; 250 #endif 251 252 static int 253 crypto_init0(void) 254 { 255 int error; 256 257 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE); 258 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET); 259 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET); 260 cv_init(&cryptoret_cv, "crypto_w"); 261 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0, 262 0, "cryptop", NULL, IPL_NET); 263 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0, 264 0, "cryptodesc", NULL, IPL_NET); 265 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0, 266 0, "cryptkop", NULL, IPL_NET); 267 268 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL * 269 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 270 if (crypto_drivers == NULL) { 271 printf("crypto_init: cannot malloc driver table\n"); 272 return 0; 273 } 274 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 275 276 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr); 277 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 278 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret"); 279 if (error) { 280 printf("crypto_init: cannot start cryptoret thread; error %d", 281 error); 282 crypto_destroy(); 283 } 284 285 return 0; 286 } 287 288 void 289 crypto_init(void) 290 { 291 static ONCE_DECL(crypto_init_once); 292 293 RUN_ONCE(&crypto_init_once, crypto_init0); 294 } 295 296 static void 297 crypto_destroy(void) 298 { 299 /* XXX no wait to reclaim zones */ 300 if (crypto_drivers != NULL) 301 free(crypto_drivers, M_CRYPTO_DATA); 302 unregister_swi(SWI_CRYPTO, cryptointr); 303 } 304 305 /* 306 * Create a new session. Must be called with crypto_mtx held. 307 */ 308 int 309 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard) 310 { 311 struct cryptoini *cr; 312 u_int32_t hid, lid; 313 int err = EINVAL; 314 315 mutex_enter(&crypto_mtx); 316 317 if (crypto_drivers == NULL) 318 goto done; 319 320 /* 321 * The algorithm we use here is pretty stupid; just use the 322 * first driver that supports all the algorithms we need. 323 * 324 * XXX We need more smarts here (in real life too, but that's 325 * XXX another story altogether). 326 */ 327 328 for (hid = 0; hid < crypto_drivers_num; hid++) { 329 /* 330 * If it's not initialized or has remaining sessions 331 * referencing it, skip. 332 */ 333 if (crypto_drivers[hid].cc_newsession == NULL || 334 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)) 335 continue; 336 337 /* Hardware required -- ignore software drivers. */ 338 if (hard > 0 && 339 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE)) 340 continue; 341 /* Software required -- ignore hardware drivers. */ 342 if (hard < 0 && 343 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) 344 continue; 345 346 /* See if all the algorithms are supported. */ 347 for (cr = cri; cr; cr = cr->cri_next) 348 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) { 349 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg)); 350 break; 351 } 352 353 if (cr == NULL) { 354 /* Ok, all algorithms are supported. */ 355 356 /* 357 * Can't do everything in one session. 358 * 359 * XXX Fix this. We need to inject a "virtual" session layer right 360 * XXX about here. 361 */ 362 363 /* Call the driver initialization routine. */ 364 lid = hid; /* Pass the driver ID. */ 365 err = crypto_drivers[hid].cc_newsession( 366 crypto_drivers[hid].cc_arg, &lid, cri); 367 if (err == 0) { 368 (*sid) = hid; 369 (*sid) <<= 32; 370 (*sid) |= (lid & 0xffffffff); 371 crypto_drivers[hid].cc_sessions++; 372 } 373 goto done; 374 /*break;*/ 375 } 376 } 377 done: 378 mutex_exit(&crypto_mtx); 379 return err; 380 } 381 382 /* 383 * Delete an