1 /* $NetBSD: crypto.c,v 1.12 2006/01/16 21:45:38 yamt Exp $ */ 2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */ 3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */ 4 5 /* 6 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 7 * 8 * This code was written by Angelos D. Keromytis in Athens, Greece, in 9 * February 2000. Network Security Technologies Inc. (NSTI) kindly 10 * supported the development of this code. 11 * 12 * Copyright (c) 2000, 2001 Angelos D. Keromytis 13 * 14 * Permission to use, copy, and modify this software with or without fee 15 * is hereby granted, provided that this entire notice is included in 16 * all source code copies of any software which is or includes a copy or 17 * modification of this software. 18 * 19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 23 * PURPOSE. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.12 2006/01/16 21:45:38 yamt Exp $"); 28 29 /* XXX FIXME: should be defopt'ed */ 30 #define CRYPTO_TIMING /* enable cryptop timing stuff */ 31 32 #include <sys/param.h> 33 #include <sys/reboot.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/proc.h> 37 #include <sys/pool.h> 38 #include <opencrypto/cryptodev.h> 39 #include <sys/kthread.h> 40 #include <sys/once.h> 41 42 #include <opencrypto/xform.h> /* XXX for M_XDATA */ 43 44 #ifdef __NetBSD__ 45 #define splcrypto splnet 46 /* below is kludges to check whats still missing */ 47 #define SWI_CRYPTO 17 48 #define register_swi(lvl, fn) \ 49 softintr_establish(IPL_SOFTNET, (void (*)(void*))fn, NULL) 50 #define unregister_swi(lvl, fn) softintr_disestablish(softintr_cookie) 51 #define setsoftcrypto(x) softintr_schedule(x) 52 53 static void nanouptime(struct timespec *); 54 static void 55 nanouptime(struct timespec *tp) 56 { 57 struct timeval tv; 58 microtime(&tv); 59 TIMEVAL_TO_TIMESPEC(&tv, tp); 60 } 61 62 #endif 63 64 #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff) 65 66 /* 67 * Crypto drivers register themselves by allocating a slot in the 68 * crypto_drivers table with crypto_get_driverid() and then registering 69 * each algorithm they support with crypto_register() and crypto_kregister(). 70 */ 71 static struct cryptocap *crypto_drivers; 72 static int crypto_drivers_num; 73 static void* softintr_cookie; 74 75 /* 76 * There are two queues for crypto requests; one for symmetric (e.g. 77 * cipher) operations and one for asymmetric (e.g. MOD) operations. 78 * See below for how synchronization is handled. 79 */ 80 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */ 81 TAILQ_HEAD_INITIALIZER(crp_q); 82 static TAILQ_HEAD(,cryptkop) crp_kq = 83 TAILQ_HEAD_INITIALIZER(crp_kq); 84 85 /* 86 * There are two queues for processing completed crypto requests; one 87 * for the symmetric and one for the asymmetric ops. We only need one 88 * but have two to avoid type futzing (cryptop vs. cryptkop). See below 89 * for how synchronization is handled. 90 */ 91 static TAILQ_HEAD(,cryptop) crp_ret_q = /* callback queues */ 92 TAILQ_HEAD_INITIALIZER(crp_ret_q); 93 static TAILQ_HEAD(,cryptkop) crp_ret_kq = 94 TAILQ_HEAD_INITIALIZER(crp_ret_kq); 95 96 /* 97 * Crypto op and desciptor data structures are allocated 98 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) . 99 */ 100 struct pool cryptop_pool; 101 struct pool cryptodesc_pool; 102 int crypto_pool_initialized = 0; 103 104 #ifdef __NetBSD__ 105 static void deferred_crypto_thread(void *arg); 106 #endif 107 108 int crypto_usercrypto = 1; /* userland may open /dev/crypto */ 109 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ 110 /* 111 * cryptodevallowsoft is (intended to be) sysctl'able, controlling 112 * access to hardware versus software transforms as below: 113 * 114 * crypto_devallowsoft < 0: Force userlevel requests to use software 115 * transforms, always 116 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel 117 * requests for non-accelerated transforms 118 * (handling the latter in software) 119 * crypto_devallowsoft > 0: Allow user requests only for transforms which 120 * are hardware-accelerated. 