xref: /netbsd-src/sys/opencrypto/crypto.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: crypto.c,v 1.34 2009/04/18 14:58:07 tsutsui Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*-
6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Coyote Point Systems, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54 
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.34 2009/04/18 14:58:07 tsutsui Exp $");
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 
69 #include "opt_ocf.h"
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
72 
73 kcondvar_t cryptoret_cv;
74 kmutex_t crypto_mtx;
75 
76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77   #define SWI_CRYPTO 17
78   #define register_swi(lvl, fn)  \
79   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
80   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
81   #define setsoftcrypto(x) softint_schedule(x)
82 
83 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
84 
85 int crypto_ret_q_check(struct cryptop *);
86 
87 /*
88  * Crypto drivers register themselves by allocating a slot in the
89  * crypto_drivers table with crypto_get_driverid() and then registering
90  * each algorithm they support with crypto_register() and crypto_kregister().
91  */
92 static	struct cryptocap *crypto_drivers;
93 static	int crypto_drivers_num;
94 static	void* softintr_cookie;
95 
96 /*
97  * There are two queues for crypto requests; one for symmetric (e.g.
98  * cipher) operations and one for asymmetric (e.g. MOD) operations.
99  * See below for how synchronization is handled.
100  */
101 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
102 		TAILQ_HEAD_INITIALIZER(crp_q);
103 static	TAILQ_HEAD(,cryptkop) crp_kq =
104 		TAILQ_HEAD_INITIALIZER(crp_kq);
105 
106 /*
107  * There are two queues for processing completed crypto requests; one
108  * for the symmetric and one for the asymmetric ops.  We only need one
109  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
110  * for how synchronization is handled.
111  */
112 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
113 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
114 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
115 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
116 
117 /*
118  * XXX these functions are ghastly hacks for when the submission
119  * XXX routines discover a request that was not CBIMM is already
120  * XXX done, and must be yanked from the retq (where _done) put it
121  * XXX as cryptoret won't get the chance.  The queue is walked backwards
122  * XXX as the request is generally the last one queued.
123  *
124  *	 call with the lock held, or else.
125  */
126 int
127 crypto_ret_q_remove(struct cryptop *crp)
128 {
129 	struct cryptop * acrp, *next;
130 
131 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
132 		if (acrp == crp) {
133 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
134 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
135 			return 1;
136 		}
137 	}
138 	return 0;
139 }
140 
141 int
142 crypto_ret_kq_remove(struct cryptkop *krp)
143 {
144 	struct cryptkop * akrp, *next;
145 
146 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
147 		if (akrp == krp) {
148 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
149 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
150 			return 1;
151 		}
152 	}
153 	return 0;
154 }
155 
156 /*
157  * Crypto op and desciptor data structures are allocated
158  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
159  */
160 struct pool cryptop_pool;
161 struct pool cryptodesc_pool;
162 struct pool cryptkop_pool;
163 
164 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
165 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
166 /*
167  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
168  * access to hardware versus software transforms as below:
169  *
170  * crypto_devallowsoft < 0:  Force userlevel requests to use software
171  *                              transforms, always
172  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
173  *                              requests for non-accelerated transforms
174  *                              (handling the latter in software)
175  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
176  *                               are hardware-accelerated.
177  */
178 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
179 
180 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
181 {
182 	sysctl_createv(clog, 0, NULL, NULL,
183 		       CTLFLAG_PERMANENT,
184 		       CTLTYPE_NODE, "kern", NULL,
185 		       NULL, 0, NULL, 0,
186 		       CTL_KERN, CTL_EOL);
187 	sysctl_createv(clog, 0, NULL, NULL,
188 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
189 		       CTLTYPE_INT, "usercrypto",
190 		       SYSCTL_DESCR("Enable/disable user-mode access to "
191 			   "crypto support"),
192 		       NULL, 0, &crypto_usercrypto, 0,
193 		       CTL_KERN, CTL_CREATE, CTL_EOL);
194 	sysctl_createv(clog, 0, NULL, NULL,
195 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
196 		       CTLTYPE_INT, "userasymcrypto",
197 		       SYSCTL_DESCR("Enable/disable user-mode access to "
198 			   "asymmetric crypto support"),
199 		       NULL, 0, &crypto_userasymcrypto, 0,
200 		       CTL_KERN, CTL_CREATE, CTL_EOL);
201 	sysctl_createv(clog, 0, NULL, NULL,
202 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
203 		       CTLTYPE_INT, "cryptodevallowsoft",
204 		       SYSCTL_DESCR("Enable/disable use of software "
205 			   "asymmetric crypto support"),
206 		       NULL, 0, &crypto_devallowsoft, 0,
207 		       CTL_KERN, CTL_CREATE, CTL_EOL);
208 }
209 
210 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
211 
212 /*
213  * Synchronization: read carefully, this is non-trivial.
214  *
215  * Crypto requests are submitted via crypto_dispatch.  Typically
216  * these come in from network protocols at spl0 (output path) or
217  * spl[,soft]net (input path).
