xref: /netbsd-src/sys/nfs/nfs_subs.c (revision e55cffd8e520e9b03f18a1bd98bb04223e79f69f)
1 /*	$NetBSD: nfs_subs.c,v 1.94 2001/04/21 21:35:53 bjh21 Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
39  */
40 
41 /*
42  * Copyright 2000 Wasabi Systems, Inc.
43  * All rights reserved.
44  *
45  * Written by Frank van der Linden for Wasabi Systems, Inc.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *      This product includes software developed for the NetBSD Project by
58  *      Wasabi Systems, Inc.
59  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60  *    or promote products derived from this software without specific prior
61  *    written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
67  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73  * POSSIBILITY OF SUCH DAMAGE.
74  */
75 
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #include "opt_nfsserver.h"
79 #include "opt_iso.h"
80 #include "opt_inet.h"
81 
82 /*
83  * These functions support the macros and help fiddle mbuf chains for
84  * the nfs op functions. They do things like create the rpc header and
85  * copy data between mbuf chains and uio lists.
86  */
87 #include <sys/param.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113 
114 #include <miscfs/specfs/specdev.h>
115 
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120 
121 /*
122  * Data items converted to xdr at startup, since they are constant
123  * This is kinda hokey, but may save a little time doing byte swaps
124  */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 	rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130 
131 /* And other global data */
132 static u_int32_t nfs_xid = 0;
133 const nfstype nfsv2_type[9] =
134 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 
143 /* NFS client/server stats. */
144 struct nfsstats nfsstats;
145 
146 /*
147  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
148  */
149 const int nfsv3_procid[NFS_NPROCS] = {
150 	NFSPROC_NULL,
151 	NFSPROC_GETATTR,
152 	NFSPROC_SETATTR,
153 	NFSPROC_NOOP,
154 	NFSPROC_LOOKUP,
155 	NFSPROC_READLINK,
156 	NFSPROC_READ,
157 	NFSPROC_NOOP,
158 	NFSPROC_WRITE,
159 	NFSPROC_CREATE,
160 	NFSPROC_REMOVE,
161 	NFSPROC_RENAME,
162 	NFSPROC_LINK,
163 	NFSPROC_SYMLINK,
164 	NFSPROC_MKDIR,
165 	NFSPROC_RMDIR,
166 	NFSPROC_READDIR,
167 	NFSPROC_FSSTAT,
168 	NFSPROC_NOOP,
169 	NFSPROC_NOOP,
170 	NFSPROC_NOOP,
171 	NFSPROC_NOOP,
172 	NFSPROC_NOOP,
173 	NFSPROC_NOOP,
174 	NFSPROC_NOOP,
175 	NFSPROC_NOOP
176 };
177 
178 /*
179  * and the reverse mapping from generic to Version 2 procedure numbers
180  */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 	NFSV2PROC_NULL,
183 	NFSV2PROC_GETATTR,
184 	NFSV2PROC_SETATTR,
185 	NFSV2PROC_LOOKUP,
186 	NFSV2PROC_NOOP,
187 	NFSV2PROC_READLINK,
188 	NFSV2PROC_READ,
189 	NFSV2PROC_WRITE,
190 	NFSV2PROC_CREATE,
191 	NFSV2PROC_MKDIR,
192 	NFSV2PROC_SYMLINK,
193 	NFSV2PROC_CREATE,
194 	NFSV2PROC_REMOVE,
195 	NFSV2PROC_RMDIR,
196 	NFSV2PROC_RENAME,
197 	NFSV2PROC_LINK,
198 	NFSV2PROC_READDIR,
199 	NFSV2PROC_NOOP,
200 	NFSV2PROC_STATFS,
201 	NFSV2PROC_NOOP,
202 	NFSV2PROC_NOOP,
203 	NFSV2PROC_NOOP,
204 	NFSV2PROC_NOOP,
205 	NFSV2PROC_NOOP,
206 	NFSV2PROC_NOOP,
207 	NFSV2PROC_NOOP,
208 };
209 
210 /*
211  * Maps errno values to nfs error numbers.
212  * Use NFSERR_IO as the catch all for ones not specifically defined in
213  * RFC 1094.
214  */
215 static const u_char nfsrv_v2errmap[ELAST] = {
216   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
217   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
218   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
219   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
220   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
221   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
222   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
223   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
226   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
227   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
228   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
229   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
230   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
231   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
232   NFSERR_IO,	NFSERR_IO,
233 };
234 
235 /*
236  * Maps errno values to nfs error numbers.
237  * Although it is not obvious whether or not NFS clients really care if
238  * a returned error value is in the specified list for the procedure, the
239  * safest thing to do is filter them appropriately. For Version 2, the
240  * X/Open XNFS document is the only specification that defines error values
241  * for each RPC (The RFC simply lists all possible error values for all RPCs),
242  * so I have decided to not do this for Version 2.
243  * The first entry is the default error return and the rest are the valid
244  * errors for that RPC in increasing numeric order.
245  */
246 static const short nfsv3err_null[] = {
247 	0,
248 	0,
249 };
250 
251 static const short nfsv3err_getattr[] = {
252 	NFSERR_IO,
253 	NFSERR_IO,
254 	NFSERR_STALE,
255 	NFSERR_BADHANDLE,
256 	NFSERR_SERVERFAULT,
257 	0,
258 };
259 
260 static const short nfsv3err_setattr[] = {
261 	NFSERR_IO,
262 	NFSERR_PERM,
263 	NFSERR_IO,
264 	NFSERR_ACCES,
265 	NFSERR_INVAL,
266 	NFSERR_NOSPC,
267 	NFSERR_ROFS,
268 	NFSERR_DQUOT,
269 	NFSERR_STALE,
270 	NFSERR_BADHANDLE,
271 	NFSERR_NOT_SYNC,
272 	NFSERR_SERVERFAULT,
273 	0,
274 };
275 
276 static const short nfsv3err_lookup[] = {
277 	NFSERR_IO,
278 	NFSERR_NOENT,
279 	NFSERR_IO,
280 	NFSERR_ACCES,
281 	NFSERR_NOTDIR,
282 	NFSERR_NAMETOL,
283 	NFSERR_STALE,
284 	NFSERR_BADHANDLE,
285 	NFSERR_SERVERFAULT,
286 	0,
287 };
288 
289 static const short nfsv3err_access[] = {
290 	NFSERR_IO,
291 	NFSERR_IO,
292 	NFSERR_STALE,
293 	NFSERR_BADHANDLE,
294 	NFSERR_SERVERFAULT,
295 	0,
296 };
297 
298 static const short nfsv3err_readlink[] = {
299 	NFSERR_IO,
300 	NFSERR_IO,
301 	NFSERR_ACCES,
302 	NFSERR_INVAL,
303 	NFSERR_STALE,
304 	NFSERR_BADHANDLE,
305 	NFSERR_NOTSUPP,
306 	NFSERR_SERVERFAULT,
307 	0,
308 };
309 
310 static const short nfsv3err_read[] = {
311 	NFSERR_IO,
312 	NFSERR_IO,
313 	NFSERR_NXIO,
314 	NFSERR_ACCES,
315 	NFSERR_INVAL,
316 	NFSERR_STALE,
317 	NFSERR_BADHANDLE,
318 	NFSERR_SERVERFAULT,
319 	NFSERR_JUKEBOX,
320 	0,
321 };
322 
323 static const short nfsv3err_write[] = {
324 	NFSERR_IO,
325 	NFSERR_IO,
326 	NFSERR_ACCES,
327 	NFSERR_INVAL,
328 	NFSERR_FBIG,
329 	NFSERR_NOSPC,
330 	NFSERR_ROFS,
331 	NFSERR_DQUOT,
332 	NFSERR_STALE,
333 	NFSERR_BADHANDLE,
334 	NFSERR_SERVERFAULT,
335 	NFSERR_JUKEBOX,
336 	0,
337 };
338 
339 static const short nfsv3err_create[] = {
340 	NFSERR_IO,
341 	NFSERR_IO,
342 	NFSERR_ACCES,
343 	NFSERR_EXIST,
344 	NFSERR_NOTDIR,
345 	NFSERR_NOSPC,
346 	NFSERR_ROFS,
347 	NFSERR_NAMETOL,
348 	NFSERR_DQUOT,
349 	NFSERR_STALE,
350 	NFSERR_BADHANDLE,
351 	NFSERR_NOTSUPP,
352 	NFSERR_SERVERFAULT,
353 	0,
354 };
355 
356 static const short nfsv3err_mkdir[] = {
357 	NFSERR_IO,
358 	NFSERR_IO,
359 	NFSERR_ACCES,
360 	NFSERR_EXIST,
361 	NFSERR_NOTDIR,
362 	NFSERR_NOSPC,
363 	NFSERR_ROFS,
364 	NFSERR_NAMETOL,
365 	NFSERR_DQUOT,
366 	NFSERR_STALE,
367 	NFSERR_BADHANDLE,
368 	NFSERR_NOTSUPP,
369 	NFSERR_SERVERFAULT,
370 	0,
371 };
372 
373 static const short nfsv3err_symlink[] = {
374 	NFSERR_IO,
375 	NFSERR_IO,
376 	NFSERR_ACCES,
377 	NFSERR_EXIST,
378 	NFSERR_NOTDIR,
379 	NFSERR_NOSPC,
380 	NFSERR_ROFS,
