xref: /netbsd-src/sys/opencrypto/crypto.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: crypto.c,v 1.30 2008/11/18 12:59:58 darran Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.30 2008/11/18 12:59:58 darran Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 
69 #include "opt_ocf.h"
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
72 
73 kcondvar_t cryptoret_cv;
74 kmutex_t crypto_mtx;
75 
76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77   #define SWI_CRYPTO 17
78   #define register_swi(lvl, fn)  \
79   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
80   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
81   #define setsoftcrypto(x) softint_schedule(x)
82 
83 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
84 
85 int crypto_ret_q_check(struct cryptop *);
86 
87 /*
88  * Crypto drivers register themselves by allocating a slot in the
89  * crypto_drivers table with crypto_get_driverid() and then registering
90  * each algorithm they support with crypto_register() and crypto_kregister().
91  */
92 static	struct cryptocap *crypto_drivers;
93 static	int crypto_drivers_num;
94 static	void* softintr_cookie;
95 
96 /*
97  * There are two queues for crypto requests; one for symmetric (e.g.
98  * cipher) operations and one for asymmetric (e.g. MOD) operations.
99  * See below for how synchronization is handled.
100  */
101 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
102 		TAILQ_HEAD_INITIALIZER(crp_q);
103 static	TAILQ_HEAD(,cryptkop) crp_kq =
104 		TAILQ_HEAD_INITIALIZER(crp_kq);
105 
106 /*
107  * There are two queues for processing completed crypto requests; one
108  * for the symmetric and one for the asymmetric ops.  We only need one
109  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
110  * for how synchronization is handled.
111  */
112 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
113 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
114 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
115 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
116 
117 /*
118  * XXX these functions are ghastly hacks for when the submission
119  * XXX routines discover a request that was not CBIMM is already
120  * XXX done, and must be yanked from the retq (where _done) put it
121  * XXX as cryptoret won't get the chance.  The queue is walked backwards
122  * XXX as the request is generally the last one queued.
123  *
124  *	 call with the lock held, or else.
125  */
126 int
127 crypto_ret_q_remove(struct cryptop *crp)
128 {
129 	struct cryptop * acrp, *next;
130 
131 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
132 		if (acrp == crp) {
133 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
134 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
135 			return 1;
136 		}
137 	}
138 	return 0;
139 }
140 
141 int
142 crypto_ret_kq_remove(struct cryptkop *krp)
143 {
144 	struct cryptkop * akrp, *next;
145 
146 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
147 		if (akrp == krp) {
148 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
149 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
150 			return 1;
151 		}
152 	}
153 	return 0;
154 }
155 
156 /*
157  * Crypto op and desciptor data structures are allocated
158  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
159  */
160 struct pool cryptop_pool;
161 struct pool cryptodesc_pool;
162 struct pool cryptkop_pool;
163 
164 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
165 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
166 /*
167  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
168  * access to hardware versus software transforms as below:
169  *
170  * crypto_devallowsoft < 0:  Force userlevel requests to use software
171  *                              transforms, always
172  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
173  *                              requests for non-accelerated transforms
174  *                              (handling the latter in software)
175  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
176  *                               are hardware-accelerated.
177  */
178 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
179 
180 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
181 {
182 	sysctl_createv(clog, 0, NULL, NULL,
183 		       CTLFLAG_PERMANENT,
184 		       CTLTYPE_NODE, "kern", NULL,
185 		       NULL, 0, NULL, 0,
186 		       CTL_KERN, CTL_EOL);
187 	sysctl_createv(clog, 0, NULL, NULL,
188 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
189 		       CTLTYPE_INT, "usercrypto",
190 		       SYSCTL_DESCR("Enable/disable user-mode access to "
191 			   "crypto support"),
192 		       NULL, 0, &crypto_usercrypto, 0,
193 		       CTL_KERN, CTL_CREATE, CTL_EOL);
194 	sysctl_createv(clog, 0, NULL, NULL,
195 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
196 		       CTLTYPE_INT, "userasymcrypto",
197 		       SYSCTL_DESCR("Enable/disable user-mode access to "
198 			   "asymmetric crypto support"),
199 		       NULL, 0, &crypto_userasymcrypto, 0,
200 		       CTL_KERN, CTL_CREATE, CTL_EOL);
201 	sysctl_createv(clog, 0, NULL, NULL,
202 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
203 		       CTLTYPE_INT, "cryptodevallowsoft",
204 		       SYSCTL_DESCR("Enable/disable use of software "
205 			   "asymmetric crypto support"),
206 		       NULL, 0, &crypto_devallowsoft, 0,
207 		       CTL_KERN, CTL_CREATE, CTL_EOL);
208 }
209 
210 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
211 
212 /*
213  * Synchronization: read carefully, this is non-trivial.
214  *
215  * Crypto requests are submitted via crypto_dispatch.  Typically
216  * these come in from network protocols at spl0 (output path) or
217  * spl[,soft]net (input path).
