xref: /netbsd-src/sys/opencrypto/crypto.c (revision 6d322f2f4598f0d8a138f10ea648ec4fabe41f8b)
1 /*	$NetBSD: crypto.c,v 1.42 2014/01/01 16:06:01 pgoyette Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.42 2014/01/01 16:06:01 pgoyette Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70 
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74 
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
77 
78 kmutex_t crypto_q_mtx;
79 kmutex_t crypto_ret_q_mtx;
80 kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82 
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84   #define SWI_CRYPTO 17
85   #define register_swi(lvl, fn)  \
86   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
88   #define setsoftcrypto(x) softint_schedule(x)
89 
90 int crypto_ret_q_check(struct cryptop *);
91 
92 /*
93  * Crypto drivers register themselves by allocating a slot in the
94  * crypto_drivers table with crypto_get_driverid() and then registering
95  * each algorithm they support with crypto_register() and crypto_kregister().
96  */
97 static	struct cryptocap *crypto_drivers;
98 static	int crypto_drivers_num;
99 static	void *softintr_cookie;
100 
101 /*
102  * There are two queues for crypto requests; one for symmetric (e.g.
103  * cipher) operations and one for asymmetric (e.g. MOD) operations.
104  * See below for how synchronization is handled.
105  */
106 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
107 		TAILQ_HEAD_INITIALIZER(crp_q);
108 static	TAILQ_HEAD(,cryptkop) crp_kq =
109 		TAILQ_HEAD_INITIALIZER(crp_kq);
110 
111 /*
112  * There are two queues for processing completed crypto requests; one
113  * for the symmetric and one for the asymmetric ops.  We only need one
114  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
115  * for how synchronization is handled.
116  */
117 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
118 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121 
122 /*
123  * XXX these functions are ghastly hacks for when the submission
124  * XXX routines discover a request that was not CBIMM is already
125  * XXX done, and must be yanked from the retq (where _done) put it
126  * XXX as cryptoret won't get the chance.  The queue is walked backwards
127  * XXX as the request is generally the last one queued.
128  *
129  *	 call with the lock held, or else.
130  */
131 int
132 crypto_ret_q_remove(struct cryptop *crp)
133 {
134 	struct cryptop * acrp, *next;
135 
136 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
137 		if (acrp == crp) {
138 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 			return 1;
141 		}
142 	}
143 	return 0;
144 }
145 
146 int
147 crypto_ret_kq_remove(struct cryptkop *krp)
148 {
149 	struct cryptkop * akrp, *next;
150 
151 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
152 		if (akrp == krp) {
153 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 			return 1;
156 		}
157 	}
158 	return 0;
159 }
160 
161 /*
162  * Crypto op and desciptor data structures are allocated
163  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164  */
165 struct pool cryptop_pool;
166 struct pool cryptodesc_pool;
167 struct pool cryptkop_pool;
168 
169 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
170 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
171 /*
172  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173  * access to hardware versus software transforms as below:
174  *
175  * crypto_devallowsoft < 0:  Force userlevel requests to use software
176  *                              transforms, always
177  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
178  *                              requests for non-accelerated transforms
179  *                              (handling the latter in software)
180  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
181  *                               are hardware-accelerated.
182  */
183 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
184 
185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 {
187 	sysctl_createv(clog, 0, NULL, NULL,
188 		       CTLFLAG_PERMANENT,
189 		       CTLTYPE_NODE, "kern", NULL,
190 		       NULL, 0, NULL, 0,
191 		       CTL_KERN, CTL_EOL);
192 	sysctl_createv(clog, 0, NULL, NULL,
193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 		       CTLTYPE_INT, "usercrypto",
195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
196 			   "crypto support"),
197 		       NULL, 0, &crypto_usercrypto, 0,
198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
199 	sysctl_createv(clog, 0, NULL, NULL,
200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 		       CTLTYPE_INT, "userasymcrypto",
202 		       SYSCTL_DESCR("Enable/disable user-mode access to "
203 			   "asymmetric crypto support"),
204 		       NULL, 0, &crypto_userasymcrypto, 0,
205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
206 	sysctl_createv(clog, 0, NULL, NULL,
207 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
208 		       CTLTYPE_INT, "cryptodevallowsoft",
209 		       SYSCTL_DESCR("Enable/disable use of software "
210 			   "asymmetric crypto support"),
211 		       NULL, 0, &crypto_devallowsoft, 0,
212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
213 }
214 
215 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
216 
217 /*
218  * Synchronization: read carefully, this is non-trivial.
219  *
220  * Crypto requests are submitted via crypto_dispatch.  Typically
221  * these come in from network protocols at spl0 (output path) or
222  * spl[,soft]net (input path).
223  *
224  * Requests are typically passed on the driver directly, but they
225  * may also be queued for processing by a software interrupt thread,
226  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
227  * the requests to crypto drivers (h/w or s/w) who call crypto_done
228  * when a request is complete.  Hardware crypto drivers are assumed
229  * to register their IRQ's as network devices so their interrupt handlers
230  * and subsequent "done callbacks" happen at spl[imp,net].