381 	NFSERR_NAMETOL,
382 	NFSERR_DQUOT,
383 	NFSERR_STALE,
384 	NFSERR_BADHANDLE,
385 	NFSERR_NOTSUPP,
386 	NFSERR_SERVERFAULT,
387 	0,
388 };
389 
390 static const short nfsv3err_mknod[] = {
391 	NFSERR_IO,
392 	NFSERR_IO,
393 	NFSERR_ACCES,
394 	NFSERR_EXIST,
395 	NFSERR_NOTDIR,
396 	NFSERR_NOSPC,
397 	NFSERR_ROFS,
398 	NFSERR_NAMETOL,
399 	NFSERR_DQUOT,
400 	NFSERR_STALE,
401 	NFSERR_BADHANDLE,
402 	NFSERR_NOTSUPP,
403 	NFSERR_SERVERFAULT,
404 	NFSERR_BADTYPE,
405 	0,
406 };
407 
408 static const short nfsv3err_remove[] = {
409 	NFSERR_IO,
410 	NFSERR_NOENT,
411 	NFSERR_IO,
412 	NFSERR_ACCES,
413 	NFSERR_NOTDIR,
414 	NFSERR_ROFS,
415 	NFSERR_NAMETOL,
416 	NFSERR_STALE,
417 	NFSERR_BADHANDLE,
418 	NFSERR_SERVERFAULT,
419 	0,
420 };
421 
422 static const short nfsv3err_rmdir[] = {
423 	NFSERR_IO,
424 	NFSERR_NOENT,
425 	NFSERR_IO,
426 	NFSERR_ACCES,
427 	NFSERR_EXIST,
428 	NFSERR_NOTDIR,
429 	NFSERR_INVAL,
430 	NFSERR_ROFS,
431 	NFSERR_NAMETOL,
432 	NFSERR_NOTEMPTY,
433 	NFSERR_STALE,
434 	NFSERR_BADHANDLE,
435 	NFSERR_NOTSUPP,
436 	NFSERR_SERVERFAULT,
437 	0,
438 };
439 
440 static const short nfsv3err_rename[] = {
441 	NFSERR_IO,
442 	NFSERR_NOENT,
443 	NFSERR_IO,
444 	NFSERR_ACCES,
445 	NFSERR_EXIST,
446 	NFSERR_XDEV,
447 	NFSERR_NOTDIR,
448 	NFSERR_ISDIR,
449 	NFSERR_INVAL,
450 	NFSERR_NOSPC,
451 	NFSERR_ROFS,
452 	NFSERR_MLINK,
453 	NFSERR_NAMETOL,
454 	NFSERR_NOTEMPTY,
455 	NFSERR_DQUOT,
456 	NFSERR_STALE,
457 	NFSERR_BADHANDLE,
458 	NFSERR_NOTSUPP,
459 	NFSERR_SERVERFAULT,
460 	0,
461 };
462 
463 static const short nfsv3err_link[] = {
464 	NFSERR_IO,
465 	NFSERR_IO,
466 	NFSERR_ACCES,
467 	NFSERR_EXIST,
468 	NFSERR_XDEV,
469 	NFSERR_NOTDIR,
470 	NFSERR_INVAL,
471 	NFSERR_NOSPC,
472 	NFSERR_ROFS,
473 	NFSERR_MLINK,
474 	NFSERR_NAMETOL,
475 	NFSERR_DQUOT,
476 	NFSERR_STALE,
477 	NFSERR_BADHANDLE,
478 	NFSERR_NOTSUPP,
479 	NFSERR_SERVERFAULT,
480 	0,
481 };
482 
483 static const short nfsv3err_readdir[] = {
484 	NFSERR_IO,
485 	NFSERR_IO,
486 	NFSERR_ACCES,
487 	NFSERR_NOTDIR,
488 	NFSERR_STALE,
489 	NFSERR_BADHANDLE,
490 	NFSERR_BAD_COOKIE,
491 	NFSERR_TOOSMALL,
492 	NFSERR_SERVERFAULT,
493 	0,
494 };
495 
496 static const short nfsv3err_readdirplus[] = {
497 	NFSERR_IO,
498 	NFSERR_IO,
499 	NFSERR_ACCES,
500 	NFSERR_NOTDIR,
501 	NFSERR_STALE,
502 	NFSERR_BADHANDLE,
503 	NFSERR_BAD_COOKIE,
504 	NFSERR_NOTSUPP,
505 	NFSERR_TOOSMALL,
506 	NFSERR_SERVERFAULT,
507 	0,
508 };
509 
510 static const short nfsv3err_fsstat[] = {
511 	NFSERR_IO,
512 	NFSERR_IO,
513 	NFSERR_STALE,
514 	NFSERR_BADHANDLE,
515 	NFSERR_SERVERFAULT,
516 	0,
517 };
518 
519 static const short nfsv3err_fsinfo[] = {
520 	NFSERR_STALE,
521 	NFSERR_STALE,
522 	NFSERR_BADHANDLE,
523 	NFSERR_SERVERFAULT,
524 	0,
525 };
526 
527 static const short nfsv3err_pathconf[] = {
528 	NFSERR_STALE,
529 	NFSERR_STALE,
530 	NFSERR_BADHANDLE,
531 	NFSERR_SERVERFAULT,
532 	0,
533 };
534 
535 static const short nfsv3err_commit[] = {
536 	NFSERR_IO,
537 	NFSERR_IO,
538 	NFSERR_STALE,
539 	NFSERR_BADHANDLE,
540 	NFSERR_SERVERFAULT,
541 	0,
542 };
543 
544 static const short * const nfsrv_v3errmap[] = {
545 	nfsv3err_null,
546 	nfsv3err_getattr,
547 	nfsv3err_setattr,
548 	nfsv3err_lookup,
549 	nfsv3err_access,
550 	nfsv3err_readlink,
551 	nfsv3err_read,
552 	nfsv3err_write,
553 	nfsv3err_create,
554 	nfsv3err_mkdir,
555 	nfsv3err_symlink,
556 	nfsv3err_mknod,
557 	nfsv3err_remove,
558 	nfsv3err_rmdir,
559 	nfsv3err_rename,
560 	nfsv3err_link,
561 	nfsv3err_readdir,
562 	nfsv3err_readdirplus,
563 	nfsv3err_fsstat,
564 	nfsv3err_fsinfo,
565 	nfsv3err_pathconf,
566 	nfsv3err_commit,
567 };
568 
569 extern struct nfsrtt nfsrtt;
570 extern time_t nqnfsstarttime;
571 extern int nqsrv_clockskew;
572 extern int nqsrv_writeslack;
573 extern int nqsrv_maxlease;
574 extern const int nqnfs_piggy[NFS_NPROCS];
575 extern struct nfsnodehashhead *nfsnodehashtbl;
576 extern u_long nfsnodehash;
577 
578 LIST_HEAD(nfsnodehashhead, nfsnode);
579 u_long nfsdirhashmask;
580 
581 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
582 
583 /*
584  * Create the header for an rpc request packet
585  * The hsiz is the size of the rest of the nfs request header.
586  * (just used to decide if a cluster is a good idea)
587  */
588 struct mbuf *
589 nfsm_reqh(vp, procid, hsiz, bposp)
590 	struct vnode *vp;
591 	u_long procid;
592 	int hsiz;
593 	caddr_t *bposp;
594 {
595 	struct mbuf *mb;
596 	caddr_t bpos;
597 	struct nfsmount *nmp;
598 #ifndef NFS_V2_ONLY
599 	u_int32_t *tl;
600 	struct mbuf *mb2;
601 	int nqflag;
602 #endif
603 
604 	MGET(mb, M_WAIT, MT_DATA);
605 	if (hsiz >= MINCLSIZE)
606 		MCLGET(mb, M_WAIT);
607 	mb->m_len = 0;
608 	bpos = mtod(mb, caddr_t);
609 
610 	/*
611 	 * For NQNFS, add lease request.
612 	 */
613 	if (vp) {
614 		nmp = VFSTONFS(vp->v_mount);
615 #ifndef NFS_V2_ONLY
616 		if (nmp->nm_flag & NFSMNT_NQNFS) {
617 			nqflag = NQNFS_NEEDLEASE(vp, procid);
618 			if (nqflag) {
619 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
620 				*tl++ = txdr_unsigned(nqflag);
621 				*tl = txdr_unsigned(nmp->nm_leaseterm);
622 			} else {
623 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
624 				*tl = 0;
625 			}
626 		}
627 #endif
628 	}
629 	/* Finally, return values */
630 	*bposp = bpos;
631 	return (mb);
632 }
633 
634 /*
635  * Build the RPC header and fill in the authorization info.
636  * The authorization string argument is only used when the credentials
637  * come from outside of the kernel.
638  * Returns the head of the mbuf list.
639  */
640 struct mbuf *
641 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
642 	verf_str, mrest, mrest_len, mbp, xidp)
643 	struct ucred *cr;
644 	int nmflag;
645 	int procid;
646 	int auth_type;
647 	int auth_len;
648 	char *auth_str;
649 	int verf_len;
650 	char *verf_str;
651 	struct mbuf *mrest;
652 	int mrest_len;
653 	struct mbuf **mbp;
654 	u_int32_t *xidp;
655 {
656 	struct mbuf *mb;
657 	u_int32_t *tl;
658 	caddr_t bpos;
659 	int i;
660 	struct mbuf *mreq, *mb2;
661 	int siz, grpsiz, authsiz;
662 	struct timeval tv;
663 	static u_int32_t base;
664 
665 	authsiz = nfsm_rndup(auth_len);
666 	MGETHDR(mb, M_WAIT, MT_DATA);
667 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 		MCLGET(mb, M_WAIT);
669 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 	} else {
672 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 	}
674 	mb->m_len = 0;
675 	mreq = mb;
676 	bpos = mtod(mb, caddr_t);
677 
678 	/*
679 	 * First the RPC header.
680 	 */
681 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682 
683 	/*
684 	 * derive initial xid from system time
685 	 * XXX time is invalid if root not yet mounted
686 	 */
687 	if (!base && (rootvp)) {
688 		microtime(&tv);
689 		base = tv.tv_sec << 12;
690 		nfs_xid = base;
691 	}
692 	/*
693 	 * Skip zero xid if it should ever happen.
694 	 */
695 	if (++nfs_xid == 0)
696 		nfs_xid++;
697 
698 	*tl++ = *xidp = txdr_unsigned(nfs_xid);
699 	*tl++ = rpc_call;
700 	*tl++ = rpc_vers;
701 	if (nmflag & NFSMNT_NQNFS) {
702 		*tl++ = txdr_unsigned(NQNFS_PROG);
703 		*tl++ = txdr_unsigned(NQNFS_VER3);
704 	} else {
705 		*tl++ = txdr_unsigned(NFS_PROG);
706 		if (nmflag & NFSMNT_NFSV3)
707 			*tl++ = txdr_unsigned(NFS_VER3);
708 		else
709 			*tl++ = txdr_unsigned(NFS_VER2);
710 	}
711 	if (nmflag & NFSMNT_NFSV3)
712 		*tl++ = txdr_unsigned(procid);
713 	else
714 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
715 
716 	/*
717 	 * And then the authorization cred.