218  *
219  * Requests are typically passed on the driver directly, but they
220  * may also be queued for processing by a software interrupt thread,
221  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
222  * the requests to crypto drivers (h/w or s/w) who call crypto_done
223  * when a request is complete.  Hardware crypto drivers are assumed
224  * to register their IRQ's as network devices so their interrupt handlers
225  * and subsequent "done callbacks" happen at spl[imp,net].
226  *
227  * Completed crypto ops are queued for a separate kernel thread that
228  * handles the callbacks at spl0.  This decoupling insures the crypto
229  * driver interrupt service routine is not delayed while the callback
230  * takes place and that callbacks are delivered after a context switch
231  * (as opposed to a software interrupt that clients must block).
232  *
233  * This scheme is not intended for SMP machines.
234  */
235 static	void cryptointr(void);		/* swi thread to dispatch ops */
236 static	void cryptoret(void);		/* kernel thread for callbacks*/
237 static	struct lwp *cryptothread;
238 static	void crypto_destroy(void);
239 static	int crypto_invoke(struct cryptop *crp, int hint);
240 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
241 
242 static struct cryptostats cryptostats;
243 #ifdef CRYPTO_TIMING
244 static	int crypto_timing = 0;
245 #endif
246 
247 static int
248 crypto_init0(void)
249 {
250 	int error;
251 
252 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
253 	cv_init(&cryptoret_cv, "crypto_wait");
254 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
255 		  0, "cryptop", NULL, IPL_NET);
256 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
257 		  0, "cryptodesc", NULL, IPL_NET);
258 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
259 		  0, "cryptkop", NULL, IPL_NET);
260 
261 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
262 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
263 	if (crypto_drivers == NULL) {
264 		printf("crypto_init: cannot malloc driver table\n");
265 		return 0;
266 	}
267 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
268 
269 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
270 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
271 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
272 	if (error) {
273 		printf("crypto_init: cannot start cryptoret thread; error %d",
274 			error);
275 		crypto_destroy();
276 	}
277 
278 	return 0;
279 }
280 
281 void
282 crypto_init(void)
283 {
284 	static ONCE_DECL(crypto_init_once);
285 
286 	RUN_ONCE(&crypto_init_once, crypto_init0);
287 }
288 
289 static void
290 crypto_destroy(void)
291 {
292 	/* XXX no wait to reclaim zones */
293 	if (crypto_drivers != NULL)
294 		free(crypto_drivers, M_CRYPTO_DATA);
295 	unregister_swi(SWI_CRYPTO, cryptointr);
296 }
297 
298 /*
299  * Create a new session.  Must be called with crypto_mtx held.
300  */
301 int
302 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
303 {
304 	struct cryptoini *cr;
305 	u_int32_t hid, lid;
306 	int err = EINVAL;
307 
308 	KASSERT(mutex_owned(&crypto_mtx));
309 
310 	if (crypto_drivers == NULL)
311 		goto done;
312 
313 	/*
314 	 * The algorithm we use here is pretty stupid; just use the
315 	 * first driver that supports all the algorithms we need.
316 	 *
317 	 * XXX We need more smarts here (in real life too, but that's
318 	 * XXX another story altogether).
319 	 */
320 
321 	for (hid = 0; hid < crypto_drivers_num; hid++) {
322 		/*
323 		 * If it's not initialized or has remaining sessions
324 		 * referencing it, skip.
325 		 */
326 		if (crypto_drivers[hid].cc_newsession == NULL ||
327 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
328 			continue;
329 
330 		/* Hardware required -- ignore software drivers. */
331 		if (hard > 0 &&
332 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
333 			continue;
334 		/* Software required -- ignore hardware drivers. */
335 		if (hard < 0 &&
336 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
337 			continue;
338 
339 		/* See if all the algorithms are supported. */
340 		for (cr = cri; cr; cr = cr->cri_next)
341 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
342 				break;
343 
344 		if (cr == NULL) {
345 			/* Ok, all algorithms are supported. */
346 
347 			/*
348 			 * Can't do everything in one session.
349 			 *
350 			 * XXX Fix this. We need to inject a "virtual" session layer right
351 			 * XXX about here.
352 			 */
353 
354 			/* Call the driver initialization routine. */
355 			lid = hid;		/* Pass the driver ID. */
356 			err = crypto_drivers[hid].cc_newsession(
357 					crypto_drivers[hid].cc_arg, &lid, cri);
358 			if (err == 0) {
359 				(*sid) = hid;
360 				(*sid) <<= 32;
361 				(*sid) |= (lid & 0xffffffff);
362 				crypto_drivers[hid].cc_sessions++;
363 			}
364 			goto done;
365 			/*break;*/
366 		}
367 	}
368 done:
369 	return err;
370 }
371 
372 /*
373  * Delete an existing session (or a reserved session on an unregistered
374  * driver).  Must be called with crypto_mtx mutex held.