121 */ 122 int crypto_devallowsoft = 1; /* only use hardware crypto */ 123 124 #ifdef __FreeBSD__ 125 SYSCTL_INT(_kern, OID_AUTO, usercrypto, CTLFLAG_RW, 126 &crypto_usercrypto, 0, 127 "Enable/disable user-mode access to crypto support"); 128 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 129 &crypto_userasymcrypto, 0, 130 "Enable/disable user-mode access to asymmetric crypto support"); 131 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 132 &crypto_devallowsoft, 0, 133 "Enable/disable use of software asym crypto support"); 134 #endif 135 136 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 137 138 /* 139 * Synchronization: read carefully, this is non-trivial. 140 * 141 * Crypto requests are submitted via crypto_dispatch. Typically 142 * these come in from network protocols at spl0 (output path) or 143 * spl[,soft]net (input path). 144 * 145 * Requests are typically passed on the driver directly, but they 146 * may also be queued for processing by a software interrupt thread, 147 * cryptointr, that runs at splsoftcrypto. This thread dispatches 148 * the requests to crypto drivers (h/w or s/w) who call crypto_done 149 * when a request is complete. Hardware crypto drivers are assumed 150 * to register their IRQ's as network devices so their interrupt handlers 151 * and subsequent "done callbacks" happen at spl[imp,net]. 152 * 153 * Completed crypto ops are queued for a separate kernel thread that 154 * handles the callbacks at spl0. This decoupling insures the crypto 155 * driver interrupt service routine is not delayed while the callback 156 * takes place and that callbacks are delivered after a context switch 157 * (as opposed to a software interrupt that clients must block). 158 * 159 * This scheme is not intended for SMP machines. 160 */ 161 static void cryptointr(void); /* swi thread to dispatch ops */ 162 static void cryptoret(void); /* kernel thread for callbacks*/ 163 static struct proc *cryptoproc; 164 static void crypto_destroy(void); 165 static int crypto_invoke(struct cryptop *crp, int hint); 166 static int crypto_kinvoke(struct cryptkop *krp, int hint); 167 168 static struct cryptostats cryptostats; 169 static int crypto_timing = 0; 170 171 #ifdef __FreeBSD__ 172 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats, 173 cryptostats, "Crypto system statistics"); 174 175 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 176 &crypto_timing, 0, "Enable/disable crypto timing support"); 177 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats, 178 cryptostats, "Crypto system statistics"); 179 #endif /* __FreeBSD__ */ 180 181 static int 182 crypto_init0(void) 183 { 184 #ifdef __FreeBSD__ 185 int error; 186 187 cryptop_zone = zinit("cryptop", sizeof (struct cryptop), 0, 0, 1); 188 cryptodesc_zone = zinit("cryptodesc", sizeof (struct cryptodesc), 189 0, 0, 1); 190 if (cryptodesc_zone == NULL || cryptop_zone == NULL) { 191 printf("crypto_init: cannot setup crypto zones\n"); 192 return; 193 } 194 #endif 195 196 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL * 197 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 198 if (crypto_drivers == NULL) { 199 printf("crypto_init: cannot malloc driver table\n"); 200 return 0; 201 } 202 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; 203 204 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr); 205 #ifdef __FreeBSD__ 206 error = kthread_create((void (*)(void *)) cryptoret, NULL, 207 &cryptoproc, "cryptoret"); 208 if (error) { 209 printf("crypto_init: cannot start cryptoret thread; error %d", 210 error); 211 crypto_destroy(); 212 } 213 #else 214 /* defer thread creation until after boot */ 215 kthread_create( deferred_crypto_thread, NULL); 216 #endif 217 return 0; 218 } 219 220 void 221 crypto_init(void) 222 { 223 ONCE_DECL(crypto_init_once); 224 225 RUN_ONCE(&crypto_init_once, crypto_init0); 226 } 227 228 static void 229 crypto_destroy(void) 230 { 231 /* XXX no wait to reclaim zones */ 232 if (crypto_drivers != NULL) 233 free(crypto_drivers, M_CRYPTO_DATA); 234 unregister_swi(SWI_CRYPTO, cryptointr); 235 } 236 237 /* 238 * Create a new session. 