231  *
232  * Completed crypto ops are queued for a separate kernel thread that
233  * handles the callbacks at spl0.  This decoupling insures the crypto
234  * driver interrupt service routine is not delayed while the callback
235  * takes place and that callbacks are delivered after a context switch
236  * (as opposed to a software interrupt that clients must block).
237  *
238  * This scheme is not intended for SMP machines.
239  */
240 static	void cryptointr(void);		/* swi thread to dispatch ops */
241 static	void cryptoret(void);		/* kernel thread for callbacks*/
242 static	struct lwp *cryptothread;
243 static	void crypto_destroy(void);
244 static	int crypto_invoke(struct cryptop *crp, int hint);
245 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
246 
247 static struct cryptostats cryptostats;
248 #ifdef CRYPTO_TIMING
249 static	int crypto_timing = 0;
250 #endif
251 
252 static int
253 crypto_init0(void)
254 {
255 	int error;
256 
257 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
258 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
259 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
260 	cv_init(&cryptoret_cv, "crypto_w");
261 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
262 		  0, "cryptop", NULL, IPL_NET);
263 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
264 		  0, "cryptodesc", NULL, IPL_NET);
265 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
266 		  0, "cryptkop", NULL, IPL_NET);
267 
268 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
269 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
270 	if (crypto_drivers == NULL) {
271 		printf("crypto_init: cannot malloc driver table\n");
272 		return 0;
273 	}
274 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
275 
276 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
277 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
278 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
279 	if (error) {
280 		printf("crypto_init: cannot start cryptoret thread; error %d",
281 			error);
282 		crypto_destroy();
283 	}
284 
285 	return 0;
286 }
287 
288 void
289 crypto_init(void)
290 {
291 	static ONCE_DECL(crypto_init_once);
292 
293 	RUN_ONCE(&crypto_init_once, crypto_init0);
294 }
295 
296 static void
297 crypto_destroy(void)
298 {
299 	/* XXX no wait to reclaim zones */
300 	if (crypto_drivers != NULL)
301 		free(crypto_drivers, M_CRYPTO_DATA);
302 	unregister_swi(SWI_CRYPTO, cryptointr);
303 }
304 
305 /*
306  * Create a new session.  Must be called with crypto_mtx held.
307  */
308 int
309 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
310 {
311 	struct cryptoini *cr;
312 	u_int32_t hid, lid;
313 	int err = EINVAL;
314 
315 	mutex_enter(&crypto_mtx);
316 
317 	if (crypto_drivers == NULL)
318 		goto done;
319 
320 	/*
321 	 * The algorithm we use here is pretty stupid; just use the
322 	 * first driver that supports all the algorithms we need.
323 	 *
324 	 * XXX We need more smarts here (in real life too, but that's
325 	 * XXX another story altogether).
326 	 */
327 
328 	for (hid = 0; hid < crypto_drivers_num; hid++) {
329 		/*
330 		 * If it's not initialized or has remaining sessions
331 		 * referencing it, skip.
332 		 */
333 		if (crypto_drivers[hid].cc_newsession == NULL ||
334 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
335 			continue;
336 
337 		/* Hardware required -- ignore software drivers. */
338 		if (hard > 0 &&
339 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
340 			continue;
341 		/* Software required -- ignore hardware drivers. */
342 		if (hard < 0 &&
343 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
344 			continue;
345 
346 		/* See if all the algorithms are supported. */
347 		for (cr = cri; cr; cr = cr->cri_next)
348 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
349 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
350 				break;
351 			}
352 
353 		if (cr == NULL) {
354 			/* Ok, all algorithms are supported. */
355 
356 			/*
357 			 * Can't do everything in one session.
358 			 *
359 			 * XXX Fix this. We need to inject a "virtual" session layer right
360 			 * XXX about here.
361 			 */
362 
363 			/* Call the driver initialization routine. */
364 			lid = hid;		/* Pass the driver ID. */
365 			err = crypto_drivers[hid].cc_newsession(
366 					crypto_drivers[hid].cc_arg, &lid, cri);
367 			if (err == 0) {
368 				(*sid) = hid;
369 				(*sid) <<= 32;
370 				(*sid) |= (lid & 0xffffffff);
371 				crypto_drivers[hid].cc_sessions++;
372 			}
373 			goto done;
374 			/*break;*/
375 		}
376 	}
377 done:
378 	mutex_exit(&crypto_mtx);
379 	return err;
380 }
381 
382 /*
383  * Delete an existing session (or a reserved session on an unregistered
384  * driver).  Must be called with crypto_mtx mutex held.
