xref: /netbsd-src/sys/nfs/nfs_subs.c (revision fdecd6a253f999ae92b139670d9e15cc9df4497c)
1 /*	$NetBSD: nfs_subs.c,v 1.44 1997/07/04 20:22:10 drochner Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
39  */
40 
41 
42 /*
43  * These functions support the macros and help fiddle mbuf chains for
44  * the nfs op functions. They do things like create the rpc header and
45  * copy data between mbuf chains and uio lists.
46  */
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/mount.h>
52 #include <sys/vnode.h>
53 #include <sys/namei.h>
54 #include <sys/mbuf.h>
55 #include <sys/socket.h>
56 #include <sys/stat.h>
57 #include <sys/malloc.h>
58 #include <sys/time.h>
59 #include <sys/dirent.h>
60 
61 #include <vm/vm.h>
62 
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfsnode.h>
66 #include <nfs/nfs.h>
67 #include <nfs/xdr_subs.h>
68 #include <nfs/nfsm_subs.h>
69 #include <nfs/nfsmount.h>
70 #include <nfs/nqnfs.h>
71 #include <nfs/nfsrtt.h>
72 #include <nfs/nfs_var.h>
73 
74 #include <miscfs/specfs/specdev.h>
75 
76 #include <vm/vm.h>
77 
78 #include <netinet/in.h>
79 #ifdef ISO
80 #include <netiso/iso.h>
81 #endif
82 
83 /*
84  * Data items converted to xdr at startup, since they are constant
85  * This is kinda hokey, but may save a little time doing byte swaps
86  */
87 u_int32_t nfs_xdrneg1;
88 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
89 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
90 	rpc_auth_kerb;
91 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
92 
93 /* And other global data */
94 static u_int32_t nfs_xid = 0;
95 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
96 		      NFCHR, NFNON };
97 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
98 		      NFFIFO, NFNON };
99 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
100 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
101 int nfs_ticks;
102 extern struct nfs_public nfs_pub;
103 
104 /* NFS client/server stats. */
105 struct nfsstats nfsstats;
106 
107 /*
108  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
109  */
110 int nfsv3_procid[NFS_NPROCS] = {
111 	NFSPROC_NULL,
112 	NFSPROC_GETATTR,
113 	NFSPROC_SETATTR,
114 	NFSPROC_NOOP,
115 	NFSPROC_LOOKUP,
116 	NFSPROC_READLINK,
117 	NFSPROC_READ,
118 	NFSPROC_NOOP,
119 	NFSPROC_WRITE,
120 	NFSPROC_CREATE,
121 	NFSPROC_REMOVE,
122 	NFSPROC_RENAME,
123 	NFSPROC_LINK,
124 	NFSPROC_SYMLINK,
125 	NFSPROC_MKDIR,
126 	NFSPROC_RMDIR,
127 	NFSPROC_READDIR,
128 	NFSPROC_FSSTAT,
129 	NFSPROC_NOOP,
130 	NFSPROC_NOOP,
131 	NFSPROC_NOOP,
132 	NFSPROC_NOOP,
133 	NFSPROC_NOOP,
134 	NFSPROC_NOOP,
135 	NFSPROC_NOOP,
136 	NFSPROC_NOOP
137 };
138 
139 /*
140  * and the reverse mapping from generic to Version 2 procedure numbers
141  */
142 int nfsv2_procid[NFS_NPROCS] = {
143 	NFSV2PROC_NULL,
144 	NFSV2PROC_GETATTR,
145 	NFSV2PROC_SETATTR,
146 	NFSV2PROC_LOOKUP,
147 	NFSV2PROC_NOOP,
148 	NFSV2PROC_READLINK,
149 	NFSV2PROC_READ,
150 	NFSV2PROC_WRITE,
151 	NFSV2PROC_CREATE,
152 	NFSV2PROC_MKDIR,
153 	NFSV2PROC_SYMLINK,
154 	NFSV2PROC_CREATE,
155 	NFSV2PROC_REMOVE,
156 	NFSV2PROC_RMDIR,
157 	NFSV2PROC_RENAME,
158 	NFSV2PROC_LINK,
159 	NFSV2PROC_READDIR,
160 	NFSV2PROC_NOOP,
161 	NFSV2PROC_STATFS,
162 	NFSV2PROC_NOOP,
163 	NFSV2PROC_NOOP,
164 	NFSV2PROC_NOOP,
165 	NFSV2PROC_NOOP,
166 	NFSV2PROC_NOOP,
167 	NFSV2PROC_NOOP,
168 	NFSV2PROC_NOOP,
169 };
170 
171 /*
172  * Maps errno values to nfs error numbers.
173  * Use NFSERR_IO as the catch all for ones not specifically defined in
174  * RFC 1094.
175  */
176 static u_char nfsrv_v2errmap[ELAST] = {
177   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
178   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
179   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
180   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
181   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
182   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
183   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
184   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
185   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
186   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
187   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
188   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
189   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
190   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
191   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
192   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
193   NFSERR_IO,
194 };
195 
196 /*
197  * Maps errno values to nfs error numbers.
198  * Although it is not obvious whether or not NFS clients really care if
199  * a returned error value is in the specified list for the procedure, the
200  * safest thing to do is filter them appropriately. For Version 2, the
201  * X/Open XNFS document is the only specification that defines error values
202  * for each RPC (The RFC simply lists all possible error values for all RPCs),
203  * so I have decided to not do this for Version 2.
204  * The first entry is the default error return and the rest are the valid
205  * errors for that RPC in increasing numeric order.
206  */
207 static short nfsv3err_null[] = {
208 	0,
209 	0,
210 };
211 
212 static short nfsv3err_getattr[] = {
213 	NFSERR_IO,
214 	NFSERR_IO,
215 	NFSERR_STALE,
216 	NFSERR_BADHANDLE,
217 	NFSERR_SERVERFAULT,
218 	0,
219 };
220 
221 static short nfsv3err_setattr[] = {
222 	NFSERR_IO,
223 	NFSERR_PERM,
224 	NFSERR_IO,
225 	NFSERR_ACCES,
226 	NFSERR_INVAL,
227 	NFSERR_NOSPC,
228 	NFSERR_ROFS,
229 	NFSERR_DQUOT,
230 	NFSERR_STALE,
231 	NFSERR_BADHANDLE,
232 	NFSERR_NOT_SYNC,
233 	NFSERR_SERVERFAULT,
234 	0,
235 };
236 
237 static short nfsv3err_lookup[] = {
238 	NFSERR_IO,
239 	NFSERR_NOENT,
240 	NFSERR_IO,
241 	NFSERR_ACCES,
242 	NFSERR_NOTDIR,
243 	NFSERR_NAMETOL,
244 	NFSERR_STALE,
245 	NFSERR_BADHANDLE,
246 	NFSERR_SERVERFAULT,
247 	0,
248 };
249 
250 static short nfsv3err_access[] = {
251 	NFSERR_IO,
252 	NFSERR_IO,
253 	NFSERR_STALE,
254 	NFSERR_BADHANDLE,
255 	NFSERR_SERVERFAULT,
256 	0,
257 };
258 
259 static short nfsv3err_readlink[] = {