existing session (or a reserved session on an unregistered 384 * driver). Must be called with crypto_mtx mutex held. 385 */ 386 int 387 crypto_freesession(u_int64_t sid) 388 { 389 u_int32_t hid; 390 int err = 0; 391 392 mutex_enter(&crypto_mtx); 393 394 if (crypto_drivers == NULL) { 395 err = EINVAL; 396 goto done; 397 } 398 399 /* Determine two IDs. */ 400 hid = CRYPTO_SESID2HID(sid); 401 402 if (hid >= crypto_drivers_num) { 403 err = ENOENT; 404 goto done; 405 } 406 407 if (crypto_drivers[hid].cc_sessions) 408 crypto_drivers[hid].cc_sessions--; 409 410 /* Call the driver cleanup routine, if available. */ 411 if (crypto_drivers[hid].cc_freesession) { 412 err = crypto_drivers[hid].cc_freesession( 413 crypto_drivers[hid].cc_arg, sid); 414 } 415 else 416 err = 0; 417 418 /* 419 * If this was the last session of a driver marked as invalid, 420 * make the entry available for reuse. 421 */ 422 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) && 423 crypto_drivers[hid].cc_sessions == 0) 424 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap)); 425 426 done: 427 mutex_exit(&crypto_mtx); 428 return err; 429 } 430 431 /* 432 * Return an unused driver id. Used by drivers prior to registering 433 * support for the algorithms they handle. 434 */ 435 int32_t 436 crypto_get_driverid(u_int32_t flags) 437 { 438 struct cryptocap *newdrv; 439 int i; 440 441 crypto_init(); /* XXX oh, this is foul! */ 442 443 mutex_enter(&crypto_mtx); 444 for (i = 0; i < crypto_drivers_num; i++) 445 if (crypto_drivers[i].cc_process == NULL && 446 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 && 447 crypto_drivers[i].cc_sessions == 0) 448 break; 449 450 /* Out of entries, allocate some more. */ 451 if (i == crypto_drivers_num) { 452 /* Be careful about wrap-around. */ 453 if (2 * crypto_drivers_num <= crypto_drivers_num) { 454 mutex_exit(&crypto_mtx); 455 printf("crypto: driver count wraparound!\n"); 456 return -1; 457 } 458 459 newdrv = malloc(2 * crypto_drivers_num * 460 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 461 if (newdrv == NULL) { 462 mutex_exit(&crypto_mtx); 463 printf("crypto: no space to expand driver table!\n"); 464 return -1; 465 } 466 467 memcpy(newdrv, crypto_drivers, 468 crypto_drivers_num * sizeof(struct cryptocap)); 469 470 crypto_drivers_num *= 2; 471 472 free(crypto_drivers, M_CRYPTO_DATA); 473 crypto_drivers = newdrv; 474 } 475 476 /* NB: state is zero'd on free */ 477 crypto_drivers[i].cc_sessions = 1; /* Mark */ 478 crypto_drivers[i].cc_flags = flags; 479 480 if (bootverbose) 481 printf("crypto: assign driver %u, flags %u\n", i, flags); 482 483 mutex_exit(&crypto_mtx); 484 485 return i; 486 } 487 488 static struct cryptocap * 489 crypto_checkdriver(u_int32_t hid) 490 { 491 if (crypto_drivers == NULL) 492 return NULL; 493 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 494 } 495 496 /* 497 * Register support for a key-related algorithm. This routine 498 * is called once for each algorithm supported a driver. 499 */ 500 int 501 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags, 502 int (*kprocess)(void *, struct cryptkop *, int), 503 void *karg) 504 { 505 struct cryptocap *cap; 506 int err; 507 508 mutex_enter(&crypto_mtx); 509 510 cap = crypto_checkdriver(driverid); 511 if (cap != NULL && 512 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 513 /* 514 * XXX Do some performance testing to determine placing. 515 * XXX We probably need an auxiliary data structure that 516 * XXX describes relative performances. 