218  *
219  * Requests are typically passed on the driver directly, but they
220  * may also be queued for processing by a software interrupt thread,
221  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
222  * the requests to crypto drivers (h/w or s/w) who call crypto_done
223  * when a request is complete.  Hardware crypto drivers are assumed
224  * to register their IRQ's as network devices so their interrupt handlers
225  * and subsequent "done callbacks" happen at spl[imp,net].
226  *
227  * Completed crypto ops are queued for a separate kernel thread that
228  * handles the callbacks at spl0.  This decoupling insures the crypto
229  * driver interrupt service routine is not delayed while the callback
230  * takes place and that callbacks are delivered after a context switch
231  * (as opposed to a software interrupt that clients must block).
232  *
233  * This scheme is not intended for SMP machines.
234  */
235 static	void cryptointr(void);		/* swi thread to dispatch ops */
236 static	void cryptoret(void);		/* kernel thread for callbacks*/
237 static	struct lwp *cryptothread;
238 static	void crypto_destroy(void);
239 static	int crypto_invoke(struct cryptop *crp, int hint);
240 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
241 
242 static struct cryptostats cryptostats;
243 #ifdef CRYPTO_TIMING
244 static	int crypto_timing = 0;
245 #endif
246 
247 static int
248 crypto_init0(void)
249 {
250 	int error;
251 
252 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
253 	cv_init(&cryptoret_cv, "crypto_wait");
254 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
255 		  0, "cryptop", NULL, IPL_NET);
256 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
257 		  0, "cryptodesc", NULL, IPL_NET);
258 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
259 		  0, "cryptkop", NULL, IPL_NET);
260 
261 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
262 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
263 	if (crypto_drivers == NULL) {
264 		printf("crypto_init: cannot malloc driver table\n");
265 		return 0;
266 	}
267 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
268 
269 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
270 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
271 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
272 	if (error) {
273 		printf("crypto_init: cannot start cryptoret thread; error %d",
274 			error);
275 		crypto_destroy();
276 	}
277 
278 	return 0;
279 }
280 
281 void
282 crypto_init(void)
283 {
284 	static ONCE_DECL(crypto_init_once);
285 
286 	RUN_ONCE(&crypto_init_once, crypto_init0);
287 }
288 
289 static void
290 crypto_destroy(void)
291 {
292 	/* XXX no wait to reclaim zones */
293 	if (crypto_drivers != NULL)
294 		free(crypto_drivers, M_CRYPTO_DATA);
295 	unregister_swi(SWI_CRYPTO, cryptointr);
296 }
297 
298 /*
299  * Create a new session.  Must be called with crypto_mtx held.
300  */
301 int
302 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
303 {
304 	struct cryptoini *cr;
305 	u_int32_t hid, lid;
306 	int err = EINVAL;
307 
308 	KASSERT(mutex_owned(&crypto_mtx));
309 
310 	if (crypto_drivers == NULL)
311 		goto done;
312 
313 	/*
314 	 * The algorithm we use here is pretty stupid; just use the
315 	 * first driver that supports all the algorithms we need.
316 	 *
317 	 * XXX We need more smarts here (in real life too, but that's
318 	 * XXX another story altogether).
319 	 */
320 
321 	for (hid = 0; hid < crypto_drivers_num; hid++) {
322 		/*
323 		 * If it's not initialized or has remaining sessions
324 		 * referencing it, skip.
325 		 */
326 		if (crypto_drivers[hid].cc_newsession == NULL ||
327 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
328 			continue;
329 
330 		/* Hardware required -- ignore software drivers. */
331 		if (hard > 0 &&
332 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
333 			continue;
334 		/* Software required -- ignore hardware drivers. */
335 		if (hard < 0 &&
336 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
337 			continue;
338 
339 		/* See if all the algorithms are supported. */
340 		for (cr = cri; cr; cr = cr->cri_next)
341 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
342 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
343 				break;
344 			}
345 
346 		if (cr == NULL) {
347 			/* Ok, all algorithms are supported. */
348 
349 			/*
350 			 * Can't do everything in one session.
351 			 *
352 			 * XXX Fix this. We need to inject a "virtual" session layer right
353 			 * XXX about here.
354 			 */
355 
356 			/* Call the driver initialization routine. */
357 			lid = hid;		/* Pass the driver ID. */
358 			err = crypto_drivers[hid].cc_newsession(
359 					crypto_drivers[hid].cc_arg, &lid, cri);
360 			if (err == 0) {
361 				(*sid) = hid;
362 				(*sid) <<= 32;
363 				(*sid) |= (lid & 0xffffffff);
364 				crypto_drivers[hid].cc_sessions++;
365 			}
366 			goto done;
367 			/*break;*/
368 		}
369 	}
370 done:
371 	return err;
372 }
373 
374 /*
375  * Delete an existing session (or a reserved session on an unregistered
376  * driver).  Must be called with crypto_mtx mutex held.
