1 /* $NetBSD: crypto.c,v 1.30 2008/11/18 12:59:58 darran Exp $ */ 2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */ 3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */ 4 5 /*- 6 * Copyright (c) 2008 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Coyote Point Systems, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 36 * 37 * This code was written by Angelos D. Keromytis in Athens, Greece, in 38 * February 2000. Network Security Technologies Inc. (NSTI) kindly 39 * supported the development of this code. 40 * 41 * Copyright (c) 2000, 2001 Angelos D. Keromytis 42 * 43 * Permission to use, copy, and modify this software with or without fee 44 * is hereby granted, provided that this entire notice is included in 45 * all source code copies of any software which is or includes a copy or 46 * modification of this software. 47 * 48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 52 * PURPOSE. 53 */ 54 55 #include <sys/cdefs.h> 56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.30 2008/11/18 12:59:58 darran Exp $"); 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/malloc.h> 62 #include <sys/proc.h> 63 #include <sys/pool.h> 64 #include <sys/kthread.h> 65 #include <sys/once.h> 66 #include <sys/sysctl.h> 67 #include <sys/intr.h> 68 69 #include "opt_ocf.h" 70 #include <opencrypto/cryptodev.h> 71 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 72 73 kcondvar_t cryptoret_cv; 74 kmutex_t crypto_mtx; 75 76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */ 77 #define SWI_CRYPTO 17 78 #define register_swi(lvl, fn) \ 79 softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL) 80 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie) 81 #define setsoftcrypto(x) softint_schedule(x) 82 83 #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff) 84 85 int crypto_ret_q_check(struct cryptop *); 86 87 /* 88 * Crypto drivers register themselves by allocating a slot in the 89 * crypto_drivers table with crypto_get_driverid() and then registering 90 * each algorithm they support with crypto_register() and crypto_kregister(). 91 */ 92 static struct cryptocap *crypto_drivers; 93 static int crypto_drivers_num; 94 static void* softintr_cookie; 95 96 /* 97 * There are two queues for crypto requests; one for symmetric (e.g. 98 * cipher) operations and one for asymmetric (e.g. MOD) operations. 99 * See below for how synchronization is handled. 100 */ 101 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */ 102 TAILQ_HEAD_INITIALIZER(crp_q); 103 static TAILQ_HEAD(,cryptkop) crp_kq = 104 TAILQ_HEAD_INITIALIZER(crp_kq); 105 106 /* 107 * There are two queues for processing completed crypto requests; one 108 * for the symmetric and one for the asymmetric ops. We only need one 109 * but have two to avoid type futzing (cryptop vs. cryptkop). See below 110 * for how synchronization is handled. 111 */ 112 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */ 113 TAILQ_HEAD_INITIALIZER(crp_ret_q); 114 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq = 115 TAILQ_HEAD_INITIALIZER(crp_ret_kq); 116 117 /* 118 * XXX these functions are ghastly hacks for when the submission 119 * XXX routines discover a request that was not CBIMM is already 120 * XXX done, and must be yanked from the retq (where _done) put it 121 * XXX as cryptoret won't get the chance. The queue is walked backwards 122 * XXX as the request is generally the last one queued. 123 * 124 * call with the lock held, or else. 125 */ 126 int 127 crypto_ret_q_remove(struct cryptop *crp) 128 { 129 struct cryptop * acrp, *next; 130 131 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) { 132 if (acrp == crp) { 133 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 134 crp->crp_flags &= (~CRYPTO_F_ONRETQ); 135 return 1; 136 } 137 } 138 return 0; 139 } 140 141 int 142 crypto_ret_kq_remove(struct cryptkop *krp) 143 { 144 struct cryptkop * akrp, *next; 145 146 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) { 147 if (akrp == krp) { 148 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 149 krp->krp_flags &= (~CRYPTO_F_ONRETQ); 150 return 1; 151 } 152 } 153 return 0; 154 } 155 156 /* 157 * Crypto op and desciptor data structures are allocated 158 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) . 