517 */ 518 519 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 520 if (bootverbose) { 521 printf("crypto: driver %u registers key alg %u " 522 " flags %u\n", 523 driverid, 524 kalg, 525 flags 526 ); 527 } 528 529 if (cap->cc_kprocess == NULL) { 530 cap->cc_karg = karg; 531 cap->cc_kprocess = kprocess; 532 } 533 err = 0; 534 } else 535 err = EINVAL; 536 537 mutex_exit(&crypto_mtx); 538 return err; 539 } 540 541 /* 542 * Register support for a non-key-related algorithm. This routine 543 * is called once for each such algorithm supported by a driver. 544 */ 545 int 546 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 547 u_int32_t flags, 548 int (*newses)(void *, u_int32_t*, struct cryptoini*), 549 int (*freeses)(void *, u_int64_t), 550 int (*process)(void *, struct cryptop *, int), 551 void *arg) 552 { 553 struct cryptocap *cap; 554 int err; 555 556 mutex_enter(&crypto_mtx); 557 558 cap = crypto_checkdriver(driverid); 559 /* NB: algorithms are in the range [1..max] */ 560 if (cap != NULL && 561 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 562 /* 563 * XXX Do some performance testing to determine placing. 564 * XXX We probably need an auxiliary data structure that 565 * XXX describes relative performances. 566 */ 567 568 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 569 cap->cc_max_op_len[alg] = maxoplen; 570 if (bootverbose) { 571 printf("crypto: driver %u registers alg %u " 572 "flags %u maxoplen %u\n", 573 driverid, 574 alg, 575 flags, 576 maxoplen 577 ); 578 } 579 580 if (cap->cc_process == NULL) { 581 cap->cc_arg = arg; 582 cap->cc_newsession = newses; 583 cap->cc_process = process; 584 cap->cc_freesession = freeses; 585 cap->cc_sessions = 0; /* Unmark */ 586 } 587 err = 0; 588 } else 589 err = EINVAL; 590 591 mutex_exit(&crypto_mtx); 592 return err; 593 } 594 595 /* 596 * Unregister a crypto driver. If there are pending sessions using it, 597 * leave enough information around so that subsequent calls using those 598 * sessions will correctly detect the driver has been unregistered and 599 * reroute requests. 600 */ 601 int 602 crypto_unregister(u_int32_t driverid, int alg) 603 { 604 int i, err; 605 u_int32_t ses; 606 struct cryptocap *cap; 607 608 mutex_enter(&crypto_mtx); 609 610 cap = crypto_checkdriver(driverid); 611 if (cap != NULL && 612 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 613 cap->cc_alg[alg] != 0) { 614 cap->cc_alg[alg] = 0; 615 cap->cc_max_op_len[alg] = 0; 616 617 /* Was this the last algorithm ? */ 618 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 619 if (cap->cc_alg[i] != 0) 620 break; 621 622 if (i == CRYPTO_ALGORITHM_MAX + 1) { 623 ses = cap->cc_sessions; 624 memset(cap, 0, sizeof(struct cryptocap)); 625 if (ses != 0) { 626 /* 627 * If there are pending sessions, just mark as invalid. 628 */ 629 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 630 cap->cc_sessions = ses; 631 } 632 } 633 err = 0; 634 } else 635 err = EINVAL; 636 637 mutex_exit(&crypto_mtx); 638 return err; 639 } 640 641 /* 642 * Unregister all algorithms associated with a crypto driver. 643 * If there are pending sessions using it, leave enough information 644 * around so that subsequent calls using those sessions will 645 * correctly detect the driver has been unregistered and reroute 646 * requests. 647 * 648 * XXX careful. Don't change this to call crypto_unregister() for each 649 * XXX registered algorithm unless you drop the mutex across the calls; 650 * XXX you can't take it recursively. 651 */ 652 int 653 crypto_unregister_all(u_int32_t driverid) 654 { 655 int i, err; 656 u_int32_t ses; 657 struct cryptocap *cap; 658 659 mutex_enter(&crypto_mtx); 660 cap = crypto_checkdriver(driverid); 661 if (cap != NULL) { 662 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) { 663 cap->cc_alg[i] = 0; 664 cap->cc_max_op_len[i] = 0; 665 } 666 ses = cap->cc_sessions; 667 memset(cap, 0, sizeof(struct cryptocap)); 668 if (ses != 0) { 669 /* 670 * If there are pending sessions, just mark as invalid. 