375  */
376 int
377 crypto_freesession(u_int64_t sid)
378 {
379 	u_int32_t hid;
380 	int err = 0;
381 
382 	KASSERT(mutex_owned(&crypto_mtx));
383 
384 	if (crypto_drivers == NULL) {
385 		err = EINVAL;
386 		goto done;
387 	}
388 
389 	/* Determine two IDs. */
390 	hid = SESID2HID(sid);
391 
392 	if (hid >= crypto_drivers_num) {
393 		err = ENOENT;
394 		goto done;
395 	}
396 
397 	if (crypto_drivers[hid].cc_sessions)
398 		crypto_drivers[hid].cc_sessions--;
399 
400 	/* Call the driver cleanup routine, if available. */
401 	if (crypto_drivers[hid].cc_freesession) {
402 		err = crypto_drivers[hid].cc_freesession(
403 				crypto_drivers[hid].cc_arg, sid);
404 	}
405 	else
406 		err = 0;
407 
408 	/*
409 	 * If this was the last session of a driver marked as invalid,
410 	 * make the entry available for reuse.
411 	 */
412 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
413 	    crypto_drivers[hid].cc_sessions == 0)
414 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
415 
416 done:
417 	return err;
418 }
419 
420 /*
421  * Return an unused driver id.  Used by drivers prior to registering
422  * support for the algorithms they handle.
423  */
424 int32_t
425 crypto_get_driverid(u_int32_t flags)
426 {
427 	struct cryptocap *newdrv;
428 	int i;
429 
430 	crypto_init();		/* XXX oh, this is foul! */
431 
432 	mutex_spin_enter(&crypto_mtx);
433 	for (i = 0; i < crypto_drivers_num; i++)
434 		if (crypto_drivers[i].cc_process == NULL &&
435 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
436 		    crypto_drivers[i].cc_sessions == 0)
437 			break;
438 
439 	/* Out of entries, allocate some more. */
440 	if (i == crypto_drivers_num) {
441 		/* Be careful about wrap-around. */
442 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
443 			mutex_spin_exit(&crypto_mtx);
444 			printf("crypto: driver count wraparound!\n");
445 			return -1;
446 		}
447 
448 		newdrv = malloc(2 * crypto_drivers_num *
449 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
450 		if (newdrv == NULL) {
451 			mutex_spin_exit(&crypto_mtx);
452 			printf("crypto: no space to expand driver table!\n");
453 			return -1;
454 		}
455 
456 		bcopy(crypto_drivers, newdrv,
457 		    crypto_drivers_num * sizeof(struct cryptocap));
458 
459 		crypto_drivers_num *= 2;
460 
461 		free(crypto_drivers, M_CRYPTO_DATA);
462 		crypto_drivers = newdrv;
463 	}
464 
465 	/* NB: state is zero'd on free */
466 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
467 	crypto_drivers[i].cc_flags = flags;
468 
469 	if (bootverbose)
470 		printf("crypto: assign driver %u, flags %u\n", i, flags);
471 
472 	mutex_spin_exit(&crypto_mtx);
473 
474 	return i;
475 }
476 
477 static struct cryptocap *
478 crypto_checkdriver(u_int32_t hid)
479 {
480 	if (crypto_drivers == NULL)
481 		return NULL;
482 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
483 }
484 
485 /*
486  * Register support for a key-related algorithm.  This routine
487  * is called once for each algorithm supported a driver.
488  */
489 int
490 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
491     int (*kprocess)(void*, struct cryptkop *, int),
492     void *karg)
493 {
494 	struct cryptocap *cap;
495 	int err;
496 
497 	mutex_spin_enter(&crypto_mtx);
498 
499 	cap = crypto_checkdriver(driverid);
500 	if (cap != NULL &&
501 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
502 		/*
503 		 * XXX Do some performance testing to determine placing.
504 		 * XXX We probably need an auxiliary data structure that
505 		 * XXX describes relative performances.
506 		 */
507 
508 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
509 		if (bootverbose) {
510 			printf("crypto: driver %u registers key alg %u "
511 			       " flags %u\n",
512 				driverid,
513 				kalg,
514 				flags
515 			);
516 		}
517 
518 		if (cap->cc_kprocess == NULL) {
519 			cap->cc_karg = karg;
520 			cap->cc_kprocess = kprocess;
521 		}
522 		err = 0;
523 	} else
524 		err = EINVAL;
525 
526 	mutex_spin_exit(&crypto_mtx);
527 	return err;
528 }
529 
530 /*
531  * Register support for a non-key-related algorithm.  This routine
532  * is called once for each such algorithm supported by a driver.
