1 /* $NetBSD: crypto.c,v 1.39 2011/05/06 21:48:46 drochner Exp $ */ 2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */ 3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */ 4 5 /*- 6 * Copyright (c) 2008 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Coyote Point Systems, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 36 * 37 * This code was written by Angelos D. Keromytis in Athens, Greece, in 38 * February 2000. Network Security Technologies Inc. (NSTI) kindly 39 * supported the development of this code. 40 * 41 * Copyright (c) 2000, 2001 Angelos D. Keromytis 42 * 43 * Permission to use, copy, and modify this software with or without fee 44 * is hereby granted, provided that this entire notice is included in 45 * all source code copies of any software which is or includes a copy or 46 * modification of this software. 47 * 48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 52 * PURPOSE. 53 */ 54 55 #include <sys/cdefs.h> 56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.39 2011/05/06 21:48:46 drochner Exp $"); 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/malloc.h> 62 #include <sys/proc.h> 63 #include <sys/pool.h> 64 #include <sys/kthread.h> 65 #include <sys/once.h> 66 #include <sys/sysctl.h> 67 #include <sys/intr.h> 68 69 #include "opt_ocf.h" 70 #include <opencrypto/cryptodev.h> 71 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 72 73 kcondvar_t cryptoret_cv; 74 kmutex_t crypto_mtx; 75 76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */ 77 #define SWI_CRYPTO 17 78 #define register_swi(lvl, fn) \ 79 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL) 80 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie) 81 #define setsoftcrypto(x) softint_schedule(x) 82 83 int crypto_ret_q_check(struct cryptop *); 84 85 /* 86 * Crypto drivers register themselves by allocating a slot in the 87 * crypto_drivers table with crypto_get_driverid() and then registering 88 * each algorithm they support with crypto_register() and crypto_kregister(). 89 */ 90 static struct cryptocap *crypto_drivers; 91 static int crypto_drivers_num; 92 static void *softintr_cookie; 93 94 /* 95 * There are two queues for crypto requests; one for symmetric (e.g. 96 * cipher) operations and one for asymmetric (e.g. MOD) operations. 97 * See below for how synchronization is handled. 98 */ 99 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */ 100 TAILQ_HEAD_INITIALIZER(crp_q); 101 static TAILQ_HEAD(,cryptkop) crp_kq = 102 TAILQ_HEAD_INITIALIZER(crp_kq); 103 104 /* 105 * There are two queues for processing completed crypto requests; one 106 * for the symmetric and one for the asymmetric ops. We only need one 107 * but have two to avoid type futzing (cryptop vs. cryptkop). See below 108 * for how synchronization is handled. 109 */ 110 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */ 111 TAILQ_HEAD_INITIALIZER(crp_ret_q); 112 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq = 113 TAILQ_HEAD_INITIALIZER(crp_ret_kq); 114 115 /* 116 * XXX these functions are ghastly hacks for when the submission 117 * XXX routines discover a request that was not CBIMM is already 118 * XXX done, and must be yanked from the retq (where _done) put it 119 * XXX as cryptoret won't get the chance. The queue is walked backwards 120 * XXX as the request is generally the last one queued. 121 * 122 * call with the lock held, or else. 123 */ 124 int 125 crypto_ret_q_remove(struct cryptop *crp) 126 { 127 struct cryptop * acrp, *next; 128 129 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) { 130 if (acrp == crp) { 131 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 132 crp->crp_flags &= (~CRYPTO_F_ONRETQ); 133 return 1; 134 } 135 } 136 return 0; 137 } 138 139 int 140 crypto_ret_kq_remove(struct cryptkop *krp) 141 { 142 struct cryptkop * akrp, *next; 143 144 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) { 145 if (akrp == krp) { 146 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 147 krp->krp_flags &= (~CRYPTO_F_ONRETQ); 148 return 1; 149 } 150 } 151 return 0; 152 } 153 154 /* 155 * Crypto op and desciptor data structures are allocated 156 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) . 157 */ 158 struct pool cryptop_pool; 159 struct pool cryptodesc_pool; 160 struct pool cryptkop_pool; 161 162 int crypto_usercrypto = 1; /* userland may open /dev/crypto */ 163 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 164 /* 165 * cryptodevallowsoft is (intended to be) sysctl'able, controlling 166 * access to hardware versus software transforms as below: 167 * 168 * crypto_devallowsoft < 0: Force userlevel requests to use software 169 * transforms, always 170 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel 171 * requests for non-accelerated transforms 172 * (handling the latter in software) 173 * crypto_devallowsoft > 0: Allow user requests only for transforms which 174 * are hardware-accelerated. 