1 /* $NetBSD: nfs_subs.c,v 1.122 2003/06/09 13:10:31 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 39 */ 40 41 /* 42 * Copyright 2000 Wasabi Systems, Inc. 43 * All rights reserved. 44 * 45 * Written by Frank van der Linden for Wasabi Systems, Inc. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed for the NetBSD Project by 58 * Wasabi Systems, Inc. 59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 60 * or promote products derived from this software without specific prior 61 * written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 73 * POSSIBILITY OF SUCH DAMAGE. 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.122 2003/06/09 13:10:31 yamt Exp $"); 78 79 #include "fs_nfs.h" 80 #include "opt_nfs.h" 81 #include "opt_nfsserver.h" 82 #include "opt_iso.h" 83 #include "opt_inet.h" 84 85 /* 86 * These functions support the macros and help fiddle mbuf chains for 87 * the nfs op functions. They do things like create the rpc header and 88 * copy data between mbuf chains and uio lists. 89 */ 90 #include <sys/param.h> 91 #include <sys/proc.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/mount.h> 95 #include <sys/vnode.h> 96 #include <sys/namei.h> 97 #include <sys/mbuf.h> 98 #include <sys/socket.h> 99 #include <sys/stat.h> 100 #include <sys/malloc.h> 101 #include <sys/filedesc.h> 102 #include <sys/time.h> 103 #include <sys/dirent.h> 104 105 #include <uvm/uvm_extern.h> 106 107 #include <nfs/rpcv2.h> 108 #include <nfs/nfsproto.h> 109 #include <nfs/nfsnode.h> 110 #include <nfs/nfs.h> 111 #include <nfs/xdr_subs.h> 112 #include <nfs/nfsm_subs.h> 113 #include <nfs/nfsmount.h> 114 #include <nfs/nqnfs.h> 115 #include <nfs/nfsrtt.h> 116 #include <nfs/nfs_var.h> 117 118 #include <miscfs/specfs/specdev.h> 119 120 #include <netinet/in.h> 121 #ifdef ISO 122 #include <netiso/iso.h> 123 #endif 124 125 /* 126 * Data items converted to xdr at startup, since they are constant 127 * This is kinda hokey, but may save a little time doing byte swaps 128 */ 129 u_int32_t nfs_xdrneg1; 130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 132 rpc_auth_kerb; 133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false; 134 135 /* And other global data */ 136 static u_int32_t nfs_xid = 0; 137 const nfstype nfsv2_type[9] = 138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 139 const nfstype nfsv3_type[9] = 140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 141 const enum vtype nv2tov_type[8] = 142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 143 const enum vtype nv3tov_type[8] = 144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 145 int nfs_ticks; 146 int nfs_commitsize; 147 148 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies"); 149 150 /* NFS client/server stats. */ 151 struct nfsstats nfsstats; 152 153 /* 154 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 155 */ 156 const int nfsv3_procid[NFS_NPROCS] = { 157 NFSPROC_NULL, 158 NFSPROC_GETATTR, 159 NFSPROC_SETATTR, 160 NFSPROC_NOOP, 161 NFSPROC_LOOKUP, 162 NFSPROC_READLINK, 163 NFSPROC_READ, 164 NFSPROC_NOOP, 165 NFSPROC_WRITE, 166 NFSPROC_CREATE, 167 NFSPROC_REMOVE, 168 NFSPROC_RENAME, 169 NFSPROC_LINK, 170 NFSPROC_SYMLINK, 171 NFSPROC_MKDIR, 172 NFSPROC_RMDIR, 173 NFSPROC_READDIR, 174 NFSPROC_FSSTAT, 175 NFSPROC_NOOP, 176 NFSPROC_NOOP, 177 NFSPROC_NOOP, 178 NFSPROC_NOOP, 179 NFSPROC_NOOP, 180 NFSPROC_NOOP, 181 NFSPROC_NOOP, 182 NFSPROC_NOOP 183 }; 184 185 /* 186 * and the reverse mapping from generic to Version 2 procedure numbers 187 */ 188 const int nfsv2_procid[NFS_NPROCS] = { 189 NFSV2PROC_NULL, 190 NFSV2PROC_GETATTR, 191 NFSV2PROC_SETATTR, 192 NFSV2PROC_LOOKUP, 193 NFSV2PROC_NOOP, 194 NFSV2PROC_READLINK, 195 NFSV2PROC_READ, 196 NFSV2PROC_WRITE, 197 NFSV2PROC_CREATE, 198 NFSV2PROC_MKDIR, 199 NFSV2PROC_SYMLINK, 200 NFSV2PROC_CREATE, 201 NFSV2PROC_REMOVE, 202 NFSV2PROC_RMDIR, 203 NFSV2PROC_RENAME, 204 NFSV2PROC_LINK, 205 NFSV2PROC_READDIR, 206 NFSV2PROC_NOOP, 207 NFSV2PROC_STATFS, 208 NFSV2PROC_NOOP, 209 NFSV2PROC_NOOP, 210 NFSV2PROC_NOOP, 211 NFSV2PROC_NOOP, 212 NFSV2PROC_NOOP, 213 NFSV2PROC_NOOP, 214 NFSV2PROC_NOOP, 215 }; 216 217 /* 218 * Maps errno values to nfs error numbers. 