385  */
386 int
387 crypto_freesession(u_int64_t sid)
388 {
389 	u_int32_t hid;
390 	int err = 0;
391 
392 	mutex_enter(&crypto_mtx);
393 
394 	if (crypto_drivers == NULL) {
395 		err = EINVAL;
396 		goto done;
397 	}
398 
399 	/* Determine two IDs. */
400 	hid = CRYPTO_SESID2HID(sid);
401 
402 	if (hid >= crypto_drivers_num) {
403 		err = ENOENT;
404 		goto done;
405 	}
406 
407 	if (crypto_drivers[hid].cc_sessions)
408 		crypto_drivers[hid].cc_sessions--;
409 
410 	/* Call the driver cleanup routine, if available. */
411 	if (crypto_drivers[hid].cc_freesession) {
412 		err = crypto_drivers[hid].cc_freesession(
413 				crypto_drivers[hid].cc_arg, sid);
414 	}
415 	else
416 		err = 0;
417 
418 	/*
419 	 * If this was the last session of a driver marked as invalid,
420 	 * make the entry available for reuse.
421 	 */
422 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
423 	    crypto_drivers[hid].cc_sessions == 0)
424 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
425 
426 done:
427 	mutex_exit(&crypto_mtx);
428 	return err;
429 }
430 
431 /*
432  * Return an unused driver id.  Used by drivers prior to registering
433  * support for the algorithms they handle.
434  */
435 int32_t
436 crypto_get_driverid(u_int32_t flags)
437 {
438 	struct cryptocap *newdrv;
439 	int i;
440 
441 	crypto_init();		/* XXX oh, this is foul! */
442 
443 	mutex_enter(&crypto_mtx);
444 	for (i = 0; i < crypto_drivers_num; i++)
445 		if (crypto_drivers[i].cc_process == NULL &&
446 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
447 		    crypto_drivers[i].cc_sessions == 0)
448 			break;
449 
450 	/* Out of entries, allocate some more. */
451 	if (i == crypto_drivers_num) {
452 		/* Be careful about wrap-around. */
453 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
454 			mutex_exit(&crypto_mtx);
455 			printf("crypto: driver count wraparound!\n");
456 			return -1;
457 		}
458 
459 		newdrv = malloc(2 * crypto_drivers_num *
460 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
461 		if (newdrv == NULL) {
462 			mutex_exit(&crypto_mtx);
463 			printf("crypto: no space to expand driver table!\n");
464 			return -1;
465 		}
466 
467 		memcpy(newdrv, crypto_drivers,
468 		    crypto_drivers_num * sizeof(struct cryptocap));
469 
470 		crypto_drivers_num *= 2;
471 
472 		free(crypto_drivers, M_CRYPTO_DATA);
473 		crypto_drivers = newdrv;
474 	}
475 
476 	/* NB: state is zero'd on free */
477 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
478 	crypto_drivers[i].cc_flags = flags;
479 
480 	if (bootverbose)
481 		printf("crypto: assign driver %u, flags %u\n", i, flags);
482 
483 	mutex_exit(&crypto_mtx);
484 
485 	return i;
486 }
487 
488 static struct cryptocap *
489 crypto_checkdriver(u_int32_t hid)
490 {
491 	if (crypto_drivers == NULL)
492 		return NULL;
493 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
494 }
495 
496 /*
497  * Register support for a key-related algorithm.  This routine
498  * is called once for each algorithm supported a driver.
499  */
500 int
501 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
502     int (*kprocess)(void *, struct cryptkop *, int),
503     void *karg)
504 {
505 	struct cryptocap *cap;
506 	int err;
507 
508 	mutex_enter(&crypto_mtx);
509 
510 	cap = crypto_checkdriver(driverid);
511 	if (cap != NULL &&
512 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
513 		/*
514 		 * XXX Do some performance testing to determine placing.
515 		 * XXX We probably need an auxiliary data structure that
516 		 * XXX describes relative performances.
517 		 */
518 
519 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
520 		if (bootverbose) {
521 			printf("crypto: driver %u registers key alg %u "
522 			       " flags %u\n",
523 				driverid,
524 				kalg,
525 				flags
526 			);
527 		}
528 
529 		if (cap->cc_kprocess == NULL) {
530 			cap->cc_karg = karg;
531 			cap->cc_kprocess = kprocess;
532 		}
533 		err = 0;
534 	} else
535 		err = EINVAL;
536 
537 	mutex_exit(&crypto_mtx);
538 	return err;
539 }
540 
541 /*
542  * Register support for a non-key-related algorithm.  This routine
543  * is called once for each such algorithm supported by a driver.
544  */
545 int
546 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
547     u_int32_t flags,
548     int (*newses)(void *, u_int32_t*, struct cryptoini*),
549     int (*freeses)(void *, u_int64_t),
550     int (*process)(void *, struct cryptop *, int),
551     void *arg)
552 {
553 	struct cryptocap *cap;
554 	int err;
555 
556 	mutex_enter(&crypto_mtx);
557 
558 	cap = crypto_checkdriver(driverid);
559 	/* NB: algorithms are in the range [1..max] */
560 	if (cap != NULL &&
561 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
562 		/*
563 		 * XXX Do some performance testing to determine placing.
564 		 * XXX We probably need an auxiliary data structure that
565 		 * XXX describes relative performances.