159 */ 160 struct pool cryptop_pool; 161 struct pool cryptodesc_pool; 162 struct pool cryptkop_pool; 163 164 int crypto_usercrypto = 1; /* userland may open /dev/crypto */ 165 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 166 /* 167 * cryptodevallowsoft is (intended to be) sysctl'able, controlling 168 * access to hardware versus software transforms as below: 169 * 170 * crypto_devallowsoft < 0: Force userlevel requests to use software 171 * transforms, always 172 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel 173 * requests for non-accelerated transforms 174 * (handling the latter in software) 175 * crypto_devallowsoft > 0: Allow user requests only for transforms which 176 * are hardware-accelerated. 177 */ 178 int crypto_devallowsoft = 1; /* only use hardware crypto */ 179 180 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup") 181 { 182 sysctl_createv(clog, 0, NULL, NULL, 183 CTLFLAG_PERMANENT, 184 CTLTYPE_NODE, "kern", NULL, 185 NULL, 0, NULL, 0, 186 CTL_KERN, CTL_EOL); 187 sysctl_createv(clog, 0, NULL, NULL, 188 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 189 CTLTYPE_INT, "usercrypto", 190 SYSCTL_DESCR("Enable/disable user-mode access to " 191 "crypto support"), 192 NULL, 0, &crypto_usercrypto, 0, 193 CTL_KERN, CTL_CREATE, CTL_EOL); 194 sysctl_createv(clog, 0, NULL, NULL, 195 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 196 CTLTYPE_INT, "userasymcrypto", 197 SYSCTL_DESCR("Enable/disable user-mode access to " 198 "asymmetric crypto support"), 199 NULL, 0, &crypto_userasymcrypto, 0, 200 CTL_KERN, CTL_CREATE, CTL_EOL); 201 sysctl_createv(clog, 0, NULL, NULL, 202 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 203 CTLTYPE_INT, "cryptodevallowsoft", 204 SYSCTL_DESCR("Enable/disable use of software " 205 "asymmetric crypto support"), 206 NULL, 0, &crypto_devallowsoft, 0, 207 CTL_KERN, CTL_CREATE, CTL_EOL); 208 } 209 210 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 211 212 /* 213 * Synchronization: read carefully, this is non-trivial. 214 * 215 * Crypto requests are submitted via crypto_dispatch. Typically 216 * these come in from network protocols at spl0 (output path) or 217 * spl[,soft]net (input path). 218 * 219 * Requests are typically passed on the driver directly, but they 220 * may also be queued for processing by a software interrupt thread, 221 * cryptointr, that runs at splsoftcrypto. This thread dispatches 222 * the requests to crypto drivers (h/w or s/w) who call crypto_done 223 * when a request is complete. Hardware crypto drivers are assumed 224 * to register their IRQ's as network devices so their interrupt handlers 225 * and subsequent "done callbacks" happen at spl[imp,net]. 226 * 227 * Completed crypto ops are queued for a separate kernel thread that 228 * handles the callbacks at spl0. This decoupling insures the crypto 229 * driver interrupt service routine is not delayed while the callback 230 * takes place and that callbacks are delivered after a context switch 231 * (as opposed to a software interrupt that clients must block). 232 * 233 * This scheme is not intended for SMP machines. 234 */ 235 static void cryptointr(void); /* swi thread to dispatch ops */ 236 static void cryptoret(void); /* kernel thread for callbacks*/ 237 static struct lwp *cryptothread; 238 static void crypto_destroy(void); 239 static int crypto_invoke(struct cryptop *crp, int hint); 240 static int crypto_kinvoke(struct cryptkop *krp, int hint); 241 242 static struct cryptostats cryptostats; 243 #ifdef CRYPTO_TIMING 244 static int crypto_timing = 0; 245 #endif 246 247 static int 248 crypto_init0(void) 249 { 250 int error; 251 252 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET); 253 cv_init(&cryptoret_cv, "crypto_wait"); 254 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0, 255 0, "cryptop", NULL, IPL_NET); 256 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0, 257 0, "cryptodesc", NULL, IPL_NET); 258 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0, 259 0, "cryptkop", NULL, IPL_NET); 260 261 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL * 262 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 263 if (crypto_drivers == NULL) { 264 printf("crypto_init: cannot malloc driver table\n"); 265 return 0; 266 } 267 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 268 269 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr); 270 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 271 (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret"); 272 if (error) { 273 printf("crypto_init: cannot start cryptoret thread; error %d", 274 error); 275 crypto_destroy(); 276 } 277 278 return 0; 279 } 280 