718 	 */
719 	*tl++ = txdr_unsigned(auth_type);
720 	*tl = txdr_unsigned(authsiz);
721 	switch (auth_type) {
722 	case RPCAUTH_UNIX:
723 		nfsm_build(tl, u_int32_t *, auth_len);
724 		*tl++ = 0;		/* stamp ?? */
725 		*tl++ = 0;		/* NULL hostname */
726 		*tl++ = txdr_unsigned(cr->cr_uid);
727 		*tl++ = txdr_unsigned(cr->cr_gid);
728 		grpsiz = (auth_len >> 2) - 5;
729 		*tl++ = txdr_unsigned(grpsiz);
730 		for (i = 0; i < grpsiz; i++)
731 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
732 		break;
733 	case RPCAUTH_KERB4:
734 		siz = auth_len;
735 		while (siz > 0) {
736 			if (M_TRAILINGSPACE(mb) == 0) {
737 				MGET(mb2, M_WAIT, MT_DATA);
738 				if (siz >= MINCLSIZE)
739 					MCLGET(mb2, M_WAIT);
740 				mb->m_next = mb2;
741 				mb = mb2;
742 				mb->m_len = 0;
743 				bpos = mtod(mb, caddr_t);
744 			}
745 			i = min(siz, M_TRAILINGSPACE(mb));
746 			memcpy(bpos, auth_str, i);
747 			mb->m_len += i;
748 			auth_str += i;
749 			bpos += i;
750 			siz -= i;
751 		}
752 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
753 			for (i = 0; i < siz; i++)
754 				*bpos++ = '\0';
755 			mb->m_len += siz;
756 		}
757 		break;
758 	};
759 
760 	/*
761 	 * And the verifier...
762 	 */
763 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
764 	if (verf_str) {
765 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
766 		*tl = txdr_unsigned(verf_len);
767 		siz = verf_len;
768 		while (siz > 0) {
769 			if (M_TRAILINGSPACE(mb) == 0) {
770 				MGET(mb2, M_WAIT, MT_DATA);
771 				if (siz >= MINCLSIZE)
772 					MCLGET(mb2, M_WAIT);
773 				mb->m_next = mb2;
774 				mb = mb2;
775 				mb->m_len = 0;
776 				bpos = mtod(mb, caddr_t);
777 			}
778 			i = min(siz, M_TRAILINGSPACE(mb));
779 			memcpy(bpos, verf_str, i);
780 			mb->m_len += i;
781 			verf_str += i;
782 			bpos += i;
783 			siz -= i;
784 		}
785 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
786 			for (i = 0; i < siz; i++)
787 				*bpos++ = '\0';
788 			mb->m_len += siz;
789 		}
790 	} else {
791 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
792 		*tl = 0;
793 	}
794 	mb->m_next = mrest;
795 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
796 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
797 	*mbp = mb;
798 	return (mreq);
799 }
800 
801 /*
802  * copies mbuf chain to the uio scatter/gather list
803  */
804 int
805 nfsm_mbuftouio(mrep, uiop, siz, dpos)
806 	struct mbuf **mrep;
807 	struct uio *uiop;
808 	int siz;
809 	caddr_t *dpos;
810 {
811 	char *mbufcp, *uiocp;
812 	int xfer, left, len;
813 	struct mbuf *mp;
814 	long uiosiz, rem;
815 	int error = 0;
816 
817 	mp = *mrep;
818 	mbufcp = *dpos;
819 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
820 	rem = nfsm_rndup(siz)-siz;
821 	while (siz > 0) {
822 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
823 			return (EFBIG);
824 		left = uiop->uio_iov->iov_len;
825 		uiocp = uiop->uio_iov->iov_base;
826 		if (left > siz)
827 			left = siz;
828 		uiosiz = left;
829 		while (left > 0) {
830 			while (len == 0) {
831 				mp = mp->m_next;
832 				if (mp == NULL)
833 					return (EBADRPC);
834 				mbufcp = mtod(mp, caddr_t);
835 				len = mp->m_len;
836 			}
837 			xfer = (left > len) ? len : left;
838 #ifdef notdef
839 			/* Not Yet.. */
840 			if (uiop->uio_iov->iov_op != NULL)
841 				(*(uiop->uio_iov->iov_op))
842 				(mbufcp, uiocp, xfer);
843 			else
844 #endif
845 			if (uiop->uio_segflg == UIO_SYSSPACE)
846 				memcpy(uiocp, mbufcp, xfer);
847 			else
848 				copyout(mbufcp, uiocp, xfer);
849 			left -= xfer;
850 			len -= xfer;
851 			mbufcp += xfer;
852 			uiocp += xfer;
853 			uiop->uio_offset += xfer;
854 			uiop->uio_resid -= xfer;
855 		}
856 		if (uiop->uio_iov->iov_len <= siz) {
857 			uiop->uio_iovcnt--;
858 			uiop->uio_iov++;
859 		} else {
860 			(caddr_t)uiop->uio_iov->iov_base += uiosiz;
861 			uiop->uio_iov->iov_len -= uiosiz;
862 		}
863 		siz -= uiosiz;
864 	}
865 	*dpos = mbufcp;
866 	*mrep = mp;
867 	if (rem > 0) {
868 		if (len < rem)
869 			error = nfs_adv(mrep, dpos, rem, len);
870 		else
871 			*dpos += rem;
872 	}
873 	return (error);
874 }
875 
876 /*
877  * copies a uio scatter/gather list to an mbuf chain.
878  * NOTE: can ony handle iovcnt == 1
879  */
880 int
881 nfsm_uiotombuf(uiop, mq, siz, bpos)
882 	struct uio *uiop;
883 	struct mbuf **mq;
884 	int siz;
885 	caddr_t *bpos;
886 {
887 	char *uiocp;
888 	struct mbuf *mp, *mp2;
889 	int xfer, left, mlen;
890 	int uiosiz, clflg, rem;
891 	char *cp;
892 
893 #ifdef DIAGNOSTIC
894 	if (uiop->uio_iovcnt != 1)
895 		panic("nfsm_uiotombuf: iovcnt != 1");
896 #endif
897 
898 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
899 		clflg = 1;
900 	else
901 		clflg = 0;
902 	rem = nfsm_rndup(siz)-siz;
903 	mp = mp2 = *mq;
904 	while (siz > 0) {
905 		left = uiop->uio_iov->iov_len;
906 		uiocp = uiop->uio_iov->iov_base;
907 		if (left > siz)
908 			left = siz;
909 		uiosiz = left;
910 		while (left > 0) {
911 			mlen = M_TRAILINGSPACE(mp);
912 			if (mlen == 0) {
913 				MGET(mp, M_WAIT, MT_DATA);
914 				if (clflg)
915 					MCLGET(mp, M_WAIT);
916 				mp->m_len = 0;
917 				mp2->m_next = mp;
918 				mp2 = mp;
919 				mlen = M_TRAILINGSPACE(mp);
920 			}
921 			xfer = (left > mlen) ? mlen : left;
922 #ifdef notdef
923 			/* Not Yet.. */
924 			if (uiop->uio_iov->iov_op != NULL)
925 				(*(uiop->uio_iov->iov_op))
926 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
927 			else
928 #endif
929 			if (uiop->uio_segflg == UIO_SYSSPACE)
930 				memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
931 			else
932 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
933 			mp->m_len += xfer;
934 			left -= xfer;
935 			uiocp += xfer;
936 			uiop->uio_offset += xfer;
937 			uiop->uio_resid -= xfer;
938 		}
939 		(caddr_t)uiop->uio_iov->iov_base += uiosiz;
940 		uiop->uio_iov->iov_len -= uiosiz;
941 		siz -= uiosiz;
942 	}
943 	if (rem > 0) {
944 		if (rem > M_TRAILINGSPACE(mp)) {
945 			MGET(mp, M_WAIT, MT_DATA);
946 			mp->m_len = 0;
947 			mp2->m_next = mp;
948 		}
949 		cp = mtod(mp, caddr_t)+mp->m_len;
950 		for (left = 0; left < rem; left++)
951 			*cp++ = '\0';
952 		mp->m_len += rem;
953 		*bpos = cp;
954 	} else
955 		*bpos = mtod(mp, caddr_t)+mp->m_len;
956 	*mq = mp;
957 	return (0);
958 }
959 
960 /*
961  * Get at least "siz" bytes of correctly aligned data.
962  * When called the mbuf pointers are not necessarily correct,
963  * dsosp points to what ought to be in m_data and left contains
964  * what ought to be in m_len.
965  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
966  * cases. (The macros use the vars. dpos and dpos2)
967  */
968 int
969 nfsm_disct(mdp, dposp, siz, left, cp2)
970 	struct mbuf **mdp;
971 	caddr_t *dposp;
972 	int siz;
973 	int left;
974 	caddr_t *cp2;
975 {
976 	struct mbuf *m1, *m2;
977 	struct mbuf *havebuf = NULL;
978 	caddr_t src = *dposp;
979 	caddr_t dst;
980 	int len;
981 
982 #ifdef DEBUG
983 	if (left < 0)
984 		panic("nfsm_disct: left < 0");
985 #endif
986 	m1 = *mdp;
987 	/*
988 	 * Skip through the mbuf chain looking for an mbuf with
989 	 * some data. If the first mbuf found has enough data
990 	 * and it is correctly aligned return it.
991 	 */
992 	while (left == 0) {
993 		havebuf = m1;
994 		*mdp = m1 = m1->m_next;
995 		if (m1 == NULL)
996 			return (EBADRPC);
997 		src = mtod(m1, caddr_t);
998 		left = m1->m_len;
999 		/*
1000 		 * If we start a new mbuf and it is big enough
1001 		 * and correctly aligned just return it, don't
1002 		 * do any pull up.
1003 		 */
1004 		if (left >= siz && nfsm_aligned(src)) {
1005 			*cp2 = src;
1006 			*dposp = src + siz;
1007 			return (0);
1008 		}
1009 	}
1010 	if (m1->m_flags & M_EXT) {
1011 		if (havebuf) {
1012 			/* If the first mbuf with data has external data
1013 			 * and there is a previous empty mbuf use it
1014 			 * to move the data into.
1015 			 */
1016 			m2 = m1;
1017 			*mdp = m1 = havebuf;
1018 			if (m1->m_flags & M_EXT) {
1019 				MEXTREMOVE(m1);
1020 			}
1021 		} else {
1022 			/*
1023 			 * If the first mbuf has a external data
1024 			 * and there is no previous empty mbuf
1025 			 * allocate a new mbuf and move the external
1026 			 * data to the new mbuf. Also make the first
1027 			 * mbuf look empty.
1028 			 */
1029 			m2 = m_get(M_WAIT, MT_DATA);
1030 			m2->m_ext = m1->m_ext;
1031 			m2->m_data = src;
1032 			m2->m_len = left;
1033 			MCLADDREFERENCE(m1, m2);
1034 			MEXTREMOVE(m1);
1035 			m2->m_next = m1->m_next;
1036 			m1->m_next = m2;
1037 		}
1038 		m1->m_len = 0;
1039 		dst = m1->m_dat;
1040 	} else {
1041 		/*
1042 		 * If the first mbuf has no external data
1043 		 * move the data to the front of the mbuf.