175 */ 176 int crypto_devallowsoft = 1; /* only use hardware crypto */ 177 178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup") 179 { 180 sysctl_createv(clog, 0, NULL, NULL, 181 CTLFLAG_PERMANENT, 182 CTLTYPE_NODE, "kern", NULL, 183 NULL, 0, NULL, 0, 184 CTL_KERN, CTL_EOL); 185 sysctl_createv(clog, 0, NULL, NULL, 186 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 187 CTLTYPE_INT, "usercrypto", 188 SYSCTL_DESCR("Enable/disable user-mode access to " 189 "crypto support"), 190 NULL, 0, &crypto_usercrypto, 0, 191 CTL_KERN, CTL_CREATE, CTL_EOL); 192 sysctl_createv(clog, 0, NULL, NULL, 193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 194 CTLTYPE_INT, "userasymcrypto", 195 SYSCTL_DESCR("Enable/disable user-mode access to " 196 "asymmetric crypto support"), 197 NULL, 0, &crypto_userasymcrypto, 0, 198 CTL_KERN, CTL_CREATE, CTL_EOL); 199 sysctl_createv(clog, 0, NULL, NULL, 200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 201 CTLTYPE_INT, "cryptodevallowsoft", 202 SYSCTL_DESCR("Enable/disable use of software " 203 "asymmetric crypto support"), 204 NULL, 0, &crypto_devallowsoft, 0, 205 CTL_KERN, CTL_CREATE, CTL_EOL); 206 } 207 208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 209 210 /* 211 * Synchronization: read carefully, this is non-trivial. 212 * 213 * Crypto requests are submitted via crypto_dispatch. Typically 214 * these come in from network protocols at spl0 (output path) or 215 * spl[,soft]net (input path). 216 * 217 * Requests are typically passed on the driver directly, but they 218 * may also be queued for processing by a software interrupt thread, 219 * cryptointr, that runs at splsoftcrypto. This thread dispatches 220 * the requests to crypto drivers (h/w or s/w) who call crypto_done 221 * when a request is complete. Hardware crypto drivers are assumed 222 * to register their IRQ's as network devices so their interrupt handlers 223 * and subsequent "done callbacks" happen at spl[imp,net]. 224 * 225 * Completed crypto ops are queued for a separate kernel thread that 226 * handles the callbacks at spl0. This decoupling insures the crypto 227 * driver interrupt service routine is not delayed while the callback 228 * takes place and that callbacks are delivered after a context switch 229 * (as opposed to a software interrupt that clients must block). 230 * 231 * This scheme is not intended for SMP machines. 232 */ 233 static void cryptointr(void); /* swi thread to dispatch ops */ 234 static void cryptoret(void); /* kernel thread for callbacks*/ 235 static struct lwp *cryptothread; 236 static void crypto_destroy(void); 237 static int crypto_invoke(struct cryptop *crp, int hint); 238 static int crypto_kinvoke(struct cryptkop *krp, int hint); 239 240 static struct cryptostats cryptostats; 241 #ifdef CRYPTO_TIMING 242 static int crypto_timing = 0; 243 #endif 244 245 static int 246 crypto_init0(void) 247 { 248 int error; 249 250 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET); 251 cv_init(&cryptoret_cv, "crypto_w"); 252 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0, 253 0, "cryptop", NULL, IPL_NET); 254 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0, 255 0, "cryptodesc", NULL, IPL_NET); 256 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0, 257 0, "cryptkop", NULL, IPL_NET); 258 259 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL * 260 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 261 if (crypto_drivers == NULL) { 262 printf("crypto_init: cannot malloc driver table\n"); 263 return 0; 264 } 265 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 266 267 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr); 268 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 269 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret"); 270 if (error) { 271 printf("crypto_init: cannot start cryptoret thread; error %d", 272 error); 273 crypto_destroy(); 274 } 275 276 return 0; 277 } 278 279 void 280 crypto_init(void) 281 { 282 static ONCE_DECL(crypto_init_once); 283 284 RUN_ONCE(&crypto_init_once, crypto_init0); 285 } 286 287 static void 288 crypto_destroy(void) 289 { 290 /* XXX no wait to reclaim zones */ 291 if (crypto_drivers != NULL) 292 free(crypto_drivers, M_CRYPTO_DATA); 293 unregister_swi(SWI_CRYPTO, cryptointr); 294 } 295 296 /* 297 * Create a new session. Must be called with crypto_mtx held. 298 */ 299 int 300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard) 301 { 302 struct cryptoini *cr; 303 u_int32_t hid, lid; 304 int err = EINVAL; 305 306 mutex_spin_enter(&crypto_mtx); 307 308 if (crypto_drivers == NULL) 309 goto done; 310 311 /* 312 * The algorithm we use here is pretty stupid; just use the 313 * first driver that supports all the algorithms we need. 314 * 315 * XXX We need more smarts here (in real life too, but that's 316 * XXX another story altogether). 