533  */
534 int
535 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
536     u_int32_t flags,
537     int (*newses)(void*, u_int32_t*, struct cryptoini*),
538     int (*freeses)(void*, u_int64_t),
539     int (*process)(void*, struct cryptop *, int),
540     void *arg)
541 {
542 	struct cryptocap *cap;
543 	int err;
544 
545 	mutex_spin_enter(&crypto_mtx);
546 
547 	cap = crypto_checkdriver(driverid);
548 	/* NB: algorithms are in the range [1..max] */
549 	if (cap != NULL &&
550 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
551 		/*
552 		 * XXX Do some performance testing to determine placing.
553 		 * XXX We probably need an auxiliary data structure that
554 		 * XXX describes relative performances.
555 		 */
556 
557 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
558 		cap->cc_max_op_len[alg] = maxoplen;
559 		if (bootverbose) {
560 			printf("crypto: driver %u registers alg %u "
561 				"flags %u maxoplen %u\n",
562 				driverid,
563 				alg,
564 				flags,
565 				maxoplen
566 			);
567 		}
568 
569 		if (cap->cc_process == NULL) {
570 			cap->cc_arg = arg;
571 			cap->cc_newsession = newses;
572 			cap->cc_process = process;
573 			cap->cc_freesession = freeses;
574 			cap->cc_sessions = 0;		/* Unmark */
575 		}
576 		err = 0;
577 	} else
578 		err = EINVAL;
579 
580 	mutex_spin_exit(&crypto_mtx);
581 	return err;
582 }
583 
584 /*
585  * Unregister a crypto driver. If there are pending sessions using it,
586  * leave enough information around so that subsequent calls using those
587  * sessions will correctly detect the driver has been unregistered and
588  * reroute requests.
589  */
590 int
591 crypto_unregister(u_int32_t driverid, int alg)
592 {
593 	int i, err;
594 	u_int32_t ses;
595 	struct cryptocap *cap;
596 
597 	mutex_spin_enter(&crypto_mtx);
598 
599 	cap = crypto_checkdriver(driverid);
600 	if (cap != NULL &&
601 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
602 	    cap->cc_alg[alg] != 0) {
603 		cap->cc_alg[alg] = 0;
604 		cap->cc_max_op_len[alg] = 0;
605 
606 		/* Was this the last algorithm ? */
607 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
608 			if (cap->cc_alg[i] != 0)
609 				break;
610 
611 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
612 			ses = cap->cc_sessions;
613 			bzero(cap, sizeof(struct cryptocap));
614 			if (ses != 0) {
615 				/*
616 				 * If there are pending sessions, just mark as invalid.
617 				 */
618 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
619 				cap->cc_sessions = ses;
620 			}
621 		}
622 		err = 0;
623 	} else
624 		err = EINVAL;
625 
626 	mutex_spin_exit(&crypto_mtx);
627 	return err;
628 }
629 
630 /*
631  * Unregister all algorithms associated with a crypto driver.
632  * If there are pending sessions using it, leave enough information
633  * around so that subsequent calls using those sessions will
634  * correctly detect the driver has been unregistered and reroute
635  * requests.
636  *
637  * XXX careful.  Don't change this to call crypto_unregister() for each
638  * XXX registered algorithm unless you drop the mutex across the calls;
639  * XXX you can't take it recursively.
640  */
641 int
642 crypto_unregister_all(u_int32_t driverid)
643 {
644 	int i, err;
645 	u_int32_t ses;
646 	struct cryptocap *cap;
647 
648 	mutex_spin_enter(&crypto_mtx);
649 	cap = crypto_checkdriver(driverid);
650 	if (cap != NULL) {
651 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
652 			cap->cc_alg[i] = 0;
653 			cap->cc_max_op_len[i] = 0;
654 		}
655 		ses = cap->cc_sessions;
656 		bzero(cap, sizeof(struct cryptocap));
657 		if (ses != 0) {
658 			/*
659 			 * If there are pending sessions, just mark as invalid.
660 			 */
661 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
662 			cap->cc_sessions = ses;
663 		}
664 		err = 0;
665 	} else
666 		err = EINVAL;
667 
668 	mutex_spin_exit(&crypto_mtx);
669 	return err;
670 }
671 
672 /*
673  * Clear blockage on a driver.  The what parameter indicates whether
674  * the driver is now ready for cryptop's and/or cryptokop's.
675  */
676 int
677 crypto_unblock(u_int32_t driverid, int what)
678 {
679 	struct cryptocap *cap;
680 	int needwakeup, err;
681 
682 	mutex_spin_enter(&crypto_mtx);
683 	cap = crypto_checkdriver(driverid);
684 	if (cap != NULL) {
685 		needwakeup = 0;
686 		if (what & CRYPTO_SYMQ) {
687 			needwakeup |= cap->cc_qblocked;
688 			cap->cc_qblocked = 0;
689 		}
690 		if (what & CRYPTO_ASYMQ) {
691 			needwakeup |= cap->cc_kqblocked;
692 			cap->cc_kqblocked = 0;
693 		}
694 		err = 0;
695 		mutex_spin_exit(&crypto_mtx);
696 		if (needwakeup)
697 			setsoftcrypto(softintr_cookie);
698 	} else {
699 		err = EINVAL;
700 		mutex_spin_exit(&crypto_mtx);
701 	}
702 
703 	return err;
704 }
705 
706 /*
707  * Dispatch a crypto request to a driver or queue
708  * it, to be processed by the kernel thread.
