xref: /netbsd-src/sys/opencrypto/crypto.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: crypto.c,v 1.9 2004/04/29 02:17:36 jonathan Exp $ */
2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
4 
5 /*
6  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
7  *
8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
10  * supported the development of this code.
11  *
12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
13  *
14  * Permission to use, copy, and modify this software with or without fee
15  * is hereby granted, provided that this entire notice is included in
16  * all source code copies of any software which is or includes a copy or
17  * modification of this software.
18  *
19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23  * PURPOSE.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.9 2004/04/29 02:17:36 jonathan Exp $");
28 
29 /* XXX FIXME: should be defopt'ed */
30 #define CRYPTO_TIMING			/* enable cryptop timing stuff */
31 
32 #include <sys/param.h>
33 #include <sys/reboot.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/proc.h>
37 #include <sys/pool.h>
38 #include <opencrypto/cryptodev.h>
39 #include <opencrypto/cryptosoft.h>		/* swcr_init() */
40 #include <sys/kthread.h>
41 
42 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
43 
44 
45 #ifdef __NetBSD__
46   #define splcrypto splnet
47   /* below is kludges to check whats still missing */
48   #define SWI_CRYPTO 17
49   #define register_swi(lvl, fn)  \
50   softintr_establish(IPL_SOFTNET, (void (*)(void*))fn, NULL)
51   #define unregister_swi(lvl, fn)  softintr_disestablish(softintr_cookie)
52   #define setsoftcrypto(x) softintr_schedule(x)
53 
54 static void nanouptime(struct timespec *);
55 static void
56 nanouptime(struct timespec *tp)
57 {
58 	struct timeval tv;
59 	microtime(&tv);
60 	TIMEVAL_TO_TIMESPEC(&tv, tp);
61 }
62 
63 #endif
64 
65 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
66 
67 /*
68  * Crypto drivers register themselves by allocating a slot in the
69  * crypto_drivers table with crypto_get_driverid() and then registering
70  * each algorithm they support with crypto_register() and crypto_kregister().
71  */
72 static	struct cryptocap *crypto_drivers = NULL;
73 static	int crypto_drivers_num = 0;
74 static	void* softintr_cookie;
75 
76 /*
77  * There are two queues for crypto requests; one for symmetric (e.g.
78  * cipher) operations and one for asymmetric (e.g. MOD) operations.
79  * See below for how synchronization is handled.
80  */
81 static	TAILQ_HEAD(,cryptop) crp_q;		/* request queues */
82 static	TAILQ_HEAD(,cryptkop) crp_kq;
83 
84 /*
85  * There are two queues for processing completed crypto requests; one
86  * for the symmetric and one for the asymmetric ops.  We only need one
87  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
88  * for how synchronization is handled.
89  */
90 static	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queues */
91 static	TAILQ_HEAD(,cryptkop) crp_ret_kq;
92 
93 /*
94  * Crypto op and desciptor data structures are allocated
95  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
96  */
97 struct pool cryptop_pool;
98 struct pool cryptodesc_pool;
99 int crypto_pool_initialized = 0;
100 
101 #ifdef __NetBSD__
102 void	cryptoattach(int);
103 static void deferred_crypto_thread(void *arg);
104 #endif
105 
106 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
107 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
108 /*
109  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
110  * access to hardware versus software transforms as below:
111  *
112  * crypto_devallowsoft < 0:  Force userlevel requests to use software
113  *                              transforms, always
114  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
115  *                              requests for non-accelerated transforms
116  *                              (handling the latter in software)
117  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
118  *                               are hardware-accelerated.
119  */
120 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
121 
122 #ifdef __FreeBSD__
123 SYSCTL_INT(_kern, OID_AUTO, usercrypto, CTLFLAG_RW,
124 	   &crypto_usercrypto, 0,
125 	   "Enable/disable user-mode access to crypto support");
126 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
127 	   &crypto_userasymcrypto, 0,
128 	   "Enable/disable user-mode access to asymmetric crypto support");
129 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
130 	   &crypto_devallowsoft, 0,
131 	   "Enable/disable use of software asym crypto support");
132 #endif
133 
134 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
135 
136 /*
137  * Synchronization: read carefully, this is non-trivial.
138  *
139  * Crypto requests are submitted via crypto_dispatch.  Typically
140  * these come in from network protocols at spl0 (output path) or
141  * spl[,soft]net (input path).
142  *
143  * Requests are typically passed on the driver directly, but they
144  * may also be queued for processing by a software interrupt thread,
145  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
146  * the requests to crypto drivers (h/w or s/w) who call crypto_done
147  * when a request is complete.  Hardware crypto drivers are assumed
148  * to register their IRQ's as network devices so their interrupt handlers
149  * and subsequent "done callbacks" happen at spl[imp,net].