260 	NFSERR_IO,
261 	NFSERR_IO,
262 	NFSERR_ACCES,
263 	NFSERR_INVAL,
264 	NFSERR_STALE,
265 	NFSERR_BADHANDLE,
266 	NFSERR_NOTSUPP,
267 	NFSERR_SERVERFAULT,
268 	0,
269 };
270 
271 static short nfsv3err_read[] = {
272 	NFSERR_IO,
273 	NFSERR_IO,
274 	NFSERR_NXIO,
275 	NFSERR_ACCES,
276 	NFSERR_INVAL,
277 	NFSERR_STALE,
278 	NFSERR_BADHANDLE,
279 	NFSERR_SERVERFAULT,
280 	0,
281 };
282 
283 static short nfsv3err_write[] = {
284 	NFSERR_IO,
285 	NFSERR_IO,
286 	NFSERR_ACCES,
287 	NFSERR_INVAL,
288 	NFSERR_FBIG,
289 	NFSERR_NOSPC,
290 	NFSERR_ROFS,
291 	NFSERR_DQUOT,
292 	NFSERR_STALE,
293 	NFSERR_BADHANDLE,
294 	NFSERR_SERVERFAULT,
295 	0,
296 };
297 
298 static short nfsv3err_create[] = {
299 	NFSERR_IO,
300 	NFSERR_IO,
301 	NFSERR_ACCES,
302 	NFSERR_EXIST,
303 	NFSERR_NOTDIR,
304 	NFSERR_NOSPC,
305 	NFSERR_ROFS,
306 	NFSERR_NAMETOL,
307 	NFSERR_DQUOT,
308 	NFSERR_STALE,
309 	NFSERR_BADHANDLE,
310 	NFSERR_NOTSUPP,
311 	NFSERR_SERVERFAULT,
312 	0,
313 };
314 
315 static short nfsv3err_mkdir[] = {
316 	NFSERR_IO,
317 	NFSERR_IO,
318 	NFSERR_ACCES,
319 	NFSERR_EXIST,
320 	NFSERR_NOTDIR,
321 	NFSERR_NOSPC,
322 	NFSERR_ROFS,
323 	NFSERR_NAMETOL,
324 	NFSERR_DQUOT,
325 	NFSERR_STALE,
326 	NFSERR_BADHANDLE,
327 	NFSERR_NOTSUPP,
328 	NFSERR_SERVERFAULT,
329 	0,
330 };
331 
332 static short nfsv3err_symlink[] = {
333 	NFSERR_IO,
334 	NFSERR_IO,
335 	NFSERR_ACCES,
336 	NFSERR_EXIST,
337 	NFSERR_NOTDIR,
338 	NFSERR_NOSPC,
339 	NFSERR_ROFS,
340 	NFSERR_NAMETOL,
341 	NFSERR_DQUOT,
342 	NFSERR_STALE,
343 	NFSERR_BADHANDLE,
344 	NFSERR_NOTSUPP,
345 	NFSERR_SERVERFAULT,
346 	0,
347 };
348 
349 static short nfsv3err_mknod[] = {
350 	NFSERR_IO,
351 	NFSERR_IO,
352 	NFSERR_ACCES,
353 	NFSERR_EXIST,
354 	NFSERR_NOTDIR,
355 	NFSERR_NOSPC,
356 	NFSERR_ROFS,
357 	NFSERR_NAMETOL,
358 	NFSERR_DQUOT,
359 	NFSERR_STALE,
360 	NFSERR_BADHANDLE,
361 	NFSERR_NOTSUPP,
362 	NFSERR_SERVERFAULT,
363 	NFSERR_BADTYPE,
364 	0,
365 };
366 
367 static short nfsv3err_remove[] = {
368 	NFSERR_IO,
369 	NFSERR_NOENT,
370 	NFSERR_IO,
371 	NFSERR_ACCES,
372 	NFSERR_NOTDIR,
373 	NFSERR_ROFS,
374 	NFSERR_NAMETOL,
375 	NFSERR_STALE,
376 	NFSERR_BADHANDLE,
377 	NFSERR_SERVERFAULT,
378 	0,
379 };
380 
381 static short nfsv3err_rmdir[] = {
382 	NFSERR_IO,
383 	NFSERR_NOENT,
384 	NFSERR_IO,
385 	NFSERR_ACCES,
386 	NFSERR_EXIST,
387 	NFSERR_NOTDIR,
388 	NFSERR_INVAL,
389 	NFSERR_ROFS,
390 	NFSERR_NAMETOL,
391 	NFSERR_NOTEMPTY,
392 	NFSERR_STALE,
393 	NFSERR_BADHANDLE,
394 	NFSERR_NOTSUPP,
395 	NFSERR_SERVERFAULT,
396 	0,
397 };
398 
399 static short nfsv3err_rename[] = {
400 	NFSERR_IO,
401 	NFSERR_NOENT,
402 	NFSERR_IO,
403 	NFSERR_ACCES,
404 	NFSERR_EXIST,
405 	NFSERR_XDEV,
406 	NFSERR_NOTDIR,
407 	NFSERR_ISDIR,
408 	NFSERR_INVAL,
409 	NFSERR_NOSPC,
410 	NFSERR_ROFS,
411 	NFSERR_MLINK,
412 	NFSERR_NAMETOL,
413 	NFSERR_NOTEMPTY,
414 	NFSERR_DQUOT,
415 	NFSERR_STALE,
416 	NFSERR_BADHANDLE,
417 	NFSERR_NOTSUPP,
418 	NFSERR_SERVERFAULT,
419 	0,
420 };
421 
422 static short nfsv3err_link[] = {
423 	NFSERR_IO,
424 	NFSERR_IO,
425 	NFSERR_ACCES,
426 	NFSERR_EXIST,
427 	NFSERR_XDEV,
428 	NFSERR_NOTDIR,
429 	NFSERR_INVAL,
430 	NFSERR_NOSPC,
431 	NFSERR_ROFS,
432 	NFSERR_MLINK,
433 	NFSERR_NAMETOL,
434 	NFSERR_DQUOT,
435 	NFSERR_STALE,
436 	NFSERR_BADHANDLE,
437 	NFSERR_NOTSUPP,
438 	NFSERR_SERVERFAULT,
439 	0,
440 };
441 
442 static short nfsv3err_readdir[] = {
443 	NFSERR_IO,
444 	NFSERR_IO,
445 	NFSERR_ACCES,
446 	NFSERR_NOTDIR,
447 	NFSERR_STALE,
448 	NFSERR_BADHANDLE,
449 	NFSERR_BAD_COOKIE,
450 	NFSERR_TOOSMALL,
451 	NFSERR_SERVERFAULT,
452 	0,
453 };
454 
455 static short nfsv3err_readdirplus[] = {
456 	NFSERR_IO,
457 	NFSERR_IO,
458 	NFSERR_ACCES,
459 	NFSERR_NOTDIR,
460 	NFSERR_STALE,
461 	NFSERR_BADHANDLE,
462 	NFSERR_BAD_COOKIE,
463 	NFSERR_NOTSUPP,
464 	NFSERR_TOOSMALL,
465 	NFSERR_SERVERFAULT,
466 	0,
467 };
468 
469 static short nfsv3err_fsstat[] = {
470 	NFSERR_IO,
471 	NFSERR_IO,
472 	NFSERR_STALE,
473 	NFSERR_BADHANDLE,
474 	NFSERR_SERVERFAULT,
475 	0,
476 };
477 
478 static short nfsv3err_fsinfo[] = {
479 	NFSERR_STALE,
480 	NFSERR_STALE,
481 	NFSERR_BADHANDLE,
482 	NFSERR_SERVERFAULT,
483 	0,
484 };
485 
486 static short nfsv3err_pathconf[] = {
487 	NFSERR_STALE,
488 	NFSERR_STALE,
489 	NFSERR_BADHANDLE,
490 	NFSERR_SERVERFAULT,
491 	0,
492 };
493 
494 static short nfsv3err_commit[] = {
495 	NFSERR_IO,
496 	NFSERR_IO,
497 	NFSERR_STALE,
498 	NFSERR_BADHANDLE,
499 	NFSERR_SERVERFAULT,
500 	0,
501 };
502 
503 static short *nfsrv_v3errmap[] = {
504 	nfsv3err_null,
505 	nfsv3err_getattr,
506 	nfsv3err_setattr,
507 	nfsv3err_lookup,
508 	nfsv3err_access,
509 	nfsv3err_readlink,
510 	nfsv3err_read,
511 	nfsv3err_write,
512 	nfsv3err_create,
513 	nfsv3err_mkdir,
514 	nfsv3err_symlink,
515 	nfsv3err_mknod,
516 	nfsv3err_remove,
517 	nfsv3err_rmdir,
518 	nfsv3err_rename,
519 	nfsv3err_link,
520 	nfsv3err_readdir,
521 	nfsv3err_readdirplus,
522 	nfsv3err_fsstat,
523 	nfsv3err_fsinfo,
524 	nfsv3err_pathconf,
525 	nfsv3err_commit,
526 };
527 
528 extern struct nfsrtt nfsrtt;
529 extern time_t nqnfsstarttime;
530 extern int nqsrv_clockskew;
531 extern int nqsrv_writeslack;
532 extern int nqsrv_maxlease;
533 extern int nqnfs_piggy[NFS_NPROCS];
534 extern nfstype nfsv2_type[9];
535 extern nfstype nfsv3_type[9];
536 extern struct nfsnodehashhead *nfsnodehashtbl;
537 extern u_long nfsnodehash;
538 
539 LIST_HEAD(nfsnodehashhead, nfsnode);
540 
541 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
542 
543 /*
544  * Create the header for an rpc request packet
545  * The hsiz is the size of the rest of the nfs request header.
546  * (just used to decide if a cluster is a good idea)
547  */
548 struct mbuf *
549 nfsm_reqh(vp, procid, hsiz, bposp)
550 	struct vnode *vp;
551 	u_long procid;
552 	int hsiz;
553 	caddr_t *bposp;
554 {
555 	register struct mbuf *mb;
556 	register u_int32_t *tl;
557 	register caddr_t bpos;
558 	struct mbuf *mb2;
559 	struct nfsmount *nmp;
560 	int nqflag;
561 
562 	MGET(mb, M_WAIT, MT_DATA);
563 	if (hsiz >= MINCLSIZE)
564 		MCLGET(mb, M_WAIT);
565 	mb->m_len = 0;
566 	bpos = mtod(mb, caddr_t);
567 
568 	/*
569 	 * For NQNFS, add lease request.