377  */
378 int
379 crypto_freesession(u_int64_t sid)
380 {
381 	u_int32_t hid;
382 	int err = 0;
383 
384 	KASSERT(mutex_owned(&crypto_mtx));
385 
386 	if (crypto_drivers == NULL) {
387 		err = EINVAL;
388 		goto done;
389 	}
390 
391 	/* Determine two IDs. */
392 	hid = SESID2HID(sid);
393 
394 	if (hid >= crypto_drivers_num) {
395 		err = ENOENT;
396 		goto done;
397 	}
398 
399 	if (crypto_drivers[hid].cc_sessions)
400 		crypto_drivers[hid].cc_sessions--;
401 
402 	/* Call the driver cleanup routine, if available. */
403 	if (crypto_drivers[hid].cc_freesession) {
404 		err = crypto_drivers[hid].cc_freesession(
405 				crypto_drivers[hid].cc_arg, sid);
406 	}
407 	else
408 		err = 0;
409 
410 	/*
411 	 * If this was the last session of a driver marked as invalid,
412 	 * make the entry available for reuse.
413 	 */
414 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
415 	    crypto_drivers[hid].cc_sessions == 0)
416 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
417 
418 done:
419 	return err;
420 }
421 
422 /*
423  * Return an unused driver id.  Used by drivers prior to registering
424  * support for the algorithms they handle.
425  */
426 int32_t
427 crypto_get_driverid(u_int32_t flags)
428 {
429 	struct cryptocap *newdrv;
430 	int i;
431 
432 	crypto_init();		/* XXX oh, this is foul! */
433 
434 	mutex_spin_enter(&crypto_mtx);
435 	for (i = 0; i < crypto_drivers_num; i++)
436 		if (crypto_drivers[i].cc_process == NULL &&
437 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
438 		    crypto_drivers[i].cc_sessions == 0)
439 			break;
440 
441 	/* Out of entries, allocate some more. */
442 	if (i == crypto_drivers_num) {
443 		/* Be careful about wrap-around. */
444 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
445 			mutex_spin_exit(&crypto_mtx);
446 			printf("crypto: driver count wraparound!\n");
447 			return -1;
448 		}
449 
450 		newdrv = malloc(2 * crypto_drivers_num *
451 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
452 		if (newdrv == NULL) {
453 			mutex_spin_exit(&crypto_mtx);
454 			printf("crypto: no space to expand driver table!\n");
455 			return -1;
456 		}
457 
458 		memcpy(newdrv, crypto_drivers,
459 		    crypto_drivers_num * sizeof(struct cryptocap));
460 
461 		crypto_drivers_num *= 2;
462 
463 		free(crypto_drivers, M_CRYPTO_DATA);
464 		crypto_drivers = newdrv;
465 	}
466 
467 	/* NB: state is zero'd on free */
468 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
469 	crypto_drivers[i].cc_flags = flags;
470 
471 	if (bootverbose)
472 		printf("crypto: assign driver %u, flags %u\n", i, flags);
473 
474 	mutex_spin_exit(&crypto_mtx);
475 
476 	return i;
477 }
478 
479 static struct cryptocap *
480 crypto_checkdriver(u_int32_t hid)
481 {
482 	if (crypto_drivers == NULL)
483 		return NULL;
484 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
485 }
486 
487 /*
488  * Register support for a key-related algorithm.  This routine
489  * is called once for each algorithm supported a driver.
490  */
491 int
492 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
493     int (*kprocess)(void*, struct cryptkop *, int),
494     void *karg)
495 {
496 	struct cryptocap *cap;
497 	int err;
498 
499 	mutex_spin_enter(&crypto_mtx);
500 
501 	cap = crypto_checkdriver(driverid);
502 	if (cap != NULL &&
503 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
504 		/*
505 		 * XXX Do some performance testing to determine placing.
506 		 * XXX We probably need an auxiliary data structure that
507 		 * XXX describes relative performances.
508 		 */
509 
510 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
511 		if (bootverbose) {
512 			printf("crypto: driver %u registers key alg %u "
513 			       " flags %u\n",
514 				driverid,
515 				kalg,
516 				flags
517 			);
518 		}
519 
520 		if (cap->cc_kprocess == NULL) {
521 			cap->cc_karg = karg;
522 			cap->cc_kprocess = kprocess;
523 		}
524 		err = 0;
525 	} else
526 		err = EINVAL;
527 
528 	mutex_spin_exit(&crypto_mtx);
529 	return err;
530 }
531 
532 /*
533  * Register support for a non-key-related algorithm.  This routine
534  * is called once for each such algorithm supported by a driver.
535  */
536 int
537 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
538     u_int32_t flags,
539     int (*newses)(void*, u_int32_t*, struct cryptoini*),
540     int (*freeses)(void*, u_int64_t),
541     int (*process)(void*, struct cryptop *, int),
542     void *arg)
543 {
544 	struct cryptocap *cap;
545 	int err;
546 
547 	mutex_spin_enter(&crypto_mtx);
548 
549 	cap = crypto_checkdriver(driverid);
550 	/* NB: algorithms are in the range [1..max] */
551 	if (cap != NULL &&
552 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
553 		/*
554 		 * XXX Do some performance testing to determine placing.