1044 		 */
1045 		if ((dst = m1->m_dat) != src)
1046 			memmove(dst, src, left);
1047 		dst += left;
1048 		m1->m_len = left;
1049 		m2 = m1->m_next;
1050 	}
1051 	m1->m_flags &= ~M_PKTHDR;
1052 	*cp2 = m1->m_data = m1->m_dat;   /* data is at beginning of buffer */
1053 	*dposp = mtod(m1, caddr_t) + siz;
1054 	/*
1055 	 * Loop through mbufs pulling data up into first mbuf until
1056 	 * the first mbuf is full or there is no more data to
1057 	 * pullup.
1058 	 */
1059 	while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1060 		if ((len = min(len, m2->m_len)) != 0)
1061 			memcpy(dst, m2->m_data, len);
1062 		m1->m_len += len;
1063 		dst += len;
1064 		m2->m_data += len;
1065 		m2->m_len -= len;
1066 		m2 = m2->m_next;
1067 	}
1068 	if (m1->m_len < siz)
1069 		return (EBADRPC);
1070 	return (0);
1071 }
1072 
1073 /*
1074  * Advance the position in the mbuf chain.
1075  */
1076 int
1077 nfs_adv(mdp, dposp, offs, left)
1078 	struct mbuf **mdp;
1079 	caddr_t *dposp;
1080 	int offs;
1081 	int left;
1082 {
1083 	struct mbuf *m;
1084 	int s;
1085 
1086 	m = *mdp;
1087 	s = left;
1088 	while (s < offs) {
1089 		offs -= s;
1090 		m = m->m_next;
1091 		if (m == NULL)
1092 			return (EBADRPC);
1093 		s = m->m_len;
1094 	}
1095 	*mdp = m;
1096 	*dposp = mtod(m, caddr_t)+offs;
1097 	return (0);
1098 }
1099 
1100 /*
1101  * Copy a string into mbufs for the hard cases...
1102  */
1103 int
1104 nfsm_strtmbuf(mb, bpos, cp, siz)
1105 	struct mbuf **mb;
1106 	char **bpos;
1107 	const char *cp;
1108 	long siz;
1109 {
1110 	struct mbuf *m1 = NULL, *m2;
1111 	long left, xfer, len, tlen;
1112 	u_int32_t *tl;
1113 	int putsize;
1114 
1115 	putsize = 1;
1116 	m2 = *mb;
1117 	left = M_TRAILINGSPACE(m2);
1118 	if (left > 0) {
1119 		tl = ((u_int32_t *)(*bpos));
1120 		*tl++ = txdr_unsigned(siz);
1121 		putsize = 0;
1122 		left -= NFSX_UNSIGNED;
1123 		m2->m_len += NFSX_UNSIGNED;
1124 		if (left > 0) {
1125 			memcpy((caddr_t) tl, cp, left);
1126 			siz -= left;
1127 			cp += left;
1128 			m2->m_len += left;
1129 			left = 0;
1130 		}
1131 	}
1132 	/* Loop around adding mbufs */
1133 	while (siz > 0) {
1134 		MGET(m1, M_WAIT, MT_DATA);
1135 		if (siz > MLEN)
1136 			MCLGET(m1, M_WAIT);
1137 		m1->m_len = NFSMSIZ(m1);
1138 		m2->m_next = m1;
1139 		m2 = m1;
1140 		tl = mtod(m1, u_int32_t *);
1141 		tlen = 0;
1142 		if (putsize) {
1143 			*tl++ = txdr_unsigned(siz);
1144 			m1->m_len -= NFSX_UNSIGNED;
1145 			tlen = NFSX_UNSIGNED;
1146 			putsize = 0;
1147 		}
1148 		if (siz < m1->m_len) {
1149 			len = nfsm_rndup(siz);
1150 			xfer = siz;
1151 			if (xfer < len)
1152 				*(tl+(xfer>>2)) = 0;
1153 		} else {
1154 			xfer = len = m1->m_len;
1155 		}
1156 		memcpy((caddr_t) tl, cp, xfer);
1157 		m1->m_len = len+tlen;
1158 		siz -= xfer;
1159 		cp += xfer;
1160 	}
1161 	*mb = m1;
1162 	*bpos = mtod(m1, caddr_t)+m1->m_len;
1163 	return (0);
1164 }
1165 
1166 /*
1167  * Directory caching routines. They work as follows:
1168  * - a cache is maintained per VDIR nfsnode.
1169  * - for each offset cookie that is exported to userspace, and can
1170  *   thus be thrown back at us as an offset to VOP_READDIR, store
1171  *   information in the cache.
1172  * - cached are:
1173  *   - cookie itself
1174  *   - blocknumber (essentially just a search key in the buffer cache)
1175  *   - entry number in block.
1176  *   - offset cookie of block in which this entry is stored
1177  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1178  * - entries are looked up in a hash table
1179  * - also maintained is an LRU list of entries, used to determine
1180  *   which ones to delete if the cache grows too large.
1181  * - if 32 <-> 64 translation mode is requested for a filesystem,
1182  *   the cache also functions as a translation table
1183  * - in the translation case, invalidating the cache does not mean
1184  *   flushing it, but just marking entries as invalid, except for
1185  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
1186  *   still be able to use the cache as a translation table.
1187  * - 32 bit cookies are uniquely created by combining the hash table
1188  *   entry value, and one generation count per hash table entry,
1189  *   incremented each time an entry is appended to the chain.
1190  * - the cache is invalidated each time a direcory is modified
1191  * - sanity checks are also done; if an entry in a block turns
1192  *   out not to have a matching cookie, the cache is invalidated
1193  *   and a new block starting from the wanted offset is fetched from
1194  *   the server.
1195  * - directory entries as read from the server are extended to contain
1196  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
1197  *   the cache and exporting them to userspace through the cookie
1198  *   argument to VOP_READDIR.
1199  */
1200 
1201 u_long
1202 nfs_dirhash(off)
1203 	off_t off;
1204 {
1205 	int i;
1206 	char *cp = (char *)&off;
1207 	u_long sum = 0L;
1208 
1209 	for (i = 0 ; i < sizeof (off); i++)
1210 		sum += *cp++;
1211 
1212 	return sum;
1213 }
1214 
1215 void
1216 nfs_initdircache(vp)
1217 	struct vnode *vp;
1218 {
1219 	struct nfsnode *np = VTONFS(vp);
1220 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1221 
1222 	np->n_dircachesize = 0;
1223 	np->n_dblkno = 1;
1224 	np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1225 	    M_WAITOK, &nfsdirhashmask);
1226 	TAILQ_INIT(&np->n_dirchain);
1227 	if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1228 		MALLOC(np->n_dirgens, unsigned *,
1229 		    NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1230 		    M_WAITOK);
1231 		memset((caddr_t)np->n_dirgens, 0,
1232 		    NFS_DIRHASHSIZ * sizeof (unsigned));
1233 	}
1234 }
1235 
1236 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1237 
1238 struct nfsdircache *
1239 nfs_searchdircache(vp, off, do32, hashent)
1240 	struct vnode *vp;
1241 	off_t off;
1242 	int do32;
1243 	int *hashent;
1244 {
1245 	struct nfsdirhashhead *ndhp;
1246 	struct nfsdircache *ndp = NULL;
1247 	struct nfsnode *np = VTONFS(vp);
1248 	unsigned ent;
1249 
1250 	/*
1251 	 * Zero is always a valid cookie.
1252 	 */
1253 	if (off == 0)
1254 		return &dzero;
1255 
1256 	/*
1257 	 * We use a 32bit cookie as search key, directly reconstruct
1258 	 * the hashentry. Else use the hashfunction.
1259 	 */
1260 	if (do32) {
1261 		ent = (u_int32_t)off >> 24;
1262 		if (ent >= NFS_DIRHASHSIZ)
1263 			return NULL;
1264 		ndhp = &np->n_dircache[ent];
1265 	} else {
1266 		ndhp = NFSDIRHASH(np, off);
1267 	}
1268 
1269 	if (hashent)
1270 		*hashent = (int)(ndhp - np->n_dircache);
1271 	if (do32) {
1272 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1273 			if (ndp->dc_cookie32 == (u_int32_t)off) {
1274 				/*
1275 				 * An invalidated entry will become the
1276 				 * start of a new block fetched from
1277 				 * the server.
1278 				 */
1279 				if (ndp->dc_blkno == -1) {
1280 					ndp->dc_blkcookie = ndp->dc_cookie;
1281 					ndp->dc_blkno = np->n_dblkno++;
1282 					ndp->dc_entry = 0;
1283 				}
1284 				break;
1285 			}
1286 		}
1287 	} else {
1288 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1289 			if (ndp->dc_cookie == off)
1290 				break;
1291 	}
1292 	return ndp;
1293 }
1294 
1295 
1296 struct nfsdircache *
1297 nfs_enterdircache(vp, off, blkoff, en, blkno)
1298 	struct vnode *vp;
1299 	off_t off, blkoff;
1300 	daddr_t blkno;
1301 	int en;
1302 {
1303 	struct nfsnode *np = VTONFS(vp);
1304 	struct nfsdirhashhead *ndhp;
1305 	struct nfsdircache *ndp = NULL, *first;
1306 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1307 	int hashent, gen, overwrite;
1308 
1309 	if (!np->n_dircache)
1310 		/*
1311 		 * XXX would like to do this in nfs_nget but vtype
1312 		 * isn't known at that time.
1313 		 */
1314 		nfs_initdircache(vp);
1315 
1316 	/*
1317 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
1318 	 * cookie 0 for the '.' entry, making this necessary. This
1319 	 * isn't so bad, as 0 is a special case anyway.
1320 	 */
1321 	if (off == 0)
1322 		return &dzero;
1323 
1324 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
1325 
1326 	if (ndp && ndp->dc_blkno != -1) {
1327 		/*
1328 		 * Overwriting an old entry. Check if it's the same.
1329 		 * If so, just return. If not, remove the old entry.
1330 		 */
1331 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1332 			return ndp;
1333 		TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1334 		LIST_REMOVE(ndp, dc_hash);
1335 		FREE(ndp, M_NFSDIROFF);
1336 		ndp = 0;
1337 	}
1338 
1339 	ndhp = &np->n_dircache[hashent];
1340 
1341 	if (!ndp) {
1342 		MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1343 		    M_WAITOK);
1344 		overwrite = 0;
1345 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1346 			/*
1347 			 * We're allocating a new entry, so bump the
1348 			 * generation number.