570 	 */
571 	if (vp) {
572 		nmp = VFSTONFS(vp->v_mount);
573 		if (nmp->nm_flag & NFSMNT_NQNFS) {
574 			nqflag = NQNFS_NEEDLEASE(vp, procid);
575 			if (nqflag) {
576 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
577 				*tl++ = txdr_unsigned(nqflag);
578 				*tl = txdr_unsigned(nmp->nm_leaseterm);
579 			} else {
580 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
581 				*tl = 0;
582 			}
583 		}
584 	}
585 	/* Finally, return values */
586 	*bposp = bpos;
587 	return (mb);
588 }
589 
590 /*
591  * Build the RPC header and fill in the authorization info.
592  * The authorization string argument is only used when the credentials
593  * come from outside of the kernel.
594  * Returns the head of the mbuf list.
595  */
596 struct mbuf *
597 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
598 	verf_str, mrest, mrest_len, mbp, xidp)
599 	register struct ucred *cr;
600 	int nmflag;
601 	int procid;
602 	int auth_type;
603 	int auth_len;
604 	char *auth_str;
605 	int verf_len;
606 	char *verf_str;
607 	struct mbuf *mrest;
608 	int mrest_len;
609 	struct mbuf **mbp;
610 	u_int32_t *xidp;
611 {
612 	register struct mbuf *mb;
613 	register u_int32_t *tl;
614 	register caddr_t bpos;
615 	register int i;
616 	struct mbuf *mreq, *mb2;
617 	int siz, grpsiz, authsiz;
618 	struct timeval tv;
619 	static u_int32_t base;
620 
621 	authsiz = nfsm_rndup(auth_len);
622 	MGETHDR(mb, M_WAIT, MT_DATA);
623 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
624 		MCLGET(mb, M_WAIT);
625 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
626 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
627 	} else {
628 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
629 	}
630 	mb->m_len = 0;
631 	mreq = mb;
632 	bpos = mtod(mb, caddr_t);
633 
634 	/*
635 	 * First the RPC header.
636 	 */
637 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
638 
639 	/*
640 	 * derive initial xid from system time
641 	 * XXX time is invalid if root not yet mounted
642 	 */
643 	if (!base && (rootvp)) {
644 		microtime(&tv);
645 		base = tv.tv_sec << 12;
646 		nfs_xid = base;
647 	}
648 	/*
649 	 * Skip zero xid if it should ever happen.
650 	 */
651 	if (++nfs_xid == 0)
652 		nfs_xid++;
653 
654 	*tl++ = *xidp = txdr_unsigned(nfs_xid);
655 	*tl++ = rpc_call;
656 	*tl++ = rpc_vers;
657 	if (nmflag & NFSMNT_NQNFS) {
658 		*tl++ = txdr_unsigned(NQNFS_PROG);
659 		*tl++ = txdr_unsigned(NQNFS_VER3);
660 	} else {
661 		*tl++ = txdr_unsigned(NFS_PROG);
662 		if (nmflag & NFSMNT_NFSV3)
663 			*tl++ = txdr_unsigned(NFS_VER3);
664 		else
665 			*tl++ = txdr_unsigned(NFS_VER2);
666 	}
667 	if (nmflag & NFSMNT_NFSV3)
668 		*tl++ = txdr_unsigned(procid);
669 	else
670 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
671 
672 	/*
673 	 * And then the authorization cred.
674 	 */
675 	*tl++ = txdr_unsigned(auth_type);
676 	*tl = txdr_unsigned(authsiz);
677 	switch (auth_type) {
678 	case RPCAUTH_UNIX:
679 		nfsm_build(tl, u_int32_t *, auth_len);
680 		*tl++ = 0;		/* stamp ?? */
681 		*tl++ = 0;		/* NULL hostname */
682 		*tl++ = txdr_unsigned(cr->cr_uid);
683 		*tl++ = txdr_unsigned(cr->cr_gid);
684 		grpsiz = (auth_len >> 2) - 5;
685 		*tl++ = txdr_unsigned(grpsiz);
686 		for (i = 0; i < grpsiz; i++)
687 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
688 		break;
689 	case RPCAUTH_KERB4:
690 		siz = auth_len;
691 		while (siz > 0) {
692 			if (M_TRAILINGSPACE(mb) == 0) {
693 				MGET(mb2, M_WAIT, MT_DATA);
694 				if (siz >= MINCLSIZE)
695 					MCLGET(mb2, M_WAIT);
696 				mb->m_next = mb2;
697 				mb = mb2;
698 				mb->m_len = 0;
699 				bpos = mtod(mb, caddr_t);
700 			}
701 			i = min(siz, M_TRAILINGSPACE(mb));
702 			bcopy(auth_str, bpos, i);
703 			mb->m_len += i;
704 			auth_str += i;
705 			bpos += i;
706 			siz -= i;
707 		}
708 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
709 			for (i = 0; i < siz; i++)
710 				*bpos++ = '\0';
711 			mb->m_len += siz;
712 		}
713 		break;
714 	};
715 
716 	/*
717 	 * And the verifier...
718 	 */
719 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
720 	if (verf_str) {
721 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
722 		*tl = txdr_unsigned(verf_len);
723 		siz = verf_len;
724 		while (siz > 0) {
725 			if (M_TRAILINGSPACE(mb) == 0) {
726 				MGET(mb2, M_WAIT, MT_DATA);
727 				if (siz >= MINCLSIZE)
728 					MCLGET(mb2, M_WAIT);
729 				mb->m_next = mb2;
730 				mb = mb2;
731 				mb->m_len = 0;
732 				bpos = mtod(mb, caddr_t);
733 			}
734 			i = min(siz, M_TRAILINGSPACE(mb));
735 			bcopy(verf_str, bpos, i);
736 			mb->m_len += i;
737 			verf_str += i;
738 			bpos += i;
739 			siz -= i;
740 		}
741 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
742 			for (i = 0; i < siz; i++)
743 				*bpos++ = '\0';
744 			mb->m_len += siz;
745 		}
746 	} else {
747 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
748 		*tl = 0;
749 	}
750 	mb->m_next = mrest;
751 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
752 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
753 	*mbp = mb;
754 	return (mreq);
755 }
756 
757 /*
758  * copies mbuf chain to the uio scatter/gather list
759  */
760 int
761 nfsm_mbuftouio(mrep, uiop, siz, dpos)
762 	struct mbuf **mrep;
763 	register struct uio *uiop;
764 	int siz;
765 	caddr_t *dpos;
766 {
767 	register char *mbufcp, *uiocp;
768 	register int xfer, left, len;
769 	register struct mbuf *mp;
770 	long uiosiz, rem;
771 	int error = 0;
772 
773 	mp = *mrep;
774 	mbufcp = *dpos;
775 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
776 	rem = nfsm_rndup(siz)-siz;
777 	while (siz > 0) {
778 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
779 			return (EFBIG);
780 		left = uiop->uio_iov->iov_len;
781 		uiocp = uiop->uio_iov->iov_base;
782 		if (left > siz)
783 			left = siz;
784 		uiosiz = left;
785 		while (left > 0) {
786 			while (len == 0) {
787 				mp = mp->m_next;
788 				if (mp == NULL)
789 					return (EBADRPC);
790 				mbufcp = mtod(mp, caddr_t);
791 				len = mp->m_len;
792 			}
793 			xfer = (left > len) ? len : left;
794 #ifdef notdef
795 			/* Not Yet.. */
796 			if (uiop->uio_iov->iov_op != NULL)
797 				(*(uiop->uio_iov->iov_op))
798 				(mbufcp, uiocp, xfer);
799 			else
800 #endif
801 			if (uiop->uio_segflg == UIO_SYSSPACE)
802 				bcopy(mbufcp, uiocp, xfer);
803 			else
804 				copyout(mbufcp, uiocp, xfer);
805 			left -= xfer;
806 			len -= xfer;
807 			mbufcp += xfer;
808 			uiocp += xfer;
809 			uiop->uio_offset += xfer;
810 			uiop->uio_resid -= xfer;
811 		}
812 		if (uiop->uio_iov->iov_len <= siz) {
813 			uiop->uio_iovcnt--;
814 			uiop->uio_iov++;
815 		} else {
816 			uiop->uio_iov->iov_base += uiosiz;
817 			uiop->uio_iov->iov_len -= uiosiz;
818 		}
819 		siz -= uiosiz;
820 	}
821 	*dpos = mbufcp;
822 	*mrep = mp;
823 	if (rem > 0) {
824 		if (len < rem)
825 			error = nfs_adv(mrep, dpos, rem, len);
826 		else
827 			*dpos += rem;
828 	}
829 	return (error);
830 }
831 
832 /*
833  * copies a uio scatter/gather list to an mbuf chain.