566 		 */
567 
568 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
569 		cap->cc_max_op_len[alg] = maxoplen;
570 		if (bootverbose) {
571 			printf("crypto: driver %u registers alg %u "
572 				"flags %u maxoplen %u\n",
573 				driverid,
574 				alg,
575 				flags,
576 				maxoplen
577 			);
578 		}
579 
580 		if (cap->cc_process == NULL) {
581 			cap->cc_arg = arg;
582 			cap->cc_newsession = newses;
583 			cap->cc_process = process;
584 			cap->cc_freesession = freeses;
585 			cap->cc_sessions = 0;		/* Unmark */
586 		}
587 		err = 0;
588 	} else
589 		err = EINVAL;
590 
591 	mutex_exit(&crypto_mtx);
592 	return err;
593 }
594 
595 /*
596  * Unregister a crypto driver. If there are pending sessions using it,
597  * leave enough information around so that subsequent calls using those
598  * sessions will correctly detect the driver has been unregistered and
599  * reroute requests.
600  */
601 int
602 crypto_unregister(u_int32_t driverid, int alg)
603 {
604 	int i, err;
605 	u_int32_t ses;
606 	struct cryptocap *cap;
607 
608 	mutex_enter(&crypto_mtx);
609 
610 	cap = crypto_checkdriver(driverid);
611 	if (cap != NULL &&
612 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
613 	    cap->cc_alg[alg] != 0) {
614 		cap->cc_alg[alg] = 0;
615 		cap->cc_max_op_len[alg] = 0;
616 
617 		/* Was this the last algorithm ? */
618 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
619 			if (cap->cc_alg[i] != 0)
620 				break;
621 
622 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
623 			ses = cap->cc_sessions;
624 			memset(cap, 0, sizeof(struct cryptocap));
625 			if (ses != 0) {
626 				/*
627 				 * If there are pending sessions, just mark as invalid.
628 				 */
629 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
630 				cap->cc_sessions = ses;
631 			}
632 		}
633 		err = 0;
634 	} else
635 		err = EINVAL;
636 
637 	mutex_exit(&crypto_mtx);
638 	return err;
639 }
640 
641 /*
642  * Unregister all algorithms associated with a crypto driver.
643  * If there are pending sessions using it, leave enough information
644  * around so that subsequent calls using those sessions will
645  * correctly detect the driver has been unregistered and reroute
646  * requests.
647  *
648  * XXX careful.  Don't change this to call crypto_unregister() for each
649  * XXX registered algorithm unless you drop the mutex across the calls;
650  * XXX you can't take it recursively.
651  */
652 int
653 crypto_unregister_all(u_int32_t driverid)
654 {
655 	int i, err;
656 	u_int32_t ses;
657 	struct cryptocap *cap;
658 
659 	mutex_enter(&crypto_mtx);
660 	cap = crypto_checkdriver(driverid);
661 	if (cap != NULL) {
662 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
663 			cap->cc_alg[i] = 0;
664 			cap->cc_max_op_len[i] = 0;
665 		}
666 		ses = cap->cc_sessions;
667 		memset(cap, 0, sizeof(struct cryptocap));
668 		if (ses != 0) {
669 			/*
670 			 * If there are pending sessions, just mark as invalid.
671 			 */
672 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
673 			cap->cc_sessions = ses;
674 		}
675 		err = 0;
676 	} else
677 		err = EINVAL;
678 
679 	mutex_exit(&crypto_mtx);
680 	return err;
681 }
682 
683 /*
684  * Clear blockage on a driver.  The what parameter indicates whether
685  * the driver is now ready for cryptop's and/or cryptokop's.
686  */
687 int
688 crypto_unblock(u_int32_t driverid, int what)
689 {
690 	struct cryptocap *cap;
691 	int needwakeup, err;
692 
693 	mutex_spin_enter(&crypto_q_mtx);
694 	cap = crypto_checkdriver(driverid);
695 	if (cap != NULL) {
696 		needwakeup = 0;
697 		if (what & CRYPTO_SYMQ) {
698 			needwakeup |= cap->cc_qblocked;
699 			cap->cc_qblocked = 0;
700 		}
701 		if (what & CRYPTO_ASYMQ) {
702 			needwakeup |= cap->cc_kqblocked;
703 			cap->cc_kqblocked = 0;
704 		}
705 		err = 0;
706 		if (needwakeup)
707 			setsoftcrypto(softintr_cookie);
708 		mutex_spin_exit(&crypto_q_mtx);
709 	} else {
710 		err = EINVAL;
711 		mutex_spin_exit(&crypto_q_mtx);
712 	}
713 
714 	return err;
715 }
716 
717 /*
718  * Dispatch a crypto request to a driver or queue
719  * it, to be processed by the kernel thread.
720  */
721 int
722 crypto_dispatch(struct cryptop *crp)
723 {
724 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
725 	int result;
726 
727 	mutex_spin_enter(&crypto_q_mtx);
728 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
729 		crp, crp->crp_desc->crd_alg));
730 
731 	cryptostats.cs_ops++;
732 
733 #ifdef CRYPTO_TIMING
734 	if (crypto_timing)
735 		nanouptime(&crp->crp_tstamp);
736 #endif
737 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
738 		struct cryptocap *cap;
739 		/*
740 		 * Caller marked the request to be processed
741 		 * immediately; dispatch it directly to the
742 		 * driver unless the driver is currently blocked.