709  */
710 int
711 crypto_dispatch(struct cryptop *crp)
712 {
713 	u_int32_t hid = SESID2HID(crp->crp_sid);
714 	int result;
715 
716 	mutex_spin_enter(&crypto_mtx);
717 
718 	cryptostats.cs_ops++;
719 
720 #ifdef CRYPTO_TIMING
721 	if (crypto_timing)
722 		nanouptime(&crp->crp_tstamp);
723 #endif
724 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
725 		struct cryptocap *cap;
726 		/*
727 		 * Caller marked the request to be processed
728 		 * immediately; dispatch it directly to the
729 		 * driver unless the driver is currently blocked.
730 		 */
731 		cap = crypto_checkdriver(hid);
732 		if (cap && !cap->cc_qblocked) {
733 			mutex_spin_exit(&crypto_mtx);
734 			result = crypto_invoke(crp, 0);
735 			if (result == ERESTART) {
736 				/*
737 				 * The driver ran out of resources, mark the
738 				 * driver ``blocked'' for cryptop's and put
739 				 * the op on the queue.
740 				 */
741 				mutex_spin_enter(&crypto_mtx);
742 				crypto_drivers[hid].cc_qblocked = 1;
743 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
744 				cryptostats.cs_blocks++;
745 				mutex_spin_exit(&crypto_mtx);
746 			}
747 			goto out_released;
748 		} else {
749 			/*
750 			 * The driver is blocked, just queue the op until
751 			 * it unblocks and the swi thread gets kicked.
752 			 */
753 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
754 			result = 0;
755 		}
756 	} else {
757 		int wasempty = TAILQ_EMPTY(&crp_q);
758 		/*
759 		 * Caller marked the request as ``ok to delay'';
760 		 * queue it for the swi thread.  This is desirable
761 		 * when the operation is low priority and/or suitable
762 		 * for batching.
763 		 */
764 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
765 		if (wasempty) {
766 			mutex_spin_exit(&crypto_mtx);
767 			setsoftcrypto(softintr_cookie);
768 			result = 0;
769 			goto out_released;
770 		}
771 
772 		result = 0;
773 	}
774 
775 	mutex_spin_exit(&crypto_mtx);
776 out_released:
777 	return result;
778 }
779 
780 /*
781  * Add an asymetric crypto request to a queue,
782  * to be processed by the kernel thread.
783  */
784 int
785 crypto_kdispatch(struct cryptkop *krp)
786 {
787 	struct cryptocap *cap;
788 	int result;
789 
790 	mutex_spin_enter(&crypto_mtx);
791 	cryptostats.cs_kops++;
792 
793 	cap = crypto_checkdriver(krp->krp_hid);
794 	if (cap && !cap->cc_kqblocked) {
795 		mutex_spin_exit(&crypto_mtx);
796 		result = crypto_kinvoke(krp, 0);
797 		if (result == ERESTART) {
798 			/*
799 			 * The driver ran out of resources, mark the
800 			 * driver ``blocked'' for cryptop's and put
801 			 * the op on the queue.
802 			 */
803 			mutex_spin_enter(&crypto_mtx);
804 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
805 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
806 			cryptostats.cs_kblocks++;
807 			mutex_spin_exit(&crypto_mtx);
808 		}
809 	} else {
810 		/*
811 		 * The driver is blocked, just queue the op until
812 		 * it unblocks and the swi thread gets kicked.
813 		 */
814 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
815 		result = 0;
816 		mutex_spin_exit(&crypto_mtx);
817 	}
818 
819 	return result;
820 }
821 
822 /*
823  * Dispatch an assymetric crypto request to the appropriate crypto devices.