1349 			 */
1350 			gen = ++np->n_dirgens[hashent];
1351 			if (gen == 0) {
1352 				np->n_dirgens[hashent]++;
1353 				gen++;
1354 			}
1355 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1356 		}
1357 	} else
1358 		overwrite = 1;
1359 
1360 	/*
1361 	 * If the entry number is 0, we are at the start of a new block, so
1362 	 * allocate a new blocknumber.
1363 	 */
1364 	if (en == 0)
1365 		ndp->dc_blkno = np->n_dblkno++;
1366 	else
1367 		ndp->dc_blkno = blkno;
1368 
1369 	ndp->dc_cookie = off;
1370 	ndp->dc_blkcookie = blkoff;
1371 	ndp->dc_entry = en;
1372 
1373 	if (overwrite)
1374 		return ndp;
1375 
1376 	/*
1377 	 * If the maximum directory cookie cache size has been reached
1378 	 * for this node, take one off the front. The idea is that
1379 	 * directories are typically read front-to-back once, so that
1380 	 * the oldest entries can be thrown away without much performance
1381 	 * loss.
1382 	 */
1383 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1384 		first = np->n_dirchain.tqh_first;
1385 		TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1386 		LIST_REMOVE(first, dc_hash);
1387 		FREE(first, M_NFSDIROFF);
1388 	} else
1389 		np->n_dircachesize++;
1390 
1391 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1392 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1393 	return ndp;
1394 }
1395 
1396 void
1397 nfs_invaldircache(vp, forcefree)
1398 	struct vnode *vp;
1399 	int forcefree;
1400 {
1401 	struct nfsnode *np = VTONFS(vp);
1402 	struct nfsdircache *ndp = NULL;
1403 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1404 
1405 #ifdef DIAGNOSTIC
1406 	if (vp->v_type != VDIR)
1407 		panic("nfs: invaldircache: not dir");
1408 #endif
1409 
1410 	if (!np->n_dircache)
1411 		return;
1412 
1413 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1414 		while ((ndp = np->n_dirchain.tqh_first)) {
1415 			TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1416 			LIST_REMOVE(ndp, dc_hash);
1417 			FREE(ndp, M_NFSDIROFF);
1418 		}
1419 		np->n_dircachesize = 0;
1420 		if (forcefree && np->n_dirgens) {
1421 			FREE(np->n_dirgens, M_NFSDIROFF);
1422 		}
1423 	} else {
1424 		for (ndp = np->n_dirchain.tqh_first; ndp;
1425 		    ndp = ndp->dc_chain.tqe_next)
1426 			ndp->dc_blkno = -1;
1427 	}
1428 
1429 	np->n_dblkno = 1;
1430 }
1431 
1432 /*
1433  * Called once before VFS init to initialize shared and
1434  * server-specific data structures.
1435  */
1436 void
1437 nfs_init()
1438 {
1439 	nfsrtt.pos = 0;
1440 	rpc_vers = txdr_unsigned(RPC_VER2);
1441 	rpc_call = txdr_unsigned(RPC_CALL);
1442 	rpc_reply = txdr_unsigned(RPC_REPLY);
1443 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1444 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1445 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1446 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1447 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1448 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1449 	nfs_prog = txdr_unsigned(NFS_PROG);
1450 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1451 	nfs_true = txdr_unsigned(TRUE);
1452 	nfs_false = txdr_unsigned(FALSE);
1453 	nfs_xdrneg1 = txdr_unsigned(-1);
1454 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1455 	if (nfs_ticks < 1)
1456 		nfs_ticks = 1;
1457 #ifdef NFSSERVER
1458 	nfsrv_init(0);			/* Init server data structures */
1459 	nfsrv_initcache();		/* Init the server request cache */
1460 #endif /* NFSSERVER */
1461 
1462 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1463 	/*
1464 	 * Initialize the nqnfs data structures.
1465 	 */
1466 	if (nqnfsstarttime == 0) {
1467 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1468 			+ nqsrv_clockskew + nqsrv_writeslack;
1469 		NQLOADNOVRAM(nqnfsstarttime);
1470 		CIRCLEQ_INIT(&nqtimerhead);
1471 		nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1472 		    M_WAITOK, &nqfhhash);
1473 	}
1474 #endif
1475 
1476 	/*
1477 	 * Initialize reply list and start timer
1478 	 */
1479 	TAILQ_INIT(&nfs_reqq);
1480 	nfs_timer(NULL);
1481 }
1482 
1483 #ifdef NFS
1484 /*
1485  * Called once at VFS init to initialize client-specific data structures.
1486  */
1487 void
1488 nfs_vfs_init()
1489 {
1490 	int i;
1491 
1492 	/* Ensure async daemons disabled */
1493 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1494 		nfs_iodwant[i] = (struct proc *)0;
1495 		nfs_iodmount[i] = (struct nfsmount *)0;
1496 	}
1497 	nfs_nhinit();			/* Init the nfsnode table */
1498 }
1499 
1500 void
1501 nfs_vfs_done()
1502 {
1503 	nfs_nhdone();
1504 }
1505 
1506 /*
1507  * Attribute cache routines.
1508  * nfs_loadattrcache() - loads or updates the cache contents from attributes
1509  *	that are on the mbuf list
1510  * nfs_getattrcache() - returns valid attributes if found in cache, returns
1511  *	error otherwise
1512  */
1513 
1514 /*
1515  * Load the attribute cache (that lives in the nfsnode entry) with
1516  * the values on the mbuf list and
1517  * Iff vap not NULL
1518  *    copy the attributes to *vaper
1519  */
1520 int
1521 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1522 	struct vnode **vpp;
1523 	struct mbuf **mdp;
1524 	caddr_t *dposp;
1525 	struct vattr *vaper;
1526 {
1527 	int32_t t1;
1528 	caddr_t cp2;
1529 	int error = 0;
1530 	struct mbuf *md;
1531 	int v3 = NFS_ISV3(*vpp);
1532 
1533 	md = *mdp;
1534 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1535 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1536 	if (error)
1537 		return (error);
1538 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1539 }
1540 
1541 int
1542 nfs_loadattrcache(vpp, fp, vaper)
1543 	struct vnode **vpp;
1544 	struct nfs_fattr *fp;
1545 	struct vattr *vaper;
1546 {
1547 	struct vnode *vp = *vpp;
1548 	struct vattr *vap;
1549 	int v3 = NFS_ISV3(vp);
1550 	enum vtype vtyp;
1551 	u_short vmode;
1552 	struct timespec mtime;
1553 	struct vnode *nvp;
1554 	int32_t rdev;
1555 	struct nfsnode *np;
1556 	extern int (**spec_nfsv2nodeop_p) __P((void *));
1557 
1558 	if (v3) {
1559 		vtyp = nfsv3tov_type(fp->fa_type);
1560 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1561 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1562 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1563 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1564 	} else {
1565 		vtyp = nfsv2tov_type(fp->fa_type);
1566 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1567 		if (vtyp == VNON || vtyp == VREG)
1568 			vtyp = IFTOVT(vmode);
1569 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1570 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1571 
1572 		/*
1573 		 * Really ugly NFSv2 kludge.
1574 		 */
1575 		if (vtyp == VCHR && rdev == 0xffffffff)
1576 			vtyp = VFIFO;
1577 	}
1578 
1579 	/*
1580 	 * If v_type == VNON it is a new node, so fill in the v_type,
1581 	 * n_mtime fields. Check to see if it represents a special
1582 	 * device, and if so, check for a possible alias. Once the
1583 	 * correct vnode has been obtained, fill in the rest of the
1584 	 * information.
1585 	 */
1586 	np = VTONFS(vp);
1587 	if (vp->v_type == VNON) {
1588 		vp->v_type = vtyp;
1589 		if (vp->v_type == VFIFO) {
1590 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
1591 			vp->v_op = fifo_nfsv2nodeop_p;
1592 		}
1593 		if (vp->v_type == VCHR || vp->v_type == VBLK) {
1594 			vp->v_op = spec_nfsv2nodeop_p;
1595 			nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1596 			if (nvp) {
1597 				/*
1598 				 * Discard unneeded vnode, but save its nfsnode.
1599 				 * Since the nfsnode does not have a lock, its
1600 				 * vnode lock has to be carried over.
1601 				 */
1602 				/*
1603 				 * XXX is the old node sure to be locked here?
1604 				 */
1605 				KASSERT(lockstatus(&vp->v_lock) ==
1606 				    LK_EXCLUSIVE);
1607 				nvp->v_data = vp->v_data;
1608 				vp->v_data = NULL;
1609 				VOP_UNLOCK(vp, 0);
1610 				vp->v_op = spec_vnodeop_p;
1611 				vrele(vp);
1612 				vgone(vp);
1613 				lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1614 				    &nvp->v_interlock);
1615 				/*
1616 				 * Reinitialize aliased node.