317 */ 318 319 for (hid = 0; hid < crypto_drivers_num; hid++) { 320 /* 321 * If it's not initialized or has remaining sessions 322 * referencing it, skip. 323 */ 324 if (crypto_drivers[hid].cc_newsession == NULL || 325 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)) 326 continue; 327 328 /* Hardware required -- ignore software drivers. */ 329 if (hard > 0 && 330 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE)) 331 continue; 332 /* Software required -- ignore hardware drivers. */ 333 if (hard < 0 && 334 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) 335 continue; 336 337 /* See if all the algorithms are supported. */ 338 for (cr = cri; cr; cr = cr->cri_next) 339 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) { 340 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg)); 341 break; 342 } 343 344 if (cr == NULL) { 345 /* Ok, all algorithms are supported. */ 346 347 /* 348 * Can't do everything in one session. 349 * 350 * XXX Fix this. We need to inject a "virtual" session layer right 351 * XXX about here. 352 */ 353 354 /* Call the driver initialization routine. */ 355 lid = hid; /* Pass the driver ID. */ 356 err = crypto_drivers[hid].cc_newsession( 357 crypto_drivers[hid].cc_arg, &lid, cri); 358 if (err == 0) { 359 (*sid) = hid; 360 (*sid) <<= 32; 361 (*sid) |= (lid & 0xffffffff); 362 crypto_drivers[hid].cc_sessions++; 363 } 364 goto done; 365 /*break;*/ 366 } 367 } 368 done: 369 mutex_spin_exit(&crypto_mtx); 370 return err; 371 } 372 373 /* 374 * Delete an existing session (or a reserved session on an unregistered 375 * driver). Must be called with crypto_mtx mutex held. 376 */ 377 int 378 crypto_freesession(u_int64_t sid) 379 { 380 u_int32_t hid; 381 int err = 0; 382 383 mutex_spin_enter(&crypto_mtx); 384 385 if (crypto_drivers == NULL) { 386 err = EINVAL; 387 goto done; 388 } 389 390 /* Determine two IDs. */ 391 hid = CRYPTO_SESID2HID(sid); 392 393 if (hid >= crypto_drivers_num) { 394 err = ENOENT; 395 goto done; 396 } 397 398 if (crypto_drivers[hid].cc_sessions) 399 crypto_drivers[hid].cc_sessions--; 400 401 /* Call the driver cleanup routine, if available. */ 402 if (crypto_drivers[hid].cc_freesession) { 403 err = crypto_drivers[hid].cc_freesession( 404 crypto_drivers[hid].cc_arg, sid); 405 } 406 else 407 err = 0; 408 409 /* 410 * If this was the last session of a driver marked as invalid, 411 * make the entry available for reuse. 412 */ 413 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) && 414 crypto_drivers[hid].cc_sessions == 0) 415 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap)); 416 417 done: 418 mutex_spin_exit(&crypto_mtx); 419 return err; 420 } 421 422 /* 423 * Return an unused driver id. Used by drivers prior to registering 424 * support for the algorithms they handle. 425 */ 426 int32_t 427 crypto_get_driverid(u_int32_t flags) 428 { 429 struct cryptocap *newdrv; 430 int i; 431 432 crypto_init(); /* XXX oh, this is foul! */ 433 434 mutex_spin_enter(&crypto_mtx); 435 for (i = 0; i < crypto_drivers_num; i++) 436 if (crypto_drivers[i].cc_process == NULL && 437 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 && 438 crypto_drivers[i].cc_sessions == 0) 439 break; 440 441 /* Out of entries, allocate some more. */ 442 if (i == crypto_drivers_num) { 443 /* Be careful about wrap-around. */ 444 if (2 * crypto_drivers_num <= crypto_drivers_num) { 445 mutex_spin_exit(&crypto_mtx); 446 printf("crypto: driver count wraparound!\n"); 447 return -1; 448 } 449 450 newdrv = malloc(2 * crypto_drivers_num * 451 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 452 if (newdrv == NULL) { 453 mutex_spin_exit(&crypto_mtx); 454 printf("crypto: no space to expand driver table!