281 void 282 crypto_init(void) 283 { 284 static ONCE_DECL(crypto_init_once); 285 286 RUN_ONCE(&crypto_init_once, crypto_init0); 287 } 288 289 static void 290 crypto_destroy(void) 291 { 292 /* XXX no wait to reclaim zones */ 293 if (crypto_drivers != NULL) 294 free(crypto_drivers, M_CRYPTO_DATA); 295 unregister_swi(SWI_CRYPTO, cryptointr); 296 } 297 298 /* 299 * Create a new session. Must be called with crypto_mtx held. 300 */ 301 int 302 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard) 303 { 304 struct cryptoini *cr; 305 u_int32_t hid, lid; 306 int err = EINVAL; 307 308 KASSERT(mutex_owned(&crypto_mtx)); 309 310 if (crypto_drivers == NULL) 311 goto done; 312 313 /* 314 * The algorithm we use here is pretty stupid; just use the 315 * first driver that supports all the algorithms we need. 316 * 317 * XXX We need more smarts here (in real life too, but that's 318 * XXX another story altogether). 319 */ 320 321 for (hid = 0; hid < crypto_drivers_num; hid++) { 322 /* 323 * If it's not initialized or has remaining sessions 324 * referencing it, skip. 325 */ 326 if (crypto_drivers[hid].cc_newsession == NULL || 327 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)) 328 continue; 329 330 /* Hardware required -- ignore software drivers. */ 331 if (hard > 0 && 332 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE)) 333 continue; 334 /* Software required -- ignore hardware drivers. */ 335 if (hard < 0 && 336 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) 337 continue; 338 339 /* See if all the algorithms are supported. */ 340 for (cr = cri; cr; cr = cr->cri_next) 341 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) 342 break; 343 344 if (cr == NULL) { 345 /* Ok, all algorithms are supported. */ 346 347 /* 348 * Can't do everything in one session. 349 * 350 * XXX Fix this. We need to inject a "virtual" session layer right 351 * XXX about here. 352 */ 353 354 /* Call the driver initialization routine. */ 355 lid = hid; /* Pass the driver ID. */ 356 err = crypto_drivers[hid].cc_newsession( 357 crypto_drivers[hid].cc_arg, &lid, cri); 358 if (err == 0) { 359 (*sid) = hid; 360 (*sid) <<= 32; 361 (*sid) |= (lid & 0xffffffff); 362 crypto_drivers[hid].cc_sessions++; 363 } 364 goto done; 365 /*break;*/ 366 } 367 } 368 done: 369 return err; 370 } 371 372 /* 373 * Delete an existing session (or a reserved session on an unregistered 374 * driver). Must be called with crypto_mtx mutex held. 375 */ 376 int 377 crypto_freesession(u_int64_t sid) 378 { 379 u_int32_t hid; 380 int err = 0; 381 382 KASSERT(mutex_owned(&crypto_mtx)); 383 384 if (crypto_drivers == NULL) { 385 err = EINVAL; 386 goto done; 387 } 388 389 /* Determine two IDs. */ 390 hid = SESID2HID(sid); 391 392 if (hid >= crypto_drivers_num) { 393 err = ENOENT; 394 goto done; 395 } 396 397 if (crypto_drivers[hid].cc_sessions) 398 crypto_drivers[hid].cc_sessions--; 399 400 /* Call the driver cleanup routine, if available. */ 401 if (crypto_drivers[hid].cc_freesession) { 402 err = crypto_drivers[hid].cc_freesession( 403 crypto_drivers[hid].cc_arg, sid); 404 } 405 else 406 err = 0; 407 408 /* 409 * If this was the last session of a driver marked as invalid, 410 * make the entry available for reuse. 411 */ 412 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) && 413 crypto_drivers[hid].cc_sessions == 0) 414 bzero(&crypto_drivers[hid], sizeof(struct cryptocap)); 415 416 done: 417 return err; 418 } 419 420 /* 421 * Return an unused driver id. Used by drivers prior to registering 422 * support for the algorithms they handle. 423 */ 424 int32_t 425 crypto_get_driverid(u_int32_t flags) 426 { 427 struct cryptocap *newdrv; 428 int i; 429 430 crypto_init(); /* XXX oh, this is foul! */ 431 432 mutex_spin_enter(&crypto_mtx); 433 for (i = 0; i < crypto_drivers_num; i++) 434 if (crypto_drivers[i].cc_process == NULL && 435 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 && 436 crypto_drivers[i].cc_sessions == 0) 437 break; 438 439 /* Out of entries, allocate some more. */ 440 if (i == crypto_drivers_num) { 441 /* Be careful about wrap-around. */ 442 if (2 * crypto_drivers_num <= crypto_drivers_num) { 443 mutex_spin_exit(&crypto_mtx); 444 printf("crypto: driver count wraparound!\n"); 445 return -1; 446 } 447 448 newdrv = malloc(2 * crypto_drivers_num * 449 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 450 if (newdrv == NULL) { 451 mutex_spin_exit(&crypto_mtx); 452 printf("crypto: no space to expand driver table!