743 		 */
744 		cap = crypto_checkdriver(hid);
745 		if (cap && !cap->cc_qblocked) {
746 			mutex_spin_exit(&crypto_q_mtx);
747 			result = crypto_invoke(crp, 0);
748 			if (result == ERESTART) {
749 				/*
750 				 * The driver ran out of resources, mark the
751 				 * driver ``blocked'' for cryptop's and put
752 				 * the op on the queue.
753 				 */
754 				mutex_spin_enter(&crypto_q_mtx);
755 				crypto_drivers[hid].cc_qblocked = 1;
756 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
757 				cryptostats.cs_blocks++;
758 				mutex_spin_exit(&crypto_q_mtx);
759 			}
760 			goto out_released;
761 		} else {
762 			/*
763 			 * The driver is blocked, just queue the op until
764 			 * it unblocks and the swi thread gets kicked.
765 			 */
766 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
767 			result = 0;
768 		}
769 	} else {
770 		int wasempty = TAILQ_EMPTY(&crp_q);
771 		/*
772 		 * Caller marked the request as ``ok to delay'';
773 		 * queue it for the swi thread.  This is desirable
774 		 * when the operation is low priority and/or suitable
775 		 * for batching.
776 		 */
777 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
778 		if (wasempty) {
779 			setsoftcrypto(softintr_cookie);
780 			mutex_spin_exit(&crypto_q_mtx);
781 			result = 0;
782 			goto out_released;
783 		}
784 
785 		result = 0;
786 	}
787 
788 	mutex_spin_exit(&crypto_q_mtx);
789 out_released:
790 	return result;
791 }
792 
793 /*
794  * Add an asymetric crypto request to a queue,
795  * to be processed by the kernel thread.
796  */
797 int
798 crypto_kdispatch(struct cryptkop *krp)
799 {
800 	struct cryptocap *cap;
801 	int result;
802 
803 	mutex_spin_enter(&crypto_q_mtx);
804 	cryptostats.cs_kops++;
805 
806 	cap = crypto_checkdriver(krp->krp_hid);
807 	if (cap && !cap->cc_kqblocked) {
808 		mutex_spin_exit(&crypto_q_mtx);
809 		result = crypto_kinvoke(krp, 0);
810 		if (result == ERESTART) {
811 			/*
812 			 * The driver ran out of resources, mark the
813 			 * driver ``blocked'' for cryptop's and put
814 			 * the op on the queue.
815 			 */
816 			mutex_spin_enter(&crypto_q_mtx);
817 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
818 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
819 			cryptostats.cs_kblocks++;
820 			mutex_spin_exit(&crypto_q_mtx);
821 		}
822 	} else {
823 		/*
824 		 * The driver is blocked, just queue the op until
825 		 * it unblocks and the swi thread gets kicked.
826 		 */
827 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
828 		result = 0;
829 		mutex_spin_exit(&crypto_q_mtx);
830 	}
831 
832 	return result;
833 }
834 
835 /*
836  * Dispatch an assymetric crypto request to the appropriate crypto devices.
837  */
838 static int
839 crypto_kinvoke(struct cryptkop *krp, int hint)
840 {
841 	u_int32_t hid;
842 	int error;
843 
844 	/* Sanity checks. */
845 	if (krp == NULL)
846 		return EINVAL;
847 	if (krp->krp_callback == NULL) {
848 		cv_destroy(&krp->krp_cv);
849 		pool_put(&cryptkop_pool, krp);
850 		return EINVAL;
851 	}
852 
853 	mutex_enter(&crypto_mtx);
854 	for (hid = 0; hid < crypto_drivers_num; hid++) {
855 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
856 		    crypto_devallowsoft == 0)
857 			continue;
858 		if (crypto_drivers[hid].cc_kprocess == NULL)
859 			continue;
860 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
861 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
862 			continue;
863 		break;
864 	}
865 	if (hid < crypto_drivers_num) {
866 		int (*process)(void *, struct cryptkop *, int);
867 		void *arg;
868 
869 		process = crypto_drivers[hid].cc_kprocess;
870 		arg = crypto_drivers[hid].cc_karg;
871 		mutex_exit(&crypto_mtx);
872 		krp->krp_hid = hid;
873 		error = (*process)(arg, krp, hint);
874 	} else {
875 		mutex_exit(&crypto_mtx);
876 		error = ENODEV;
877 	}
878 
879 	if (error) {
880 		krp->krp_status = error;
881 		crypto_kdone(krp);
882 	}
883 	return 0;
884 }
885 
886 #ifdef CRYPTO_TIMING
887 static void
888 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
889 {
890 	struct timespec now, t;
891 
892 	nanouptime(&now);
893 	t.tv_sec = now.tv_sec - tv->tv_sec;
894 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
895 	if (t.tv_nsec < 0) {
896 		t.tv_sec--;
897 		t.tv_nsec += 1000000000;
898 	}
899 	timespecadd(&ts->acc, &t, &t);
900 	if (timespeccmp(&t, &ts->min, <))
901 		ts->min = t;
902 	if (timespeccmp(&t, &ts->max, >))
903 		ts->max = t;
904 	ts->count++;
905 
906 	*tv = now;
907 }
908 #endif
909 
910 /*
911  * Dispatch a crypto request to the appropriate crypto devices.