1617 				 */
1618 				np->n_vnode = nvp;
1619 				*vpp = vp = nvp;
1620 			}
1621 		}
1622 		np->n_mtime = mtime.tv_sec;
1623 	}
1624 	vap = np->n_vattr;
1625 	vap->va_type = vtyp;
1626 	vap->va_mode = vmode & ALLPERMS;
1627 	vap->va_rdev = (dev_t)rdev;
1628 	vap->va_mtime = mtime;
1629 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1630 	switch (vtyp) {
1631 	case VDIR:
1632 		vap->va_blocksize = NFS_DIRFRAGSIZ;
1633 		break;
1634 	case VBLK:
1635 		vap->va_blocksize = BLKDEV_IOSIZE;
1636 		break;
1637 	case VCHR:
1638 		vap->va_blocksize = MAXBSIZE;
1639 		break;
1640 	default:
1641 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1642 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
1643 		break;
1644 	}
1645 	if (v3) {
1646 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1647 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1648 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1649 		vap->va_size = fxdr_hyper(&fp->fa3_size);
1650 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1651 		vap->va_fileid = fxdr_unsigned(int32_t,
1652 		    fp->fa3_fileid.nfsuquad[1]);
1653 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1654 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1655 		vap->va_flags = 0;
1656 		vap->va_filerev = 0;
1657 	} else {
1658 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1659 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1660 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1661 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1662 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1663 		    * NFS_FABLKSIZE;
1664 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1665 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1666 		vap->va_flags = 0;
1667 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1668 		    fp->fa2_ctime.nfsv2_sec);
1669 		vap->va_ctime.tv_nsec = 0;
1670 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1671 		vap->va_filerev = 0;
1672 	}
1673 	if (vap->va_size != np->n_size) {
1674 		if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1675 			vap->va_size = np->n_size;
1676 		} else {
1677 			np->n_size = vap->va_size;
1678 			if (vap->va_type == VREG) {
1679 				uvm_vnp_setsize(vp, np->n_size);
1680 			}
1681 		}
1682 	}
1683 	np->n_attrstamp = time.tv_sec;
1684 	if (vaper != NULL) {
1685 		memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1686 		if (np->n_flag & NCHG) {
1687 			if (np->n_flag & NACC)
1688 				vaper->va_atime = np->n_atim;
1689 			if (np->n_flag & NUPD)
1690 				vaper->va_mtime = np->n_mtim;
1691 		}
1692 	}
1693 	return (0);
1694 }
1695 
1696 /*
1697  * Check the time stamp
1698  * If the cache is valid, copy contents to *vap and return 0
1699  * otherwise return an error
1700  */
1701 int
1702 nfs_getattrcache(vp, vaper)
1703 	struct vnode *vp;
1704 	struct vattr *vaper;
1705 {
1706 	struct nfsnode *np = VTONFS(vp);
1707 	struct vattr *vap;
1708 
1709 	if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1710 		nfsstats.attrcache_misses++;
1711 		return (ENOENT);
1712 	}
1713 	nfsstats.attrcache_hits++;
1714 	vap = np->n_vattr;
1715 	if (vap->va_size != np->n_size) {
1716 		if (vap->va_type == VREG) {
1717 			if (np->n_flag & NMODIFIED) {
1718 				if (vap->va_size < np->n_size)
1719 					vap->va_size = np->n_size;
1720 				else
1721 					np->n_size = vap->va_size;
1722 			} else
1723 				np->n_size = vap->va_size;
1724 			uvm_vnp_setsize(vp, np->n_size);
1725 		} else
1726 			np->n_size = vap->va_size;
1727 	}
1728 	memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1729 	if (np->n_flag & NCHG) {
1730 		if (np->n_flag & NACC)
1731 			vaper->va_atime = np->n_atim;
1732 		if (np->n_flag & NUPD)
1733 			vaper->va_mtime = np->n_mtim;
1734 	}
1735 	return (0);
1736 }
1737 
1738 /*
1739  * Heuristic to see if the server XDR encodes directory cookies or not.
1740  * it is not supposed to, but a lot of servers may do this. Also, since
1741  * most/all servers will implement V2 as well, it is expected that they
1742  * may return just 32 bits worth of cookie information, so we need to
1743  * find out in which 32 bits this information is available. We do this
1744  * to avoid trouble with emulated binaries that can't handle 64 bit
1745  * directory offsets.
1746  */
1747 
1748 void
1749 nfs_cookieheuristic(vp, flagp, p, cred)
1750 	struct vnode *vp;
1751 	int *flagp;
1752 	struct proc *p;
1753 	struct ucred *cred;
1754 {
1755 	struct uio auio;
1756 	struct iovec aiov;
1757 	caddr_t buf, cp;
1758 	struct dirent *dp;
1759 	off_t *cookies = NULL, *cop;
1760 	int error, eof, nc, len;
1761 
1762 	MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1763 
1764 	aiov.iov_base = buf;
1765 	aiov.iov_len = NFS_DIRFRAGSIZ;
1766 	auio.uio_iov = &aiov;
1767 	auio.uio_iovcnt = 1;
1768 	auio.uio_rw = UIO_READ;
1769 	auio.uio_segflg = UIO_SYSSPACE;
1770 	auio.uio_procp = p;
1771 	auio.uio_resid = NFS_DIRFRAGSIZ;
1772 	auio.uio_offset = 0;
1773 
1774 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1775 
1776 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
1777 	if (error || len == 0) {
1778 		FREE(buf, M_TEMP);
1779 		if (cookies)
1780 			free(cookies, M_TEMP);
1781 		return;
1782 	}
1783 
1784 	/*
1785 	 * Find the first valid entry and look at its offset cookie.
1786 	 */
1787 
1788 	cp = buf;
1789 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
1790 		dp = (struct dirent *)cp;
1791 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1792 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1793 				*flagp |= NFSMNT_SWAPCOOKIE;
1794 				nfs_invaldircache(vp, 0);
1795 				nfs_vinvalbuf(vp, 0, cred, p, 1);
1796 			}
1797 			break;
1798 		}
1799 		cop++;
1800 		cp += dp->d_reclen;
1801 	}
1802 
1803 	FREE(buf, M_TEMP);
1804 	free(cookies, M_TEMP);
1805 }
1806 #endif /* NFS */
1807 
1808 /*
1809  * Set up nameidata for a lookup() call and do it.
1810  *
1811  * If pubflag is set, this call is done for a lookup operation on the
1812  * public filehandle. In that case we allow crossing mountpoints and
1813  * absolute pathnames. However, the caller is expected to check that
1814  * the lookup result is within the public fs, and deny access if
1815  * it is not.
1816  */
1817 int
1818 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1819 	struct nameidata *ndp;
1820 	fhandle_t *fhp;
1821 	int len;
1822 	struct nfssvc_sock *slp;
1823 	struct mbuf *nam;
1824 	struct mbuf **mdp;
1825 	caddr_t *dposp;
1826 	struct vnode **retdirp;
1827 	struct proc *p;
1828 	int kerbflag, pubflag;
1829 {
1830 	int i, rem;
1831 	struct mbuf *md;
1832 	char *fromcp, *tocp, *cp;
1833 	struct iovec aiov;
1834 	struct uio auio;
1835 	struct vnode *dp;
1836 	int error, rdonly, linklen;
1837 	struct componentname *cnp = &ndp->ni_cnd;
1838 
1839 	*retdirp = (struct vnode *)0;
1840 
1841 	if ((len + 1) > MAXPATHLEN)
1842 		return (ENAMETOOLONG);
1843 	cnp->cn_pnbuf = PNBUF_GET();
1844 
1845 	/*
1846 	 * Copy the name from the mbuf list to ndp->ni_pnbuf
1847 	 * and set the various ndp fields appropriately.
1848 	 */
1849 	fromcp = *dposp;
1850 	tocp = cnp->cn_pnbuf;
1851 	md = *mdp;
1852 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
1853 	for (i = 0; i < len; i++) {
1854 		while (rem == 0) {
1855 			md = md->m_next;
1856 			if (md == NULL) {
1857 				error = EBADRPC;
1858 				goto out;
1859 			}
1860 			fromcp = mtod(md, caddr_t);
1861 			rem = md->m_len;
1862 		}
1863 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1864 			error = EACCES;
1865 			goto out;
1866 		}
1867 		*tocp++ = *fromcp++;
1868 		rem--;
1869 	}
1870 	*tocp = '\0';
1871 	*mdp = md;
1872 	*dposp = fromcp;
1873 	len = nfsm_rndup(len)-len;
1874 	if (len > 0) {
1875 		if (rem >= len)
1876 			*dposp += len;
1877 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1878 			goto out;
1879 	}
1880 
1881 	/*
1882 	 * Extract and set starting directory.
1883 	 */
1884 	error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1885 	    nam, &rdonly, kerbflag, pubflag);
1886 	if (error)
1887 		goto out;
1888 	if (dp->v_type != VDIR) {
1889 		vrele(dp);
1890 		error = ENOTDIR;
1891 		goto out;
1892 	}
1893 
1894 	if (rdonly)
1895 		cnp->cn_flags |= RDONLY;
1896 
1897 	*retdirp = dp;
1898 
1899 	if (pubflag) {
1900 		/*
1901 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1902 		 * and the 'native path' indicator.
1903 		 */
1904 		cp = PNBUF_GET();
1905 		fromcp = cnp->cn_pnbuf;
1906 		tocp = cp;
1907 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1908 			switch ((unsigned char)*fromcp) {
1909 			case WEBNFS_NATIVE_CHAR:
1910 				/*
1911 				 * 'Native' path for us is the same
1912 				 * as a path according to the NFS spec,
1913 				 * just skip the escape char.
1914 				 */
1915 				fromcp++;
1916 				break;
1917 			/*
1918 			 * More may be added in the future, range 0x80-0xff
1919 			 */
1920 			default:
1921 				error = EIO;
1922 				FREE(cp, M_NAMEI);
1923 				goto out;
1924 			}
1925 		}
1926 		/*
1927 		 * Translate the '%' escapes, URL-style.