\n"); 453 return -1; 454 } 455 456 bcopy(crypto_drivers, newdrv, 457 crypto_drivers_num * sizeof(struct cryptocap)); 458 459 crypto_drivers_num *= 2; 460 461 free(crypto_drivers, M_CRYPTO_DATA); 462 crypto_drivers = newdrv; 463 } 464 465 /* NB: state is zero'd on free */ 466 crypto_drivers[i].cc_sessions = 1; /* Mark */ 467 crypto_drivers[i].cc_flags = flags; 468 469 if (bootverbose) 470 printf("crypto: assign driver %u, flags %u\n", i, flags); 471 472 mutex_spin_exit(&crypto_mtx); 473 474 return i; 475 } 476 477 static struct cryptocap * 478 crypto_checkdriver(u_int32_t hid) 479 { 480 if (crypto_drivers == NULL) 481 return NULL; 482 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 483 } 484 485 /* 486 * Register support for a key-related algorithm. This routine 487 * is called once for each algorithm supported a driver. 488 */ 489 int 490 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags, 491 int (*kprocess)(void*, struct cryptkop *, int), 492 void *karg) 493 { 494 struct cryptocap *cap; 495 int err; 496 497 mutex_spin_enter(&crypto_mtx); 498 499 cap = crypto_checkdriver(driverid); 500 if (cap != NULL && 501 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 502 /* 503 * XXX Do some performance testing to determine placing. 504 * XXX We probably need an auxiliary data structure that 505 * XXX describes relative performances. 506 */ 507 508 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 509 if (bootverbose) { 510 printf("crypto: driver %u registers key alg %u " 511 " flags %u\n", 512 driverid, 513 kalg, 514 flags 515 ); 516 } 517 518 if (cap->cc_kprocess == NULL) { 519 cap->cc_karg = karg; 520 cap->cc_kprocess = kprocess; 521 } 522 err = 0; 523 } else 524 err = EINVAL; 525 526 mutex_spin_exit(&crypto_mtx); 527 return err; 528 } 529 530 /* 531 * Register support for a non-key-related algorithm. This routine 532 * is called once for each such algorithm supported by a driver. 533 */ 534 int 535 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 536 u_int32_t flags, 537 int (*newses)(void*, u_int32_t*, struct cryptoini*), 538 int (*freeses)(void*, u_int64_t), 539 int (*process)(void*, struct cryptop *, int), 540 void *arg) 541 { 542 struct cryptocap *cap; 543 int err; 544 545 mutex_spin_enter(&crypto_mtx); 546 547 cap = crypto_checkdriver(driverid); 548 /* NB: algorithms are in the range [1..max] */ 549 if (cap != NULL && 550 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 551 /* 552 * XXX Do some performance testing to determine placing. 553 * XXX We probably need an auxiliary data structure that 554 * XXX describes relative performances. 555 */ 556 557 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 558 cap->cc_max_op_len[alg] = maxoplen; 559 if (bootverbose) { 560 printf("crypto: driver %u registers alg %u " 561 "flags %u maxoplen %u\n", 562 driverid, 563 alg, 564 flags, 565 maxoplen 566 ); 567 } 568 569 if (cap->cc_process == NULL) { 570 cap->cc_arg = arg; 571 cap->cc_newsession = newses; 572 cap->cc_process = process; 573 cap->cc_freesession = freeses; 574 cap->cc_sessions = 0; /* Unmark */ 575 } 576 err = 0; 577 } else 578 err = EINVAL; 579 580 mutex_spin_exit(&crypto_mtx); 581 return err; 582 } 583 584 /* 585 * Unregister a crypto driver. If there are pending sessions using it, 586 * leave enough information around so that subsequent calls using those 587 * sessions will correctly detect the driver has been unregistered and 588 * reroute requests. 589 */ 590 int 591 crypto_unregister(u_int32_t driverid, int alg) 592 { 593 int i, err; 594 u_int32_t ses; 595 struct cryptocap *cap; 596 597 mutex_spin_enter(&crypto_mtx); 598 599 cap = crypto_checkdriver(driverid); 600 if (cap != NULL && 601 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 602 cap->cc_alg[alg] != 0) { 603 cap->cc_alg[alg] = 0; 604 cap->cc_max_op_len[alg] = 0; 605 606 /* Was this the last algorithm ? */ 607 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 608 if (cap->cc_alg[i] != 0) 609 break; 610 611 if (i == CRYPTO_ALGORITHM_MAX + 1) { 612 ses = cap->cc_sessions; 613 bzero(cap, sizeof(struct cryptocap)); 614 if (ses != 0) { 615 /* 616 * If there are pending sessions, just mark as invalid. 617 */ 618 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 619 cap->cc_sessions = ses; 620 } 621 } 622 err = 0; 623 } else 624 err = EINVAL; 625 626 mutex_spin_exit(&crypto_mtx); 627 return err; 628 } 629 630 /* 631 * Unregister all algorithms associated with a crypto driver. 