239 */ 240 int 241 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard) 242 { 243 struct cryptoini *cr; 244 u_int32_t hid, lid; 245 int err = EINVAL; 246 int s; 247 248 s = splcrypto(); 249 250 if (crypto_drivers == NULL) 251 goto done; 252 253 /* 254 * The algorithm we use here is pretty stupid; just use the 255 * first driver that supports all the algorithms we need. 256 * 257 * XXX We need more smarts here (in real life too, but that's 258 * XXX another story altogether). 259 */ 260 261 for (hid = 0; hid < crypto_drivers_num; hid++) { 262 /* 263 * If it's not initialized or has remaining sessions 264 * referencing it, skip. 265 */ 266 if (crypto_drivers[hid].cc_newsession == NULL || 267 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)) 268 continue; 269 270 /* Hardware required -- ignore software drivers. */ 271 if (hard > 0 && 272 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE)) 273 continue; 274 /* Software required -- ignore hardware drivers. */ 275 if (hard < 0 && 276 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) 277 continue; 278 279 /* See if all the algorithms are supported. */ 280 for (cr = cri; cr; cr = cr->cri_next) 281 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) 282 break; 283 284 if (cr == NULL) { 285 /* Ok, all algorithms are supported. */ 286 287 /* 288 * Can't do everything in one session. 289 * 290 * XXX Fix this. We need to inject a "virtual" session layer right 291 * XXX about here. 292 */ 293 294 /* Call the driver initialization routine. */ 295 lid = hid; /* Pass the driver ID. */ 296 err = crypto_drivers[hid].cc_newsession( 297 crypto_drivers[hid].cc_arg, &lid, cri); 298 if (err == 0) { 299 (*sid) = hid; 300 (*sid) <<= 32; 301 (*sid) |= (lid & 0xffffffff); 302 crypto_drivers[hid].cc_sessions++; 303 } 304 goto done; 305 /*break;*/ 306 } 307 } 308 done: 309 splx(s); 310 return err; 311 } 312 313 /* 314 * Delete an existing session (or a reserved session on an unregistered 315 * driver). 316 */ 317 int 318 crypto_freesession(u_int64_t sid) 319 { 320 u_int32_t hid; 321 int err = 0; 322 int s; 323 324 s = splcrypto(); 325 326 if (crypto_drivers == NULL) { 327 err = EINVAL; 328 goto done; 329 } 330 331 /* Determine two IDs. */ 332 hid = SESID2HID(sid); 333 334 if (hid >= crypto_drivers_num) { 335 err = ENOENT; 336 goto done; 337 } 338 339 if (crypto_drivers[hid].cc_sessions) 340 crypto_drivers[hid].cc_sessions--; 341 342 /* Call the driver cleanup routine, if available. */ 343 if (crypto_drivers[hid].cc_freesession) 344 err = crypto_drivers[hid].cc_freesession( 345 crypto_drivers[hid].cc_arg, sid); 346 else 347 err = 0; 348 349 /* 350 * If this was the last session of a driver marked as invalid, 351 * make the entry available for reuse. 352 */ 353 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) && 354 crypto_drivers[hid].cc_sessions == 0) 355 bzero(&crypto_drivers[hid], sizeof(struct cryptocap)); 356 357 done: 358 splx(s); 359 return err; 360 } 361 362 /* 363 * Return an unused driver id. Used by drivers prior to registering 364 * support for the algorithms they handle. 365 */ 366 int32_t 367 crypto_get_driverid(u_int32_t flags) 368 { 369 struct cryptocap *newdrv; 370 int i, s; 371 372 crypto_init(); 373 374 s = splcrypto(); 375 for (i = 0; i < crypto_drivers_num; i++) 376 if (crypto_drivers[i].cc_process == NULL && 377 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 && 378 crypto_drivers[i].cc_sessions == 0) 379 break; 380 381 /* Out of entries, allocate some more. */ 382 if (i == crypto_drivers_num) { 383 /* Be careful about wrap-around. */ 384 if (2 * crypto_drivers_num <= crypto_drivers_num) { 385 splx(s); 386 printf("crypto: driver count wraparound!\n"); 387 return -1; 388 } 389 390 newdrv = malloc(2 * crypto_drivers_num * 391 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 392 if (newdrv == NULL) { 393 splx(s); 394 printf("crypto: no space to expand driver table!\n"); 395 return -1; 396 } 397 398 bcopy(crypto_drivers, newdrv, 399 crypto_drivers_num * sizeof(struct cryptocap)); 400 401 crypto_drivers_num *= 2; 402 403 free(crypto_drivers, M_CRYPTO_DATA); 404 crypto_drivers = newdrv; 405 } 406 407 /* NB: state is zero'd on free */ 408 crypto_drivers[i].cc_sessions = 1; /* Mark */ 409 crypto_drivers[i].cc_flags = flags; 410 411 if (bootverbose) 412 printf("crypto: assign driver %u, flags %u\n", i, flags); 413 414 splx(s); 415 416 return i; 417 } 418 419 static struct cryptocap * 420 crypto_checkdriver(u_int32_t hid) 421 { 422 if (crypto_drivers == NULL) 423 return NULL; 424 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); 425 } 426 427 /* 428 * Register support for a key-related algorithm. This routine 429 * is called once for each algorithm supported a driver. 