1928 		 */
1929 		while (*fromcp != '\0') {
1930 			if (*fromcp == WEBNFS_ESC_CHAR) {
1931 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1932 					fromcp++;
1933 					*tocp++ = HEXSTRTOI(fromcp);
1934 					fromcp += 2;
1935 					continue;
1936 				} else {
1937 					error = ENOENT;
1938 					FREE(cp, M_NAMEI);
1939 					goto out;
1940 				}
1941 			} else
1942 				*tocp++ = *fromcp++;
1943 		}
1944 		*tocp = '\0';
1945 		PNBUF_PUT(cnp->cn_pnbuf);
1946 		cnp->cn_pnbuf = cp;
1947 	}
1948 
1949 	ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1950 	ndp->ni_segflg = UIO_SYSSPACE;
1951 
1952 	if (pubflag) {
1953 		ndp->ni_rootdir = rootvnode;
1954 		ndp->ni_loopcnt = 0;
1955 		if (cnp->cn_pnbuf[0] == '/')
1956 			dp = rootvnode;
1957 	} else {
1958 		cnp->cn_flags |= NOCROSSMOUNT;
1959 	}
1960 
1961 	cnp->cn_proc = p;
1962 	VREF(dp);
1963 
1964     for (;;) {
1965 	cnp->cn_nameptr = cnp->cn_pnbuf;
1966 	ndp->ni_startdir = dp;
1967 	/*
1968 	 * And call lookup() to do the real work
1969 	 */
1970 	error = lookup(ndp);
1971 	if (error) {
1972 		PNBUF_PUT(cnp->cn_pnbuf);
1973 		return (error);
1974 	}
1975 	/*
1976 	 * Check for encountering a symbolic link
1977 	 */
1978 	if ((cnp->cn_flags & ISSYMLINK) == 0) {
1979 		if (cnp->cn_flags & (SAVENAME | SAVESTART))
1980 			cnp->cn_flags |= HASBUF;
1981 		else
1982 			PNBUF_PUT(cnp->cn_pnbuf);
1983 		return (0);
1984 	} else {
1985 		if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
1986 			VOP_UNLOCK(ndp->ni_dvp, 0);
1987 		if (!pubflag) {
1988 			error = EINVAL;
1989 			break;
1990 		}
1991 
1992 		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1993 			error = ELOOP;
1994 			break;
1995 		}
1996 		if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
1997 			error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
1998 			    cnp->cn_proc);
1999 			if (error != 0)
2000 				break;
2001 		}
2002 		if (ndp->ni_pathlen > 1)
2003 			cp = PNBUF_GET();
2004 		else
2005 			cp = cnp->cn_pnbuf;
2006 		aiov.iov_base = cp;
2007 		aiov.iov_len = MAXPATHLEN;
2008 		auio.uio_iov = &aiov;
2009 		auio.uio_iovcnt = 1;
2010 		auio.uio_offset = 0;
2011 		auio.uio_rw = UIO_READ;
2012 		auio.uio_segflg = UIO_SYSSPACE;
2013 		auio.uio_procp = (struct proc *)0;
2014 		auio.uio_resid = MAXPATHLEN;
2015 		error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2016 		if (error) {
2017 		badlink:
2018 			if (ndp->ni_pathlen > 1)
2019 				PNBUF_PUT(cp);
2020 			break;
2021 		}
2022 		linklen = MAXPATHLEN - auio.uio_resid;
2023 		if (linklen == 0) {
2024 			error = ENOENT;
2025 			goto badlink;
2026 		}
2027 		if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2028 			error = ENAMETOOLONG;
2029 			goto badlink;
2030 		}
2031 		if (ndp->ni_pathlen > 1) {
2032 			memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2033 			PNBUF_PUT(cnp->cn_pnbuf);
2034 			cnp->cn_pnbuf = cp;
2035 		} else
2036 			cnp->cn_pnbuf[linklen] = '\0';
2037 		ndp->ni_pathlen += linklen;
2038 		vput(ndp->ni_vp);
2039 		dp = ndp->ni_dvp;
2040 		/*
2041 		 * Check if root directory should replace current directory.
2042 		 */
2043 		if (cnp->cn_pnbuf[0] == '/') {
2044 			vrele(dp);
2045 			dp = ndp->ni_rootdir;
2046 			VREF(dp);
2047 		}
2048 	}
2049    }
2050 	vrele(ndp->ni_dvp);
2051 	vput(ndp->ni_vp);
2052 	ndp->ni_vp = NULL;
2053 out:
2054 	PNBUF_PUT(cnp->cn_pnbuf);
2055 	return (error);
2056 }
2057 
2058 /*
2059  * A fiddled version of m_adj() that ensures null fill to a long
2060  * boundary and only trims off the back end
2061  */
2062 void
2063 nfsm_adj(mp, len, nul)
2064 	struct mbuf *mp;
2065 	int len;
2066 	int nul;
2067 {
2068 	struct mbuf *m;
2069 	int count, i;
2070 	char *cp;
2071 
2072 	/*
2073 	 * Trim from tail.  Scan the mbuf chain,
2074 	 * calculating its length and finding the last mbuf.
2075 	 * If the adjustment only affects this mbuf, then just
2076 	 * adjust and return.  Otherwise, rescan and truncate
2077 	 * after the remaining size.
2078 	 */
2079 	count = 0;
2080 	m = mp;
2081 	for (;;) {
2082 		count += m->m_len;
2083 		if (m->m_next == (struct mbuf *)0)
2084 			break;
2085 		m = m->m_next;
2086 	}
2087 	if (m->m_len > len) {
2088 		m->m_len -= len;
2089 		if (nul > 0) {
2090 			cp = mtod(m, caddr_t)+m->m_len-nul;
2091 			for (i = 0; i < nul; i++)
2092 				*cp++ = '\0';
2093 		}
2094 		return;
2095 	}
2096 	count -= len;
2097 	if (count < 0)
2098 		count = 0;
2099 	/*
2100 	 * Correct length for chain is "count".
2101 	 * Find the mbuf with last data, adjust its length,
2102 	 * and toss data from remaining mbufs on chain.
2103 	 */
2104 	for (m = mp; m; m = m->m_next) {
2105 		if (m->m_len >= count) {
2106 			m->m_len = count;
2107 			if (nul > 0) {
2108 				cp = mtod(m, caddr_t)+m->m_len-nul;
2109 				for (i = 0; i < nul; i++)
2110 					*cp++ = '\0';
2111 			}
2112 			break;
2113 		}
2114 		count -= m->m_len;
2115 	}
2116 	for (m = m->m_next;m;m = m->m_next)
2117 		m->m_len = 0;
2118 }
2119 
2120 /*
2121  * Make these functions instead of macros, so that the kernel text size
2122  * doesn't get too big...
2123  */
2124 void
2125 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2126 	struct nfsrv_descript *nfsd;
2127 	int before_ret;
2128 	struct vattr *before_vap;
2129 	int after_ret;
2130 	struct vattr *after_vap;
2131 	struct mbuf **mbp;
2132 	char **bposp;
2133 {
2134 	struct mbuf *mb = *mbp, *mb2;
2135 	char *bpos = *bposp;
2136 	u_int32_t *tl;
2137 
2138 	if (before_ret) {
2139 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2140 		*tl = nfs_false;
2141 	} else {
2142 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2143 		*tl++ = nfs_true;
2144 		txdr_hyper(before_vap->va_size, tl);
2145 		tl += 2;
2146 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
2147 		tl += 2;
2148 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
2149 	}
2150 	*bposp = bpos;
2151 	*mbp = mb;
2152 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2153 }
2154 
2155 void
2156 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2157 	struct nfsrv_descript *nfsd;
2158 	int after_ret;
2159 	struct vattr *after_vap;
2160 	struct mbuf **mbp;
2161 	char **bposp;
2162 {
2163 	struct mbuf *mb = *mbp, *mb2;
2164 	char *bpos = *bposp;
2165 	u_int32_t *tl;
2166 	struct nfs_fattr *fp;
2167 
2168 	if (after_ret) {
2169 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2170 		*tl = nfs_false;
2171 	} else {
2172 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2173 		*tl++ = nfs_true;
2174 		fp = (struct nfs_fattr *)tl;
2175 		nfsm_srvfattr(nfsd, after_vap, fp);
2176 	}
2177 	*mbp = mb;
2178 	*bposp = bpos;
2179 }
2180 
2181 void
2182 nfsm_srvfattr(nfsd, vap, fp)
2183 	struct nfsrv_descript *nfsd;
2184 	struct vattr *vap;
2185 	struct nfs_fattr *fp;
2186 {
2187 
2188 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2189 	fp->fa_uid = txdr_unsigned(vap->va_uid);
2190 	fp->fa_gid = txdr_unsigned(vap->va_gid);
2191 	if (nfsd->nd_flag & ND_NFSV3) {
2192 		fp->fa_type = vtonfsv3_type(vap->va_type);
2193 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2194 		txdr_hyper(vap->va_size, &fp->fa3_size);
2195 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
2196 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2197 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2198 		fp->fa3_fsid.nfsuquad[0] = 0;
2199 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2200 		fp->fa3_fileid.nfsuquad[0] = 0;
2201 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2202 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2203 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2204 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2205 	} else {
2206 		fp->fa_type = vtonfsv2_type(vap->va_type);
2207 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2208 		fp->fa2_size = txdr_unsigned(vap->va_size);
2209 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2210 		if (vap->va_type == VFIFO)
2211 			fp->fa2_rdev = 0xffffffff;
2212 		else
2213 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2214 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2215 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2216 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2217 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2218 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2219 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2220 	}
2221 }
2222 
2223 /*
2224  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2225  * 	- look up fsid in mount list (if not found ret error)
2226  *	- get vp and export rights by calling VFS_FHTOVP()
2227  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2228  *	- if not lockflag unlock it with VOP_UNLOCK()
2229  */
2230 int
2231 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2232 	fhandle_t *fhp;
2233 	int lockflag;
2234 	struct vnode **vpp;
2235 	struct ucred *cred;
2236 	struct nfssvc_sock *slp;
2237 	struct mbuf *nam;
2238 	int *rdonlyp;
2239 	int kerbflag;
2240 {
2241 	struct mount *mp;
2242 	int i;
2243 	struct ucred *credanon;
2244 	int error, exflags;
2245 	struct sockaddr_in *saddr;
2246 
2247 	*vpp = (struct vnode *)0;
2248 
2249 	if (nfs_ispublicfh(fhp)) {
2250 		if (!pubflag || !nfs_pub.np_valid)
2251 			return (ESTALE);
2252 		fhp = &nfs_pub.np_handle;
2253 	}
2254 
2255 	mp = vfs_getvfs(&fhp->fh_fsid);
2256 	if (!mp)
2257 		return (ESTALE);
2258 	error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2259 	if (error)
2260 		return (error);
2261 	error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2262 	if (error)
2263 		return (error);
2264 
2265 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2266 		saddr = mtod(nam, struct sockaddr_in *);
2267 		if ((saddr->sin_family == AF_INET) &&
2268 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2269 			vput(*vpp);
2270 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2271 		}
2272 #ifdef INET6
2273 		if ((saddr->sin_family == AF_INET6) &&
2274 		    ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2275 			vput(*vpp);
2276 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2277 		}
2278 #endif
2279 	}
2280 	/*
2281 	 * Check/setup credentials.
2282 	 */
2283 	if (exflags & MNT_EXKERB) {
2284 		if (!kerbflag) {
2285 			vput(*vpp);
2286 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2287 		}
2288 	} else if (kerbflag) {
2289 		vput(*vpp);
2290 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2291 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2292 		cred->cr_uid = credanon->cr_uid;
2293 		cred->cr_gid = credanon->cr_gid;
2294 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2295 			cred->cr_groups[i] = credanon->cr_groups[i];
2296 		cred->cr_ngroups = i;
2297 	}
2298 	if (exflags & MNT_EXRDONLY)
2299 		*rdonlyp = 1;
2300 	else
2301 		*rdonlyp = 0;
2302 	if (!lockflag)
2303 		VOP_UNLOCK(*vpp, 0);
2304 	return (0);
2305 }
2306 
2307 /*
2308  * WebNFS: check if a filehandle is a public filehandle. For v3, this
2309  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2310  * transformed this to all zeroes in both cases, so check for it.