671 */ 672 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 673 cap->cc_sessions = ses; 674 } 675 err = 0; 676 } else 677 err = EINVAL; 678 679 mutex_exit(&crypto_mtx); 680 return err; 681 } 682 683 /* 684 * Clear blockage on a driver. The what parameter indicates whether 685 * the driver is now ready for cryptop's and/or cryptokop's. 686 */ 687 int 688 crypto_unblock(u_int32_t driverid, int what) 689 { 690 struct cryptocap *cap; 691 int needwakeup, err; 692 693 mutex_spin_enter(&crypto_q_mtx); 694 cap = crypto_checkdriver(driverid); 695 if (cap != NULL) { 696 needwakeup = 0; 697 if (what & CRYPTO_SYMQ) { 698 needwakeup |= cap->cc_qblocked; 699 cap->cc_qblocked = 0; 700 } 701 if (what & CRYPTO_ASYMQ) { 702 needwakeup |= cap->cc_kqblocked; 703 cap->cc_kqblocked = 0; 704 } 705 err = 0; 706 if (needwakeup) 707 setsoftcrypto(softintr_cookie); 708 mutex_spin_exit(&crypto_q_mtx); 709 } else { 710 err = EINVAL; 711 mutex_spin_exit(&crypto_q_mtx); 712 } 713 714 return err; 715 } 716 717 /* 718 * Dispatch a crypto request to a driver or queue 719 * it, to be processed by the kernel thread. 720 */ 721 int 722 crypto_dispatch(struct cryptop *crp) 723 { 724 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 725 int result; 726 727 mutex_spin_enter(&crypto_q_mtx); 728 DPRINTF(("crypto_dispatch: crp %p, alg %d\n", 729 crp, crp->crp_desc->crd_alg)); 730 731 cryptostats.cs_ops++; 732 733 #ifdef CRYPTO_TIMING 734 if (crypto_timing) 735 nanouptime(&crp->crp_tstamp); 736 #endif 737 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 738 struct cryptocap *cap; 739 /* 740 * Caller marked the request to be processed 741 * immediately; dispatch it directly to the 742 * driver unless the driver is currently blocked. 743 */ 744 cap = crypto_checkdriver(hid); 745 if (cap && !cap->cc_qblocked) { 746 mutex_spin_exit(&crypto_q_mtx); 747 result = crypto_invoke(crp, 0); 748 if (result == ERESTART) { 749 /* 750 * The driver ran out of resources, mark the 751 * driver ``blocked'' for cryptop's and put 752 * the op on the queue. 753 */ 754 mutex_spin_enter(&crypto_q_mtx); 755 crypto_drivers[hid].cc_qblocked = 1; 756 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next); 757 cryptostats.cs_blocks++; 758 mutex_spin_exit(&crypto_q_mtx); 759 } 760 goto out_released; 761 } else { 762 /* 763 * The driver is blocked, just queue the op until 764 * it unblocks and the swi thread gets kicked. 765 */ 766 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 767 result = 0; 768 } 769 } else { 770 int wasempty = TAILQ_EMPTY(&crp_q); 771 /* 772 * Caller marked the request as ``ok to delay''; 773 * queue it for the swi thread. This is desirable 774 * when the operation is low priority and/or suitable 775 * for batching. 776 */ 777 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 778 if (wasempty) { 779 setsoftcrypto(softintr_cookie); 780 mutex_spin_exit(&crypto_q_mtx); 781 result = 0; 782 goto out_released; 783 } 784 785 result = 0; 786 } 787 788 mutex_spin_exit(&crypto_q_mtx); 789 out_released: 790 return result; 791 } 792 793 /* 794 * Add an asymetric crypto request to a queue, 795 * to be processed by the kernel thread. 