912  */
913 static int
914 crypto_invoke(struct cryptop *crp, int hint)
915 {
916 	u_int32_t hid;
917 
918 #ifdef CRYPTO_TIMING
919 	if (crypto_timing)
920 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
921 #endif
922 	/* Sanity checks. */
923 	if (crp == NULL)
924 		return EINVAL;
925 	if (crp->crp_callback == NULL) {
926 		return EINVAL;
927 	}
928 	if (crp->crp_desc == NULL) {
929 		crp->crp_etype = EINVAL;
930 		crypto_done(crp);
931 		return 0;
932 	}
933 
934 	hid = CRYPTO_SESID2HID(crp->crp_sid);
935 
936 	if (hid < crypto_drivers_num) {
937 		int (*process)(void *, struct cryptop *, int);
938 		void *arg;
939 
940 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
941 			mutex_exit(&crypto_mtx);
942 			crypto_freesession(crp->crp_sid);
943 			mutex_enter(&crypto_mtx);
944 		}
945 		process = crypto_drivers[hid].cc_process;
946 		arg = crypto_drivers[hid].cc_arg;
947 
948 		/*
949 		 * Invoke the driver to process the request.
950 		 */
951 		DPRINTF(("calling process for %p\n", crp));
952 		return (*process)(arg, crp, hint);
953 	} else {
954 		struct cryptodesc *crd;
955 		u_int64_t nid = 0;
956 
957 		/*
958 		 * Driver has unregistered; migrate the session and return
959 		 * an error to the caller so they'll resubmit the op.
960 		 */
961 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
962 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
963 
964 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
965 			crp->crp_sid = nid;
966 
967 		crp->crp_etype = EAGAIN;
968 
969 		crypto_done(crp);
970 		return 0;
971 	}
972 }
973 
974 /*
975  * Release a set of crypto descriptors.
976  */
977 void
978 crypto_freereq(struct cryptop *crp)
979 {
980 	struct cryptodesc *crd;
981 
982 	if (crp == NULL)
983 		return;
984 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
985 		CRYPTO_SESID2LID(crp->crp_sid), crp));
986 
987 	/* sanity check */
988 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
989 		panic("crypto_freereq() freeing crp on RETQ\n");
990 	}
991 
992 	while ((crd = crp->crp_desc) != NULL) {
993 		crp->crp_desc = crd->crd_next;
994 		pool_put(&cryptodesc_pool, crd);
995 	}
996 	pool_put(&cryptop_pool, crp);
997 }
998 
999 /*
1000  * Acquire a set of crypto descriptors.
1001  */
1002 struct cryptop *
1003 crypto_getreq(int num)
1004 {
1005 	struct cryptodesc *crd;
1006 	struct cryptop *crp;
1007 
1008 	crp = pool_get(&cryptop_pool, 0);
1009 	if (crp == NULL) {
1010 		return NULL;
1011 	}
1012 	memset(crp, 0, sizeof(struct cryptop));
1013 
1014 	while (num--) {
1015 		crd = pool_get(&cryptodesc_pool, 0);
1016 		if (crd == NULL) {
1017 			crypto_freereq(crp);
1018 			return NULL;
1019 		}
1020 
1021 		memset(crd, 0, sizeof(struct cryptodesc));
1022 		crd->crd_next = crp->crp_desc;
1023 		crp->crp_desc = crd;
1024 	}
1025 
1026 	return crp;
1027 }
1028 
1029 /*
1030  * Invoke the callback on behalf of the driver.
1031  */
1032 void
1033 crypto_done(struct cryptop *crp)
1034 {
1035 	int wasempty;
1036 
1037 	if (crp->crp_etype != 0)
1038 		cryptostats.cs_errs++;
1039 #ifdef CRYPTO_TIMING
1040 	if (crypto_timing)
1041 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1042 #endif
1043 	DPRINTF(("crypto_done[%u]: crp %p\n",
1044 		CRYPTO_SESID2LID(crp->crp_sid), crp));
1045 
1046 	/*
1047 	 * Normal case; queue the callback for the thread.
1048 	 *
1049 	 * The return queue is manipulated by the swi thread
1050 	 * and, potentially, by crypto device drivers calling
1051 	 * back to mark operations completed.  Thus we need
1052 	 * to mask both while manipulating the return queue.
1053 	 */
1054   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1055 		/*
1056 	 	* Do the callback directly.  This is ok when the
1057   	 	* callback routine does very little (e.g. the
1058 	 	* /dev/crypto callback method just does a wakeup).