150  *
151  * Completed crypto ops are queued for a separate kernel thread that
152  * handles the callbacks at spl0.  This decoupling insures the crypto
153  * driver interrupt service routine is not delayed while the callback
154  * takes place and that callbacks are delivered after a context switch
155  * (as opposed to a software interrupt that clients must block).
156  *
157  * This scheme is not intended for SMP machines.
158  */
159 static	void cryptointr(void);		/* swi thread to dispatch ops */
160 static	void cryptoret(void);		/* kernel thread for callbacks*/
161 static	struct proc *cryptoproc;
162 static	void crypto_destroy(void);
163 static	int crypto_invoke(struct cryptop *crp, int hint);
164 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
165 
166 static struct cryptostats cryptostats;
167 static	int crypto_timing = 0;
168 
169 #ifdef __FreeBSD__
170 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
171 	    cryptostats, "Crypto system statistics");
172 
173 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
174 	   &crypto_timing, 0, "Enable/disable crypto timing support");
175 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
176 	    cryptostats, "Crypto system statistics");
177 #endif /* __FreeBSD__ */
178 
179 int
180 crypto_init(void)
181 {
182 	int error;
183 
184 #ifdef __FreeBSD__
185 
186 	cryptop_zone = zinit("cryptop", sizeof (struct cryptop), 0, 0, 1);
187 	cryptodesc_zone = zinit("cryptodesc", sizeof (struct cryptodesc),
188 				0, 0, 1);
189 	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
190 		printf("crypto_init: cannot setup crypto zones\n");
191 		return ENOMEM;
192 	}
193 #endif
194 
195 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
196 	crypto_drivers = malloc(crypto_drivers_num *
197 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
198 	if (crypto_drivers == NULL) {
199 		printf("crypto_init: cannot malloc driver table\n");
200 		return ENOMEM;
201 	}
202 
203 	TAILQ_INIT(&crp_q);
204 	TAILQ_INIT(&crp_kq);
205 
206 	TAILQ_INIT(&crp_ret_q);
207 	TAILQ_INIT(&crp_ret_kq);
208 
209 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
210 #ifdef __FreeBSD__
211 	error = kthread_create((void (*)(void *)) cryptoret, NULL,
212 		    &cryptoproc, "cryptoret");
213 	if (error) {
214 		printf("crypto_init: cannot start cryptoret thread; error %d",
215 			error);
216 		crypto_destroy();
217 	}
218 #else
219 	/* defer thread creation until after boot */
220 	kthread_create( deferred_crypto_thread, NULL);
221 	error = 0;
222 #endif
223 	return error;
224 }
225 
226 static void
227 crypto_destroy(void)
228 {
229 	/* XXX no wait to reclaim zones */
230 	if (crypto_drivers != NULL)
231 		free(crypto_drivers, M_CRYPTO_DATA);
232 	unregister_swi(SWI_CRYPTO, cryptointr);
233 }
234 
235 /*
236  * Create a new session.
237  */
238 int
239 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
240 {
241 	struct cryptoini *cr;
242 	u_int32_t hid, lid;
243 	int err = EINVAL;
244 	int s;
245 
246 	s = splcrypto();
247 
248 	if (crypto_drivers == NULL)
249 		goto done;
250 
251 	/*
252 	 * The algorithm we use here is pretty stupid; just use the
253 	 * first driver that supports all the algorithms we need.
254 	 *
255 	 * XXX We need more smarts here (in real life too, but that's
256 	 * XXX another story altogether).
257 	 */
258 
259 	for (hid = 0; hid < crypto_drivers_num; hid++) {
260 		/*
261 		 * If it's not initialized or has remaining sessions
262 		 * referencing it, skip.
263 		 */
264 		if (crypto_drivers[hid].cc_newsession == NULL ||
265 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
266 			continue;
267 
268 		/* Hardware required -- ignore software drivers. */
269 		if (hard > 0 &&
270 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
271 			continue;
272 		/* Software required -- ignore hardware drivers. */
273 		if (hard < 0 &&
274 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
275 			continue;
276 
277 		/* See if all the algorithms are supported. */
278 		for (cr = cri; cr; cr = cr->cri_next)
279 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
280 				break;
281 
282 		if (cr == NULL) {
283 			/* Ok, all algorithms are supported. */
284 
285 			/*
286 			 * Can't do everything in one session.
287 			 *
288 			 * XXX Fix this. We need to inject a "virtual" session layer right
289 			 * XXX about here.