796 */ 797 int 798 crypto_kdispatch(struct cryptkop *krp) 799 { 800 struct cryptocap *cap; 801 int result; 802 803 mutex_spin_enter(&crypto_q_mtx); 804 cryptostats.cs_kops++; 805 806 cap = crypto_checkdriver(krp->krp_hid); 807 if (cap && !cap->cc_kqblocked) { 808 mutex_spin_exit(&crypto_q_mtx); 809 result = crypto_kinvoke(krp, 0); 810 if (result == ERESTART) { 811 /* 812 * The driver ran out of resources, mark the 813 * driver ``blocked'' for cryptop's and put 814 * the op on the queue. 815 */ 816 mutex_spin_enter(&crypto_q_mtx); 817 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 818 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 819 cryptostats.cs_kblocks++; 820 mutex_spin_exit(&crypto_q_mtx); 821 } 822 } else { 823 /* 824 * The driver is blocked, just queue the op until 825 * it unblocks and the swi thread gets kicked. 826 */ 827 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 828 result = 0; 829 mutex_spin_exit(&crypto_q_mtx); 830 } 831 832 return result; 833 } 834 835 /* 836 * Dispatch an assymetric crypto request to the appropriate crypto devices. 837 */ 838 static int 839 crypto_kinvoke(struct cryptkop *krp, int hint) 840 { 841 u_int32_t hid; 842 int error; 843 844 /* Sanity checks. */ 845 if (krp == NULL) 846 return EINVAL; 847 if (krp->krp_callback == NULL) { 848 cv_destroy(&krp->krp_cv); 849 pool_put(&cryptkop_pool, krp); 850 return EINVAL; 851 } 852 853 mutex_enter(&crypto_mtx); 854 for (hid = 0; hid < crypto_drivers_num; hid++) { 855 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 856 crypto_devallowsoft == 0) 857 continue; 858 if (crypto_drivers[hid].cc_kprocess == NULL) 859 continue; 860 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] & 861 CRYPTO_ALG_FLAG_SUPPORTED) == 0) 862 continue; 863 break; 864 } 865 if (hid < crypto_drivers_num) { 866 int (*process)(void *, struct cryptkop *, int); 867 void *arg; 868 869 process = crypto_drivers[hid].cc_kprocess; 870 arg = crypto_drivers[hid].cc_karg; 871 mutex_exit(&crypto_mtx); 872 krp->krp_hid = hid; 873 error = (*process)(arg, krp, hint); 874 } else { 875 mutex_exit(&crypto_mtx); 876 error = ENODEV; 877 } 878 879 if (error) { 880 krp->krp_status = error; 881 crypto_kdone(krp); 882 } 883 return 0; 884 } 885 886 #ifdef CRYPTO_TIMING 887 static void 888 crypto_tstat(struct cryptotstat *ts, struct timespec *tv) 889 { 890 struct timespec now, t; 891 892 nanouptime(&now); 893 t.tv_sec = now.tv_sec - tv->tv_sec; 894 t.tv_nsec = now.tv_nsec - tv->tv_nsec; 895 if (t.tv_nsec < 0) { 896 t.tv_sec--; 897 t.tv_nsec += 1000000000; 898 } 899 timespecadd(&ts->acc, &t, &t); 900 if (timespeccmp(&t, &ts->min, <)) 901 ts->min = t; 902 if (timespeccmp(&t, &ts->max, >)) 903 ts->max = t; 904 ts->count++; 905 906 *tv = now; 907 } 908 #endif 909 910 /* 911 * Dispatch a crypto request to the appropriate crypto devices. 912 */ 913 static int 914 crypto_invoke(struct cryptop *crp, int hint) 915 { 916 u_int32_t hid; 917 918 #ifdef CRYPTO_TIMING 919 if (crypto_timing) 920 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 921 #endif 922 /* Sanity checks. */ 923 if (crp == NULL) 924 return EINVAL; 925 if (crp->crp_callback == NULL) { 926 return EINVAL; 927 } 928 if (crp->crp_desc == NULL) { 929 crp->crp_etype = EINVAL; 930 crypto_done(crp); 931 return 0; 932 } 933 934 hid = CRYPTO_SESID2HID(crp->crp_sid); 935 936 if (hid < crypto_drivers_num) { 937 int (*process)(void *, struct cryptop *, int); 938 void *arg; 939 940 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) { 941 mutex_exit(&crypto_mtx); 942 crypto_freesession(crp->crp_sid); 943 mutex_enter(&crypto_mtx); 944 } 945 process = crypto_drivers[hid].cc_process; 946 arg = crypto_drivers[hid].cc_arg; 947 948 /* 949 * Invoke the driver to process the request. 