632 * If there are pending sessions using it, leave enough information 633 * around so that subsequent calls using those sessions will 634 * correctly detect the driver has been unregistered and reroute 635 * requests. 636 * 637 * XXX careful. Don't change this to call crypto_unregister() for each 638 * XXX registered algorithm unless you drop the mutex across the calls; 639 * XXX you can't take it recursively. 640 */ 641 int 642 crypto_unregister_all(u_int32_t driverid) 643 { 644 int i, err; 645 u_int32_t ses; 646 struct cryptocap *cap; 647 648 mutex_spin_enter(&crypto_mtx); 649 cap = crypto_checkdriver(driverid); 650 if (cap != NULL) { 651 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) { 652 cap->cc_alg[i] = 0; 653 cap->cc_max_op_len[i] = 0; 654 } 655 ses = cap->cc_sessions; 656 bzero(cap, sizeof(struct cryptocap)); 657 if (ses != 0) { 658 /* 659 * If there are pending sessions, just mark as invalid. 660 */ 661 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 662 cap->cc_sessions = ses; 663 } 664 err = 0; 665 } else 666 err = EINVAL; 667 668 mutex_spin_exit(&crypto_mtx); 669 return err; 670 } 671 672 /* 673 * Clear blockage on a driver. The what parameter indicates whether 674 * the driver is now ready for cryptop's and/or cryptokop's. 675 */ 676 int 677 crypto_unblock(u_int32_t driverid, int what) 678 { 679 struct cryptocap *cap; 680 int needwakeup, err; 681 682 mutex_spin_enter(&crypto_mtx); 683 cap = crypto_checkdriver(driverid); 684 if (cap != NULL) { 685 needwakeup = 0; 686 if (what & CRYPTO_SYMQ) { 687 needwakeup |= cap->cc_qblocked; 688 cap->cc_qblocked = 0; 689 } 690 if (what & CRYPTO_ASYMQ) { 691 needwakeup |= cap->cc_kqblocked; 692 cap->cc_kqblocked = 0; 693 } 694 err = 0; 695 mutex_spin_exit(&crypto_mtx); 696 if (needwakeup) 697 setsoftcrypto(softintr_cookie); 698 } else { 699 err = EINVAL; 700 mutex_spin_exit(&crypto_mtx); 701 } 702 703 return err; 704 } 705 706 /* 707 * Dispatch a crypto request to a driver or queue 708 * it, to be processed by the kernel thread. 709 */ 710 int 711 crypto_dispatch(struct cryptop *crp) 712 { 713 u_int32_t hid = SESID2HID(crp->crp_sid); 714 int result; 715 716 mutex_spin_enter(&crypto_mtx); 717 718 cryptostats.cs_ops++; 719 720 #ifdef CRYPTO_TIMING 721 if (crypto_timing) 722 nanouptime(&crp->crp_tstamp); 723 #endif 724 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 725 struct cryptocap *cap; 726 /* 727 * Caller marked the request to be processed 728 * immediately; dispatch it directly to the 729 * driver unless the driver is currently blocked. 730 */ 731 cap = crypto_checkdriver(hid); 732 if (cap && !cap->cc_qblocked) { 733 mutex_spin_exit(&crypto_mtx); 734 result = crypto_invoke(crp, 0); 735 if (result == ERESTART) { 736 /* 737 * The driver ran out of resources, mark the 738 * driver ``blocked'' for cryptop's and put 739 * the op on the queue. 740 */ 741 mutex_spin_enter(&crypto_mtx); 742 crypto_drivers[hid].cc_qblocked = 1; 743 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next); 744 cryptostats.cs_blocks++; 745 mutex_spin_exit(&crypto_mtx); 746 } 747 goto out_released; 748 } else { 749 /* 750 * The driver is blocked, just queue the op until 751 * it unblocks and the swi thread gets kicked. 752 */ 753 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 754 result = 0; 755 } 756 } else { 757 int wasempty = TAILQ_EMPTY(&crp_q); 758 /* 759 * Caller marked the request as ``ok to delay''; 760 * queue it for the swi thread. This is desirable 761 * when the operation is low priority and/or suitable 762 * for batching. 763 */ 764 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 765 if (wasempty) { 766 mutex_spin_exit(&crypto_mtx); 767 setsoftcrypto(softintr_cookie); 768 result = 0; 769 goto out_released; 770 } 771 772 result = 0; 773 } 774 775 mutex_spin_exit(&crypto_mtx); 776 out_released: 777 return result; 778 } 779 780 /* 781 * Add an asymetric crypto request to a queue, 782 * to be processed by the kernel thread. 783 */ 784 int 785 crypto_kdispatch(struct cryptkop *krp) 786 { 787 struct cryptocap *cap; 788 int result; 789 790 mutex_spin_enter(&crypto_mtx); 791 cryptostats.cs_kops++; 792 793 cap = crypto_checkdriver(krp->krp_hid); 794 if (cap && !cap->cc_kqblocked) { 795 mutex_spin_exit(&crypto_mtx); 796 result = crypto_kinvoke(krp, 0); 797 if (result == ERESTART) { 798 /* 799 * The driver ran out of resources, mark the 800 * driver ``blocked'' for cryptop's and put 801 * the op on the queue. 