290 			 */
291 
292 			/* Call the driver initialization routine. */
293 			lid = hid;		/* Pass the driver ID. */
294 			err = crypto_drivers[hid].cc_newsession(
295 					crypto_drivers[hid].cc_arg, &lid, cri);
296 			if (err == 0) {
297 				(*sid) = hid;
298 				(*sid) <<= 32;
299 				(*sid) |= (lid & 0xffffffff);
300 				crypto_drivers[hid].cc_sessions++;
301 			}
302 			goto done;
303 			/*break;*/
304 		}
305 	}
306 done:
307 	splx(s);
308 	return err;
309 }
310 
311 /*
312  * Delete an existing session (or a reserved session on an unregistered
313  * driver).
314  */
315 int
316 crypto_freesession(u_int64_t sid)
317 {
318 	u_int32_t hid;
319 	int err = 0;
320 	int s;
321 
322 	s = splcrypto();
323 
324 	if (crypto_drivers == NULL) {
325 		err = EINVAL;
326 		goto done;
327 	}
328 
329 	/* Determine two IDs. */
330 	hid = SESID2HID(sid);
331 
332 	if (hid >= crypto_drivers_num) {
333 		err = ENOENT;
334 		goto done;
335 	}
336 
337 	if (crypto_drivers[hid].cc_sessions)
338 		crypto_drivers[hid].cc_sessions--;
339 
340 	/* Call the driver cleanup routine, if available. */
341 	if (crypto_drivers[hid].cc_freesession)
342 		err = crypto_drivers[hid].cc_freesession(
343 				crypto_drivers[hid].cc_arg, sid);
344 	else
345 		err = 0;
346 
347 	/*
348 	 * If this was the last session of a driver marked as invalid,
349 	 * make the entry available for reuse.
350 	 */
351 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
352 	    crypto_drivers[hid].cc_sessions == 0)
353 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
354 
355 done:
356 	splx(s);
357 	return err;
358 }
359 
360 /*
361  * Return an unused driver id.  Used by drivers prior to registering
362  * support for the algorithms they handle.
363  */
364 int32_t
365 crypto_get_driverid(u_int32_t flags)
366 {
367 	struct cryptocap *newdrv;
368 	int i, s;
369 
370 	s = splcrypto();
371 	for (i = 0; i < crypto_drivers_num; i++)
372 		if (crypto_drivers[i].cc_process == NULL &&
373 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
374 		    crypto_drivers[i].cc_sessions == 0)
375 			break;
376 
377 	/* Out of entries, allocate some more. */
378 	if (i == crypto_drivers_num) {
379 		/* Be careful about wrap-around. */
380 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
381 			splx(s);
382 			printf("crypto: driver count wraparound!\n");
383 			return -1;
384 		}
385 
386 		newdrv = malloc(2 * crypto_drivers_num *
387 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
388 		if (newdrv == NULL) {
389 			splx(s);
390 			printf("crypto: no space to expand driver table!\n");
391 			return -1;
392 		}
393 
394 		bcopy(crypto_drivers, newdrv,
395 		    crypto_drivers_num * sizeof(struct cryptocap));
396 
397 		crypto_drivers_num *= 2;
398 
399 		free(crypto_drivers, M_CRYPTO_DATA);
400 		crypto_drivers = newdrv;
401 	}
402 
403 	/* NB: state is zero'd on free */
404 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
405 	crypto_drivers[i].cc_flags = flags;
406 
407 	if (bootverbose)
408 		printf("crypto: assign driver %u, flags %u\n", i, flags);
409 
410 	splx(s);
411 
412 	return i;
413 }
414 
415 static struct cryptocap *
416 crypto_checkdriver(u_int32_t hid)
417 {
418 	if (crypto_drivers == NULL)
419 		return NULL;
420 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
421 }
422 
423 /*
424  * Register support for a key-related algorithm.  This routine
425  * is called once for each algorithm supported a driver.
426  */
427 int
428 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
429     int (*kprocess)(void*, struct cryptkop *, int),
430     void *karg)
431 {
432 	int s;
433 	struct cryptocap *cap;
434 	int err;
435 
436 	s = splcrypto();
437 
438 	cap = crypto_checkdriver(driverid);
439 	if (cap != NULL &&
440 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
441 		/*
442 		 * XXX Do some performance testing to determine placing.
443 		 * XXX We probably need an auxiliary data structure that
444 		 * XXX describes relative performances.
445 		 */
446 
447 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
448 		if (bootverbose)
449 			printf("crypto: driver %u registers key alg %u flags %u\n"
450 				, driverid
451 				, kalg
452 				, flags
453 			);
454 
455 		if (cap->cc_kprocess == NULL) {
456 			cap->cc_karg = karg;
457 			cap->cc_kprocess = kprocess;
458 		}
459 		err = 0;
460 	} else
461 		err = EINVAL;
462 
463 	splx(s);
464 	return err;
465 }
466 
467 /*
468  * Register support for a non-key-related algorithm.  This routine
469  * is called once for each such algorithm supported by a driver.