950 */ 951 DPRINTF(("calling process for %p\n", crp)); 952 return (*process)(arg, crp, hint); 953 } else { 954 struct cryptodesc *crd; 955 u_int64_t nid = 0; 956 957 /* 958 * Driver has unregistered; migrate the session and return 959 * an error to the caller so they'll resubmit the op. 960 */ 961 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 962 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 963 964 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0) 965 crp->crp_sid = nid; 966 967 crp->crp_etype = EAGAIN; 968 969 crypto_done(crp); 970 return 0; 971 } 972 } 973 974 /* 975 * Release a set of crypto descriptors. 976 */ 977 void 978 crypto_freereq(struct cryptop *crp) 979 { 980 struct cryptodesc *crd; 981 982 if (crp == NULL) 983 return; 984 DPRINTF(("crypto_freereq[%u]: crp %p\n", 985 CRYPTO_SESID2LID(crp->crp_sid), crp)); 986 987 /* sanity check */ 988 if (crp->crp_flags & CRYPTO_F_ONRETQ) { 989 panic("crypto_freereq() freeing crp on RETQ\n"); 990 } 991 992 while ((crd = crp->crp_desc) != NULL) { 993 crp->crp_desc = crd->crd_next; 994 pool_put(&cryptodesc_pool, crd); 995 } 996 pool_put(&cryptop_pool, crp); 997 } 998 999 /* 1000 * Acquire a set of crypto descriptors. 1001 */ 1002 struct cryptop * 1003 crypto_getreq(int num) 1004 { 1005 struct cryptodesc *crd; 1006 struct cryptop *crp; 1007 1008 crp = pool_get(&cryptop_pool, 0); 1009 if (crp == NULL) { 1010 return NULL; 1011 } 1012 memset(crp, 0, sizeof(struct cryptop)); 1013 1014 while (num--) { 1015 crd = pool_get(&cryptodesc_pool, 0); 1016 if (crd == NULL) { 1017 crypto_freereq(crp); 1018 return NULL; 1019 } 1020 1021 memset(crd, 0, sizeof(struct cryptodesc)); 1022 crd->crd_next = crp->crp_desc; 1023 crp->crp_desc = crd; 1024 } 1025 1026 return crp; 1027 } 1028 1029 /* 1030 * Invoke the callback on behalf of the driver. 1031 */ 1032 void 1033 crypto_done(struct cryptop *crp) 1034 { 1035 int wasempty; 1036 1037 if (crp->crp_etype != 0) 1038 cryptostats.cs_errs++; 1039 #ifdef CRYPTO_TIMING 1040 if (crypto_timing) 1041 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1042 #endif 1043 DPRINTF(("crypto_done[%u]: crp %p\n", 1044 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1045 1046 /* 1047 * Normal case; queue the callback for the thread. 1048 * 1049 * The return queue is manipulated by the swi thread 1050 * and, potentially, by crypto device drivers calling 1051 * back to mark operations completed. Thus we need 1052 * to mask both while manipulating the return queue. 1053 */ 1054 if (crp->crp_flags & CRYPTO_F_CBIMM) { 1055 /* 1056 * Do the callback directly. This is ok when the 1057 * callback routine does very little (e.g. the 1058 * /dev/crypto callback method just does a wakeup). 1059 */ 1060 mutex_spin_enter(&crypto_ret_q_mtx); 1061 crp->crp_flags |= CRYPTO_F_DONE; 1062 mutex_spin_exit(&crypto_ret_q_mtx); 1063 1064 #ifdef CRYPTO_TIMING 1065 if (crypto_timing) { 1066 /* 1067 * NB: We must copy the timestamp before 1068 * doing the callback as the cryptop is 1069 * likely to be reclaimed. 1070 */ 1071 struct timespec t = crp->crp_tstamp; 1072 crypto_tstat(&cryptostats.cs_cb, &t); 1073 crp->crp_callback(crp); 1074 crypto_tstat(&cryptostats.cs_finis, &t); 1075 } else 1076 #endif 1077 crp->crp_callback(crp); 1078 } else { 1079 mutex_spin_enter(&crypto_ret_q_mtx); 1080 crp->crp_flags |= CRYPTO_F_DONE; 1081 1082 if (crp->crp_flags & CRYPTO_F_USER) { 1083 /* the request has completed while 1084 * running in the user context 1085 * so don't queue it - the user 1086 * thread won't sleep when it sees 1087 * the CRYPTO_F_DONE flag. 1088 * This is an optimization to avoid 1089 * unecessary context switches. 