\n"); 455 return -1; 456 } 457 458 memcpy(newdrv, crypto_drivers, 459 crypto_drivers_num * sizeof(struct cryptocap)); 460 461 crypto_drivers_num *= 2; 462 463 free(crypto_drivers, M_CRYPTO_DATA); 464 crypto_drivers = newdrv; 465 } 466 467 /* NB: state is zero'd on free */ 468 crypto_drivers[i].cc_sessions = 1; /* Mark */ 469 crypto_drivers[i].cc_flags = flags; 470 471 if (bootverbose) 472 printf("crypto: assign driver %u, flags %u\n", i, flags); 473 474 mutex_spin_exit(&crypto_mtx); 475 476 return i; 477 } 478 479 static struct cryptocap * 480 crypto_checkdriver(u_int32_t hid) 481 { 482 if (crypto_drivers == NULL) 483 return NULL; 484 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 485 } 486 487 /* 488 * Register support for a key-related algorithm. This routine 489 * is called once for each algorithm supported a driver. 490 */ 491 int 492 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags, 493 int (*kprocess)(void *, struct cryptkop *, int), 494 void *karg) 495 { 496 struct cryptocap *cap; 497 int err; 498 499 mutex_spin_enter(&crypto_mtx); 500 501 cap = crypto_checkdriver(driverid); 502 if (cap != NULL && 503 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 504 /* 505 * XXX Do some performance testing to determine placing. 506 * XXX We probably need an auxiliary data structure that 507 * XXX describes relative performances. 508 */ 509 510 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 511 if (bootverbose) { 512 printf("crypto: driver %u registers key alg %u " 513 " flags %u\n", 514 driverid, 515 kalg, 516 flags 517 ); 518 } 519 520 if (cap->cc_kprocess == NULL) { 521 cap->cc_karg = karg; 522 cap->cc_kprocess = kprocess; 523 } 524 err = 0; 525 } else 526 err = EINVAL; 527 528 mutex_spin_exit(&crypto_mtx); 529 return err; 530 } 531 532 /* 533 * Register support for a non-key-related algorithm. This routine 534 * is called once for each such algorithm supported by a driver. 535 */ 536 int 537 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 538 u_int32_t flags, 539 int (*newses)(void *, u_int32_t*, struct cryptoini*), 540 int (*freeses)(void *, u_int64_t), 541 int (*process)(void *, struct cryptop *, int), 542 void *arg) 543 { 544 struct cryptocap *cap; 545 int err; 546 547 mutex_spin_enter(&crypto_mtx); 548 549 cap = crypto_checkdriver(driverid); 550 /* NB: algorithms are in the range [1..max] */ 551 if (cap != NULL && 552 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 553 /* 554 * XXX Do some performance testing to determine placing. 555 * XXX We probably need an auxiliary data structure that 556 * XXX describes relative performances. 557 */ 558 559 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 560 cap->cc_max_op_len[alg] = maxoplen; 561 if (bootverbose) { 562 printf("crypto: driver %u registers alg %u " 563 "flags %u maxoplen %u\n", 564 driverid, 565 alg, 566 flags, 567 maxoplen 568 ); 569 } 570 571 if (cap->cc_process == NULL) { 572 cap->cc_arg = arg; 573 cap->cc_newsession = newses; 574 cap->cc_process = process; 575 cap->cc_freesession = freeses; 576 cap->cc_sessions = 0; /* Unmark */ 577 } 578 err = 0; 579 } else 580 err = EINVAL; 581 582 mutex_spin_exit(&crypto_mtx); 583 return err; 584 } 585 586 /* 587 * Unregister a crypto driver. If there are pending sessions using it, 588 * leave enough information around so that subsequent calls using those 589 * sessions will correctly detect the driver has been unregistered and 590 * reroute requests. 591 */ 592 int 593 crypto_unregister(u_int32_t driverid, int alg) 594 { 595 int i, err; 596 u_int32_t ses; 597 struct cryptocap *cap; 598 599 mutex_spin_enter(&crypto_mtx); 600 601 cap = crypto_checkdriver(driverid); 602 if (cap != NULL && 603 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 604 cap->cc_alg[alg] != 0) { 605 cap->cc_alg[alg] = 0; 606 cap->cc_max_op_len[alg] = 0; 607 608 /* Was this the last algorithm ? */ 609 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 610 if (cap->cc_alg[i] != 0) 611 break; 612 613 if (i == CRYPTO_ALGORITHM_MAX + 1) { 614 ses = cap->cc_sessions; 615 memset(cap, 0, sizeof(struct cryptocap)); 616 if (ses != 0) { 617 /* 618 * If there are pending sessions, just mark as invalid. 619 */ 620 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 621 cap->cc_sessions = ses; 622 } 623 } 624 err = 0; 625 } else 626 err = EINVAL; 627 628 mutex_spin_exit(&crypto_mtx); 629 return err; 630 } 631 632 /* 633 * Unregister all algorithms associated with a crypto driver. 634 * If there are pending sessions using it, leave enough information 635 * around so that subsequent calls using those sessions will 636 * correctly detect the driver has been unregistered and reroute 637 * requests. 638 * 639 * XXX careful. Don't change this to call crypto_unregister() for each 640 * XXX registered algorithm unless you drop the mutex across the calls; 641 * XXX you can't take it recursively. 