470  */
471 int
472 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
473     u_int32_t flags,
474     int (*newses)(void*, u_int32_t*, struct cryptoini*),
475     int (*freeses)(void*, u_int64_t),
476     int (*process)(void*, struct cryptop *, int),
477     void *arg)
478 {
479 	struct cryptocap *cap;
480 	int s, err;
481 
482 	s = splcrypto();
483 
484 	cap = crypto_checkdriver(driverid);
485 	/* NB: algorithms are in the range [1..max] */
486 	if (cap != NULL &&
487 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
488 		/*
489 		 * XXX Do some performance testing to determine placing.
490 		 * XXX We probably need an auxiliary data structure that
491 		 * XXX describes relative performances.
492 		 */
493 
494 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
495 		cap->cc_max_op_len[alg] = maxoplen;
496 		if (bootverbose)
497 			printf("crypto: driver %u registers alg %u flags %u maxoplen %u\n"
498 				, driverid
499 				, alg
500 				, flags
501 				, maxoplen
502 			);
503 
504 		if (cap->cc_process == NULL) {
505 			cap->cc_arg = arg;
506 			cap->cc_newsession = newses;
507 			cap->cc_process = process;
508 			cap->cc_freesession = freeses;
509 			cap->cc_sessions = 0;		/* Unmark */
510 		}
511 		err = 0;
512 	} else
513 		err = EINVAL;
514 
515 	splx(s);
516 	return err;
517 }
518 
519 /*
520  * Unregister a crypto driver. If there are pending sessions using it,
521  * leave enough information around so that subsequent calls using those
522  * sessions will correctly detect the driver has been unregistered and
523  * reroute requests.
524  */
525 int
526 crypto_unregister(u_int32_t driverid, int alg)
527 {
528 	int i, err, s;
529 	u_int32_t ses;
530 	struct cryptocap *cap;
531 
532 	s = splcrypto();
533 
534 	cap = crypto_checkdriver(driverid);
535 	if (cap != NULL &&
536 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
537 	    cap->cc_alg[alg] != 0) {
538 		cap->cc_alg[alg] = 0;
539 		cap->cc_max_op_len[alg] = 0;
540 
541 		/* Was this the last algorithm ? */
542 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
543 			if (cap->cc_alg[i] != 0)
544 				break;
545 
546 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
547 			ses = cap->cc_sessions;
548 			bzero(cap, sizeof(struct cryptocap));
549 			if (ses != 0) {
550 				/*
551 				 * If there are pending sessions, just mark as invalid.
552 				 */
553 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
554 				cap->cc_sessions = ses;
555 			}
556 		}
557 		err = 0;
558 	} else
559 		err = EINVAL;
560 
561 	splx(s);
562 	return err;
563 }
564 
565 /*
566  * Unregister all algorithms associated with a crypto driver.
567  * If there are pending sessions using it, leave enough information
568  * around so that subsequent calls using those sessions will
569  * correctly detect the driver has been unregistered and reroute
570  * requests.
571  */
572 int
573 crypto_unregister_all(u_int32_t driverid)
574 {
575 	int i, err, s = splcrypto();
576 	u_int32_t ses;
577 	struct cryptocap *cap;
578 
579 	cap = crypto_checkdriver(driverid);
580 	if (cap != NULL) {
581 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
582 			cap->cc_alg[i] = 0;
583 			cap->cc_max_op_len[i] = 0;
584 		}
585 		ses = cap->cc_sessions;
586 		bzero(cap, sizeof(struct cryptocap));
587 		if (ses != 0) {
588 			/*
589 			 * If there are pending sessions, just mark as invalid.
590 			 */
591 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
592 			cap->cc_sessions = ses;
593 		}
594 		err = 0;
595 	} else
596 		err = EINVAL;
597 
598 	splx(s);
599 	return err;
600 }
601 
602 /*
603  * Clear blockage on a driver.  The what parameter indicates whether
604  * the driver is now ready for cryptop's and/or cryptokop's.
605  */
606 int
607 crypto_unblock(u_int32_t driverid, int what)
608 {
609 	struct cryptocap *cap;
610 	int needwakeup, err, s;
611 
612 	s = splcrypto();
613 	cap = crypto_checkdriver(driverid);
614 	if (cap != NULL) {
615 		needwakeup = 0;
616 		if (what & CRYPTO_SYMQ) {
617 			needwakeup |= cap->cc_qblocked;
618 			cap->cc_qblocked = 0;
619 		}
620 		if (what & CRYPTO_ASYMQ) {
621 			needwakeup |= cap->cc_kqblocked;
622 			cap->cc_kqblocked = 0;
623 		}
624 		if (needwakeup) {
625 			setsoftcrypto(softintr_cookie);
626 		}
627 		err = 0;
628 	} else
629 		err = EINVAL;
630 	splx(s);
631 
632 	return err;
633 }
634 
635 /*
636  * Dispatch a crypto request to a driver or queue
637  * it, to be processed by the kernel thread.