834  * NOTE: can ony handle iovcnt == 1
835  */
836 int
837 nfsm_uiotombuf(uiop, mq, siz, bpos)
838 	register struct uio *uiop;
839 	struct mbuf **mq;
840 	int siz;
841 	caddr_t *bpos;
842 {
843 	register char *uiocp;
844 	register struct mbuf *mp, *mp2;
845 	register int xfer, left, mlen;
846 	int uiosiz, clflg, rem;
847 	char *cp;
848 
849 #ifdef DIAGNOSTIC
850 	if (uiop->uio_iovcnt != 1)
851 		panic("nfsm_uiotombuf: iovcnt != 1");
852 #endif
853 
854 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
855 		clflg = 1;
856 	else
857 		clflg = 0;
858 	rem = nfsm_rndup(siz)-siz;
859 	mp = mp2 = *mq;
860 	while (siz > 0) {
861 		left = uiop->uio_iov->iov_len;
862 		uiocp = uiop->uio_iov->iov_base;
863 		if (left > siz)
864 			left = siz;
865 		uiosiz = left;
866 		while (left > 0) {
867 			mlen = M_TRAILINGSPACE(mp);
868 			if (mlen == 0) {
869 				MGET(mp, M_WAIT, MT_DATA);
870 				if (clflg)
871 					MCLGET(mp, M_WAIT);
872 				mp->m_len = 0;
873 				mp2->m_next = mp;
874 				mp2 = mp;
875 				mlen = M_TRAILINGSPACE(mp);
876 			}
877 			xfer = (left > mlen) ? mlen : left;
878 #ifdef notdef
879 			/* Not Yet.. */
880 			if (uiop->uio_iov->iov_op != NULL)
881 				(*(uiop->uio_iov->iov_op))
882 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
883 			else
884 #endif
885 			if (uiop->uio_segflg == UIO_SYSSPACE)
886 				bcopy(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
887 			else
888 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
889 			mp->m_len += xfer;
890 			left -= xfer;
891 			uiocp += xfer;
892 			uiop->uio_offset += xfer;
893 			uiop->uio_resid -= xfer;
894 		}
895 		uiop->uio_iov->iov_base += uiosiz;
896 		uiop->uio_iov->iov_len -= uiosiz;
897 		siz -= uiosiz;
898 	}
899 	if (rem > 0) {
900 		if (rem > M_TRAILINGSPACE(mp)) {
901 			MGET(mp, M_WAIT, MT_DATA);
902 			mp->m_len = 0;
903 			mp2->m_next = mp;
904 		}
905 		cp = mtod(mp, caddr_t)+mp->m_len;
906 		for (left = 0; left < rem; left++)
907 			*cp++ = '\0';
908 		mp->m_len += rem;
909 		*bpos = cp;
910 	} else
911 		*bpos = mtod(mp, caddr_t)+mp->m_len;
912 	*mq = mp;
913 	return (0);
914 }
915 
916 /*
917  * Get at least "siz" bytes of correctly aligned data.
918  * When called the mbuf pointers are not necessarily correct,
919  * dsosp points to what ought to be in m_data and left contains
920  * what ought to be in m_len.
921  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
922  * cases. (The macros use the vars. dpos and dpos2)
923  */
924 int
925 nfsm_disct(mdp, dposp, siz, left, cp2)
926 	struct mbuf **mdp;
927 	caddr_t *dposp;
928 	int siz;
929 	int left;
930 	caddr_t *cp2;
931 {
932 	register struct mbuf *m1, *m2;
933 	struct mbuf *havebuf = NULL;
934 	caddr_t src = *dposp;
935 	caddr_t dst;
936 	int len;
937 
938 #ifdef DEBUG
939 	if (left < 0)
940 		panic("nfsm_disct: left < 0");
941 #endif
942 	m1 = *mdp;
943 	/*
944 	 * Skip through the mbuf chain looking for an mbuf with
945 	 * some data. If the first mbuf found has enough data
946 	 * and it is correctly aligned return it.
947 	 */
948 	while (left == 0) {
949 		havebuf = m1;
950 		*mdp = m1 = m1->m_next;
951 		if (m1 == NULL)
952 			return (EBADRPC);
953 		src = mtod(m1, caddr_t);
954 		left = m1->m_len;
955 		/*
956 		 * If we start a new mbuf and it is big enough
957 		 * and correctly aligned just return it, don't
958 		 * do any pull up.
959 		 */
960 		if (left >= siz && nfsm_aligned(src)) {
961 			*cp2 = src;
962 			*dposp = src + siz;
963 			return (0);
964 		}
965 	}
966 	if (m1->m_flags & M_EXT) {
967 		if (havebuf) {
968 			/* If the first mbuf with data has external data
969 			 * and there is a previous empty mbuf use it
970 			 * to move the data into.
971 			 */
972 			m2 = m1;
973 			*mdp = m1 = havebuf;
974 			if (m1->m_flags & M_EXT) {
975 				MEXTREMOVE(m1);
976 			}
977 		} else {
978 			/*
979 			 * If the first mbuf has a external data
980 			 * and there is no previous empty mbuf
981 			 * allocate a new mbuf and move the external
982 			 * data to the new mbuf. Also make the first
983 			 * mbuf look empty.
984 			 */
985 			m2 = m_get(M_WAIT, MT_DATA);
986 			m2->m_ext = m1->m_ext;
987 			m2->m_data = src;
988 			m2->m_len = left;
989 			MCLADDREFERENCE(m1, m2);
990 			MEXTREMOVE(m1);
991 			m2->m_next = m1->m_next;
992 			m1->m_next = m2;
993 		}
994 		m1->m_len = 0;
995 		dst = m1->m_dat;
996 	} else {
997 		/*
998 		 * If the first mbuf has no external data
999 		 * move the data to the front of the mbuf.
1000 		 */
1001 		if ((dst = m1->m_dat) != src)
1002 			ovbcopy(src, dst, left);
1003 		dst += left;
1004 		m1->m_len = left;
1005 		m2 = m1->m_next;
1006 	}
1007 	m1->m_flags &= ~M_PKTHDR;
1008 	*cp2 = m1->m_data = m1->m_dat;   /* data is at beginning of buffer */
1009 	*dposp = mtod(m1, caddr_t) + siz;
1010 	/*
1011 	 * Loop through mbufs pulling data up into first mbuf until
1012 	 * the first mbuf is full or there is no more data to
1013 	 * pullup.
1014 	 */
1015 	while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1016 		if ((len = min(len, m2->m_len)) != 0)
1017 			bcopy(m2->m_data, dst, len);
1018 		m1->m_len += len;
1019 		dst += len;
1020 		m2->m_data += len;
1021 		m2->m_len -= len;
1022 		m2 = m2->m_next;
1023 	}
1024 	if (m1->m_len < siz)
1025 		return (EBADRPC);
1026 	return (0);
1027 }
1028 
1029 /*
1030  * Advance the position in the mbuf chain.
1031  */
1032 int
1033 nfs_adv(mdp, dposp, offs, left)
1034 	struct mbuf **mdp;
1035 	caddr_t *dposp;
1036 	int offs;
1037 	int left;
1038 {
1039 	register struct mbuf *m;
1040 	register int s;
1041 
1042 	m = *mdp;
1043 	s = left;
1044 	while (s < offs) {
1045 		offs -= s;
1046 		m = m->m_next;
1047 		if (m == NULL)
1048 			return (EBADRPC);
1049 		s = m->m_len;
1050 	}
1051 	*mdp = m;
1052 	*dposp = mtod(m, caddr_t)+offs;
1053 	return (0);
1054 }
1055 
1056 /*
1057  * Copy a string into mbufs for the hard cases...
1058  */
1059 int
1060 nfsm_strtmbuf(mb, bpos, cp, siz)
1061 	struct mbuf **mb;
1062 	char **bpos;
1063 	const char *cp;
1064 	long siz;
1065 {
1066 	register struct mbuf *m1 = NULL, *m2;
1067 	long left, xfer, len, tlen;
1068 	u_int32_t *tl;
1069 	int putsize;
1070 
1071 	putsize = 1;
1072 	m2 = *mb;
1073 	left = M_TRAILINGSPACE(m2);
1074 	if (left > 0) {
1075 		tl = ((u_int32_t *)(*bpos));
1076 		*tl++ = txdr_unsigned(siz);
1077 		putsize = 0;
1078 		left -= NFSX_UNSIGNED;
1079 		m2->m_len += NFSX_UNSIGNED;
1080 		if (left > 0) {
1081 			bcopy(cp, (caddr_t) tl, left);
1082 			siz -= left;
1083 			cp += left;
1084 			m2->m_len += left;
1085 			left = 0;
1086 		}
1087 	}
1088 	/* Loop around adding mbufs */
1089 	while (siz > 0) {
1090 		MGET(m1, M_WAIT, MT_DATA);
1091 		if (siz > MLEN)
1092 			MCLGET(m1, M_WAIT);
1093 		m1->m_len = NFSMSIZ(m1);
1094 		m2->m_next = m1;
1095 		m2 = m1;
1096 		tl = mtod(m1, u_int32_t *);
1097 		tlen = 0;
1098 		if (putsize) {
1099 			*tl++ = txdr_unsigned(siz);
1100 			m1->m_len -= NFSX_UNSIGNED;
1101 			tlen = NFSX_UNSIGNED;
1102 			putsize = 0;
1103 		}
1104 		if (siz < m1->m_len) {
1105 			len = nfsm_rndup(siz);
1106 			xfer = siz;
1107 			if (xfer < len)
1108 				*(tl+(xfer>>2)) = 0;
1109 		} else {
1110 			xfer = len = m1->m_len;
1111 		}
1112 		bcopy(cp, (caddr_t) tl, xfer);
1113 		m1->m_len = len+tlen;
1114 		siz -= xfer;
1115 		cp += xfer;
1116 	}
1117 	*mb = m1;
1118 	*bpos = mtod(m1, caddr_t)+m1->m_len;
1119 	return (0);
1120 }
1121 
1122 /*
1123  * Called once before VFS init to initialize shared and
1124  * server-specific data structures.