1059 	 	*/
1060 		mutex_spin_enter(&crypto_ret_q_mtx);
1061 		crp->crp_flags |= CRYPTO_F_DONE;
1062 		mutex_spin_exit(&crypto_ret_q_mtx);
1063 
1064 #ifdef CRYPTO_TIMING
1065 		if (crypto_timing) {
1066 			/*
1067 		 	* NB: We must copy the timestamp before
1068 		 	* doing the callback as the cryptop is
1069 		 	* likely to be reclaimed.
1070 		 	*/
1071 			struct timespec t = crp->crp_tstamp;
1072 			crypto_tstat(&cryptostats.cs_cb, &t);
1073 			crp->crp_callback(crp);
1074 			crypto_tstat(&cryptostats.cs_finis, &t);
1075 		} else
1076 #endif
1077 		crp->crp_callback(crp);
1078 	} else {
1079 		mutex_spin_enter(&crypto_ret_q_mtx);
1080 		crp->crp_flags |= CRYPTO_F_DONE;
1081 
1082 		if (crp->crp_flags & CRYPTO_F_USER) {
1083 			/* the request has completed while
1084 			 * running in the user context
1085 			 * so don't queue it - the user
1086 			 * thread won't sleep when it sees
1087 			 * the CRYPTO_F_DONE flag.
1088 			 * This is an optimization to avoid
1089 			 * unecessary context switches.
1090 			 */
1091 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1092 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1093 		} else {
1094 			wasempty = TAILQ_EMPTY(&crp_ret_q);
1095 			DPRINTF(("crypto_done[%u]: queueing %p\n",
1096 				CRYPTO_SESID2LID(crp->crp_sid), crp));
1097 			crp->crp_flags |= CRYPTO_F_ONRETQ;
1098 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1099 			if (wasempty) {
1100 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
1101 					"crp %p hit empty queue\n.",
1102 					CRYPTO_SESID2LID(crp->crp_sid), crp));
1103 				cv_signal(&cryptoret_cv);
1104 			}
1105 		}
1106 		mutex_spin_exit(&crypto_ret_q_mtx);
1107 	}
1108 }
1109 
1110 /*
1111  * Invoke the callback on behalf of the driver.
1112  */
1113 void
1114 crypto_kdone(struct cryptkop *krp)
1115 {
1116 	int wasempty;
1117 
1118 	if (krp->krp_status != 0)
1119 		cryptostats.cs_kerrs++;
1120 
1121 	krp->krp_flags |= CRYPTO_F_DONE;
1122 
1123 	/*
1124 	 * The return queue is manipulated by the swi thread
1125 	 * and, potentially, by crypto device drivers calling
1126 	 * back to mark operations completed.  Thus we need
1127 	 * to mask both while manipulating the return queue.
1128 	 */
1129 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1130 		krp->krp_callback(krp);
1131 	} else {
1132 		mutex_spin_enter(&crypto_ret_q_mtx);
1133 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1134 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1135 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1136 		if (wasempty)
1137 			cv_signal(&cryptoret_cv);
1138 		mutex_spin_exit(&crypto_ret_q_mtx);
1139 	}
1140 }
1141 
1142 int
1143 crypto_getfeat(int *featp)
1144 {
1145 	int hid, kalg, feat = 0;
1146 
1147 	mutex_enter(&crypto_mtx);
1148 
1149 	if (crypto_userasymcrypto == 0)
1150 		goto out;
1151 
1152 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1153 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1154 		    crypto_devallowsoft == 0) {
1155 			continue;
1156 		}
1157 		if (crypto_drivers[hid].cc_kprocess == NULL)
1158 			continue;
1159 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1160 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1161 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1162 				feat |=  1 << kalg;
1163 	}
1164 out:
1165 	mutex_exit(&crypto_mtx);
1166 	*featp = feat;
1167 	return (0);
1168 }
1169 
1170 /*
1171  * Software interrupt thread to dispatch crypto requests.
1172  */
1173 static void
1174 cryptointr(void)
1175 {
1176 	struct cryptop *crp, *submit, *cnext;
1177 	struct cryptkop *krp, *knext;
1178 	struct cryptocap *cap;
1179 	int result, hint;
1180 
1181 	cryptostats.cs_intrs++;
1182 	mutex_spin_enter(&crypto_q_mtx);
1183 	do {
1184 		/*
1185 		 * Find the first element in the queue that can be
1186 		 * processed and look-ahead to see if multiple ops
1187 		 * are ready for the same driver.
1188 		 */
1189 		submit = NULL;
1190 		hint = 0;
1191 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1192 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1193 			cap = crypto_checkdriver(hid);
1194 			if (cap == NULL || cap->cc_process == NULL) {
1195 				/* Op needs to be migrated, process it. */
1196 				if (submit == NULL)
1197 					submit = crp;
1198 				break;
1199 			}
1200 			if (!cap->cc_qblocked) {
1201 				if (submit != NULL) {
1202 					/*
1203 					 * We stop on finding another op,
1204 					 * regardless whether its for the same
1205 					 * driver or not.  We could keep
1206 					 * searching the queue but it might be
1207 					 * better to just use a per-driver
1208 					 * queue instead.