430 */ 431 int 432 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags, 433 int (*kprocess)(void*, struct cryptkop *, int), 434 void *karg) 435 { 436 int s; 437 struct cryptocap *cap; 438 int err; 439 440 s = splcrypto(); 441 442 cap = crypto_checkdriver(driverid); 443 if (cap != NULL && 444 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 445 /* 446 * XXX Do some performance testing to determine placing. 447 * XXX We probably need an auxiliary data structure that 448 * XXX describes relative performances. 449 */ 450 451 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 452 if (bootverbose) 453 printf("crypto: driver %u registers key alg %u flags %u\n" 454 , driverid 455 , kalg 456 , flags 457 ); 458 459 if (cap->cc_kprocess == NULL) { 460 cap->cc_karg = karg; 461 cap->cc_kprocess = kprocess; 462 } 463 err = 0; 464 } else 465 err = EINVAL; 466 467 splx(s); 468 return err; 469 } 470 471 /* 472 * Register support for a non-key-related algorithm. This routine 473 * is called once for each such algorithm supported by a driver. 474 */ 475 int 476 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, 477 u_int32_t flags, 478 int (*newses)(void*, u_int32_t*, struct cryptoini*), 479 int (*freeses)(void*, u_int64_t), 480 int (*process)(void*, struct cryptop *, int), 481 void *arg) 482 { 483 struct cryptocap *cap; 484 int s, err; 485 486 s = splcrypto(); 487 488 cap = crypto_checkdriver(driverid); 489 /* NB: algorithms are in the range [1..max] */ 490 if (cap != NULL && 491 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { 492 /* 493 * XXX Do some performance testing to determine placing. 494 * XXX We probably need an auxiliary data structure that 495 * XXX describes relative performances. 496 */ 497 498 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 499 cap->cc_max_op_len[alg] = maxoplen; 500 if (bootverbose) 501 printf("crypto: driver %u registers alg %u flags %u maxoplen %u\n" 502 , driverid 503 , alg 504 , flags 505 , maxoplen 506 ); 507 508 if (cap->cc_process == NULL) { 509 cap->cc_arg = arg; 510 cap->cc_newsession = newses; 511 cap->cc_process = process; 512 cap->cc_freesession = freeses; 513 cap->cc_sessions = 0; /* Unmark */ 514 } 515 err = 0; 516 } else 517 err = EINVAL; 518 519 splx(s); 520 return err; 521 } 522 523 /* 524 * Unregister a crypto driver. If there are pending sessions using it, 525 * leave enough information around so that subsequent calls using those 526 * sessions will correctly detect the driver has been unregistered and 527 * reroute requests. 528 */ 529 int 530 crypto_unregister(u_int32_t driverid, int alg) 531 { 532 int i, err, s; 533 u_int32_t ses; 534 struct cryptocap *cap; 535 536 s = splcrypto(); 537 538 cap = crypto_checkdriver(driverid); 539 if (cap != NULL && 540 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && 541 cap->cc_alg[alg] != 0) { 542 cap->cc_alg[alg] = 0; 543 cap->cc_max_op_len[alg] = 0; 544 545 /* Was this the last algorithm ? */ 546 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) 547 if (cap->cc_alg[i] != 0) 548 break; 549 550 if (i == CRYPTO_ALGORITHM_MAX + 1) { 551 ses = cap->cc_sessions; 552 bzero(cap, sizeof(struct cryptocap)); 553 if (ses != 0) { 554 /* 555 * If there are pending sessions, just mark as invalid. 556 */ 557 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 558 cap->cc_sessions = ses; 559 } 560 } 561 err = 0; 562 } else 563 err = EINVAL; 564 565 splx(s); 566 return err; 567 } 568 569 /* 570 * Unregister all algorithms associated with a crypto driver. 571 * If there are pending sessions using it, leave enough information 572 * around so that subsequent calls using those sessions will 573 * correctly detect the driver has been unregistered and reroute 574 * requests. 