802 */ 803 mutex_spin_enter(&crypto_mtx); 804 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 805 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 806 cryptostats.cs_kblocks++; 807 mutex_spin_exit(&crypto_mtx); 808 } 809 } else { 810 /* 811 * The driver is blocked, just queue the op until 812 * it unblocks and the swi thread gets kicked. 813 */ 814 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 815 result = 0; 816 mutex_spin_exit(&crypto_mtx); 817 } 818 819 return result; 820 } 821 822 /* 823 * Dispatch an assymetric crypto request to the appropriate crypto devices. 824 */ 825 static int 826 crypto_kinvoke(struct cryptkop *krp, int hint) 827 { 828 u_int32_t hid; 829 int error; 830 831 /* Sanity checks. */ 832 if (krp == NULL) 833 return EINVAL; 834 if (krp->krp_callback == NULL) { 835 cv_destroy(&krp->krp_cv); 836 pool_put(&cryptkop_pool, krp); 837 return EINVAL; 838 } 839 840 for (hid = 0; hid < crypto_drivers_num; hid++) { 841 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 842 crypto_devallowsoft == 0) 843 continue; 844 if (crypto_drivers[hid].cc_kprocess == NULL) 845 continue; 846 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] & 847 CRYPTO_ALG_FLAG_SUPPORTED) == 0) 848 continue; 849 break; 850 } 851 if (hid < crypto_drivers_num) { 852 krp->krp_hid = hid; 853 error = crypto_drivers[hid].cc_kprocess( 854 crypto_drivers[hid].cc_karg, krp, hint); 855 } else { 856 error = ENODEV; 857 } 858 859 if (error) { 860 krp->krp_status = error; 861 crypto_kdone(krp); 862 } 863 return 0; 864 } 865 866 #ifdef CRYPTO_TIMING 867 static void 868 crypto_tstat(struct cryptotstat *ts, struct timespec *tv) 869 { 870 struct timespec now, t; 871 872 nanouptime(&now); 873 t.tv_sec = now.tv_sec - tv->tv_sec; 874 t.tv_nsec = now.tv_nsec - tv->tv_nsec; 875 if (t.tv_nsec < 0) { 876 t.tv_sec--; 877 t.tv_nsec += 1000000000; 878 } 879 timespecadd(&ts->acc, &t, &t); 880 if (timespeccmp(&t, &ts->min, <)) 881 ts->min = t; 882 if (timespeccmp(&t, &ts->max, >)) 883 ts->max = t; 884 ts->count++; 885 886 *tv = now; 887 } 888 #endif 889 890 /* 891 * Dispatch a crypto request to the appropriate crypto devices. 892 */ 893 static int 894 crypto_invoke(struct cryptop *crp, int hint) 895 { 896 u_int32_t hid; 897 int (*process)(void*, struct cryptop *, int); 898 899 #ifdef CRYPTO_TIMING 900 if (crypto_timing) 901 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 902 #endif 903 /* Sanity checks. */ 904 if (crp == NULL) 905 return EINVAL; 906 if (crp->crp_callback == NULL) { 907 return EINVAL; 908 } 909 if (crp->crp_desc == NULL) { 910 crp->crp_etype = EINVAL; 911 crypto_done(crp); 912 return 0; 913 } 914 915 hid = SESID2HID(crp->crp_sid); 916 if (hid < crypto_drivers_num) { 917 mutex_spin_enter(&crypto_mtx); 918 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) 919 crypto_freesession(crp->crp_sid); 920 process = crypto_drivers[hid].cc_process; 921 mutex_spin_exit(&crypto_mtx); 922 } else { 923 process = NULL; 924 } 925 926 if (process == NULL) { 927 struct cryptodesc *crd; 928 u_int64_t nid = 0; 929 930 /* 931 * Driver has unregistered; migrate the session and return 932 * an error to the caller so they'll resubmit the op. 933 */ 934 mutex_spin_enter(&crypto_mtx); 935 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 936 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 937 938 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0) 939 crp->crp_sid = nid; 940 941 crp->crp_etype = EAGAIN; 942 mutex_spin_exit(&crypto_mtx); 943 944 crypto_done(crp); 945 return 0; 946 } else { 947 /* 948 * Invoke the driver to process the request. 949 */ 950 DPRINTF(("calling process for %08x\n", (uint32_t)crp)); 951 return (*process)(crypto_drivers[hid].cc_arg, crp, hint); 952 } 953 } 954 955 /* 956 * Release a set of crypto descriptors. 957 */ 958 void 959 crypto_freereq(struct cryptop *crp) 960 { 961 struct cryptodesc *crd; 962 963 if (crp == NULL) 964 return; 965 966 /* sanity check */ 967 if (crp->crp_flags & CRYPTO_F_ONRETQ) { 968 panic("crypto_freereq() freeing crp on RETQ\n"); 969 } 970 971 while ((crd = crp->crp_desc) != NULL) { 972 crp->crp_desc = crd->crd_next; 973 pool_put(&cryptodesc_pool, crd); 974 } 975 cv_destroy(&crp->crp_cv); 976 pool_put(&cryptop_pool, crp); 977 } 978 979 /* 980 * Acquire a set of crypto descriptors. 