1125  */
1126 void
1127 nfs_init()
1128 {
1129 
1130 #if !defined(alpha) && defined(DIAGNOSTIC)
1131 	/*
1132 	 * Check to see if major data structures haven't bloated.
1133 	 */
1134 	if (sizeof (struct nfsnode) > NFS_NODEALLOC) {
1135 		printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC);
1136 		printf("Try reducing NFS_SMALLFH\n");
1137 	}
1138 	if (sizeof (struct nfsmount) > NFS_MNTALLOC) {
1139 		printf("struct nfsmount bloated (> %dbytes)\n", NFS_MNTALLOC);
1140 		printf("Try reducing NFS_MUIDHASHSIZ\n");
1141 	}
1142 	if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) {
1143 		printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC);
1144 		printf("Try reducing NFS_UIDHASHSIZ\n");
1145 	}
1146 	if (sizeof (struct nfsuid) > NFS_UIDALLOC) {
1147 		printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC);
1148 		printf("Try unionizing the nu_nickname and nu_flag fields\n");
1149 	}
1150 #endif
1151 
1152 	nfsrtt.pos = 0;
1153 	rpc_vers = txdr_unsigned(RPC_VER2);
1154 	rpc_call = txdr_unsigned(RPC_CALL);
1155 	rpc_reply = txdr_unsigned(RPC_REPLY);
1156 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1157 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1158 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1159 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1160 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1161 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1162 	nfs_prog = txdr_unsigned(NFS_PROG);
1163 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1164 	nfs_true = txdr_unsigned(TRUE);
1165 	nfs_false = txdr_unsigned(FALSE);
1166 	nfs_xdrneg1 = txdr_unsigned(-1);
1167 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1168 	if (nfs_ticks < 1)
1169 		nfs_ticks = 1;
1170 #ifdef NFSSERVER
1171 	nfsrv_init(0);			/* Init server data structures */
1172 	nfsrv_initcache();		/* Init the server request cache */
1173 #endif /* NFSSERVER */
1174 
1175 	/*
1176 	 * Initialize the nqnfs data structures.
1177 	 */
1178 	if (nqnfsstarttime == 0) {
1179 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1180 			+ nqsrv_clockskew + nqsrv_writeslack;
1181 		NQLOADNOVRAM(nqnfsstarttime);
1182 		CIRCLEQ_INIT(&nqtimerhead);
1183 		nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, &nqfhhash);
1184 	}
1185 
1186 	/*
1187 	 * Initialize reply list and start timer
1188 	 */
1189 	TAILQ_INIT(&nfs_reqq);
1190 	nfs_timer(NULL);
1191 }
1192 
1193 #ifdef NFS
1194 /*
1195  * Called once at VFS init to initialize client-specific data structures.
1196  */
1197 void
1198 nfs_vfs_init()
1199 {
1200 	register int i;
1201 
1202 	/* Ensure async daemons disabled */
1203 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1204 		nfs_iodwant[i] = (struct proc *)0;
1205 		nfs_iodmount[i] = (struct nfsmount *)0;
1206 	}
1207 	nfs_nhinit();			/* Init the nfsnode table */
1208 }
1209 
1210 /*
1211  * Attribute cache routines.
1212  * nfs_loadattrcache() - loads or updates the cache contents from attributes
1213  *	that are on the mbuf list
1214  * nfs_getattrcache() - returns valid attributes if found in cache, returns
1215  *	error otherwise
1216  */
1217 
1218 /*
1219  * Load the attribute cache (that lives in the nfsnode entry) with
1220  * the values on the mbuf list and
1221  * Iff vap not NULL
1222  *    copy the attributes to *vaper
1223  */
1224 int
1225 nfs_loadattrcache(vpp, mdp, dposp, vaper)
1226 	struct vnode **vpp;
1227 	struct mbuf **mdp;
1228 	caddr_t *dposp;
1229 	struct vattr *vaper;
1230 {
1231 	register struct vnode *vp = *vpp;
1232 	register struct vattr *vap;
1233 	register struct nfs_fattr *fp;
1234 	extern int (**spec_nfsv2nodeop_p) __P((void *));
1235 	register struct nfsnode *np;
1236 	register int32_t t1;
1237 	caddr_t cp2;
1238 	int error = 0;
1239 	int32_t rdev;
1240 	struct mbuf *md;
1241 	enum vtype vtyp;
1242 	u_short vmode;
1243 	struct timespec mtime;
1244 	struct vnode *nvp;
1245 	int v3 = NFS_ISV3(vp);
1246 
1247 	md = *mdp;
1248 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1249 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1250 	if (error)
1251 		return (error);
1252 	fp = (struct nfs_fattr *)cp2;
1253 	if (v3) {
1254 		vtyp = nfsv3tov_type(fp->fa_type);
1255 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1256 		rdev = makedev(fxdr_unsigned(u_char, fp->fa3_rdev.specdata1),
1257 			fxdr_unsigned(u_char, fp->fa3_rdev.specdata2));
1258 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1259 	} else {
1260 		vtyp = nfsv2tov_type(fp->fa_type);
1261 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1262 		if (vtyp == VNON || vtyp == VREG)
1263 			vtyp = IFTOVT(vmode);
1264 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1265 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1266 
1267 		/*
1268 		 * Really ugly NFSv2 kludge.
1269 		 */
1270 		if (vtyp == VCHR && rdev == 0xffffffff)
1271 			vtyp = VFIFO;
1272 	}
1273 
1274 	/*
1275 	 * If v_type == VNON it is a new node, so fill in the v_type,
1276 	 * n_mtime fields. Check to see if it represents a special
1277 	 * device, and if so, check for a possible alias. Once the
1278 	 * correct vnode has been obtained, fill in the rest of the
1279 	 * information.
1280 	 */
1281 	np = VTONFS(vp);
1282 	if (vp->v_type != vtyp) {
1283 		vp->v_type = vtyp;
1284 		if (vp->v_type == VFIFO) {
1285 #ifndef FIFO
1286 			return (EOPNOTSUPP);
1287 #else
1288 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
1289 			vp->v_op = fifo_nfsv2nodeop_p;
1290 #endif /* FIFO */
1291 		}
1292 		if (vp->v_type == VCHR || vp->v_type == VBLK) {
1293 			vp->v_op = spec_nfsv2nodeop_p;
1294 			nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1295 			if (nvp) {
1296 				/*
1297 				 * Discard unneeded vnode, but save its nfsnode.
1298 				 * Since the nfsnode does not have a lock, its
1299 				 * vnode lock has to be carried over.
1300 				 */
1301 #ifdef Lite2_integrated
1302 				nvp->v_vnlock = vp->v_vnlock;
1303 				vp->v_vnlock = NULL;
1304 #endif
1305 				nvp->v_data = vp->v_data;
1306 				vp->v_data = NULL;
1307 				vp->v_op = spec_vnodeop_p;
1308 				vrele(vp);
1309 				vgone(vp);
1310 				/*
1311 				 * Reinitialize aliased node.