555 		 * XXX We probably need an auxiliary data structure that
556 		 * XXX describes relative performances.
557 		 */
558 
559 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
560 		cap->cc_max_op_len[alg] = maxoplen;
561 		if (bootverbose) {
562 			printf("crypto: driver %u registers alg %u "
563 				"flags %u maxoplen %u\n",
564 				driverid,
565 				alg,
566 				flags,
567 				maxoplen
568 			);
569 		}
570 
571 		if (cap->cc_process == NULL) {
572 			cap->cc_arg = arg;
573 			cap->cc_newsession = newses;
574 			cap->cc_process = process;
575 			cap->cc_freesession = freeses;
576 			cap->cc_sessions = 0;		/* Unmark */
577 		}
578 		err = 0;
579 	} else
580 		err = EINVAL;
581 
582 	mutex_spin_exit(&crypto_mtx);
583 	return err;
584 }
585 
586 /*
587  * Unregister a crypto driver. If there are pending sessions using it,
588  * leave enough information around so that subsequent calls using those
589  * sessions will correctly detect the driver has been unregistered and
590  * reroute requests.
591  */
592 int
593 crypto_unregister(u_int32_t driverid, int alg)
594 {
595 	int i, err;
596 	u_int32_t ses;
597 	struct cryptocap *cap;
598 
599 	mutex_spin_enter(&crypto_mtx);
600 
601 	cap = crypto_checkdriver(driverid);
602 	if (cap != NULL &&
603 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
604 	    cap->cc_alg[alg] != 0) {
605 		cap->cc_alg[alg] = 0;
606 		cap->cc_max_op_len[alg] = 0;
607 
608 		/* Was this the last algorithm ? */
609 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
610 			if (cap->cc_alg[i] != 0)
611 				break;
612 
613 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
614 			ses = cap->cc_sessions;
615 			memset(cap, 0, sizeof(struct cryptocap));
616 			if (ses != 0) {
617 				/*
618 				 * If there are pending sessions, just mark as invalid.
619 				 */
620 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
621 				cap->cc_sessions = ses;
622 			}
623 		}
624 		err = 0;
625 	} else
626 		err = EINVAL;
627 
628 	mutex_spin_exit(&crypto_mtx);
629 	return err;
630 }
631 
632 /*
633  * Unregister all algorithms associated with a crypto driver.
634  * If there are pending sessions using it, leave enough information
635  * around so that subsequent calls using those sessions will
636  * correctly detect the driver has been unregistered and reroute
637  * requests.
638  *
639  * XXX careful.  Don't change this to call crypto_unregister() for each
640  * XXX registered algorithm unless you drop the mutex across the calls;
641  * XXX you can't take it recursively.
642  */
643 int
644 crypto_unregister_all(u_int32_t driverid)
645 {
646 	int i, err;
647 	u_int32_t ses;
648 	struct cryptocap *cap;
649 
650 	mutex_spin_enter(&crypto_mtx);
651 	cap = crypto_checkdriver(driverid);
652 	if (cap != NULL) {
653 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
654 			cap->cc_alg[i] = 0;
655 			cap->cc_max_op_len[i] = 0;
656 		}
657 		ses = cap->cc_sessions;
658 		memset(cap, 0, sizeof(struct cryptocap));
659 		if (ses != 0) {
660 			/*
661 			 * If there are pending sessions, just mark as invalid.
662 			 */
663 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
664 			cap->cc_sessions = ses;
665 		}
666 		err = 0;
667 	} else
668 		err = EINVAL;
669 
670 	mutex_spin_exit(&crypto_mtx);
671 	return err;
672 }
673 
674 /*
675  * Clear blockage on a driver.  The what parameter indicates whether
676  * the driver is now ready for cryptop's and/or cryptokop's.
677  */
678 int
679 crypto_unblock(u_int32_t driverid, int what)
680 {
681 	struct cryptocap *cap;
682 	int needwakeup, err;
683 
684 	mutex_spin_enter(&crypto_mtx);
685 	cap = crypto_checkdriver(driverid);
686 	if (cap != NULL) {
687 		needwakeup = 0;
688 		if (what & CRYPTO_SYMQ) {
689 			needwakeup |= cap->cc_qblocked;
690 			cap->cc_qblocked = 0;
691 		}
692 		if (what & CRYPTO_ASYMQ) {
693 			needwakeup |= cap->cc_kqblocked;
694 			cap->cc_kqblocked = 0;
695 		}
696 		err = 0;
697 		mutex_spin_exit(&crypto_mtx);
698 		if (needwakeup)
699 			setsoftcrypto(softintr_cookie);
700 	} else {
701 		err = EINVAL;
702 		mutex_spin_exit(&crypto_mtx);
703 	}
704 
705 	return err;
706 }
707 
708 /*
709  * Dispatch a crypto request to a driver or queue
710  * it, to be processed by the kernel thread.