1090 */ 1091 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n", 1092 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1093 } else { 1094 wasempty = TAILQ_EMPTY(&crp_ret_q); 1095 DPRINTF(("crypto_done[%u]: queueing %p\n", 1096 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1097 crp->crp_flags |= CRYPTO_F_ONRETQ; 1098 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 1099 if (wasempty) { 1100 DPRINTF(("crypto_done[%u]: waking cryptoret, " 1101 "crp %p hit empty queue\n.", 1102 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1103 cv_signal(&cryptoret_cv); 1104 } 1105 } 1106 mutex_spin_exit(&crypto_ret_q_mtx); 1107 } 1108 } 1109 1110 /* 1111 * Invoke the callback on behalf of the driver. 1112 */ 1113 void 1114 crypto_kdone(struct cryptkop *krp) 1115 { 1116 int wasempty; 1117 1118 if (krp->krp_status != 0) 1119 cryptostats.cs_kerrs++; 1120 1121 krp->krp_flags |= CRYPTO_F_DONE; 1122 1123 /* 1124 * The return queue is manipulated by the swi thread 1125 * and, potentially, by crypto device drivers calling 1126 * back to mark operations completed. Thus we need 1127 * to mask both while manipulating the return queue. 1128 */ 1129 if (krp->krp_flags & CRYPTO_F_CBIMM) { 1130 krp->krp_callback(krp); 1131 } else { 1132 mutex_spin_enter(&crypto_ret_q_mtx); 1133 wasempty = TAILQ_EMPTY(&crp_ret_kq); 1134 krp->krp_flags |= CRYPTO_F_ONRETQ; 1135 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1136 if (wasempty) 1137 cv_signal(&cryptoret_cv); 1138 mutex_spin_exit(&crypto_ret_q_mtx); 1139 } 1140 } 1141 1142 int 1143 crypto_getfeat(int *featp) 1144 { 1145 int hid, kalg, feat = 0; 1146 1147 mutex_enter(&crypto_mtx); 1148 1149 if (crypto_userasymcrypto == 0) 1150 goto out; 1151 1152 for (hid = 0; hid < crypto_drivers_num; hid++) { 1153 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 1154 crypto_devallowsoft == 0) { 1155 continue; 1156 } 1157 if (crypto_drivers[hid].cc_kprocess == NULL) 1158 continue; 1159 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1160 if ((crypto_drivers[hid].cc_kalg[kalg] & 1161 CRYPTO_ALG_FLAG_SUPPORTED) != 0) 1162 feat |= 1 << kalg; 1163 } 1164 out: 1165 mutex_exit(&crypto_mtx); 1166 *featp = feat; 1167 return (0); 1168 } 1169 1170 /* 1171 * Software interrupt thread to dispatch crypto requests. 1172 */ 1173 static void 1174 cryptointr(void) 1175 { 1176 struct cryptop *crp, *submit, *cnext; 1177 struct cryptkop *krp, *knext; 1178 struct cryptocap *cap; 1179 int result, hint; 1180 1181 cryptostats.cs_intrs++; 1182 mutex_spin_enter(&crypto_q_mtx); 1183 do { 1184 /* 1185 * Find the first element in the queue that can be 1186 * processed and look-ahead to see if multiple ops 1187 * are ready for the same driver. 1188 */ 1189 submit = NULL; 1190 hint = 0; 1191 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) { 1192 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 1193 cap = crypto_checkdriver(hid); 1194 if (cap == NULL || cap->cc_process == NULL) { 1195 /* Op needs to be migrated, process it. */ 1196 if (submit == NULL) 1197 submit = crp; 1198 break; 1199 } 1200 if (!cap->cc_qblocked) { 1201 if (submit != NULL) { 1202 /* 1203 * We stop on finding another op, 1204 * regardless whether its for the same 1205 * driver or not. We could keep 1206 * searching the queue but it might be 1207 * better to just use a per-driver 1208 * queue instead. 