642 */ 643 int 644 crypto_unregister_all(u_int32_t driverid) 645 { 646 int i, err; 647 u_int32_t ses; 648 struct cryptocap *cap; 649 650 mutex_spin_enter(&crypto_mtx); 651 cap = crypto_checkdriver(driverid); 652 if (cap != NULL) { 653 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) { 654 cap->cc_alg[i] = 0; 655 cap->cc_max_op_len[i] = 0; 656 } 657 ses = cap->cc_sessions; 658 memset(cap, 0, sizeof(struct cryptocap)); 659 if (ses != 0) { 660 /* 661 * If there are pending sessions, just mark as invalid. 662 */ 663 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 664 cap->cc_sessions = ses; 665 } 666 err = 0; 667 } else 668 err = EINVAL; 669 670 mutex_spin_exit(&crypto_mtx); 671 return err; 672 } 673 674 /* 675 * Clear blockage on a driver. The what parameter indicates whether 676 * the driver is now ready for cryptop's and/or cryptokop's. 677 */ 678 int 679 crypto_unblock(u_int32_t driverid, int what) 680 { 681 struct cryptocap *cap; 682 int needwakeup, err; 683 684 mutex_spin_enter(&crypto_mtx); 685 cap = crypto_checkdriver(driverid); 686 if (cap != NULL) { 687 needwakeup = 0; 688 if (what & CRYPTO_SYMQ) { 689 needwakeup |= cap->cc_qblocked; 690 cap->cc_qblocked = 0; 691 } 692 if (what & CRYPTO_ASYMQ) { 693 needwakeup |= cap->cc_kqblocked; 694 cap->cc_kqblocked = 0; 695 } 696 err = 0; 697 mutex_spin_exit(&crypto_mtx); 698 if (needwakeup) 699 setsoftcrypto(softintr_cookie); 700 } else { 701 err = EINVAL; 702 mutex_spin_exit(&crypto_mtx); 703 } 704 705 return err; 706 } 707 708 /* 709 * Dispatch a crypto request to a driver or queue 710 * it, to be processed by the kernel thread. 711 */ 712 int 713 crypto_dispatch(struct cryptop *crp) 714 { 715 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 716 int result; 717 718 mutex_spin_enter(&crypto_mtx); 719 DPRINTF(("crypto_dispatch: crp %p, reqid 0x%x, alg %d\n", 720 crp, crp->crp_reqid, crp->crp_desc->crd_alg)); 721 722 cryptostats.cs_ops++; 723 724 #ifdef CRYPTO_TIMING 725 if (crypto_timing) 726 nanouptime(&crp->crp_tstamp); 727 #endif 728 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 729 struct cryptocap *cap; 730 /* 731 * Caller marked the request to be processed 732 * immediately; dispatch it directly to the 733 * driver unless the driver is currently blocked. 734 */ 735 cap = crypto_checkdriver(hid); 736 if (cap && !cap->cc_qblocked) { 737 mutex_spin_exit(&crypto_mtx); 738 result = crypto_invoke(crp, 0); 739 if (result == ERESTART) { 740 /* 741 * The driver ran out of resources, mark the 742 * driver ``blocked'' for cryptop's and put 743 * the op on the queue. 744 */ 745 mutex_spin_enter(&crypto_mtx); 746 crypto_drivers[hid].cc_qblocked = 1; 747 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next); 748 cryptostats.cs_blocks++; 749 mutex_spin_exit(&crypto_mtx); 750 } 751 goto out_released; 752 } else { 753 /* 754 * The driver is blocked, just queue the op until 755 * it unblocks and the swi thread gets kicked. 756 */ 757 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 758 result = 0; 759 } 760 } else { 761 int wasempty = TAILQ_EMPTY(&crp_q); 762 /* 763 * Caller marked the request as ``ok to delay''; 764 * queue it for the swi thread. This is desirable 765 * when the operation is low priority and/or suitable 766 * for batching. 767 */ 768 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 769 if (wasempty) { 770 mutex_spin_exit(&crypto_mtx); 771 setsoftcrypto(softintr_cookie); 772 result = 0; 773 goto out_released; 774 } 775 776 result = 0; 777 } 778 779 mutex_spin_exit(&crypto_mtx); 780 out_released: 781 return result; 782 } 783 784 /* 785 * Add an asymetric crypto request to a queue, 786 * to be processed by the kernel thread. 787 */ 788 int 789 crypto_kdispatch(struct cryptkop *krp) 790 { 791 struct cryptocap *cap; 792 int result; 793 794 mutex_spin_enter(&crypto_mtx); 795 cryptostats.cs_kops++; 796 797 cap = crypto_checkdriver(krp->krp_hid); 798 if (cap && !cap->cc_kqblocked) { 799 mutex_spin_exit(&crypto_mtx); 800 result = crypto_kinvoke(krp, 0); 801 if (result == ERESTART) { 802 /* 803 * The driver ran out of resources, mark the 804 * driver ``blocked'' for cryptop's and put 805 * the op on the queue. 806 */ 807 mutex_spin_enter(&crypto_mtx); 808 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 809 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 810 cryptostats.cs_kblocks++; 811 mutex_spin_exit(&crypto_mtx); 812 } 813 } else { 814 /* 815 * The driver is blocked, just queue the op until 816 * it unblocks and the swi thread gets kicked. 