575 */ 576 int 577 crypto_unregister_all(u_int32_t driverid) 578 { 579 int i, err, s = splcrypto(); 580 u_int32_t ses; 581 struct cryptocap *cap; 582 583 cap = crypto_checkdriver(driverid); 584 if (cap != NULL) { 585 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) { 586 cap->cc_alg[i] = 0; 587 cap->cc_max_op_len[i] = 0; 588 } 589 ses = cap->cc_sessions; 590 bzero(cap, sizeof(struct cryptocap)); 591 if (ses != 0) { 592 /* 593 * If there are pending sessions, just mark as invalid. 594 */ 595 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 596 cap->cc_sessions = ses; 597 } 598 err = 0; 599 } else 600 err = EINVAL; 601 602 splx(s); 603 return err; 604 } 605 606 /* 607 * Clear blockage on a driver. The what parameter indicates whether 608 * the driver is now ready for cryptop's and/or cryptokop's. 609 */ 610 int 611 crypto_unblock(u_int32_t driverid, int what) 612 { 613 struct cryptocap *cap; 614 int needwakeup, err, s; 615 616 s = splcrypto(); 617 cap = crypto_checkdriver(driverid); 618 if (cap != NULL) { 619 needwakeup = 0; 620 if (what & CRYPTO_SYMQ) { 621 needwakeup |= cap->cc_qblocked; 622 cap->cc_qblocked = 0; 623 } 624 if (what & CRYPTO_ASYMQ) { 625 needwakeup |= cap->cc_kqblocked; 626 cap->cc_kqblocked = 0; 627 } 628 if (needwakeup) { 629 setsoftcrypto(softintr_cookie); 630 } 631 err = 0; 632 } else 633 err = EINVAL; 634 splx(s); 635 636 return err; 637 } 638 639 /* 640 * Dispatch a crypto request to a driver or queue 641 * it, to be processed by the kernel thread. 642 */ 643 int 644 crypto_dispatch(struct cryptop *crp) 645 { 646 u_int32_t hid = SESID2HID(crp->crp_sid); 647 int s, result; 648 649 s = splcrypto(); 650 651 cryptostats.cs_ops++; 652 653 #ifdef CRYPTO_TIMING 654 if (crypto_timing) 655 nanouptime(&crp->crp_tstamp); 656 #endif 657 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 658 struct cryptocap *cap; 659 /* 660 * Caller marked the request to be processed 661 * immediately; dispatch it directly to the 662 * driver unless the driver is currently blocked. 663 */ 664 cap = crypto_checkdriver(hid); 665 if (cap && !cap->cc_qblocked) { 666 result = crypto_invoke(crp, 0); 667 if (result == ERESTART) { 668 /* 669 * The driver ran out of resources, mark the 670 * driver ``blocked'' for cryptop's and put 671 * the op on the queue. 672 */ 673 crypto_drivers[hid].cc_qblocked = 1; 674 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next); 675 cryptostats.cs_blocks++; 676 } 677 } else { 678 /* 679 * The driver is blocked, just queue the op until 680 * it unblocks and the swi thread gets kicked. 681 */ 682 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 683 result = 0; 684 } 685 } else { 686 int wasempty = TAILQ_EMPTY(&crp_q); 687 /* 688 * Caller marked the request as ``ok to delay''; 689 * queue it for the swi thread. This is desirable 690 * when the operation is low priority and/or suitable 691 * for batching. 692 */ 693 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 694 if (wasempty) { 695 setsoftcrypto(softintr_cookie); 696 } 697 698 result = 0; 699 } 700 splx(s); 701 702 return result; 703 } 704 705 /* 706 * Add an asymetric crypto request to a queue, 707 * to be processed by the kernel thread. 708 */ 709 int 710 crypto_kdispatch(struct cryptkop *krp) 711 { 712 struct cryptocap *cap; 713 int s, result; 714 715 s = splcrypto(); 716 cryptostats.cs_kops++; 717 718 cap = crypto_checkdriver(krp->krp_hid); 719 if (cap && !cap->cc_kqblocked) { 720 result = crypto_kinvoke(krp, 0); 721 if (result == ERESTART) { 722 /* 723 * The driver ran out of resources, mark the 724 * driver ``blocked'' for cryptop's and put 725 * the op on the queue. 726 */ 727 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 728 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 729 cryptostats.cs_kblocks++; 730 } 731 } else { 732 /* 733 * The driver is blocked, just queue the op until 734 * it unblocks and the swi thread gets kicked. 735 */ 736 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 737 result = 0; 738 } 739 splx(s); 740 741 return result; 742 } 743 744 /* 745 * Dispatch an assymetric crypto request to the appropriate crypto devices. 