638  */
639 int
640 crypto_dispatch(struct cryptop *crp)
641 {
642 	u_int32_t hid = SESID2HID(crp->crp_sid);
643 	int s, result;
644 
645 	s = splcrypto();
646 
647 	cryptostats.cs_ops++;
648 
649 #ifdef CRYPTO_TIMING
650 	if (crypto_timing)
651 		nanouptime(&crp->crp_tstamp);
652 #endif
653 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
654 		struct cryptocap *cap;
655 		/*
656 		 * Caller marked the request to be processed
657 		 * immediately; dispatch it directly to the
658 		 * driver unless the driver is currently blocked.
659 		 */
660 		cap = crypto_checkdriver(hid);
661 		if (cap && !cap->cc_qblocked) {
662 			result = crypto_invoke(crp, 0);
663 			if (result == ERESTART) {
664 				/*
665 				 * The driver ran out of resources, mark the
666 				 * driver ``blocked'' for cryptop's and put
667 				 * the op on the queue.
668 				 */
669 				crypto_drivers[hid].cc_qblocked = 1;
670 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
671 				cryptostats.cs_blocks++;
672 			}
673 		} else {
674 			/*
675 			 * The driver is blocked, just queue the op until
676 			 * it unblocks and the swi thread gets kicked.
677 			 */
678 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
679 			result = 0;
680 		}
681 	} else {
682 		int wasempty = TAILQ_EMPTY(&crp_q);
683 		/*
684 		 * Caller marked the request as ``ok to delay'';
685 		 * queue it for the swi thread.  This is desirable
686 		 * when the operation is low priority and/or suitable
687 		 * for batching.
688 		 */
689 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
690 		if (wasempty) {
691 			setsoftcrypto(softintr_cookie);
692 		}
693 
694 		result = 0;
695 	}
696 	splx(s);
697 
698 	return result;
699 }
700 
701 /*
702  * Add an asymetric crypto request to a queue,
703  * to be processed by the kernel thread.
704  */
705 int
706 crypto_kdispatch(struct cryptkop *krp)
707 {
708 	struct cryptocap *cap;
709 	int s, result;
710 
711 	s = splcrypto();
712 	cryptostats.cs_kops++;
713 
714 	cap = crypto_checkdriver(krp->krp_hid);
715 	if (cap && !cap->cc_kqblocked) {
716 		result = crypto_kinvoke(krp, 0);
717 		if (result == ERESTART) {
718 			/*
719 			 * The driver ran out of resources, mark the
720 			 * driver ``blocked'' for cryptop's and put
721 			 * the op on the queue.
722 			 */
723 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
724 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
725 			cryptostats.cs_kblocks++;
726 		}
727 	} else {
728 		/*
729 		 * The driver is blocked, just queue the op until
730 		 * it unblocks and the swi thread gets kicked.
731 		 */
732 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
733 		result = 0;
734 	}
735 	splx(s);
736 
737 	return result;
738 }
739 
740 /*
741  * Dispatch an assymetric crypto request to the appropriate crypto devices.
742  */
743 static int
744 crypto_kinvoke(struct cryptkop *krp, int hint)
745 {
746 	u_int32_t hid;
747 	int error;
748 
749 	/* Sanity checks. */
750 	if (krp == NULL)
751 		return EINVAL;
752 	if (krp->krp_callback == NULL) {
753 		free(krp, M_XDATA);		/* XXX allocated in cryptodev */
754 		return EINVAL;
755 	}
756 
757 	for (hid = 0; hid < crypto_drivers_num; hid++) {
758 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
759 		    crypto_devallowsoft == 0)
760 			continue;
761 		if (crypto_drivers[hid].cc_kprocess == NULL)
762 			continue;
763 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
764 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
765 			continue;
766 		break;
767 	}
768 	if (hid < crypto_drivers_num) {
769 		krp->krp_hid = hid;
770 		error = crypto_drivers[hid].cc_kprocess(
771 				crypto_drivers[hid].cc_karg, krp, hint);
772 	} else {
773 		error = ENODEV;
774 	}
775 
776 	if (error) {
777 		krp->krp_status = error;
778 		crypto_kdone(krp);
779 	}
780 	return 0;
781 }
782 
783 #ifdef CRYPTO_TIMING
784 static void
785 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
786 {
787 	struct timespec now, t;
788 
789 	nanouptime(&now);
790 	t.tv_sec = now.tv_sec - tv->tv_sec;
791 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
792 	if (t.tv_nsec < 0) {
793 		t.tv_sec--;
794 		t.tv_nsec += 1000000000;
795 	}
796 	timespecadd(&ts->acc, &t, &t);
797 	if (timespeccmp(&t, &ts->min, <))
798 		ts->min = t;
799 	if (timespeccmp(&t, &ts->max, >))
800 		ts->max = t;
801 	ts->count++;
802 
803 	*tv = now;
804 }
805 #endif
806 
807 /*
808  * Dispatch a crypto request to the appropriate crypto devices.