817 */ 818 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 819 result = 0; 820 mutex_spin_exit(&crypto_mtx); 821 } 822 823 return result; 824 } 825 826 /* 827 * Dispatch an assymetric crypto request to the appropriate crypto devices. 828 */ 829 static int 830 crypto_kinvoke(struct cryptkop *krp, int hint) 831 { 832 u_int32_t hid; 833 int error; 834 835 /* Sanity checks. */ 836 if (krp == NULL) 837 return EINVAL; 838 if (krp->krp_callback == NULL) { 839 cv_destroy(&krp->krp_cv); 840 pool_put(&cryptkop_pool, krp); 841 return EINVAL; 842 } 843 844 mutex_spin_enter(&crypto_mtx); 845 for (hid = 0; hid < crypto_drivers_num; hid++) { 846 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 847 crypto_devallowsoft == 0) 848 continue; 849 if (crypto_drivers[hid].cc_kprocess == NULL) 850 continue; 851 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] & 852 CRYPTO_ALG_FLAG_SUPPORTED) == 0) 853 continue; 854 break; 855 } 856 if (hid < crypto_drivers_num) { 857 int (*process)(void *, struct cryptkop *, int); 858 void *arg; 859 860 process = crypto_drivers[hid].cc_kprocess; 861 arg = crypto_drivers[hid].cc_karg; 862 mutex_spin_exit(&crypto_mtx); 863 krp->krp_hid = hid; 864 error = (*process)(arg, krp, hint); 865 } else { 866 mutex_spin_exit(&crypto_mtx); 867 error = ENODEV; 868 } 869 870 if (error) { 871 krp->krp_status = error; 872 crypto_kdone(krp); 873 } 874 return 0; 875 } 876 877 #ifdef CRYPTO_TIMING 878 static void 879 crypto_tstat(struct cryptotstat *ts, struct timespec *tv) 880 { 881 struct timespec now, t; 882 883 nanouptime(&now); 884 t.tv_sec = now.tv_sec - tv->tv_sec; 885 t.tv_nsec = now.tv_nsec - tv->tv_nsec; 886 if (t.tv_nsec < 0) { 887 t.tv_sec--; 888 t.tv_nsec += 1000000000; 889 } 890 timespecadd(&ts->acc, &t, &t); 891 if (timespeccmp(&t, &ts->min, <)) 892 ts->min = t; 893 if (timespeccmp(&t, &ts->max, >)) 894 ts->max = t; 895 ts->count++; 896 897 *tv = now; 898 } 899 #endif 900 901 /* 902 * Dispatch a crypto request to the appropriate crypto devices. 903 */ 904 static int 905 crypto_invoke(struct cryptop *crp, int hint) 906 { 907 u_int32_t hid; 908 909 #ifdef CRYPTO_TIMING 910 if (crypto_timing) 911 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 912 #endif 913 /* Sanity checks. */ 914 if (crp == NULL) 915 return EINVAL; 916 if (crp->crp_callback == NULL) { 917 return EINVAL; 918 } 919 if (crp->crp_desc == NULL) { 920 crp->crp_etype = EINVAL; 921 crypto_done(crp); 922 return 0; 923 } 924 925 hid = CRYPTO_SESID2HID(crp->crp_sid); 926 927 mutex_spin_enter(&crypto_mtx); 928 if (hid < crypto_drivers_num) { 929 int (*process)(void *, struct cryptop *, int); 930 void *arg; 931 932 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) 933 crypto_freesession(crp->crp_sid); 934 process = crypto_drivers[hid].cc_process; 935 arg = crypto_drivers[hid].cc_arg; 936 mutex_spin_exit(&crypto_mtx); 937 938 /* 939 * Invoke the driver to process the request. 940 */ 941 DPRINTF(("calling process for %p\n", crp)); 942 return (*process)(arg, crp, hint); 943 } else { 944 struct cryptodesc *crd; 945 u_int64_t nid = 0; 946 947 /* 948 * Driver has unregistered; migrate the session and return 949 * an error to the caller so they'll resubmit the op. 950 */ 951 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 952 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 953 954 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0) 955 crp->crp_sid = nid; 956 957 crp->crp_etype = EAGAIN; 958 mutex_spin_exit(&crypto_mtx); 959 960 crypto_done(crp); 961 return 0; 962 } 963 } 964 965 /* 966 * Release a set of crypto descriptors. 967 */ 968 void 969 crypto_freereq(struct cryptop *crp) 970 { 971 struct cryptodesc *crd; 972 973 if (crp == NULL) 974 return; 975 DPRINTF(("crypto_freereq[%u]: crp %p\n", 976 CRYPTO_SESID2LID(crp->crp_sid), crp)); 977 978 /* sanity check */ 979 if (crp->crp_flags & CRYPTO_F_ONRETQ) { 980 panic("crypto_freereq() freeing crp on RETQ\n"); 981 } 982 983 while ((crd = crp->crp_desc) != NULL) { 984 crp->crp_desc = crd->crd_next; 985 pool_put(&cryptodesc_pool, crd); 986 } 987 cv_destroy(&crp->crp_cv); 988 pool_put(&cryptop_pool, crp); 989 } 990 991 /* 992 * Acquire a set of crypto descriptors. 993 */ 994 struct cryptop * 995 crypto_getreq(int num) 996 { 997 struct cryptodesc *crd; 998 struct cryptop *crp; 999 1000 crp = pool_get(&cryptop_pool, 0); 1001 if (crp == NULL) { 1002 return NULL; 1003 } 1004 memset(crp, 0, sizeof(struct cryptop)); 1005 cv_init(&crp->crp_cv, "crydev"); 1006 1007 while (num--) { 1008 crd = pool_get(&cryptodesc_pool, 0); 1009 if (crd == NULL) { 1010 crypto_freereq(crp); 1011 return NULL; 1012 } 1013 1014 memset(crd, 0, sizeof(struct cryptodesc)); 1015 crd->crd_next = crp->crp_desc; 1016 crp->crp_desc = crd; 1017 } 1018 1019 return crp; 1020 } 1021 1022 /* 1023 * Invoke the callback on behalf of the driver. 