746 */ 747 static int 748 crypto_kinvoke(struct cryptkop *krp, int hint) 749 { 750 u_int32_t hid; 751 int error; 752 753 /* Sanity checks. */ 754 if (krp == NULL) 755 return EINVAL; 756 if (krp->krp_callback == NULL) { 757 free(krp, M_XDATA); /* XXX allocated in cryptodev */ 758 return EINVAL; 759 } 760 761 for (hid = 0; hid < crypto_drivers_num; hid++) { 762 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 763 crypto_devallowsoft == 0) 764 continue; 765 if (crypto_drivers[hid].cc_kprocess == NULL) 766 continue; 767 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] & 768 CRYPTO_ALG_FLAG_SUPPORTED) == 0) 769 continue; 770 break; 771 } 772 if (hid < crypto_drivers_num) { 773 krp->krp_hid = hid; 774 error = crypto_drivers[hid].cc_kprocess( 775 crypto_drivers[hid].cc_karg, krp, hint); 776 } else { 777 error = ENODEV; 778 } 779 780 if (error) { 781 krp->krp_status = error; 782 crypto_kdone(krp); 783 } 784 return 0; 785 } 786 787 #ifdef CRYPTO_TIMING 788 static void 789 crypto_tstat(struct cryptotstat *ts, struct timespec *tv) 790 { 791 struct timespec now, t; 792 793 nanouptime(&now); 794 t.tv_sec = now.tv_sec - tv->tv_sec; 795 t.tv_nsec = now.tv_nsec - tv->tv_nsec; 796 if (t.tv_nsec < 0) { 797 t.tv_sec--; 798 t.tv_nsec += 1000000000; 799 } 800 timespecadd(&ts->acc, &t, &t); 801 if (timespeccmp(&t, &ts->min, <)) 802 ts->min = t; 803 if (timespeccmp(&t, &ts->max, >)) 804 ts->max = t; 805 ts->count++; 806 807 *tv = now; 808 } 809 #endif 810 811 /* 812 * Dispatch a crypto request to the appropriate crypto devices. 813 */ 814 static int 815 crypto_invoke(struct cryptop *crp, int hint) 816 { 817 u_int32_t hid; 818 int (*process)(void*, struct cryptop *, int); 819 820 #ifdef CRYPTO_TIMING 821 if (crypto_timing) 822 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 823 #endif 824 /* Sanity checks. */ 825 if (crp == NULL) 826 return EINVAL; 827 if (crp->crp_callback == NULL) { 828 crypto_freereq(crp); 829 return EINVAL; 830 } 831 if (crp->crp_desc == NULL) { 832 crp->crp_etype = EINVAL; 833 crypto_done(crp); 834 return 0; 835 } 836 837 hid = SESID2HID(crp->crp_sid); 838 if (hid < crypto_drivers_num) { 839 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) 840 crypto_freesession(crp->crp_sid); 841 process = crypto_drivers[hid].cc_process; 842 } else { 843 process = NULL; 844 } 845 846 if (process == NULL) { 847 struct cryptodesc *crd; 848 u_int64_t nid; 849 850 /* 851 * Driver has unregistered; migrate the session and return 852 * an error to the caller so they'll resubmit the op. 853 */ 854 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) 855 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); 856 857 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0) 858 crp->crp_sid = nid; 859 860 crp->crp_etype = EAGAIN; 861 crypto_done(crp); 862 return 0; 863 } else { 864 /* 865 * Invoke the driver to process the request. 866 */ 867 return (*process)(crypto_drivers[hid].cc_arg, crp, hint); 868 } 869 } 870 871 /* 872 * Release a set of crypto descriptors. 873 */ 874 void 875 crypto_freereq(struct cryptop *crp) 876 { 877 struct cryptodesc *crd; 878 int s; 879 880 if (crp == NULL) 881 return; 882 883 s = splcrypto(); 884 885 while ((crd = crp->crp_desc) != NULL) { 886 crp->crp_desc = crd->crd_next; 887 pool_put(&cryptodesc_pool, crd); 888 } 889 890 pool_put(&cryptop_pool, crp); 891 splx(s); 892 } 893 894 /* 895 * Acquire a set of crypto descriptors. 896 */ 897 struct cryptop * 898 crypto_getreq(int num) 899 { 900 struct cryptodesc *crd; 901 struct cryptop *crp; 902 int s; 903 904 s = splcrypto(); 905 906 if (crypto_pool_initialized == 0) { 907 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0, 908 0, "cryptop", NULL); 909 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0, 910 0, "cryptodesc", NULL); 911 crypto_pool_initialized = 1; 912 } 913 914 crp = pool_get(&cryptop_pool, 0); 915 if (crp == NULL) { 916 splx(s); 917 return NULL; 918 } 919 bzero(crp, sizeof(struct cryptop)); 920 921 while (num--) { 922 crd = pool_get(&cryptodesc_pool, 0); 923 if (crd == NULL) { 924 splx(s); 925 crypto_freereq(crp); 926 return NULL; 927 } 928 929 bzero(crd, sizeof(struct cryptodesc)); 930 crd->crd_next = crp->crp_desc; 931 crp->crp_desc = crd; 932 } 933 934 splx(s); 935 return crp; 936 } 937 938 /* 939 * Invoke the callback on behalf of the driver. 