711  */
712 int
713 crypto_dispatch(struct cryptop *crp)
714 {
715 	u_int32_t hid = SESID2HID(crp->crp_sid);
716 	int result;
717 
718 	mutex_spin_enter(&crypto_mtx);
719 	DPRINTF(("crypto_dispatch: crp %08x, reqid 0x%x, alg %d\n",
720 			(uint32_t)crp,
721 			crp->crp_reqid,
722 			crp->crp_desc->crd_alg));
723 
724 	cryptostats.cs_ops++;
725 
726 #ifdef CRYPTO_TIMING
727 	if (crypto_timing)
728 		nanouptime(&crp->crp_tstamp);
729 #endif
730 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
731 		struct cryptocap *cap;
732 		/*
733 		 * Caller marked the request to be processed
734 		 * immediately; dispatch it directly to the
735 		 * driver unless the driver is currently blocked.
736 		 */
737 		cap = crypto_checkdriver(hid);
738 		if (cap && !cap->cc_qblocked) {
739 			mutex_spin_exit(&crypto_mtx);
740 			result = crypto_invoke(crp, 0);
741 			if (result == ERESTART) {
742 				/*
743 				 * The driver ran out of resources, mark the
744 				 * driver ``blocked'' for cryptop's and put
745 				 * the op on the queue.
746 				 */
747 				mutex_spin_enter(&crypto_mtx);
748 				crypto_drivers[hid].cc_qblocked = 1;
749 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
750 				cryptostats.cs_blocks++;
751 				mutex_spin_exit(&crypto_mtx);
752 			}
753 			goto out_released;
754 		} else {
755 			/*
756 			 * The driver is blocked, just queue the op until
757 			 * it unblocks and the swi thread gets kicked.
758 			 */
759 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
760 			result = 0;
761 		}
762 	} else {
763 		int wasempty = TAILQ_EMPTY(&crp_q);
764 		/*
765 		 * Caller marked the request as ``ok to delay'';
766 		 * queue it for the swi thread.  This is desirable
767 		 * when the operation is low priority and/or suitable
768 		 * for batching.
769 		 */
770 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
771 		if (wasempty) {
772 			mutex_spin_exit(&crypto_mtx);
773 			setsoftcrypto(softintr_cookie);
774 			result = 0;
775 			goto out_released;
776 		}
777 
778 		result = 0;
779 	}
780 
781 	mutex_spin_exit(&crypto_mtx);
782 out_released:
783 	return result;
784 }
785 
786 /*
787  * Add an asymetric crypto request to a queue,
788  * to be processed by the kernel thread.
789  */
790 int
791 crypto_kdispatch(struct cryptkop *krp)
792 {
793 	struct cryptocap *cap;
794 	int result;
795 
796 	mutex_spin_enter(&crypto_mtx);
797 	cryptostats.cs_kops++;
798 
799 	cap = crypto_checkdriver(krp->krp_hid);
800 	if (cap && !cap->cc_kqblocked) {
801 		mutex_spin_exit(&crypto_mtx);
802 		result = crypto_kinvoke(krp, 0);
803 		if (result == ERESTART) {
804 			/*
805 			 * The driver ran out of resources, mark the
806 			 * driver ``blocked'' for cryptop's and put
807 			 * the op on the queue.
808 			 */
809 			mutex_spin_enter(&crypto_mtx);
810 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
811 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
812 			cryptostats.cs_kblocks++;
813 			mutex_spin_exit(&crypto_mtx);
814 		}
815 	} else {
816 		/*
817 		 * The driver is blocked, just queue the op until
818 		 * it unblocks and the swi thread gets kicked.
819 		 */
820 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
821 		result = 0;
822 		mutex_spin_exit(&crypto_mtx);
823 	}
824 
825 	return result;
826 }
827 
828 /*
829  * Dispatch an assymetric crypto request to the appropriate crypto devices.
830  */
831 static int
832 crypto_kinvoke(struct cryptkop *krp, int hint)
833 {
834 	u_int32_t hid;
835 	int error;
836 
837 	/* Sanity checks. */
838 	if (krp == NULL)
839 		return EINVAL;
840 	if (krp->krp_callback == NULL) {
841 		cv_destroy(&krp->krp_cv);
842 		pool_put(&cryptkop_pool, krp);
843 		return EINVAL;
844 	}
845 
846 	for (hid = 0; hid < crypto_drivers_num; hid++) {
847 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
848 		    crypto_devallowsoft == 0)
849 			continue;
850 		if (crypto_drivers[hid].cc_kprocess == NULL)
851 			continue;
852 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
853 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
854 			continue;
855 		break;
856 	}
857 	if (hid < crypto_drivers_num) {
858 		krp->krp_hid = hid;
859 		error = crypto_drivers[hid].cc_kprocess(
860 				crypto_drivers[hid].cc_karg, krp, hint);
861 	} else {
862 		error = ENODEV;
863 	}
864 
865 	if (error) {
866 		krp->krp_status = error;
867 		crypto_kdone(krp);
868 	}
869 	return 0;
870 }
871 
872 #ifdef CRYPTO_TIMING
873 static void
874 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
875 {
876 	struct timespec now, t;
877 
878 	nanouptime(&now);
879 	t.tv_sec = now.tv_sec - tv->tv_sec;
880 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
881 	if (t.tv_nsec < 0) {
882 		t.tv_sec--;
883 		t.tv_nsec += 1000000000;
884 	}
885 	timespecadd(&ts->acc, &t, &t);
886 	if (timespeccmp(&t, &ts->min, <))
887 		ts->min = t;
888 	if (timespeccmp(&t, &ts->max, >))
889 		ts->max = t;
890 	ts->count++;
891 
892 	*tv = now;
893 }
894 #endif
895 
896 /*
897  * Dispatch a crypto request to the appropriate crypto devices.