981 */ 982 struct cryptop * 983 crypto_getreq(int num) 984 { 985 struct cryptodesc *crd; 986 struct cryptop *crp; 987 988 crp = pool_get(&cryptop_pool, 0); 989 if (crp == NULL) { 990 return NULL; 991 } 992 bzero(crp, sizeof(struct cryptop)); 993 cv_init(&crp->crp_cv, "crydev"); 994 995 while (num--) { 996 crd = pool_get(&cryptodesc_pool, 0); 997 if (crd == NULL) { 998 crypto_freereq(crp); 999 return NULL; 1000 } 1001 1002 bzero(crd, sizeof(struct cryptodesc)); 1003 crd->crd_next = crp->crp_desc; 1004 crp->crp_desc = crd; 1005 } 1006 1007 return crp; 1008 } 1009 1010 /* 1011 * Invoke the callback on behalf of the driver. 1012 */ 1013 void 1014 crypto_done(struct cryptop *crp) 1015 { 1016 int wasempty; 1017 1018 if (crp->crp_etype != 0) 1019 cryptostats.cs_errs++; 1020 #ifdef CRYPTO_TIMING 1021 if (crypto_timing) 1022 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1023 #endif 1024 1025 /* 1026 * Normal case; queue the callback for the thread. 1027 * 1028 * The return queue is manipulated by the swi thread 1029 * and, potentially, by crypto device drivers calling 1030 * back to mark operations completed. Thus we need 1031 * to mask both while manipulating the return queue. 1032 */ 1033 if (crp->crp_flags & CRYPTO_F_CBIMM) { 1034 /* 1035 * Do the callback directly. This is ok when the 1036 * callback routine does very little (e.g. the 1037 * /dev/crypto callback method just does a wakeup). 1038 */ 1039 mutex_spin_enter(&crypto_mtx); 1040 crp->crp_flags |= CRYPTO_F_DONE; 1041 mutex_spin_exit(&crypto_mtx); 1042 1043 #ifdef CRYPTO_TIMING 1044 if (crypto_timing) { 1045 /* 1046 * NB: We must copy the timestamp before 1047 * doing the callback as the cryptop is 1048 * likely to be reclaimed. 1049 */ 1050 struct timespec t = crp->crp_tstamp; 1051 crypto_tstat(&cryptostats.cs_cb, &t); 1052 crp->crp_callback(crp); 1053 crypto_tstat(&cryptostats.cs_finis, &t); 1054 } else 1055 #endif 1056 crp->crp_callback(crp); 1057 } else { 1058 mutex_spin_enter(&crypto_mtx); 1059 crp->crp_flags |= CRYPTO_F_DONE; 1060 1061 if (crp->crp_flags & CRYPTO_F_USER) { 1062 /* the request has completed while 1063 * running in the user context 1064 * so don't queue it - the user 1065 * thread won't sleep when it sees 1066 * the CRYPTO_F_DONE flag. 1067 * This is an optimization to avoid 1068 * unecessary context switches. 1069 */ 1070 } else { 1071 wasempty = TAILQ_EMPTY(&crp_ret_q); 1072 DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp)); 1073 crp->crp_flags |= CRYPTO_F_ONRETQ; 1074 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 1075 if (wasempty) { 1076 DPRINTF(("crypto_done: waking cryptoret, %08x " \ 1077 "hit empty queue\n.", (uint32_t)crp)); 1078 cv_signal(&cryptoret_cv); 1079 } 1080 } 1081 mutex_spin_exit(&crypto_mtx); 1082 } 1083 } 1084 1085 /* 1086 * Invoke the callback on behalf of the driver. 1087 */ 1088 void 1089 crypto_kdone(struct cryptkop *krp) 1090 { 1091 int wasempty; 1092 1093 if (krp->krp_status != 0) 1094 cryptostats.cs_kerrs++; 1095 1096 krp->krp_flags |= CRYPTO_F_DONE; 1097 1098 /* 1099 * The return queue is manipulated by the swi thread 1100 * and, potentially, by crypto device drivers calling 1101 * back to mark operations completed. Thus we need 1102 * to mask both while manipulating the return queue. 1103 */ 1104 if (krp->krp_flags & CRYPTO_F_CBIMM) { 1105 krp->krp_callback(krp); 1106 } else { 1107 mutex_spin_enter(&crypto_mtx); 1108 wasempty = TAILQ_EMPTY(&crp_ret_kq); 1109 krp->krp_flags |= CRYPTO_F_ONRETQ; 1110 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1111 if (wasempty) 1112 cv_signal(&cryptoret_cv); 1113 mutex_spin_exit(&crypto_mtx); 1114 } 1115 } 1116 1117 int 1118 crypto_getfeat(int *featp) 1119 { 1120 int hid, kalg, feat = 0; 1121 1122 mutex_spin_enter(&crypto_mtx); 1123 1124 if (crypto_userasymcrypto == 0) 1125 goto out; 1126 1127 for (hid = 0; hid < crypto_drivers_num; hid++) { 1128 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 1129 crypto_devallowsoft == 0) { 1130 continue; 1131 } 1132 if (crypto_drivers[hid].cc_kprocess == NULL) 1133 continue; 1134 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1135 if ((crypto_drivers[hid].cc_kalg[kalg] & 1136 CRYPTO_ALG_FLAG_SUPPORTED) != 0) 1137 feat |= 1 << kalg; 1138 } 1139 out: 1140 mutex_spin_exit(&crypto_mtx); 1141 *featp = feat; 1142 return (0); 1143 } 1144 1145 /* 1146 * Software interrupt thread to dispatch crypto requests. 1147 */ 1148 static void 1149 cryptointr(void) 1150 { 1151 struct cryptop *crp, *submit, *cnext; 1152 struct cryptkop *krp, *knext; 1153 struct cryptocap *cap; 1154 int result, hint; 1155 1156 cryptostats.cs_intrs++; 1157 mutex_spin_enter(&crypto_mtx); 1158 do { 1159 /* 1160 * Find the first element in the queue that can be 1161 * processed and look-ahead to see if multiple ops 1162 * are ready for the same driver. 