940 */ 941 void 942 crypto_done(struct cryptop *crp) 943 { 944 if (crp->crp_etype != 0) 945 cryptostats.cs_errs++; 946 #ifdef CRYPTO_TIMING 947 if (crypto_timing) 948 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 949 #endif 950 /* 951 * On netbsd 1.6O, CBIMM does its wake_one() before the requestor 952 * has done its tsleep(). 953 */ 954 #ifndef __NetBSD__ 955 if (crp->crp_flags & CRYPTO_F_CBIMM) { 956 /* 957 * Do the callback directly. This is ok when the 958 * callback routine does very little (e.g. the 959 * /dev/crypto callback method just does a wakeup). 960 */ 961 #ifdef CRYPTO_TIMING 962 if (crypto_timing) { 963 /* 964 * NB: We must copy the timestamp before 965 * doing the callback as the cryptop is 966 * likely to be reclaimed. 967 */ 968 struct timespec t = crp->crp_tstamp; 969 crypto_tstat(&cryptostats.cs_cb, &t); 970 crp->crp_callback(crp); 971 crypto_tstat(&cryptostats.cs_finis, &t); 972 } else 973 #endif 974 crp->crp_callback(crp); 975 } else 976 #endif /* __NetBSD__ */ 977 { 978 int s, wasempty; 979 /* 980 * Normal case; queue the callback for the thread. 981 * 982 * The return queue is manipulated by the swi thread 983 * and, potentially, by crypto device drivers calling 984 * back to mark operations completed. Thus we need 985 * to mask both while manipulating the return queue. 986 */ 987 s = splcrypto(); 988 wasempty = TAILQ_EMPTY(&crp_ret_q); 989 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); 990 if (wasempty) 991 wakeup_one(&crp_ret_q); 992 splx(s); 993 } 994 } 995 996 /* 997 * Invoke the callback on behalf of the driver. 998 */ 999 void 1000 crypto_kdone(struct cryptkop *krp) 1001 { 1002 int s, wasempty; 1003 1004 if (krp->krp_status != 0) 1005 cryptostats.cs_kerrs++; 1006 /* 1007 * The return queue is manipulated by the swi thread 1008 * and, potentially, by crypto device drivers calling 1009 * back to mark operations completed. Thus we need 1010 * to mask both while manipulating the return queue. 1011 */ 1012 s = splcrypto(); 1013 wasempty = TAILQ_EMPTY(&crp_ret_kq); 1014 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); 1015 if (wasempty) 1016 wakeup_one(&crp_ret_q); 1017 splx(s); 1018 } 1019 1020 int 1021 crypto_getfeat(int *featp) 1022 { 1023 int hid, kalg, feat = 0; 1024 int s; 1025 1026 s = splcrypto(); 1027 1028 if (crypto_userasymcrypto == 0) 1029 goto out; 1030 1031 for (hid = 0; hid < crypto_drivers_num; hid++) { 1032 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && 1033 crypto_devallowsoft == 0) { 1034 continue; 1035 } 1036 if (crypto_drivers[hid].cc_kprocess == NULL) 1037 continue; 1038 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1039 if ((crypto_drivers[hid].cc_kalg[kalg] & 1040 CRYPTO_ALG_FLAG_SUPPORTED) != 0) 1041 feat |= 1 << kalg; 1042 } 1043 out: 1044 splx(s); 1045 *featp = feat; 1046 return (0); 1047 } 1048 1049 /* 1050 * Software interrupt thread to dispatch crypto requests. 1051 */ 1052 static void 1053 cryptointr(void) 1054 { 1055 struct cryptop *crp, *submit; 1056 struct cryptkop *krp; 1057 struct cryptocap *cap; 1058 int result, hint, s; 1059 1060 printf("crypto softint\n"); 1061 cryptostats.cs_intrs++; 1062 s = splcrypto(); 1063 do { 1064 /* 1065 * Find the first element in the queue that can be 1066 * processed and look-ahead to see if multiple ops 1067 * are ready for the same driver. 1068 */ 1069 submit = NULL; 1070 hint = 0; 1071 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1072 u_int32_t hid = SESID2HID(crp->crp_sid); 1073 cap = crypto_checkdriver(hid); 1074 if (cap == NULL || cap->cc_process == NULL) { 1075 /* Op needs to be migrated, process it. */ 1076 if (submit == NULL) 1077 submit = crp; 1078 break; 1079 } 1080 if (!cap->cc_qblocked) { 1081 if (submit != NULL) { 1082 /* 1083 * We stop on finding another op, 1084 * regardless whether its for the same 1085 * driver or not. We could keep 1086 * searching the queue but it might be 1087 * better to just use a per-driver 1088 * queue instead. 