898  */
899 static int
900 crypto_invoke(struct cryptop *crp, int hint)
901 {
902 	u_int32_t hid;
903 	int (*process)(void*, struct cryptop *, int);
904 
905 #ifdef CRYPTO_TIMING
906 	if (crypto_timing)
907 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
908 #endif
909 	/* Sanity checks. */
910 	if (crp == NULL)
911 		return EINVAL;
912 	if (crp->crp_callback == NULL) {
913 		return EINVAL;
914 	}
915 	if (crp->crp_desc == NULL) {
916 		crp->crp_etype = EINVAL;
917 		crypto_done(crp);
918 		return 0;
919 	}
920 
921 	hid = SESID2HID(crp->crp_sid);
922 	if (hid < crypto_drivers_num) {
923 		mutex_spin_enter(&crypto_mtx);
924 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
925 			crypto_freesession(crp->crp_sid);
926 		process = crypto_drivers[hid].cc_process;
927 		mutex_spin_exit(&crypto_mtx);
928 	} else {
929 		process = NULL;
930 	}
931 
932 	if (process == NULL) {
933 		struct cryptodesc *crd;
934 		u_int64_t nid = 0;
935 
936 		/*
937 		 * Driver has unregistered; migrate the session and return
938 		 * an error to the caller so they'll resubmit the op.
939 		 */
940 		mutex_spin_enter(&crypto_mtx);
941 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
942 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
943 
944 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
945 			crp->crp_sid = nid;
946 
947 		crp->crp_etype = EAGAIN;
948 		mutex_spin_exit(&crypto_mtx);
949 
950 		crypto_done(crp);
951 		return 0;
952 	} else {
953 		/*
954 		 * Invoke the driver to process the request.
955 		 */
956 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
957 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
958 	}
959 }
960 
961 /*
962  * Release a set of crypto descriptors.
963  */
964 void
965 crypto_freereq(struct cryptop *crp)
966 {
967 	struct cryptodesc *crd;
968 
969 	if (crp == NULL)
970 		return;
971 	DPRINTF(("crypto_freereq[%d]: crp %p\n",
972 			(uint32_t)crp->crp_sid, crp));
973 
974 	/* sanity check */
975 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
976 		panic("crypto_freereq() freeing crp on RETQ\n");
977 	}
978 
979 	while ((crd = crp->crp_desc) != NULL) {
980 		crp->crp_desc = crd->crd_next;
981 		pool_put(&cryptodesc_pool, crd);
982 	}
983 	cv_destroy(&crp->crp_cv);
984 	pool_put(&cryptop_pool, crp);
985 }
986 
987 /*
988  * Acquire a set of crypto descriptors.
989  */
990 struct cryptop *
991 crypto_getreq(int num)
992 {
993 	struct cryptodesc *crd;
994 	struct cryptop *crp;
995 
996 	crp = pool_get(&cryptop_pool, 0);
997 	if (crp == NULL) {
998 		return NULL;
999 	}
1000 	memset(crp, 0, sizeof(struct cryptop));
1001 	cv_init(&crp->crp_cv, "crydev");
1002 
1003 	while (num--) {
1004 		crd = pool_get(&cryptodesc_pool, 0);
1005 		if (crd == NULL) {
1006 			crypto_freereq(crp);
1007 			return NULL;
1008 		}
1009 
1010 		memset(crd, 0, sizeof(struct cryptodesc));
1011 		crd->crd_next = crp->crp_desc;
1012 		crp->crp_desc = crd;
1013 	}
1014 
1015 	return crp;
1016 }
1017 
1018 /*
1019  * Invoke the callback on behalf of the driver.
1020  */
1021 void
1022 crypto_done(struct cryptop *crp)
1023 {
1024 	int wasempty;
1025 
1026 	if (crp->crp_etype != 0)
1027 		cryptostats.cs_errs++;
1028 #ifdef CRYPTO_TIMING
1029 	if (crypto_timing)
1030 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1031 #endif
1032 	DPRINTF(("crypto_done[%d]: crp %08x\n",
1033 			(uint32_t)crp->crp_sid, (uint32_t)crp));
1034 
1035 	/*
1036 	 * Normal case; queue the callback for the thread.
1037 	 *
1038 	 * The return queue is manipulated by the swi thread
1039 	 * and, potentially, by crypto device drivers calling
1040 	 * back to mark operations completed.  Thus we need
1041 	 * to mask both while manipulating the return queue.