1209 					 */
1210 					if (CRYPTO_SESID2HID(submit->crp_sid)
1211 					    == hid)
1212 						hint = CRYPTO_HINT_MORE;
1213 					break;
1214 				} else {
1215 					submit = crp;
1216 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1217 						break;
1218 					/* keep scanning for more are q'd */
1219 				}
1220 			}
1221 		}
1222 		if (submit != NULL) {
1223 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1224 			mutex_spin_exit(&crypto_q_mtx);
1225 			result = crypto_invoke(submit, hint);
1226 			/* we must take here as the TAILQ op or kinvoke
1227 			   may need this mutex below.  sigh. */
1228 			mutex_spin_enter(&crypto_q_mtx);
1229 			if (result == ERESTART) {
1230 				/*
1231 				 * The driver ran out of resources, mark the
1232 				 * driver ``blocked'' for cryptop's and put
1233 				 * the request back in the queue.  It would
1234 				 * best to put the request back where we got
1235 				 * it but that's hard so for now we put it
1236 				 * at the front.  This should be ok; putting
1237 				 * it at the end does not work.
1238 				 */
1239 				/* XXX validate sid again? */
1240 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1241 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1242 				cryptostats.cs_blocks++;
1243 			}
1244 		}
1245 
1246 		/* As above, but for key ops */
1247 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1248 			cap = crypto_checkdriver(krp->krp_hid);
1249 			if (cap == NULL || cap->cc_kprocess == NULL) {
1250 				/* Op needs to be migrated, process it. */
1251 				break;
1252 			}
1253 			if (!cap->cc_kqblocked)
1254 				break;
1255 		}
1256 		if (krp != NULL) {
1257 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1258 			mutex_spin_exit(&crypto_q_mtx);
1259 			result = crypto_kinvoke(krp, 0);
1260 			/* the next iteration will want the mutex. :-/ */
1261 			mutex_spin_enter(&crypto_q_mtx);
1262 			if (result == ERESTART) {
1263 				/*
1264 				 * The driver ran out of resources, mark the
1265 				 * driver ``blocked'' for cryptkop's and put
1266 				 * the request back in the queue.  It would
1267 				 * best to put the request back where we got
1268 				 * it but that's hard so for now we put it
1269 				 * at the front.  This should be ok; putting
1270 				 * it at the end does not work.
1271 				 */
1272 				/* XXX validate sid again? */
1273 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1274 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1275 				cryptostats.cs_kblocks++;
1276 			}
1277 		}
1278 	} while (submit != NULL || krp != NULL);
1279 	mutex_spin_exit(&crypto_q_mtx);
1280 }
1281 
1282 /*
1283  * Kernel thread to do callbacks.
1284  */
1285 static void
1286 cryptoret(void)
1287 {
1288 	struct cryptop *crp;
1289 	struct cryptkop *krp;
1290 
1291 	mutex_spin_enter(&crypto_ret_q_mtx);
1292 	for (;;) {
1293 		crp = TAILQ_FIRST(&crp_ret_q);
1294 		if (crp != NULL) {
1295 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1296 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1297 		}
1298 		krp = TAILQ_FIRST(&crp_ret_kq);
1299 		if (krp != NULL) {
1300 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1301 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1302 		}
1303 
1304 		/* drop before calling any callbacks. */
1305 		if (crp == NULL && krp == NULL) {
1306 			cryptostats.cs_rets++;
1307 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1308 			continue;
1309 		}
1310 
1311 		mutex_spin_exit(&crypto_ret_q_mtx);
1312 
1313 		if (crp != NULL) {
1314 #ifdef CRYPTO_TIMING
1315 			if (crypto_timing) {
1316 				/*
1317 				 * NB: We must copy the timestamp before
1318 				 * doing the callback as the cryptop is
1319 				 * likely to be reclaimed.
1320 				 */
1321 				struct timespec t = crp->crp_tstamp;
1322 				crypto_tstat(&cryptostats.cs_cb, &t);
1323 				crp->crp_callback(crp);
1324 				crypto_tstat(&cryptostats.cs_finis, &t);
1325 			} else
1326 #endif
1327 			{
1328 				crp->crp_callback(crp);
1329 			}
1330 		}
1331 		if (krp != NULL)
1332 			krp->krp_callback(krp);
1333 
1334 		mutex_spin_enter(&crypto_ret_q_mtx);
1335 	}
1336 }
1337 
1338 /* NetBSD module interface */
1339 
1340 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1341 
1342 static int
1343 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1344 {
1345 
1346 	switch (cmd) {
1347 	case MODULE_CMD_INIT:
1348 		return 0;
1349 	case MODULE_CMD_FINI:
1350 		return 0;
1351 	default:
1352 		return ENOTTY;
1353 	}
1354 }
1355