1089 */ 1090 if (SESID2HID(submit->crp_sid) == hid) 1091 hint = CRYPTO_HINT_MORE; 1092 break; 1093 } else { 1094 submit = crp; 1095 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1096 break; 1097 /* keep scanning for more are q'd */ 1098 } 1099 } 1100 } 1101 if (submit != NULL) { 1102 TAILQ_REMOVE(&crp_q, submit, crp_next); 1103 result = crypto_invoke(submit, hint); 1104 if (result == ERESTART) { 1105 /* 1106 * The driver ran out of resources, mark the 1107 * driver ``blocked'' for cryptop's and put 1108 * the request back in the queue. It would 1109 * best to put the request back where we got 1110 * it but that's hard so for now we put it 1111 * at the front. This should be ok; putting 1112 * it at the end does not work. 1113 */ 1114 /* XXX validate sid again? */ 1115 crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1; 1116 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1117 cryptostats.cs_blocks++; 1118 } 1119 } 1120 1121 /* As above, but for key ops */ 1122 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1123 cap = crypto_checkdriver(krp->krp_hid); 1124 if (cap == NULL || cap->cc_kprocess == NULL) { 1125 /* Op needs to be migrated, process it. */ 1126 break; 1127 } 1128 if (!cap->cc_kqblocked) 1129 break; 1130 } 1131 if (krp != NULL) { 1132 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1133 result = crypto_kinvoke(krp, 0); 1134 if (result == ERESTART) { 1135 /* 1136 * The driver ran out of resources, mark the 1137 * driver ``blocked'' for cryptkop's and put 1138 * the request back in the queue. It would 1139 * best to put the request back where we got 1140 * it but that's hard so for now we put it 1141 * at the front. This should be ok; putting 1142 * it at the end does not work. 1143 */ 1144 /* XXX validate sid again? */ 1145 crypto_drivers[krp->krp_hid].cc_kqblocked = 1; 1146 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 1147 cryptostats.cs_kblocks++; 1148 } 1149 } 1150 } while (submit != NULL || krp != NULL); 1151 splx(s); 1152 } 1153 1154 /* 1155 * Kernel thread to do callbacks. 1156 */ 1157 static void 1158 cryptoret(void) 1159 { 1160 struct cryptop *crp; 1161 struct cryptkop *krp; 1162 int s; 1163 1164 s = splcrypto(); 1165 for (;;) { 1166 crp = TAILQ_FIRST(&crp_ret_q); 1167 if (crp != NULL) 1168 TAILQ_REMOVE(&crp_ret_q, crp, crp_next); 1169 krp = TAILQ_FIRST(&crp_ret_kq); 1170 if (krp != NULL) 1171 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); 1172 1173 if (crp != NULL || krp != NULL) { 1174 splx(s); /* lower ipl for callbacks */ 1175 if (crp != NULL) { 1176 #ifdef CRYPTO_TIMING 1177 if (crypto_timing) { 1178 /* 1179 * NB: We must copy the timestamp before 1180 * doing the callback as the cryptop is 1181 * likely to be reclaimed. 1182 */ 1183 struct timespec t = crp->crp_tstamp; 1184 crypto_tstat(&cryptostats.cs_cb, &t); 1185 crp->crp_callback(crp); 1186 crypto_tstat(&cryptostats.cs_finis, &t); 1187 } else 1188 #endif 1189 crp->crp_callback(crp); 1190 } 1191 if (krp != NULL) 1192 krp->krp_callback(krp); 1193 s = splcrypto(); 1194 } else { 1195 (void) tsleep(&crp_ret_q, PLOCK, "crypto_wait", 0); 1196 cryptostats.cs_rets++; 1197 } 1198 } 1199 } 1200 1201 static void 1202 deferred_crypto_thread(void *arg) 1203 { 1204 int error; 1205 1206 error = kthread_create1((void (*)(void*)) cryptoret, NULL, 1207 &cryptoproc, "cryptoret"); 1208 if (error) { 1209 printf("crypto_init: cannot start cryptoret thread; error %d", 1210 error); 1211 crypto_destroy(); 1212 } 1213 } 1214 1215 #ifdef __FreeBSD__ 1216 /* 1217 * Initialization code, both for static and dynamic loading. 1218 */ 1219 static int 1220 crypto_modevent(module_t mod, int type, void *unused) 1221 { 1222 int error = EINVAL; 1223 1224 switch (type) { 1225 case MOD_LOAD: 1226 error = crypto_init(); 1227 if (error == 0 && bootverbose) 1228 printf("crypto: <crypto core>\n"); 1229 break; 1230 case MOD_UNLOAD: 1231 /*XXX disallow if active sessions */ 1232 error = 0; 1233 crypto_destroy(); 1234 break; 1235 } 1236 return error; 1237 } 1238 static moduledata_t crypto_mod = { 1239 "crypto", 1240 crypto_modevent, 1241 0 1242 }; 1243 1244 MODULE_VERSION(crypto, 1); 1245 DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); 1246 #endif /* __FreeBSD__ */ 1247 1248 1249