1042 	 */
1043   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
1044 		/*
1045 	 	* Do the callback directly.  This is ok when the
1046   	 	* callback routine does very little (e.g. the
1047 	 	* /dev/crypto callback method just does a wakeup).
1048 	 	*/
1049 		mutex_spin_enter(&crypto_mtx);
1050 		crp->crp_flags |= CRYPTO_F_DONE;
1051 		mutex_spin_exit(&crypto_mtx);
1052 
1053 #ifdef CRYPTO_TIMING
1054 		if (crypto_timing) {
1055 			/*
1056 		 	* NB: We must copy the timestamp before
1057 		 	* doing the callback as the cryptop is
1058 		 	* likely to be reclaimed.
1059 		 	*/
1060 			struct timespec t = crp->crp_tstamp;
1061 			crypto_tstat(&cryptostats.cs_cb, &t);
1062 			crp->crp_callback(crp);
1063 			crypto_tstat(&cryptostats.cs_finis, &t);
1064 		} else
1065 #endif
1066 		crp->crp_callback(crp);
1067 	} else {
1068 		mutex_spin_enter(&crypto_mtx);
1069 		crp->crp_flags |= CRYPTO_F_DONE;
1070 
1071 		if (crp->crp_flags & CRYPTO_F_USER) {
1072 			/* the request has completed while
1073 			 * running in the user context
1074 			 * so don't queue it - the user
1075 			 * thread won't sleep when it sees
1076 			 * the CRYPTO_F_DONE flag.
1077 			 * This is an optimization to avoid
1078 			 * unecessary context switches.
1079 			 */
1080 			DPRINTF(("crypto_done[%d]: crp %08x CRYPTO_F_USER\n",
1081 				(uint32_t)crp->crp_sid, (uint32_t)crp));
1082 		} else {
1083 			wasempty = TAILQ_EMPTY(&crp_ret_q);
1084 			DPRINTF(("crypto_done[%d]: queueing %08x\n",
1085 					(uint32_t)crp->crp_sid, (uint32_t)crp));
1086 			crp->crp_flags |= CRYPTO_F_ONRETQ;
1087 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1088 			if (wasempty) {
1089 				DPRINTF(("crypto_done[%d]: waking cryptoret, crp %08x " \
1090 					"hit empty queue\n.",
1091 					(uint32_t)crp->crp_sid, (uint32_t)crp));
1092 				cv_signal(&cryptoret_cv);
1093 			}
1094 		}
1095 		mutex_spin_exit(&crypto_mtx);
1096 	}
1097 }
1098 
1099 /*
1100  * Invoke the callback on behalf of the driver.
1101  */
1102 void
1103 crypto_kdone(struct cryptkop *krp)
1104 {
1105 	int wasempty;
1106 
1107 	if (krp->krp_status != 0)
1108 		cryptostats.cs_kerrs++;
1109 
1110 	krp->krp_flags |= CRYPTO_F_DONE;
1111 
1112 	/*
1113 	 * The return queue is manipulated by the swi thread
1114 	 * and, potentially, by crypto device drivers calling
1115 	 * back to mark operations completed.  Thus we need
1116 	 * to mask both while manipulating the return queue.
1117 	 */
1118 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
1119 		krp->krp_callback(krp);
1120 	} else {
1121 		mutex_spin_enter(&crypto_mtx);
1122 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
1123 		krp->krp_flags |= CRYPTO_F_ONRETQ;
1124 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1125 		if (wasempty)
1126 			cv_signal(&cryptoret_cv);
1127 		mutex_spin_exit(&crypto_mtx);
1128 	}
1129 }
1130 
1131 int
1132 crypto_getfeat(int *featp)
1133 {
1134 	int hid, kalg, feat = 0;
1135 
1136 	mutex_spin_enter(&crypto_mtx);
1137 
1138 	if (crypto_userasymcrypto == 0)
1139 		goto out;
1140 
1141 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1142 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1143 		    crypto_devallowsoft == 0) {
1144 			continue;
1145 		}
1146 		if (crypto_drivers[hid].cc_kprocess == NULL)
1147 			continue;
1148 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1149 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1150 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1151 				feat |=  1 << kalg;
1152 	}
1153 out:
1154 	mutex_spin_exit(&crypto_mtx);
1155 	*featp = feat;
1156 	return (0);
1157 }
1158 
1159 /*
1160  * Software interrupt thread to dispatch crypto requests.
1161  */
1162 static void
1163 cryptointr(void)
1164 {
1165 	struct cryptop *crp, *submit, *cnext;
1166 	struct cryptkop *krp, *knext;
1167 	struct cryptocap *cap;
1168 	int result, hint;
1169 
1170 	cryptostats.cs_intrs++;
1171 	mutex_spin_enter(&crypto_mtx);
1172 	do {
1173 		/*
1174 		 * Find the first element in the queue that can be
1175 		 * processed and look-ahead to see if multiple ops
1176 		 * are ready for the same driver.