1163 */ 1164 submit = NULL; 1165 hint = 0; 1166 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) { 1167 u_int32_t hid = SESID2HID(crp->crp_sid); 1168 cap = crypto_checkdriver(hid); 1169 if (cap == NULL || cap->cc_process == NULL) { 1170 /* Op needs to be migrated, process it. */ 1171 if (submit == NULL) 1172 submit = crp; 1173 break; 1174 } 1175 if (!cap->cc_qblocked) { 1176 if (submit != NULL) { 1177 /* 1178 * We stop on finding another op, 1179 * regardless whether its for the same 1180 * driver or not. We could keep 1181 * searching the queue but it might be 1182 * better to just use a per-driver 1183 * queue instead. 1184 */ 1185 if (SESID2HID(submit->crp_sid) == hid) 1186 hint = CRYPTO_HINT_MORE; 1187 break; 1188 } else { 1189 submit = crp; 1190 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1191 break; 1192 /* keep scanning for more are q'd */ 1193 } 1194 } 1195 } 1196 if (submit != NULL) { 1197 TAILQ_REMOVE(&crp_q, submit, crp_next); 1198 mutex_spin_exit(&crypto_mtx); 1199 result = crypto_invoke(submit, hint); 1200 /* we must take here as the TAILQ op or kinvoke 1201 may need this mutex below. sigh. */ 1202 mutex_spin_enter(&crypto_mtx); 1203 if (result == ERESTART) { 1204 /* 1205 * The driver ran out of resources, mark the 1206 * driver ``blocked'' for cryptop's and put 1207 * the request back in the queue. It would 1208 * best to put the request back where we got 1209 * it but that's hard so for now we put it 1210 * at the front. This should be ok; putting 1211 * it at the end does not work. 1212 */ 1213 /* XXX validate sid again? */ 1214 crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1215 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1216 cryptostats.cs_blocks++; 1217 } 1218 } 1219 1220 /* As above, but for key ops */ 1221 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) { 1222 cap = crypto_checkdriver(krp->krp_hid); 1223 if (cap == NULL || cap->cc_kprocess == NULL) { 1224 /* Op needs to be migrated, process it. */ 1225 break; 1226 } 1227 if (!cap->cc_kqblocked) 1228 break; 1229 } 1230 if (krp != NULL) { 1231 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1232 mutex_spin_exit(&crypto_mtx); 1233 result = crypto_kinvoke(krp, 0); 1234 /* the next iteration will want the mutex. :-/ */ 1235 mutex_spin_enter(&crypto_mtx); 1236 if (result == ERESTART) { 1237 /* 1238 * The driver ran out of resources, mark the 1239 * driver ``blocked'' for cryptkop's and put 1240 * the request back in the queue. It would 1241 * best to put the request back where we got 1242 * it but that's hard so for now we put it 1243 * at the front. This should be ok; putting 1244 * it at the end does not work. 1245 */ 1246 /* XXX validate sid again? */ 1247 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1248 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1249 cryptostats.cs_kblocks++; 1250 } 1251 } 1252 } while (submit != NULL || krp != NULL); 1253 mutex_spin_exit(&crypto_mtx); 1254 } 1255 1256 /* 1257 * Kernel thread to do callbacks. 1258 */ 1259 static void 1260 cryptoret(void) 1261 { 1262 struct cryptop *crp; 1263 struct cryptkop *krp; 1264 1265 mutex_spin_enter(&crypto_mtx); 1266 for (;;) { 1267 crp = TAILQ_FIRST(&crp_ret_q); 1268 if (crp != NULL) { 1269 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 1270 crp->crp_flags &= ~CRYPTO_F_ONRETQ; 1271 } 1272 krp = TAILQ_FIRST(&crp_ret_kq); 1273 if (krp != NULL) { 1274 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 1275 krp->krp_flags &= ~CRYPTO_F_ONRETQ; 1276 } 1277 1278 /* drop before calling any callbacks. */ 1279 if (crp == NULL && krp == NULL) { 1280 cryptostats.cs_rets++; 1281 cv_wait(&cryptoret_cv, &crypto_mtx); 1282 continue; 1283 } 1284 1285 mutex_spin_exit(&crypto_mtx); 1286 1287 if (crp != NULL) { 1288 #ifdef CRYPTO_TIMING 1289 if (crypto_timing) { 1290 /* 1291 * NB: We must copy the timestamp before 1292 * doing the callback as the cryptop is 1293 * likely to be reclaimed. 1294 */ 1295 struct timespec t = crp->crp_tstamp; 1296 crypto_tstat(&cryptostats.cs_cb, &t); 1297 crp->crp_callback(crp); 1298 crypto_tstat(&cryptostats.cs_finis, &t); 1299 } else 1300 #endif 1301 { 1302 crp->crp_callback(crp); 1303 } 1304 } 1305 if (krp != NULL) 1306 krp->krp_callback(krp); 1307 1308 mutex_spin_enter(&crypto_mtx); 1309 } 1310 } 1311