1209 */ 1210 if (CRYPTO_SESID2HID(submit->crp_sid) 1211 == hid) 1212 hint = CRYPTO_HINT_MORE; 1213 break; 1214 } else { 1215 submit = crp; 1216 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1217 break; 1218 /* keep scanning for more are q'd */ 1219 } 1220 } 1221 } 1222 if (submit != NULL) { 1223 TAILQ_REMOVE(&crp_q, submit, crp_next); 1224 mutex_spin_exit(&crypto_q_mtx); 1225 result = crypto_invoke(submit, hint); 1226 /* we must take here as the TAILQ op or kinvoke 1227 may need this mutex below. sigh. */ 1228 mutex_spin_enter(&crypto_q_mtx); 1229 if (result == ERESTART) { 1230 /* 1231 * The driver ran out of resources, mark the 1232 * driver ``blocked'' for cryptop's and put 1233 * the request back in the queue. It would 1234 * best to put the request back where we got 1235 * it but that's hard so for now we put it 1236 * at the front. This should be ok; putting 1237 * it at the end does not work. 1238 */ 1239 /* XXX validate sid again? */ 1240 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1241 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1242 cryptostats.cs_blocks++; 1243 } 1244 } 1245 1246 /* As above, but for key ops */ 1247 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) { 1248 cap = crypto_checkdriver(krp->krp_hid); 1249 if (cap == NULL || cap->cc_kprocess == NULL) { 1250 /* Op needs to be migrated, process it. */ 1251 break; 1252 } 1253 if (!cap->cc_kqblocked) 1254 break; 1255 } 1256 if (krp != NULL) { 1257 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1258 mutex_spin_exit(&crypto_q_mtx); 1259 result = crypto_kinvoke(krp, 0); 1260 /* the next iteration will want the mutex. :-/ */ 1261 mutex_spin_enter(&crypto_q_mtx); 1262 if (result == ERESTART) { 1263 /* 1264 * The driver ran out of resources, mark the 1265 * driver ``blocked'' for cryptkop's and put 1266 * the request back in the queue. It would 1267 * best to put the request back where we got 1268 * it but that's hard so for now we put it 1269 * at the front. This should be ok; putting 1270 * it at the end does not work. 1271 */ 1272 /* XXX validate sid again? */ 1273 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1274 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1275 cryptostats.cs_kblocks++; 1276 } 1277 } 1278 } while (submit != NULL || krp != NULL); 1279 mutex_spin_exit(&crypto_q_mtx); 1280 } 1281 1282 /* 1283 * Kernel thread to do callbacks. 1284 */ 1285 static void 1286 cryptoret(void) 1287 { 1288 struct cryptop *crp; 1289 struct cryptkop *krp; 1290 1291 mutex_spin_enter(&crypto_ret_q_mtx); 1292 for (;;) { 1293 crp = TAILQ_FIRST(&crp_ret_q); 1294 if (crp != NULL) { 1295 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 1296 crp->crp_flags &= ~CRYPTO_F_ONRETQ; 1297 } 1298 krp = TAILQ_FIRST(&crp_ret_kq); 1299 if (krp != NULL) { 1300 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 1301 krp->krp_flags &= ~CRYPTO_F_ONRETQ; 1302 } 1303 1304 /* drop before calling any callbacks. */ 1305 if (crp == NULL && krp == NULL) { 1306 cryptostats.cs_rets++; 1307 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx); 1308 continue; 1309 } 1310 1311 mutex_spin_exit(&crypto_ret_q_mtx); 1312 1313 if (crp != NULL) { 1314 #ifdef CRYPTO_TIMING 1315 if (crypto_timing) { 1316 /* 1317 * NB: We must copy the timestamp before 1318 * doing the callback as the cryptop is 1319 * likely to be reclaimed. 1320 */ 1321 struct timespec t = crp->crp_tstamp; 1322 crypto_tstat(&cryptostats.cs_cb, &t); 1323 crp->crp_callback(crp); 1324 crypto_tstat(&cryptostats.cs_finis, &t); 1325 } else 1326 #endif 1327 { 1328 crp->crp_callback(crp); 1329 } 1330 } 1331 if (krp != NULL) 1332 krp->krp_callback(krp); 1333 1334 mutex_spin_enter(&crypto_ret_q_mtx); 1335 } 1336 } 1337 1338 /* NetBSD module interface */ 1339 1340 MODULE(MODULE_CLASS_MISC, opencrypto, NULL); 1341 1342 static int 1343 opencrypto_modcmd(modcmd_t cmd, void *opaque) 1344 { 1345 1346 switch (cmd) { 1347 case MODULE_CMD_INIT: 1348 return 0; 1349 case MODULE_CMD_FINI: 1350 return 0; 1351 default: 1352 return ENOTTY; 1353 } 1354 } 1355