809  */
810 static int
811 crypto_invoke(struct cryptop *crp, int hint)
812 {
813 	u_int32_t hid;
814 	int (*process)(void*, struct cryptop *, int);
815 
816 #ifdef CRYPTO_TIMING
817 	if (crypto_timing)
818 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
819 #endif
820 	/* Sanity checks. */
821 	if (crp == NULL)
822 		return EINVAL;
823 	if (crp->crp_callback == NULL) {
824 		crypto_freereq(crp);
825 		return EINVAL;
826 	}
827 	if (crp->crp_desc == NULL) {
828 		crp->crp_etype = EINVAL;
829 		crypto_done(crp);
830 		return 0;
831 	}
832 
833 	hid = SESID2HID(crp->crp_sid);
834 	if (hid < crypto_drivers_num) {
835 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
836 			crypto_freesession(crp->crp_sid);
837 		process = crypto_drivers[hid].cc_process;
838 	} else {
839 		process = NULL;
840 	}
841 
842 	if (process == NULL) {
843 		struct cryptodesc *crd;
844 		u_int64_t nid;
845 
846 		/*
847 		 * Driver has unregistered; migrate the session and return
848 		 * an error to the caller so they'll resubmit the op.
849 		 */
850 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
851 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
852 
853 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
854 			crp->crp_sid = nid;
855 
856 		crp->crp_etype = EAGAIN;
857 		crypto_done(crp);
858 		return 0;
859 	} else {
860 		/*
861 		 * Invoke the driver to process the request.
862 		 */
863 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
864 	}
865 }
866 
867 /*
868  * Release a set of crypto descriptors.
869  */
870 void
871 crypto_freereq(struct cryptop *crp)
872 {
873 	struct cryptodesc *crd;
874 	int s;
875 
876 	if (crp == NULL)
877 		return;
878 
879 	s = splcrypto();
880 
881 	while ((crd = crp->crp_desc) != NULL) {
882 		crp->crp_desc = crd->crd_next;
883 		pool_put(&cryptodesc_pool, crd);
884 	}
885 
886 	pool_put(&cryptop_pool, crp);
887 	splx(s);
888 }
889 
890 /*
891  * Acquire a set of crypto descriptors.
892  */
893 struct cryptop *
894 crypto_getreq(int num)
895 {
896 	struct cryptodesc *crd;
897 	struct cryptop *crp;
898 	int s;
899 
900 	s = splcrypto();
901 
902 	if (crypto_pool_initialized == 0) {
903 		pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
904 		    0, "cryptop", NULL);
905 		pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
906 		    0, "cryptodesc", NULL);
907 		crypto_pool_initialized = 1;
908 	}
909 
910 	crp = pool_get(&cryptop_pool, 0);
911 	if (crp == NULL) {
912 		splx(s);
913 		return NULL;
914 	}
915 	bzero(crp, sizeof(struct cryptop));
916 
917 	while (num--) {
918 		crd = pool_get(&cryptodesc_pool, 0);
919 		if (crd == NULL) {
920 			splx(s);
921 			crypto_freereq(crp);
922 			return NULL;
923 		}
924 
925 		bzero(crd, sizeof(struct cryptodesc));
926 		crd->crd_next = crp->crp_desc;
927 		crp->crp_desc = crd;
928 	}
929 
930 	splx(s);
931 	return crp;
932 }
933 
934 /*
935  * Invoke the callback on behalf of the driver.
936  */
937 void
938 crypto_done(struct cryptop *crp)
939 {
940 	if (crp->crp_etype != 0)
941 		cryptostats.cs_errs++;
942 #ifdef CRYPTO_TIMING
943 	if (crypto_timing)
944 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
945 #endif
946 	/*
947 	 * On netbsd 1.6O, CBIMM does its wake_one() before the requestor
948 	 * has done its tsleep().
949 	 */
950 #ifndef __NetBSD__
951 	if (crp->crp_flags & CRYPTO_F_CBIMM) {
952 		/*
953 		 * Do the callback directly.  This is ok when the
954 		 * callback routine does very little (e.g. the
955 		 * /dev/crypto callback method just does a wakeup).