824  */
825 static int
826 crypto_kinvoke(struct cryptkop *krp, int hint)
827 {
828 	u_int32_t hid;
829 	int error;
830 
831 	/* Sanity checks. */
832 	if (krp == NULL)
833 		return EINVAL;
834 	if (krp->krp_callback == NULL) {
835 		cv_destroy(&krp->krp_cv);
836 		pool_put(&cryptkop_pool, krp);
837 		return EINVAL;
838 	}
839 
840 	for (hid = 0; hid < crypto_drivers_num; hid++) {
841 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
842 		    crypto_devallowsoft == 0)
843 			continue;
844 		if (crypto_drivers[hid].cc_kprocess == NULL)
845 			continue;
846 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
847 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
848 			continue;
849 		break;
850 	}
851 	if (hid < crypto_drivers_num) {
852 		krp->krp_hid = hid;
853 		error = crypto_drivers[hid].cc_kprocess(
854 				crypto_drivers[hid].cc_karg, krp, hint);
855 	} else {
856 		error = ENODEV;
857 	}
858 
859 	if (error) {
860 		krp->krp_status = error;
861 		crypto_kdone(krp);
862 	}
863 	return 0;
864 }
865 
866 #ifdef CRYPTO_TIMING
867 static void
868 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
869 {
870 	struct timespec now, t;
871 
872 	nanouptime(&now);
873 	t.tv_sec = now.tv_sec - tv->tv_sec;
874 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
875 	if (t.tv_nsec < 0) {
876 		t.tv_sec--;
877 		t.tv_nsec += 1000000000;
878 	}
879 	timespecadd(&ts->acc, &t, &t);
880 	if (timespeccmp(&t, &ts->min, <))
881 		ts->min = t;
882 	if (timespeccmp(&t, &ts->max, >))
883 		ts->max = t;
884 	ts->count++;
885 
886 	*tv = now;
887 }
888 #endif
889 
890 /*
891  * Dispatch a crypto request to the appropriate crypto devices.
892  */
893 static int
894 crypto_invoke(struct cryptop *crp, int hint)
895 {
896 	u_int32_t hid;
897 	int (*process)(void*, struct cryptop *, int);
898 
899 #ifdef CRYPTO_TIMING
900 	if (crypto_timing)
901 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
902 #endif
903 	/* Sanity checks. */
904 	if (crp == NULL)
905 		return EINVAL;
906 	if (crp->crp_callback == NULL) {
907 		return EINVAL;
908 	}
909 	if (crp->crp_desc == NULL) {
910 		crp->crp_etype = EINVAL;
911 		crypto_done(crp);
912 		return 0;
913 	}
914 
915 	hid = SESID2HID(crp->crp_sid);
916 	if (hid < crypto_drivers_num) {
917 		mutex_spin_enter(&crypto_mtx);
918 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
919 			crypto_freesession(crp->crp_sid);
920 		process = crypto_drivers[hid].cc_process;
921 		mutex_spin_exit(&crypto_mtx);
922 	} else {
923 		process = NULL;
924 	}
925 
926 	if (process == NULL) {
927 		struct cryptodesc *crd;
928 		u_int64_t nid = 0;
929 
930 		/*
931 		 * Driver has unregistered; migrate the session and return
932 		 * an error to the caller so they'll resubmit the op.
933 		 */
934 		mutex_spin_enter(&crypto_mtx);
935 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
936 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
937 
938 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
939 			crp->crp_sid = nid;
940 
941 		crp->crp_etype = EAGAIN;
942 		mutex_spin_exit(&crypto_mtx);
943 
944 		crypto_done(crp);
945 		return 0;
946 	} else {
947 		/*
948 		 * Invoke the driver to process the request.
949 		 */
950 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
951 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
952 	}
953 }
954 
955 /*
956  * Release a set of crypto descriptors.
957  */
958 void
959 crypto_freereq(struct cryptop *crp)
960 {
961 	struct cryptodesc *crd;
962 
963 	if (crp == NULL)
964 		return;
965 
966 	/* sanity check */
967 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
968 		panic("crypto_freereq() freeing crp on RETQ\n");
969 	}
970 
971 	while ((crd = crp->crp_desc) != NULL) {
972 		crp->crp_desc = crd->crd_next;
973 		pool_put(&cryptodesc_pool, crd);
974 	}
975 	cv_destroy(&crp->crp_cv);
976 	pool_put(&cryptop_pool, crp);
977 }
978 
979 /*
980  * Acquire a set of crypto descriptors.
981  */
982 struct cryptop *
983 crypto_getreq(int num)
984 {
985 	struct cryptodesc *crd;
986 	struct cryptop *crp;
987 
988 	crp = pool_get(&cryptop_pool, 0);
989 	if (crp == NULL) {
990 		return NULL;
991 	}
992 	bzero(crp, sizeof(struct cryptop));
993 	cv_init(&crp->crp_cv, "crydev");
994 
995 	while (num--) {
996 		crd = pool_get(&cryptodesc_pool, 0);
997 		if (crd == NULL) {
998 			crypto_freereq(crp);
999 			return NULL;
1000 		}
1001 
1002 		bzero(crd, sizeof(struct cryptodesc));
1003 		crd->crd_next = crp->crp_desc;
1004 		crp->crp_desc = crd;
1005 	}
1006 
1007 	return crp;
1008 }
1009 
1010 /*
1011  * Invoke the callback on behalf of the driver.
1012  */
1013 void
1014 crypto_done(struct cryptop *crp)
1015 {
1016 	int wasempty;
1017 
1018 	if (crp->crp_etype != 0)
1019 		cryptostats.cs_errs++;
1020 #ifdef CRYPTO_TIMING
1021 	if (crypto_timing)
1022 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1023 #endif
1024 
1025 	/*
1026 	 * Normal case; queue the callback for the thread.