1312 				 */
1313 				np->n_vnode = nvp;
1314 				*vpp = vp = nvp;
1315 			}
1316 		}
1317 		np->n_mtime = mtime.tv_sec;
1318 	}
1319 	vap = &np->n_vattr;
1320 	vap->va_type = vtyp;
1321 	vap->va_mode = vmode & ALLPERMS;
1322 	vap->va_rdev = (dev_t)rdev;
1323 	vap->va_mtime = mtime;
1324 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1325 	if (v3) {
1326 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1327 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1328 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1329 		fxdr_hyper(&fp->fa3_size, &vap->va_size);
1330 		vap->va_blocksize = NFS_FABLKSIZE;
1331 		fxdr_hyper(&fp->fa3_used, &vap->va_bytes);
1332 		vap->va_fileid = fxdr_unsigned(int32_t,
1333 		    fp->fa3_fileid.nfsuquad[1]);
1334 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1335 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1336 		vap->va_flags = 0;
1337 		vap->va_filerev = 0;
1338 	} else {
1339 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1340 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1341 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1342 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1343 		vap->va_blocksize = fxdr_unsigned(int32_t, fp->fa2_blocksize);
1344 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1345 		    * NFS_FABLKSIZE;
1346 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1347 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1348 		vap->va_flags = 0;
1349 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1350 		    fp->fa2_ctime.nfsv2_sec);
1351 		vap->va_ctime.tv_nsec = 0;
1352 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1353 		vap->va_filerev = 0;
1354 	}
1355 	if (vap->va_size != np->n_size) {
1356 		if (vap->va_type == VREG) {
1357 			if (np->n_flag & NMODIFIED) {
1358 				if (vap->va_size < np->n_size)
1359 					vap->va_size = np->n_size;
1360 				else
1361 					np->n_size = vap->va_size;
1362 			} else
1363 				np->n_size = vap->va_size;
1364 			vnode_pager_setsize(vp, np->n_size);
1365 		} else
1366 			np->n_size = vap->va_size;
1367 	}
1368 	np->n_attrstamp = time.tv_sec;
1369 	if (vaper != NULL) {
1370 		bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
1371 		if (np->n_flag & NCHG) {
1372 			if (np->n_flag & NACC)
1373 				vaper->va_atime = np->n_atim;
1374 			if (np->n_flag & NUPD)
1375 				vaper->va_mtime = np->n_mtim;
1376 		}
1377 	}
1378 	return (0);
1379 }
1380 
1381 /*
1382  * Check the time stamp
1383  * If the cache is valid, copy contents to *vap and return 0
1384  * otherwise return an error
1385  */
1386 int
1387 nfs_getattrcache(vp, vaper)
1388 	register struct vnode *vp;
1389 	struct vattr *vaper;
1390 {
1391 	register struct nfsnode *np = VTONFS(vp);
1392 	register struct vattr *vap;
1393 
1394 	if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1395 		nfsstats.attrcache_misses++;
1396 		return (ENOENT);
1397 	}
1398 	nfsstats.attrcache_hits++;
1399 	vap = &np->n_vattr;
1400 	if (vap->va_size != np->n_size) {
1401 		if (vap->va_type == VREG) {
1402 			if (np->n_flag & NMODIFIED) {
1403 				if (vap->va_size < np->n_size)
1404 					vap->va_size = np->n_size;
1405 				else
1406 					np->n_size = vap->va_size;
1407 			} else
1408 				np->n_size = vap->va_size;
1409 			vnode_pager_setsize(vp, np->n_size);
1410 		} else
1411 			np->n_size = vap->va_size;
1412 	}
1413 	bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(struct vattr));
1414 	if (np->n_flag & NCHG) {
1415 		if (np->n_flag & NACC)
1416 			vaper->va_atime = np->n_atim;
1417 		if (np->n_flag & NUPD)
1418 			vaper->va_mtime = np->n_mtim;
1419 	}
1420 	return (0);
1421 }
1422 #endif /* NFS */
1423 
1424 /*
1425  * Set up nameidata for a lookup() call and do it.
1426  *
1427  * If pubflag is set, this call is done for a lookup operation on the
1428  * public filehandle. In that case we allow crossing mountpoints and
1429  * absolute pathnames. However, the caller is expected to check that
1430  * the lookup result is within the public fs, and deny access if
1431  * it is not.
1432  */
1433 int
1434 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1435 	register struct nameidata *ndp;
1436 	fhandle_t *fhp;
1437 	int len;
1438 	struct nfssvc_sock *slp;
1439 	struct mbuf *nam;
1440 	struct mbuf **mdp;
1441 	caddr_t *dposp;
1442 	struct vnode **retdirp;
1443 	struct proc *p;
1444 	int kerbflag, pubflag;
1445 {
1446 	register int i, rem;
1447 	register struct mbuf *md;
1448 	register char *fromcp, *tocp, *cp;
1449 	struct iovec aiov;
1450 	struct uio auio;
1451 	struct vnode *dp;
1452 	int error, rdonly, linklen;
1453 	struct componentname *cnp = &ndp->ni_cnd;
1454 
1455 	*retdirp = (struct vnode *)0;
1456 	MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK);
1457 	/*
1458 	 * Copy the name from the mbuf list to ndp->ni_pnbuf
1459 	 * and set the various ndp fields appropriately.
1460 	 */
1461 	fromcp = *dposp;
1462 	tocp = cnp->cn_pnbuf;
1463 	md = *mdp;
1464 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
1465 	for (i = 0; i < len; i++) {
1466 		while (rem == 0) {
1467 			md = md->m_next;
1468 			if (md == NULL) {
1469 				error = EBADRPC;
1470 				goto out;
1471 			}
1472 			fromcp = mtod(md, caddr_t);
1473 			rem = md->m_len;
1474 		}
1475 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1476 			error = EACCES;
1477 			goto out;
1478 		}
1479 		*tocp++ = *fromcp++;
1480 		rem--;
1481 	}
1482 	*tocp = '\0';
1483 	*mdp = md;
1484 	*dposp = fromcp;
1485 	len = nfsm_rndup(len)-len;
1486 	if (len > 0) {
1487 		if (rem >= len)
1488 			*dposp += len;
1489 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1490 			goto out;
1491 	}
1492 
1493 	/*
1494 	 * Extract and set starting directory.
1495 	 */
1496 	error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1497 	    nam, &rdonly, kerbflag, pubflag);
1498 	if (error)
1499 		goto out;
1500 	if (dp->v_type != VDIR) {
1501 		vrele(dp);
1502 		error = ENOTDIR;
1503 		goto out;
1504 	}
1505 
1506 	if (rdonly)
1507 		cnp->cn_flags |= RDONLY;
1508 
1509 	*retdirp = dp;
1510 
1511 	if (pubflag) {
1512 		/*
1513 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1514 		 * and the 'native path' indicator.
1515 		 */
1516 		MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1517 		fromcp = cnp->cn_pnbuf;
1518 		tocp = cp;
1519 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1520 			switch ((unsigned char)*fromcp) {
1521 			case WEBNFS_NATIVE_CHAR:
1522 				/*
1523 				 * 'Native' path for us is the same
1524 				 * as a path according to the NFS spec,
1525 				 * just skip the escape char.
1526 				 */
1527 				fromcp++;
1528 				break;
1529 			/*
1530 			 * More may be added in the future, range 0x80-0xff
1531 			 */
1532 			default:
1533 				error = EIO;
1534 				FREE(cp, M_NAMEI);
1535 				goto out;
1536 			}
1537 		}
1538 		/*
1539 		 * Translate the '%' escapes, URL-style.
1540 		 */
1541 		while (*fromcp != '\0') {
1542 			if (*fromcp == WEBNFS_ESC_CHAR) {
1543 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1544 					fromcp++;
1545 					*tocp++ = HEXSTRTOI(fromcp);
1546 					fromcp += 2;
1547 					continue;
1548 				} else {
1549 					error = ENOENT;
1550 					FREE(cp, M_NAMEI);
1551 					goto out;
1552 				}
1553 			} else
1554 				*tocp++ = *fromcp++;
1555 		}
1556 		*tocp = '\0';
1557 		FREE(cnp->cn_pnbuf, M_NAMEI);
1558 		cnp->cn_pnbuf = cp;
1559 	}
1560 
1561 	ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1562 	ndp->ni_segflg = UIO_SYSSPACE;
1563 
1564 	if (pubflag) {
1565 		ndp->ni_rootdir = rootvnode;
1566 		ndp->ni_loopcnt = 0;
1567 		if (cnp->cn_pnbuf[0] == '/')
1568 			dp = rootvnode;
1569 	} else {
1570 		cnp->cn_flags |= NOCROSSMOUNT;
1571 	}
1572 
1573 	cnp->cn_proc = p;
1574 	VREF(dp);
1575 
1576     for (;;) {
1577 	cnp->cn_nameptr = cnp->cn_pnbuf;
1578 	ndp->ni_startdir = dp;
1579 	/*
1580 	 * And call lookup() to do the real work
1581 	 */
1582 	error = lookup(ndp);
1583 	if (error)
1584 		break;
1585 	/*
1586 	 * Check for encountering a symbolic link
1587 	 */
1588 	if ((cnp->cn_flags & ISSYMLINK) == 0) {
1589 		if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1590 			cnp->cn_flags |= HASBUF;
1591 			return (0);
1592 		}
1593 		break;
1594 	} else {
1595 		if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1596 			VOP_UNLOCK(ndp->ni_dvp);
1597 		if (!pubflag) {
1598 			vrele(ndp->ni_dvp);
1599 			vput(ndp->ni_vp);
1600 			ndp->ni_vp = NULL;
1601 			error = EINVAL;
1602 			break;
1603 		}
1604 
1605 		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1606 			error = ELOOP;
1607 			break;
1608 		}
1609 		if (ndp->ni_pathlen > 1)
1610 			MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1611 		else
1612 			cp = cnp->cn_pnbuf;
1613 		aiov.iov_base = cp;
1614 		aiov.iov_len = MAXPATHLEN;
1615 		auio.uio_iov = &aiov;
1616 		auio.uio_iovcnt = 1;
1617 		auio.uio_offset = 0;
1618 		auio.uio_rw = UIO_READ;
1619 		auio.uio_segflg = UIO_SYSSPACE;
1620 		auio.uio_procp = (struct proc *)0;
1621 		auio.uio_resid = MAXPATHLEN;
1622 		error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
1623 		if (error) {
1624 		badlink:
1625 			if (ndp->ni_pathlen > 1)
1626 				FREE(cp, M_NAMEI);
1627 			break;
1628 		}
1629 		linklen = MAXPATHLEN - auio.uio_resid;
1630 		if (linklen == 0) {
1631 			error = ENOENT;
1632 			goto badlink;
1633 		}
1634 		if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
1635 			error = ENAMETOOLONG;
1636 			goto badlink;
1637 		}
1638 		if (ndp->ni_pathlen > 1) {
1639 			bcopy(ndp->ni_next, cp + linklen, ndp->ni_pathlen);
1640 			FREE(cnp->cn_pnbuf, M_NAMEI);
1641 			cnp->cn_pnbuf = cp;
1642 		} else
1643 			cnp->cn_pnbuf[linklen] = '\0';
1644 		ndp->ni_pathlen += linklen;
1645 		vput(ndp->ni_vp);
1646 		dp = ndp->ni_dvp;
1647 		/*
1648 		 * Check if root directory should replace current directory.