2311  */
2312 int
2313 nfs_ispublicfh(fhp)
2314 	fhandle_t *fhp;
2315 {
2316 	char *cp = (char *)fhp;
2317 	int i;
2318 
2319 	for (i = 0; i < NFSX_V3FH; i++)
2320 		if (*cp++ != 0)
2321 			return (FALSE);
2322 	return (TRUE);
2323 }
2324 
2325 /*
2326  * This function compares two net addresses by family and returns TRUE
2327  * if they are the same host.
2328  * If there is any doubt, return FALSE.
2329  * The AF_INET family is handled as a special case so that address mbufs
2330  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2331  */
2332 int
2333 netaddr_match(family, haddr, nam)
2334 	int family;
2335 	union nethostaddr *haddr;
2336 	struct mbuf *nam;
2337 {
2338 	struct sockaddr_in *inetaddr;
2339 
2340 	switch (family) {
2341 	case AF_INET:
2342 		inetaddr = mtod(nam, struct sockaddr_in *);
2343 		if (inetaddr->sin_family == AF_INET &&
2344 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2345 			return (1);
2346 		break;
2347 #ifdef INET6
2348 	case AF_INET6:
2349 	    {
2350 		struct sockaddr_in6 *sin6_1, *sin6_2;
2351 
2352 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
2353 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2354 		if (sin6_1->sin6_family == AF_INET6 &&
2355 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2356 			return 1;
2357 	    }
2358 #endif
2359 #ifdef ISO
2360 	case AF_ISO:
2361 	    {
2362 		struct sockaddr_iso *isoaddr1, *isoaddr2;
2363 
2364 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
2365 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2366 		if (isoaddr1->siso_family == AF_ISO &&
2367 		    isoaddr1->siso_nlen > 0 &&
2368 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2369 		    SAME_ISOADDR(isoaddr1, isoaddr2))
2370 			return (1);
2371 		break;
2372 	    }
2373 #endif	/* ISO */
2374 	default:
2375 		break;
2376 	};
2377 	return (0);
2378 }
2379 
2380 /*
2381  * The write verifier has changed (probably due to a server reboot), so all
2382  * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2383  * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2384  * flag. Once done the new write verifier can be set for the mount point.
2385  */
2386 void
2387 nfs_clearcommit(mp)
2388 	struct mount *mp;
2389 {
2390 	struct vnode *vp;
2391 	struct nfsnode *np;
2392 	struct vm_page *pg;
2393 	int s;
2394 
2395 	s = splbio();
2396 	LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2397 		KASSERT(vp->v_mount == mp);
2398 		if (vp->v_type == VNON)
2399 			continue;
2400 		np = VTONFS(vp);
2401 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2402 		    np->n_pushedhi = 0;
2403 		np->n_commitflags &=
2404 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2405 		simple_lock(&vp->v_uvm.u_obj.vmobjlock);
2406 		TAILQ_FOREACH(pg, &vp->v_uvm.u_obj.memq, listq) {
2407 			pg->flags &= ~PG_NEEDCOMMIT;
2408 		}
2409 		simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
2410 	}
2411 	splx(s);
2412 }
2413 
2414 void
2415 nfs_merge_commit_ranges(vp)
2416 	struct vnode *vp;
2417 {
2418 	struct nfsnode *np = VTONFS(vp);
2419 
2420 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2421 		np->n_pushedlo = np->n_pushlo;
2422 		np->n_pushedhi = np->n_pushhi;
2423 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2424 	} else {
2425 		if (np->n_pushlo < np->n_pushedlo)
2426 			np->n_pushedlo = np->n_pushlo;
2427 		if (np->n_pushhi > np->n_pushedhi)
2428 			np->n_pushedhi = np->n_pushhi;
2429 	}
2430 
2431 	np->n_pushlo = np->n_pushhi = 0;
2432 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2433 
2434 #ifdef fvdl_debug
2435 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2436 	    (unsigned)np->n_pushedhi);
2437 #endif
2438 }
2439 
2440 int
2441 nfs_in_committed_range(vp, off, len)
2442 	struct vnode *vp;
2443 	off_t off, len;
2444 {
2445 	struct nfsnode *np = VTONFS(vp);
2446 	off_t lo, hi;
2447 
2448 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2449 		return 0;
2450 	lo = off;
2451 	hi = lo + len;
2452 
2453 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2454 }
2455 
2456 int
2457 nfs_in_tobecommitted_range(vp, off, len)
2458 	struct vnode *vp;
2459 	off_t off, len;
2460 {
2461 	struct nfsnode *np = VTONFS(vp);
2462 	off_t lo, hi;
2463 
2464 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2465 		return 0;
2466 	lo = off;
2467 	hi = lo + len;
2468 
2469 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2470 }
2471 
2472 void
2473 nfs_add_committed_range(vp, off, len)
2474 	struct vnode *vp;
2475 	off_t off, len;
2476 {
2477 	struct nfsnode *np = VTONFS(vp);
2478 	off_t lo, hi;
2479 
2480 	lo = off;
2481 	hi = lo + len;
2482 
2483 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2484 		np->n_pushedlo = lo;
2485 		np->n_pushedhi = hi;
2486 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2487 	} else {
2488 		if (hi > np->n_pushedhi)
2489 			np->n_pushedhi = hi;
2490 		if (lo < np->n_pushedlo)
2491 			np->n_pushedlo = lo;
2492 	}
2493 #ifdef fvdl_debug
2494 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2495 	    (unsigned)np->n_pushedhi);
2496 #endif
2497 }
2498 
2499 void
2500 nfs_del_committed_range(vp, off, len)
2501 	struct vnode *vp;
2502 	off_t off, len;
2503 {
2504 	struct nfsnode *np = VTONFS(vp);
2505 	off_t lo, hi;
2506 
2507 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2508 		return;
2509 
2510 	lo = off;
2511 	hi = lo + len;
2512 
2513 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2514 		return;
2515 	if (lo <= np->n_pushedlo)
2516 		np->n_pushedlo = hi;
2517 	else if (hi >= np->n_pushedhi)
2518 		np->n_pushedhi = lo;
2519 	else {
2520 		/*
2521 		 * XXX There's only one range. If the deleted range
2522 		 * is in the middle, pick the largest of the
2523 		 * contiguous ranges that it leaves.
2524 		 */
2525 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2526 			np->n_pushedhi = lo;
2527 		else
2528 			np->n_pushedlo = hi;
2529 	}
2530 #ifdef fvdl_debug
2531 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2532 	    (unsigned)np->n_pushedhi);
2533 #endif
2534 }
2535 
2536 void
2537 nfs_add_tobecommitted_range(vp, off, len)
2538 	struct vnode *vp;
2539 	off_t off, len;
2540 {
2541 	struct nfsnode *np = VTONFS(vp);
2542 	off_t lo, hi;
2543 
2544 	lo = off;
2545 	hi = lo + len;
2546 
2547 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2548 		np->n_pushlo = lo;
2549 		np->n_pushhi = hi;
2550 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2551 	} else {
2552 		if (lo < np->n_pushlo)
2553 			np->n_pushlo = lo;
2554 		if (hi > np->n_pushhi)
2555 			np->n_pushhi = hi;
2556 	}
2557 #ifdef fvdl_debug
2558 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2559 	    (unsigned)np->n_pushhi);
2560 #endif
2561 }
2562 
2563 void
2564 nfs_del_tobecommitted_range(vp, off, len)
2565 	struct vnode *vp;
2566 	off_t off, len;
2567 {
2568 	struct nfsnode *np = VTONFS(vp);
2569 	off_t lo, hi;
2570 
2571 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2572 		return;
2573 
2574 	lo = off;
2575 	hi = lo + len;
2576 
2577 	if (lo > np->n_pushhi || hi < np->n_pushlo)
2578 		return;
2579 
2580 	if (lo <= np->n_pushlo)
2581 		np->n_pushlo = hi;
2582 	else if (hi >= np->n_pushhi)
2583 		np->n_pushhi = lo;
2584 	else {
2585 		/*
2586 		 * XXX There's only one range. If the deleted range
2587 		 * is in the middle, pick the largest of the
2588 		 * contiguous ranges that it leaves.
2589 		 */
2590 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2591 			np->n_pushhi = lo;
2592 		else
2593 			np->n_pushlo = hi;
2594 	}
2595 #ifdef fvdl_debug
2596 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2597 	    (unsigned)np->n_pushhi);
2598 #endif
2599 }
2600 
2601 /*
2602  * Map errnos to NFS error numbers. For Version 3 also filter out error
2603  * numbers not specified for the associated procedure.
2604  */
2605 int
2606 nfsrv_errmap(nd, err)
2607 	struct nfsrv_descript *nd;
2608 	int err;
2609 {
2610 	const short *defaulterrp, *errp;
2611 
2612 	if (nd->nd_flag & ND_NFSV3) {
2613 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
2614 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2615 		while (*++errp) {
2616 			if (*errp == err)
2617 				return (err);
2618 			else if (*errp > err)
2619 				break;
2620 		}
2621 		return ((int)*defaulterrp);
2622 	    } else
2623 		return (err & 0xffff);
2624 	}
2625 	if (err <= ELAST)
2626 		return ((int)nfsrv_v2errmap[err - 1]);
2627 	return (NFSERR_IO);
2628 }
2629 
2630 /*
2631  * Sort the group list in increasing numerical order.
2632  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2633  *  that used to be here.)
2634  */
2635 void
2636 nfsrvw_sort(list, num)
2637         gid_t *list;
2638         int num;
2639 {
2640 	int i, j;
2641 	gid_t v;
2642 
2643 	/* Insertion sort. */
2644 	for (i = 1; i < num; i++) {
2645 		v = list[i];
2646 		/* find correct slot for value v, moving others up */
2647 		for (j = i; --j >= 0 && v < list[j];)
2648 			list[j + 1] = list[j];
2649 		list[j + 1] = v;
2650 	}
2651 }
2652 
2653 /*
2654  * copy credentials making sure that the result can be compared with memcmp().
2655  */
2656 void
2657 nfsrv_setcred(incred, outcred)
2658 	struct ucred *incred, *outcred;
2659 {
2660 	int i;
2661 
2662 	memset((caddr_t)outcred, 0, sizeof (struct ucred));
2663 	outcred->cr_ref = 1;
2664 	outcred->cr_uid = incred->cr_uid;
2665 	outcred->cr_gid = incred->cr_gid;
2666 	outcred->cr_ngroups = incred->cr_ngroups;
2667 	for (i = 0; i < incred->cr_ngroups; i++)
2668 		outcred->cr_groups[i] = incred->cr_groups[i];
2669 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2670 }
2671