1027 	 *
1028 	 * The return queue is manipulated by the swi thread
1029 	 * and, potentially, by crypto device drivers calling
1030 	 * back to mark operations completed.  Thus we need
1031 	 * to mask both while manipulating the return queue.
1032 	 */
1033   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1034 		/*
1035 	 	* Do the callback directly.  This is ok when the
1036   	 	* callback routine does very little (e.g. the
1037 	 	* /dev/crypto callback method just does a wakeup).
1038 	 	*/
1039 		mutex_spin_enter(&crypto_mtx);
1040 		crp->crp_flags |= CRYPTO_F_DONE;
1041 		mutex_spin_exit(&crypto_mtx);
1042 
1043 #ifdef CRYPTO_TIMING
1044 		if (crypto_timing) {
1045 			/*
1046 		 	* NB: We must copy the timestamp before
1047 		 	* doing the callback as the cryptop is
1048 		 	* likely to be reclaimed.
1049 		 	*/
1050 			struct timespec t = crp->crp_tstamp;
1051 			crypto_tstat(&cryptostats.cs_cb, &t);
1052 			crp->crp_callback(crp);
1053 			crypto_tstat(&cryptostats.cs_finis, &t);
1054 		} else
1055 #endif
1056 		crp->crp_callback(crp);
1057 	} else {
1058 		mutex_spin_enter(&crypto_mtx);
1059 		crp->crp_flags |= CRYPTO_F_DONE;
1060 
1061 		if (crp->crp_flags & CRYPTO_F_USER) {
1062 			/* the request has completed while
1063 			 * running in the user context
1064 			 * so don't queue it - the user
1065 			 * thread won't sleep when it sees
1066 			 * the CRYPTO_F_DONE flag.
1067 			 * This is an optimization to avoid
1068 			 * unecessary context switches.
1069 			 */
1070 		} else {
1071 			wasempty = TAILQ_EMPTY(&crp_ret_q);
1072 			DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
1073 			crp->crp_flags |= CRYPTO_F_ONRETQ;
1074 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1075 			if (wasempty) {
1076 				DPRINTF(("crypto_done: waking cryptoret, %08x " \
1077 					"hit empty queue\n.", (uint32_t)crp));
1078 				cv_signal(&cryptoret_cv);
1079 			}
1080 		}
1081 		mutex_spin_exit(&crypto_mtx);
1082 	}
1083 }
1084 
1085 /*
1086  * Invoke the callback on behalf of the driver.
1087  */
1088 void
1089 crypto_kdone(struct cryptkop *krp)
1090 {
1091 	int wasempty;
1092 
1093 	if (krp->krp_status != 0)
1094 		cryptostats.cs_kerrs++;
1095 
1096 	krp->krp_flags |= CRYPTO_F_DONE;
1097 
1098 	/*
1099 	 * The return queue is manipulated by the swi thread
1100 	 * and, potentially, by crypto device drivers calling
1101 	 * back to mark operations completed.  Thus we need
1102 	 * to mask both while manipulating the return queue.
1103 	 */
1104 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1105 		krp->krp_callback(krp);
1106 	} else {
1107 		mutex_spin_enter(&crypto_mtx);
1108 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1109 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1110 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1111 		if (wasempty)
1112 			cv_signal(&cryptoret_cv);
1113 		mutex_spin_exit(&crypto_mtx);
1114 	}
1115 }
1116 
1117 int
1118 crypto_getfeat(int *featp)
1119 {
1120 	int hid, kalg, feat = 0;
1121 
1122 	mutex_spin_enter(&crypto_mtx);
1123 
1124 	if (crypto_userasymcrypto == 0)
1125 		goto out;
1126 
1127 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1128 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1129 		    crypto_devallowsoft == 0) {
1130 			continue;
1131 		}
1132 		if (crypto_drivers[hid].cc_kprocess == NULL)
1133 			continue;
1134 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1135 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1136 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1137 				feat |=  1 << kalg;
1138 	}
1139 out:
1140 	mutex_spin_exit(&crypto_mtx);
1141 	*featp = feat;
1142 	return (0);
1143 }
1144 
1145 /*
1146  * Software interrupt thread to dispatch crypto requests.
1147  */
1148 static void
1149 cryptointr(void)
1150 {
1151 	struct cryptop *crp, *submit, *cnext;
1152 	struct cryptkop *krp, *knext;
1153 	struct cryptocap *cap;
1154 	int result, hint;
1155 
1156 	cryptostats.cs_intrs++;
1157 	mutex_spin_enter(&crypto_mtx);
1158 	do {
1159 		/*
1160 		 * Find the first element in the queue that can be
1161 		 * processed and look-ahead to see if multiple ops
1162 		 * are ready for the same driver.