1649 		 */
1650 		if (cnp->cn_pnbuf[0] == '/') {
1651 			vrele(dp);
1652 			dp = ndp->ni_rootdir;
1653 			VREF(dp);
1654 		}
1655 	}
1656    }
1657 out:
1658 	FREE(cnp->cn_pnbuf, M_NAMEI);
1659 	return (error);
1660 }
1661 
1662 /*
1663  * A fiddled version of m_adj() that ensures null fill to a long
1664  * boundary and only trims off the back end
1665  */
1666 void
1667 nfsm_adj(mp, len, nul)
1668 	struct mbuf *mp;
1669 	register int len;
1670 	int nul;
1671 {
1672 	register struct mbuf *m;
1673 	register int count, i;
1674 	register char *cp;
1675 
1676 	/*
1677 	 * Trim from tail.  Scan the mbuf chain,
1678 	 * calculating its length and finding the last mbuf.
1679 	 * If the adjustment only affects this mbuf, then just
1680 	 * adjust and return.  Otherwise, rescan and truncate
1681 	 * after the remaining size.
1682 	 */
1683 	count = 0;
1684 	m = mp;
1685 	for (;;) {
1686 		count += m->m_len;
1687 		if (m->m_next == (struct mbuf *)0)
1688 			break;
1689 		m = m->m_next;
1690 	}
1691 	if (m->m_len > len) {
1692 		m->m_len -= len;
1693 		if (nul > 0) {
1694 			cp = mtod(m, caddr_t)+m->m_len-nul;
1695 			for (i = 0; i < nul; i++)
1696 				*cp++ = '\0';
1697 		}
1698 		return;
1699 	}
1700 	count -= len;
1701 	if (count < 0)
1702 		count = 0;
1703 	/*
1704 	 * Correct length for chain is "count".
1705 	 * Find the mbuf with last data, adjust its length,
1706 	 * and toss data from remaining mbufs on chain.
1707 	 */
1708 	for (m = mp; m; m = m->m_next) {
1709 		if (m->m_len >= count) {
1710 			m->m_len = count;
1711 			if (nul > 0) {
1712 				cp = mtod(m, caddr_t)+m->m_len-nul;
1713 				for (i = 0; i < nul; i++)
1714 					*cp++ = '\0';
1715 			}
1716 			break;
1717 		}
1718 		count -= m->m_len;
1719 	}
1720 	for (m = m->m_next;m;m = m->m_next)
1721 		m->m_len = 0;
1722 }
1723 
1724 /*
1725  * Make these functions instead of macros, so that the kernel text size
1726  * doesn't get too big...
1727  */
1728 void
1729 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
1730 	struct nfsrv_descript *nfsd;
1731 	int before_ret;
1732 	register struct vattr *before_vap;
1733 	int after_ret;
1734 	struct vattr *after_vap;
1735 	struct mbuf **mbp;
1736 	char **bposp;
1737 {
1738 	register struct mbuf *mb = *mbp, *mb2;
1739 	register char *bpos = *bposp;
1740 	register u_int32_t *tl;
1741 
1742 	if (before_ret) {
1743 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1744 		*tl = nfs_false;
1745 	} else {
1746 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
1747 		*tl++ = nfs_true;
1748 		txdr_hyper(&(before_vap->va_size), tl);
1749 		tl += 2;
1750 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
1751 		tl += 2;
1752 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
1753 	}
1754 	*bposp = bpos;
1755 	*mbp = mb;
1756 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
1757 }
1758 
1759 void
1760 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
1761 	struct nfsrv_descript *nfsd;
1762 	int after_ret;
1763 	struct vattr *after_vap;
1764 	struct mbuf **mbp;
1765 	char **bposp;
1766 {
1767 	register struct mbuf *mb = *mbp, *mb2;
1768 	register char *bpos = *bposp;
1769 	register u_int32_t *tl;
1770 	register struct nfs_fattr *fp;
1771 
1772 	if (after_ret) {
1773 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1774 		*tl = nfs_false;
1775 	} else {
1776 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
1777 		*tl++ = nfs_true;
1778 		fp = (struct nfs_fattr *)tl;
1779 		nfsm_srvfattr(nfsd, after_vap, fp);
1780 	}
1781 	*mbp = mb;
1782 	*bposp = bpos;
1783 }
1784 
1785 void
1786 nfsm_srvfattr(nfsd, vap, fp)
1787 	register struct nfsrv_descript *nfsd;
1788 	register struct vattr *vap;
1789 	register struct nfs_fattr *fp;
1790 {
1791 
1792 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
1793 	fp->fa_uid = txdr_unsigned(vap->va_uid);
1794 	fp->fa_gid = txdr_unsigned(vap->va_gid);
1795 	if (nfsd->nd_flag & ND_NFSV3) {
1796 		fp->fa_type = vtonfsv3_type(vap->va_type);
1797 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
1798 		txdr_hyper(&vap->va_size, &fp->fa3_size);
1799 		txdr_hyper(&vap->va_bytes, &fp->fa3_used);
1800 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
1801 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
1802 		fp->fa3_fsid.nfsuquad[0] = 0;
1803 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
1804 		fp->fa3_fileid.nfsuquad[0] = 0;
1805 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
1806 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
1807 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
1808 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
1809 	} else {
1810 		fp->fa_type = vtonfsv2_type(vap->va_type);
1811 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1812 		fp->fa2_size = txdr_unsigned(vap->va_size);
1813 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
1814 		if (vap->va_type == VFIFO)
1815 			fp->fa2_rdev = 0xffffffff;
1816 		else
1817 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
1818 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
1819 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
1820 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
1821 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
1822 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
1823 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
1824 	}
1825 }
1826 
1827 /*
1828  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
1829  * 	- look up fsid in mount list (if not found ret error)
1830  *	- get vp and export rights by calling VFS_FHTOVP()
1831  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
1832  *	- if not lockflag unlock it with VOP_UNLOCK()
1833  */
1834 int
1835 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
1836 	fhandle_t *fhp;
1837 	int lockflag;
1838 	struct vnode **vpp;
1839 	struct ucred *cred;
1840 	struct nfssvc_sock *slp;
1841 	struct mbuf *nam;
1842 	int *rdonlyp;
1843 	int kerbflag;
1844 {
1845 #ifdef Lite2_integrated
1846 	struct proc *p = curproc;	/* XXX */
1847 #endif
1848 	register struct mount *mp;
1849 	register int i;
1850 	struct ucred *credanon;
1851 	int error, exflags;
1852 	struct sockaddr_in *saddr;
1853 
1854 	*vpp = (struct vnode *)0;
1855 
1856 	if (nfs_ispublicfh(fhp)) {
1857 		if (!pubflag || !nfs_pub.np_valid)
1858 			return (ESTALE);
1859 		fhp = &nfs_pub.np_handle;
1860 	}
1861 
1862 #ifdef Lite2_integrated
1863 	mp = vfs_getvfs(&fhp->fh_fsid);
1864 #else
1865 	mp = getvfs(&fhp->fh_fsid);
1866 #endif
1867 	if (!mp)
1868 		return (ESTALE);
1869 	error = VFS_FHTOVP(mp, &fhp->fh_fid, nam, vpp, &exflags, &credanon);
1870 	if (error)
1871 		return (error);
1872 
1873 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
1874 		saddr = mtod(nam, struct sockaddr_in *);
1875 		if (saddr->sin_family == AF_INET &&
1876 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
1877 			vput(*vpp);
1878 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
1879 		}
1880 	}
1881 	/*
1882 	 * Check/setup credentials.