1024 */ 1025 void 1026 crypto_done(struct cryptop *crp) 1027 { 1028 int wasempty; 1029 1030 if (crp->crp_etype != 0) 1031 cryptostats.cs_errs++; 1032 #ifdef CRYPTO_TIMING 1033 if (crypto_timing) 1034 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1035 #endif 1036 DPRINTF(("crypto_done[%u]: crp %p\n", 1037 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1038 1039 /* 1040 * Normal case; queue the callback for the thread. 1041 * 1042 * The return queue is manipulated by the swi thread 1043 * and, potentially, by crypto device drivers calling 1044 * back to mark operations completed. Thus we need 1045 * to mask both while manipulating the return queue. 1046 */ 1047 if (crp->crp_flags & CRYPTO_F_CBIMM) { 1048 /* 1049 * Do the callback directly. This is ok when the 1050 * callback routine does very little (e.g. the 1051 * /dev/crypto callback method just does a wakeup). 1052 */ 1053 mutex_spin_enter(&crypto_mtx); 1054 crp->crp_flags |= CRYPTO_F_DONE; 1055 mutex_spin_exit(&crypto_mtx); 1056 1057 #ifdef CRYPTO_TIMING 1058 if (crypto_timing) { 1059 /* 1060 * NB: We must copy the timestamp before 1061 * doing the callback as the cryptop is 1062 * likely to be reclaimed. 1063 */ 1064 struct timespec t = crp->crp_tstamp; 1065 crypto_tstat(&cryptostats.cs_cb, &t); 1066 crp->crp_callback(crp); 1067 crypto_tstat(&cryptostats.cs_finis, &t); 1068 } else 1069 #endif 1070 crp->crp_callback(crp); 1071 } else { 1072 mutex_spin_enter(&crypto_mtx); 1073 crp->crp_flags |= CRYPTO_F_DONE; 1074 1075 if (crp->crp_flags & CRYPTO_F_USER) { 1076 /* the request has completed while 1077 * running in the user context 1078 * so don't queue it - the user 1079 * thread won't sleep when it sees 1080 * the CRYPTO_F_DONE flag. 1081 * This is an optimization to avoid 1082 * unecessary context switches. 1083 */ 1084 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n", 1085 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1086 } else { 1087 wasempty = TAILQ_EMPTY(&crp_ret_q); 1088 DPRINTF(("crypto_done[%u]: queueing %p\n", 1089 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1090 crp->crp_flags |= CRYPTO_F_ONRETQ; 1091 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 1092 if (wasempty) { 1093 DPRINTF(("crypto_done[%u]: waking cryptoret, " 1094 "crp %p hit empty queue\n.", 1095 CRYPTO_SESID2LID(crp->crp_sid), crp)); 1096 cv_signal(&cryptoret_cv); 1097 } 1098 } 1099 mutex_spin_exit(&crypto_mtx); 1100 } 1101 } 1102 1103 /* 1104 * Invoke the callback on behalf of the driver. 1105 */ 1106 void 1107 crypto_kdone(struct cryptkop *krp) 1108 { 1109 int wasempty; 1110 1111 if (krp->krp_status != 0) 1112 cryptostats.cs_kerrs++; 1113 1114 krp->krp_flags |= CRYPTO_F_DONE; 1115 1116 /* 1117 * The return queue is manipulated by the swi thread 1118 * and, potentially, by crypto device drivers calling 1119 * back to mark operations completed. Thus we need 1120 * to mask both while manipulating the return queue. 1121 */ 1122 if (krp->krp_flags & CRYPTO_F_CBIMM) { 1123 krp->krp_callback(krp); 1124 } else { 1125 mutex_spin_enter(&crypto_mtx); 1126 wasempty = TAILQ_EMPTY(&crp_ret_kq); 1127 krp->krp_flags |= CRYPTO_F_ONRETQ; 1128 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1129 if (wasempty) 1130 cv_signal(&cryptoret_cv); 1131 mutex_spin_exit(&crypto_mtx); 1132 } 1133 } 1134 1135 int 1136 crypto_getfeat(int *featp) 1137 { 1138 int hid, kalg, feat = 0; 1139 1140 mutex_spin_enter(&crypto_mtx); 1141 1142 if (crypto_userasymcrypto == 0) 1143 goto out; 1144 1145 for (hid = 0; hid < crypto_drivers_num; hid++) { 1146 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 1147 crypto_devallowsoft == 0) { 1148 continue; 1149 } 1150 if (crypto_drivers[hid].cc_kprocess == NULL) 1151 continue; 1152 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1153 if ((crypto_drivers[hid].cc_kalg[kalg] & 1154 CRYPTO_ALG_FLAG_SUPPORTED) != 0) 1155 feat |= 1 << kalg; 1156 } 1157 out: 1158 mutex_spin_exit(&crypto_mtx); 1159 *featp = feat; 1160 return (0); 1161 } 1162 1163 /* 1164 * Software interrupt thread to dispatch crypto requests. 