956 		 */
957 #ifdef CRYPTO_TIMING
958 		if (crypto_timing) {
959 			/*
960 			 * NB: We must copy the timestamp before
961 			 * doing the callback as the cryptop is
962 			 * likely to be reclaimed.
963 			 */
964 			struct timespec t = crp->crp_tstamp;
965 			crypto_tstat(&cryptostats.cs_cb, &t);
966 			crp->crp_callback(crp);
967 			crypto_tstat(&cryptostats.cs_finis, &t);
968 		} else
969 #endif
970 			crp->crp_callback(crp);
971 	} else
972 #endif /* __NetBSD__ */
973 	{
974 		int s, wasempty;
975 		/*
976 		 * Normal case; queue the callback for the thread.
977 		 *
978 		 * The return queue is manipulated by the swi thread
979 		 * and, potentially, by crypto device drivers calling
980 		 * back to mark operations completed.  Thus we need
981 		 * to mask both while manipulating the return queue.
982 		 */
983 		s = splcrypto();
984 		wasempty = TAILQ_EMPTY(&crp_ret_q);
985 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
986 		if (wasempty)
987 			wakeup_one(&crp_ret_q);
988 		splx(s);
989 	}
990 }
991 
992 /*
993  * Invoke the callback on behalf of the driver.
994  */
995 void
996 crypto_kdone(struct cryptkop *krp)
997 {
998 	int s, wasempty;
999 
1000 	if (krp->krp_status != 0)
1001 		cryptostats.cs_kerrs++;
1002 	/*
1003 	 * The return queue is manipulated by the swi thread
1004 	 * and, potentially, by crypto device drivers calling
1005 	 * back to mark operations completed.  Thus we need
1006 	 * to mask both while manipulating the return queue.
1007 	 */
1008 	s = splcrypto();
1009 	wasempty = TAILQ_EMPTY(&crp_ret_kq);
1010 	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1011 	if (wasempty)
1012 		wakeup_one(&crp_ret_q);
1013 	splx(s);
1014 }
1015 
1016 int
1017 crypto_getfeat(int *featp)
1018 {
1019 	int hid, kalg, feat = 0;
1020 	int s;
1021 
1022 	s = splcrypto();
1023 
1024 	if (crypto_userasymcrypto == 0)
1025 		goto out;
1026 
1027 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1028 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1029 		    crypto_devallowsoft == 0) {
1030 			continue;
1031 		}
1032 		if (crypto_drivers[hid].cc_kprocess == NULL)
1033 			continue;
1034 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1035 			if ((crypto_drivers[hid].cc_kalg[kalg] &
1036 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1037 				feat |=  1 << kalg;
1038 	}
1039 out:
1040 	splx(s);
1041 	*featp = feat;
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Software interrupt thread to dispatch crypto requests.
1047  */
1048 static void
1049 cryptointr(void)
1050 {
1051 	struct cryptop *crp, *submit;
1052 	struct cryptkop *krp;
1053 	struct cryptocap *cap;
1054 	int result, hint, s;
1055 
1056 	printf("crypto softint\n");
1057 	cryptostats.cs_intrs++;
1058 	s = splcrypto();
1059 	do {
1060 		/*
1061 		 * Find the first element in the queue that can be
1062 		 * processed and look-ahead to see if multiple ops
1063 		 * are ready for the same driver.
1064 		 */
1065 		submit = NULL;
1066 		hint = 0;
1067 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1068 			u_int32_t hid = SESID2HID(crp->crp_sid);
1069 			cap = crypto_checkdriver(hid);
1070 			if (cap == NULL || cap->cc_process == NULL) {
1071 				/* Op needs to be migrated, process it. */
1072 				if (submit == NULL)
1073 					submit = crp;
1074 				break;
1075 			}
1076 			if (!cap->cc_qblocked) {
1077 				if (submit != NULL) {
1078 					/*
1079 					 * We stop on finding another op,
1080 					 * regardless whether its for the same
1081 					 * driver or not.  We could keep
1082 					 * searching the queue but it might be
1083 					 * better to just use a per-driver
1084 					 * queue instead.
1085 					 */
1086 					if (SESID2HID(submit->crp_sid) == hid)
1087 						hint = CRYPTO_HINT_MORE;
1088 					break;
1089 				} else {
1090 					submit = crp;
1091 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1092 						break;
1093 					/* keep scanning for more are q'd */
1094 				}
1095 			}
1096 		}
1097 		if (submit != NULL) {
1098 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1099 			result = crypto_invoke(submit, hint);
1100 			if (result == ERESTART) {
1101 				/*
1102 				 * The driver ran out of resources, mark the
1103 				 * driver ``blocked'' for cryptop's and put
1104 				 * the request back in the queue.  It would
1105 				 * best to put the request back where we got
1106 				 * it but that's hard so for now we put it
1107 				 * at the front.  This should be ok; putting
1108 				 * it at the end does not work.