1883 	 */
1884 	if (exflags & MNT_EXKERB) {
1885 		if (!kerbflag) {
1886 			vput(*vpp);
1887 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
1888 		}
1889 	} else if (kerbflag) {
1890 		vput(*vpp);
1891 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
1892 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
1893 		cred->cr_uid = credanon->cr_uid;
1894 		cred->cr_gid = credanon->cr_gid;
1895 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
1896 			cred->cr_groups[i] = credanon->cr_groups[i];
1897 		cred->cr_ngroups = i;
1898 	}
1899 	if (exflags & MNT_EXRDONLY)
1900 		*rdonlyp = 1;
1901 	else
1902 		*rdonlyp = 0;
1903 	if (!lockflag)
1904 #ifdef Lite2_integrated
1905 		VOP_UNLOCK(*vpp, 0, p);
1906 #else
1907 		VOP_UNLOCK(*vpp);
1908 #endif
1909 	return (0);
1910 }
1911 
1912 /*
1913  * WebNFS: check if a filehandle is a public filehandle. For v3, this
1914  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
1915  * transformed this to all zeroes in both cases, so check for it.
1916  */
1917 int
1918 nfs_ispublicfh(fhp)
1919 	fhandle_t *fhp;
1920 {
1921 	char *cp = (char *)fhp;
1922 	int i;
1923 
1924 	for (i = 0; i < NFSX_V3FH; i++)
1925 		if (*cp++ != 0)
1926 			return (FALSE);
1927 	return (TRUE);
1928 }
1929 
1930 /*
1931  * This function compares two net addresses by family and returns TRUE
1932  * if they are the same host.
1933  * If there is any doubt, return FALSE.
1934  * The AF_INET family is handled as a special case so that address mbufs
1935  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1936  */
1937 int
1938 netaddr_match(family, haddr, nam)
1939 	int family;
1940 	union nethostaddr *haddr;
1941 	struct mbuf *nam;
1942 {
1943 	register struct sockaddr_in *inetaddr;
1944 
1945 	switch (family) {
1946 	case AF_INET:
1947 		inetaddr = mtod(nam, struct sockaddr_in *);
1948 		if (inetaddr->sin_family == AF_INET &&
1949 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1950 			return (1);
1951 		break;
1952 #ifdef ISO
1953 	case AF_ISO:
1954 	    {
1955 		register struct sockaddr_iso *isoaddr1, *isoaddr2;
1956 
1957 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
1958 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
1959 		if (isoaddr1->siso_family == AF_ISO &&
1960 		    isoaddr1->siso_nlen > 0 &&
1961 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
1962 		    SAME_ISOADDR(isoaddr1, isoaddr2))
1963 			return (1);
1964 		break;
1965 	    }
1966 #endif	/* ISO */
1967 	default:
1968 		break;
1969 	};
1970 	return (0);
1971 }
1972 
1973 static nfsuint64 nfs_nullcookie = {{ 0, 0 }};
1974 /*
1975  * This function finds the directory cookie that corresponds to the
1976  * logical byte offset given.
1977  */
1978 nfsuint64 *
1979 nfs_getcookie(np, off, add)
1980 	register struct nfsnode *np;
1981 	off_t off;
1982 	int add;
1983 {
1984 	register struct nfsdmap *dp, *dp2;
1985 	register int pos;
1986 
1987 	pos = off / NFS_DIRBLKSIZ;
1988 	if (pos == 0) {
1989 #ifdef DIAGNOSTIC
1990 		if (add)
1991 			panic("nfs getcookie add at 0");
1992 #endif
1993 		return (&nfs_nullcookie);
1994 	}
1995 	pos--;
1996 	dp = np->n_cookies.lh_first;
1997 	if (!dp) {
1998 		if (add) {
1999 			MALLOC(dp, struct nfsdmap *, sizeof (struct nfsdmap),
2000 				M_NFSDIROFF, M_WAITOK);
2001 			dp->ndm_eocookie = 0;
2002 			LIST_INSERT_HEAD(&np->n_cookies, dp, ndm_list);
2003 		} else
2004 			return ((nfsuint64 *)0);
2005 	}
2006 	while (pos >= NFSNUMCOOKIES) {
2007 		pos -= NFSNUMCOOKIES;
2008 		if (dp->ndm_list.le_next) {
2009 			if (!add && dp->ndm_eocookie < NFSNUMCOOKIES &&
2010 				pos >= dp->ndm_eocookie)
2011 				return ((nfsuint64 *)0);
2012 			dp = dp->ndm_list.le_next;
2013 		} else if (add) {
2014 			MALLOC(dp2, struct nfsdmap *, sizeof (struct nfsdmap),
2015 				M_NFSDIROFF, M_WAITOK);
2016 			dp2->ndm_eocookie = 0;
2017 			LIST_INSERT_AFTER(dp, dp2, ndm_list);
2018 			dp = dp2;
2019 		} else
2020 			return ((nfsuint64 *)0);
2021 	}
2022 	if (pos >= dp->ndm_eocookie) {
2023 		if (add)
2024 			dp->ndm_eocookie = pos + 1;
2025 		else
2026 			return ((nfsuint64 *)0);
2027 	}
2028 	return (&dp->ndm_cookies[pos]);
2029 }
2030 
2031 /*
2032  * Invalidate cached directory information, except for the actual directory
2033  * blocks (which are invalidated separately).
2034  * Done mainly to avoid the use of stale offset cookies.
2035  */
2036 void
2037 nfs_invaldir(vp)
2038 	register struct vnode *vp;
2039 {
2040 #ifdef notdef /* XXX */
2041 	register struct nfsnode *np = VTONFS(vp);
2042 
2043 #ifdef DIAGNOSTIC
2044 	if (vp->v_type != VDIR)
2045 		panic("nfs: invaldir not dir");
2046 #endif
2047 	np->n_direofoffset = 0;
2048 	np->n_cookieverf.nfsuquad[0] = 0;
2049 	np->n_cookieverf.nfsuquad[1] = 0;
2050 	if (np->n_cookies.lh_first)
2051 		np->n_cookies.lh_first->ndm_eocookie = 0;
2052 #endif
2053 }
2054 
2055 /*
2056  * The write verifier has changed (probably due to a server reboot), so all
2057  * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2058  * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2059  * flag. Once done the new write verifier can be set for the mount point.
2060  */
2061 void
2062 nfs_clearcommit(mp)
2063 	struct mount *mp;
2064 {
2065 	register struct vnode *vp, *nvp;
2066 	register struct buf *bp, *nbp;
2067 	int s;
2068 
2069 	s = splbio();
2070 loop:
2071 	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
2072 		if (vp->v_mount != mp)	/* Paranoia */
2073 			goto loop;
2074 		nvp = vp->v_mntvnodes.le_next;
2075 		for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
2076 			nbp = bp->b_vnbufs.le_next;
2077 			if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
2078 				== (B_DELWRI | B_NEEDCOMMIT))
2079 				bp->b_flags &= ~B_NEEDCOMMIT;
2080 		}
2081 	}
2082 	splx(s);
2083 }
2084 
2085 /*
2086  * Map errnos to NFS error numbers. For Version 3 also filter out error
2087  * numbers not specified for the associated procedure.
2088  */
2089 int
2090 nfsrv_errmap(nd, err)
2091 	struct nfsrv_descript *nd;
2092 	register int err;
2093 {
2094 	register short *defaulterrp, *errp;
2095 
2096 	if (nd->nd_flag & ND_NFSV3) {
2097 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
2098 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2099 		while (*++errp) {
2100 			if (*errp == err)
2101 				return (err);
2102 			else if (*errp > err)
2103 				break;
2104 		}
2105 		return ((int)*defaulterrp);
2106 	    } else
2107 		return (err & 0xffff);
2108 	}
2109 	if (err <= ELAST)
2110 		return ((int)nfsrv_v2errmap[err - 1]);
2111 	return (NFSERR_IO);
2112 }
2113 
2114 /*
2115  * Sort the group list in increasing numerical order.
2116  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2117  *  that used to be here.)
2118  */
2119 void
2120 nfsrvw_sort(list, num)
2121         register gid_t *list;
2122         register int num;
2123 {
2124 	register int i, j;
2125 	gid_t v;
2126 
2127 	/* Insertion sort. */
2128 	for (i = 1; i < num; i++) {
2129 		v = list[i];
2130 		/* find correct slot for value v, moving others up */
2131 		for (j = i; --j >= 0 && v < list[j];)
2132 			list[j + 1] = list[j];
2133 		list[j + 1] = v;
2134 	}
2135 }
2136 
2137 /*
2138  * copy credentials making sure that the result can be compared with bcmp().
2139  */
2140 void
2141 nfsrv_setcred(incred, outcred)
2142 	register struct ucred *incred, *outcred;
2143 {
2144 	register int i;
2145 
2146 	bzero((caddr_t)outcred, sizeof (struct ucred));
2147 	outcred->cr_ref = 1;
2148 	outcred->cr_uid = incred->cr_uid;
2149 	outcred->cr_gid = incred->cr_gid;
2150 	outcred->cr_ngroups = incred->cr_ngroups;
2151 	for (i = 0; i < incred->cr_ngroups; i++)
2152 		outcred->cr_groups[i] = incred->cr_groups[i];
2153 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2154 }
2155