1165 */ 1166 static void 1167 cryptointr(void) 1168 { 1169 struct cryptop *crp, *submit, *cnext; 1170 struct cryptkop *krp, *knext; 1171 struct cryptocap *cap; 1172 int result, hint; 1173 1174 cryptostats.cs_intrs++; 1175 mutex_spin_enter(&crypto_mtx); 1176 do { 1177 /* 1178 * Find the first element in the queue that can be 1179 * processed and look-ahead to see if multiple ops 1180 * are ready for the same driver. 1181 */ 1182 submit = NULL; 1183 hint = 0; 1184 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) { 1185 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); 1186 cap = crypto_checkdriver(hid); 1187 if (cap == NULL || cap->cc_process == NULL) { 1188 /* Op needs to be migrated, process it. */ 1189 if (submit == NULL) 1190 submit = crp; 1191 break; 1192 } 1193 if (!cap->cc_qblocked) { 1194 if (submit != NULL) { 1195 /* 1196 * We stop on finding another op, 1197 * regardless whether its for the same 1198 * driver or not. We could keep 1199 * searching the queue but it might be 1200 * better to just use a per-driver 1201 * queue instead. 1202 */ 1203 if (CRYPTO_SESID2HID(submit->crp_sid) 1204 == hid) 1205 hint = CRYPTO_HINT_MORE; 1206 break; 1207 } else { 1208 submit = crp; 1209 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1210 break; 1211 /* keep scanning for more are q'd */ 1212 } 1213 } 1214 } 1215 if (submit != NULL) { 1216 TAILQ_REMOVE(&crp_q, submit, crp_next); 1217 mutex_spin_exit(&crypto_mtx); 1218 result = crypto_invoke(submit, hint); 1219 /* we must take here as the TAILQ op or kinvoke 1220 may need this mutex below. sigh. */ 1221 mutex_spin_enter(&crypto_mtx); 1222 if (result == ERESTART) { 1223 /* 1224 * The driver ran out of resources, mark the 1225 * driver ``blocked'' for cryptop's and put 1226 * the request back in the queue. It would 1227 * best to put the request back where we got 1228 * it but that's hard so for now we put it 1229 * at the front. This should be ok; putting 1230 * it at the end does not work. 1231 */ 1232 /* XXX validate sid again? */ 1233 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1234 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1235 cryptostats.cs_blocks++; 1236 } 1237 } 1238 1239 /* As above, but for key ops */ 1240 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) { 1241 cap = crypto_checkdriver(krp->krp_hid); 1242 if (cap == NULL || cap->cc_kprocess == NULL) { 1243 /* Op needs to be migrated, process it. */ 1244 break; 1245 } 1246 if (!cap->cc_kqblocked) 1247 break; 1248 } 1249 if (krp != NULL) { 1250 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1251 mutex_spin_exit(&crypto_mtx); 1252 result = crypto_kinvoke(krp, 0); 1253 /* the next iteration will want the mutex. :-/ */ 1254 mutex_spin_enter(&crypto_mtx); 1255 if (result == ERESTART) { 1256 /* 1257 * The driver ran out of resources, mark the 1258 * driver ``blocked'' for cryptkop's and put 1259 * the request back in the queue. It would 1260 * best to put the request back where we got 1261 * it but that's hard so for now we put it 1262 * at the front. This should be ok; putting 1263 * it at the end does not work. 1264 */ 1265 /* XXX validate sid again? */ 1266 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1267 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1268 cryptostats.cs_kblocks++; 1269 } 1270 } 1271 } while (submit != NULL || krp != NULL); 1272 mutex_spin_exit(&crypto_mtx); 1273 } 1274 1275 /* 1276 * Kernel thread to do callbacks. 1277 */ 1278 static void 1279 cryptoret(void) 1280 { 1281 struct cryptop *crp; 1282 struct cryptkop *krp; 1283 1284 mutex_spin_enter(&crypto_mtx); 1285 for (;;) { 1286 crp = TAILQ_FIRST(&crp_ret_q); 1287 if (crp != NULL) { 1288 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 1289 crp->crp_flags &= ~CRYPTO_F_ONRETQ; 1290 } 1291 krp = TAILQ_FIRST(&crp_ret_kq); 1292 if (krp != NULL) { 1293 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 1294 krp->krp_flags &= ~CRYPTO_F_ONRETQ; 1295 } 1296 1297 /* drop before calling any callbacks. */ 1298 if (crp == NULL && krp == NULL) { 1299 cryptostats.cs_rets++; 1300 cv_wait(&cryptoret_cv, &crypto_mtx); 1301 continue; 1302 } 1303 1304 mutex_spin_exit(&crypto_mtx); 1305 1306 if (crp != NULL) { 1307 #ifdef CRYPTO_TIMING 1308 if (crypto_timing) { 1309 /* 1310 * NB: We must copy the timestamp before 1311 * doing the callback as the cryptop is 1312 * likely to be reclaimed. 1313 */ 1314 struct timespec t = crp->crp_tstamp; 1315 crypto_tstat(&cryptostats.cs_cb, &t); 1316 crp->crp_callback(crp); 1317 crypto_tstat(&cryptostats.cs_finis, &t); 1318 } else 1319 #endif 1320 { 1321 crp->crp_callback(crp); 1322 } 1323 } 1324 if (krp != NULL) 1325 krp->krp_callback(krp); 1326 1327 mutex_spin_enter(&crypto_mtx); 1328 } 1329 } 1330