1163 		 */
1164 		submit = NULL;
1165 		hint = 0;
1166 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1167 			u_int32_t hid = SESID2HID(crp->crp_sid);
1168 			cap = crypto_checkdriver(hid);
1169 			if (cap == NULL || cap->cc_process == NULL) {
1170 				/* Op needs to be migrated, process it. */
1171 				if (submit == NULL)
1172 					submit = crp;
1173 				break;
1174 			}
1175 			if (!cap->cc_qblocked) {
1176 				if (submit != NULL) {
1177 					/*
1178 					 * We stop on finding another op,
1179 					 * regardless whether its for the same
1180 					 * driver or not.  We could keep
1181 					 * searching the queue but it might be
1182 					 * better to just use a per-driver
1183 					 * queue instead.
1184 					 */
1185 					if (SESID2HID(submit->crp_sid) == hid)
1186 						hint = CRYPTO_HINT_MORE;
1187 					break;
1188 				} else {
1189 					submit = crp;
1190 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1191 						break;
1192 					/* keep scanning for more are q'd */
1193 				}
1194 			}
1195 		}
1196 		if (submit != NULL) {
1197 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1198 			mutex_spin_exit(&crypto_mtx);
1199 			result = crypto_invoke(submit, hint);
1200 			/* we must take here as the TAILQ op or kinvoke
1201 			   may need this mutex below.  sigh. */
1202 			mutex_spin_enter(&crypto_mtx);
1203 			if (result == ERESTART) {
1204 				/*
1205 				 * The driver ran out of resources, mark the
1206 				 * driver ``blocked'' for cryptop's and put
1207 				 * the request back in the queue.  It would
1208 				 * best to put the request back where we got
1209 				 * it but that's hard so for now we put it
1210 				 * at the front.  This should be ok; putting
1211 				 * it at the end does not work.
1212 				 */
1213 				/* XXX validate sid again? */
1214 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1215 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1216 				cryptostats.cs_blocks++;
1217 			}
1218 		}
1219 
1220 		/* As above, but for key ops */
1221 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1222 			cap = crypto_checkdriver(krp->krp_hid);
1223 			if (cap == NULL || cap->cc_kprocess == NULL) {
1224 				/* Op needs to be migrated, process it. */
1225 				break;
1226 			}
1227 			if (!cap->cc_kqblocked)
1228 				break;
1229 		}
1230 		if (krp != NULL) {
1231 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1232 			mutex_spin_exit(&crypto_mtx);
1233 			result = crypto_kinvoke(krp, 0);
1234 			/* the next iteration will want the mutex. :-/ */
1235 			mutex_spin_enter(&crypto_mtx);
1236 			if (result == ERESTART) {
1237 				/*
1238 				 * The driver ran out of resources, mark the
1239 				 * driver ``blocked'' for cryptkop's and put
1240 				 * the request back in the queue.  It would
1241 				 * best to put the request back where we got
1242 				 * it but that's hard so for now we put it
1243 				 * at the front.  This should be ok; putting
1244 				 * it at the end does not work.
1245 				 */
1246 				/* XXX validate sid again? */
1247 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1248 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1249 				cryptostats.cs_kblocks++;
1250 			}
1251 		}
1252 	} while (submit != NULL || krp != NULL);
1253 	mutex_spin_exit(&crypto_mtx);
1254 }
1255 
1256 /*
1257  * Kernel thread to do callbacks.
1258  */
1259 static void
1260 cryptoret(void)
1261 {
1262 	struct cryptop *crp;
1263 	struct cryptkop *krp;
1264 
1265 	mutex_spin_enter(&crypto_mtx);
1266 	for (;;) {
1267 		crp = TAILQ_FIRST(&crp_ret_q);
1268 		if (crp != NULL) {
1269 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1270 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1271 		}
1272 		krp = TAILQ_FIRST(&crp_ret_kq);
1273 		if (krp != NULL) {
1274 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1275 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1276 		}
1277 
1278 		/* drop before calling any callbacks. */
1279 		if (crp == NULL && krp == NULL) {
1280 			cryptostats.cs_rets++;
1281 			cv_wait(&cryptoret_cv, &crypto_mtx);
1282 			continue;
1283 		}
1284 
1285 		mutex_spin_exit(&crypto_mtx);
1286 
1287 		if (crp != NULL) {
1288 #ifdef CRYPTO_TIMING
1289 			if (crypto_timing) {
1290 				/*
1291 				 * NB: We must copy the timestamp before
1292 				 * doing the callback as the cryptop is
1293 				 * likely to be reclaimed.
1294 				 */
1295 				struct timespec t = crp->crp_tstamp;
1296 				crypto_tstat(&cryptostats.cs_cb, &t);
1297 				crp->crp_callback(crp);
1298 				crypto_tstat(&cryptostats.cs_finis, &t);
1299 			} else
1300 #endif
1301 			{
1302 				crp->crp_callback(crp);
1303 			}
1304 		}
1305 		if (krp != NULL)
1306 			krp->krp_callback(krp);
1307 
1308 		mutex_spin_enter(&crypto_mtx);
1309 	}
1310 }
1311