1109 				 */
1110 				/* XXX validate sid again? */
1111 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1112 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1113 				cryptostats.cs_blocks++;
1114 			}
1115 		}
1116 
1117 		/* As above, but for key ops */
1118 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1119 			cap = crypto_checkdriver(krp->krp_hid);
1120 			if (cap == NULL || cap->cc_kprocess == NULL) {
1121 				/* Op needs to be migrated, process it. */
1122 				break;
1123 			}
1124 			if (!cap->cc_kqblocked)
1125 				break;
1126 		}
1127 		if (krp != NULL) {
1128 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1129 			result = crypto_kinvoke(krp, 0);
1130 			if (result == ERESTART) {
1131 				/*
1132 				 * The driver ran out of resources, mark the
1133 				 * driver ``blocked'' for cryptkop's and put
1134 				 * the request back in the queue.  It would
1135 				 * best to put the request back where we got
1136 				 * it but that's hard so for now we put it
1137 				 * at the front.  This should be ok; putting
1138 				 * it at the end does not work.
1139 				 */
1140 				/* XXX validate sid again? */
1141 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1142 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1143 				cryptostats.cs_kblocks++;
1144 			}
1145 		}
1146 	} while (submit != NULL || krp != NULL);
1147 	splx(s);
1148 }
1149 
1150 /*
1151  * Kernel thread to do callbacks.
1152  */
1153 static void
1154 cryptoret(void)
1155 {
1156 	struct cryptop *crp;
1157 	struct cryptkop *krp;
1158 	int s;
1159 
1160 	s = splcrypto();
1161 	for (;;) {
1162 		crp = TAILQ_FIRST(&crp_ret_q);
1163 		if (crp != NULL)
1164 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1165 		krp = TAILQ_FIRST(&crp_ret_kq);
1166 		if (krp != NULL)
1167 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1168 
1169 		if (crp != NULL || krp != NULL) {
1170 			splx(s);		/* lower ipl for callbacks */
1171 			if (crp != NULL) {
1172 #ifdef CRYPTO_TIMING
1173 				if (crypto_timing) {
1174 					/*
1175 					 * NB: We must copy the timestamp before
1176 					 * doing the callback as the cryptop is
1177 					 * likely to be reclaimed.
1178 					 */
1179 					struct timespec t = crp->crp_tstamp;
1180 					crypto_tstat(&cryptostats.cs_cb, &t);
1181 					crp->crp_callback(crp);
1182 					crypto_tstat(&cryptostats.cs_finis, &t);
1183 				} else
1184 #endif
1185 					crp->crp_callback(crp);
1186 			}
1187 			if (krp != NULL)
1188 				krp->krp_callback(krp);
1189 			s  = splcrypto();
1190 		} else {
1191 			(void) tsleep(&crp_ret_q, PLOCK, "crypto_wait", 0);
1192 			cryptostats.cs_rets++;
1193 		}
1194 	}
1195 }
1196 
1197 static void
1198 deferred_crypto_thread(void *arg)
1199 {
1200 	int error;
1201 
1202 	error = kthread_create1((void (*)(void*)) cryptoret, NULL,
1203 				&cryptoproc, "cryptoret");
1204 	if (error) {
1205 		printf("crypto_init: cannot start cryptoret thread; error %d",
1206 		    error);
1207 		crypto_destroy();
1208 	}
1209 
1210 	/*
1211 	 * XXX in absence of FreeBSD mod_init(), call init hooks here,
1212 	 * now that the thread used by software crypto is up and running.
1213 	 */
1214 	swcr_init();
1215 }
1216 
1217 void
1218 cryptoattach(int n)
1219 {
1220 	/* Nothing to do. */
1221 }
1222 
1223 #ifdef __FreeBSD__
1224 /*
1225  * Initialization code, both for static and dynamic loading.
1226  */
1227 static int
1228 crypto_modevent(module_t mod, int type, void *unused)
1229 {
1230 	int error = EINVAL;
1231 
1232 	switch (type) {
1233 	case MOD_LOAD:
1234 		error = crypto_init();
1235 		if (error == 0 && bootverbose)
1236 			printf("crypto: <crypto core>\n");
1237 		break;
1238 	case MOD_UNLOAD:
1239 		/*XXX disallow if active sessions */
1240 		error = 0;
1241 		crypto_destroy();
1242 		break;
1243 	}
1244 	return error;
1245 }
1246 static moduledata_t crypto_mod = {
1247 	"crypto",
1248 	crypto_modevent,
1249 	0
1250 };
1251 
1252 MODULE_VERSION(crypto, 1);
1253 DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1254 #endif /* __FreeBSD__ */
1255 
1256 
1257