1177 		 */
1178 		submit = NULL;
1179 		hint = 0;
1180 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1181 			u_int32_t hid = SESID2HID(crp->crp_sid);
1182 			cap = crypto_checkdriver(hid);
1183 			if (cap == NULL || cap->cc_process == NULL) {
1184 				/* Op needs to be migrated, process it. */
1185 				if (submit == NULL)
1186 					submit = crp;
1187 				break;
1188 			}
1189 			if (!cap->cc_qblocked) {
1190 				if (submit != NULL) {
1191 					/*
1192 					 * We stop on finding another op,
1193 					 * regardless whether its for the same
1194 					 * driver or not.  We could keep
1195 					 * searching the queue but it might be
1196 					 * better to just use a per-driver
1197 					 * queue instead.
1198 					 */
1199 					if (SESID2HID(submit->crp_sid) == hid)
1200 						hint = CRYPTO_HINT_MORE;
1201 					break;
1202 				} else {
1203 					submit = crp;
1204 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1205 						break;
1206 					/* keep scanning for more are q'd */
1207 				}
1208 			}
1209 		}
1210 		if (submit != NULL) {
1211 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1212 			mutex_spin_exit(&crypto_mtx);
1213 			result = crypto_invoke(submit, hint);
1214 			/* we must take here as the TAILQ op or kinvoke
1215 			   may need this mutex below.  sigh. */
1216 			mutex_spin_enter(&crypto_mtx);
1217 			if (result == ERESTART) {
1218 				/*
1219 				 * The driver ran out of resources, mark the
1220 				 * driver ``blocked'' for cryptop's and put
1221 				 * the request back in the queue.  It would
1222 				 * best to put the request back where we got
1223 				 * it but that's hard so for now we put it
1224 				 * at the front.  This should be ok; putting
1225 				 * it at the end does not work.
1226 				 */
1227 				/* XXX validate sid again? */
1228 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1229 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1230 				cryptostats.cs_blocks++;
1231 			}
1232 		}
1233 
1234 		/* As above, but for key ops */
1235 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1236 			cap = crypto_checkdriver(krp->krp_hid);
1237 			if (cap == NULL || cap->cc_kprocess == NULL) {
1238 				/* Op needs to be migrated, process it. */
1239 				break;
1240 			}
1241 			if (!cap->cc_kqblocked)
1242 				break;
1243 		}
1244 		if (krp != NULL) {
1245 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1246 			mutex_spin_exit(&crypto_mtx);
1247 			result = crypto_kinvoke(krp, 0);
1248 			/* the next iteration will want the mutex. :-/ */
1249 			mutex_spin_enter(&crypto_mtx);
1250 			if (result == ERESTART) {
1251 				/*
1252 				 * The driver ran out of resources, mark the
1253 				 * driver ``blocked'' for cryptkop's and put
1254 				 * the request back in the queue.  It would
1255 				 * best to put the request back where we got
1256 				 * it but that's hard so for now we put it
1257 				 * at the front.  This should be ok; putting
1258 				 * it at the end does not work.
1259 				 */
1260 				/* XXX validate sid again? */
1261 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1262 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1263 				cryptostats.cs_kblocks++;
1264 			}
1265 		}
1266 	} while (submit != NULL || krp != NULL);
1267 	mutex_spin_exit(&crypto_mtx);
1268 }
1269 
1270 /*
1271  * Kernel thread to do callbacks.
1272  */
1273 static void
1274 cryptoret(void)
1275 {
1276 	struct cryptop *crp;
1277 	struct cryptkop *krp;
1278 
1279 	mutex_spin_enter(&crypto_mtx);
1280 	for (;;) {
1281 		crp = TAILQ_FIRST(&crp_ret_q);
1282 		if (crp != NULL) {
1283 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1284 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1285 		}
1286 		krp = TAILQ_FIRST(&crp_ret_kq);
1287 		if (krp != NULL) {
1288 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1289 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1290 		}
1291 
1292 		/* drop before calling any callbacks. */
1293 		if (crp == NULL && krp == NULL) {
1294 			cryptostats.cs_rets++;
1295 			cv_wait(&cryptoret_cv, &crypto_mtx);
1296 			continue;
1297 		}
1298 
1299 		mutex_spin_exit(&crypto_mtx);
1300 
1301 		if (crp != NULL) {
1302 #ifdef CRYPTO_TIMING
1303 			if (crypto_timing) {
1304 				/*
1305 				 * NB: We must copy the timestamp before
1306 				 * doing the callback as the cryptop is
1307 				 * likely to be reclaimed.
1308 				 */
1309 				struct timespec t = crp->crp_tstamp;
1310 				crypto_tstat(&cryptostats.cs_cb, &t);
1311 				crp->crp_callback(crp);
1312 				crypto_tstat(&cryptostats.cs_finis, &t);
1313 			} else
1314 #endif
1315 			{
1316 				crp->crp_callback(crp);
1317 			}
1318 		}
1319 		if (krp != NULL)
1320 			krp->krp_callback(krp);
1321 
1322 		mutex_spin_enter(&crypto_mtx);
1323 	}
1324 }
1325