219 * Use NFSERR_IO as the catch all for ones not specifically defined in 220 * RFC 1094. 221 */ 222 static const u_char nfsrv_v2errmap[ELAST] = { 223 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 224 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 225 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 226 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 227 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 228 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 235 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 236 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 237 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 238 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 239 NFSERR_IO, NFSERR_IO, 240 }; 241 242 /* 243 * Maps errno values to nfs error numbers. 244 * Although it is not obvious whether or not NFS clients really care if 245 * a returned error value is in the specified list for the procedure, the 246 * safest thing to do is filter them appropriately. For Version 2, the 247 * X/Open XNFS document is the only specification that defines error values 248 * for each RPC (The RFC simply lists all possible error values for all RPCs), 249 * so I have decided to not do this for Version 2. 250 * The first entry is the default error return and the rest are the valid 251 * errors for that RPC in increasing numeric order. 252 */ 253 static const short nfsv3err_null[] = { 254 0, 255 0, 256 }; 257 258 static const short nfsv3err_getattr[] = { 259 NFSERR_IO, 260 NFSERR_IO, 261 NFSERR_STALE, 262 NFSERR_BADHANDLE, 263 NFSERR_SERVERFAULT, 264 0, 265 }; 266 267 static const short nfsv3err_setattr[] = { 268 NFSERR_IO, 269 NFSERR_PERM, 270 NFSERR_IO, 271 NFSERR_ACCES, 272 NFSERR_INVAL, 273 NFSERR_NOSPC, 274 NFSERR_ROFS, 275 NFSERR_DQUOT, 276 NFSERR_STALE, 277 NFSERR_BADHANDLE, 278 NFSERR_NOT_SYNC, 279 NFSERR_SERVERFAULT, 280 0, 281 }; 282 283 static const short nfsv3err_lookup[] = { 284 NFSERR_IO, 285 NFSERR_NOENT, 286 NFSERR_IO, 287 NFSERR_ACCES, 288 NFSERR_NOTDIR, 289 NFSERR_NAMETOL, 290 NFSERR_STALE, 291 NFSERR_BADHANDLE, 292 NFSERR_SERVERFAULT, 293 0, 294 }; 295 296 static const short nfsv3err_access[] = { 297 NFSERR_IO, 298 NFSERR_IO, 299 NFSERR_STALE, 300 NFSERR_BADHANDLE, 301 NFSERR_SERVERFAULT, 302 0, 303 }; 304 305 static const short nfsv3err_readlink[] = { 306 NFSERR_IO, 307 NFSERR_IO, 308 NFSERR_ACCES, 309 NFSERR_INVAL, 310 NFSERR_STALE, 311 NFSERR_BADHANDLE, 312 NFSERR_NOTSUPP, 313 NFSERR_SERVERFAULT, 314 0, 315 }; 316 317 static const short nfsv3err_read[] = { 318 NFSERR_IO, 319 NFSERR_IO, 320 NFSERR_NXIO, 321 NFSERR_ACCES, 322 NFSERR_INVAL, 323 NFSERR_STALE, 324 NFSERR_BADHANDLE, 325 NFSERR_SERVERFAULT, 326 NFSERR_JUKEBOX, 327 0, 328 }; 329 330 static const short nfsv3err_write[] = { 331 NFSERR_IO, 332 NFSERR_IO, 333 NFSERR_ACCES, 334 NFSERR_INVAL, 335 NFSERR_FBIG, 336 NFSERR_NOSPC, 337 NFSERR_ROFS, 338 NFSERR_DQUOT, 339 NFSERR_STALE, 340 NFSERR_BADHANDLE, 341 NFSERR_SERVERFAULT, 342 NFSERR_JUKEBOX, 343 0, 344 }; 345 346 static const short nfsv3err_create[] = { 347 NFSERR_IO, 348 NFSERR_IO, 349 NFSERR_ACCES, 350 NFSERR_EXIST, 351 NFSERR_NOTDIR, 352 NFSERR_NOSPC, 353 NFSERR_ROFS, 354 NFSERR_NAMETOL, 355 NFSERR_DQUOT, 356 NFSERR_STALE, 357 NFSERR_BADHANDLE, 358 NFSERR_NOTSUPP, 359 NFSERR_SERVERFAULT, 360 0, 361 }; 362 363 static const short nfsv3err_mkdir[] = { 364 NFSERR_IO, 365 NFSERR_IO, 366 NFSERR_ACCES, 367 NFSERR_EXIST, 368 NFSERR_NOTDIR, 369 NFSERR_NOSPC, 370 NFSERR_ROFS, 371 NFSERR_NAMETOL, 372 NFSERR_DQUOT, 373 NFSERR_STALE, 374 NFSERR_BADHANDLE, 375 NFSERR_NOTSUPP, 376 NFSERR_SERVERFAULT, 377 0, 378 }; 379 380 static const short nfsv3err_symlink[] = { 381 NFSERR_IO, 382 NFSERR_IO, 383 NFSERR_ACCES, 384 NFSERR_EXIST, 385 NFSERR_NOTDIR, 386 NFSERR_NOSPC, 387 NFSERR_ROFS, 388 NFSERR_NAMETOL, 389 NFSERR_DQUOT, 390 NFSERR_STALE, 391 NFSERR_BADHANDLE, 392 NFSERR_NOTSUPP, 393 NFSERR_SERVERFAULT, 394 0, 395 }; 396 397 static const short nfsv3err_mknod[] = { 398 NFSERR_IO, 399 NFSERR_IO, 400 NFSERR_ACCES, 401 NFSERR_EXIST, 402 NFSERR_NOTDIR, 403 NFSERR_NOSPC, 404 NFSERR_ROFS, 405 NFSERR_NAMETOL, 406 NFSERR_DQUOT, 407 NFSERR_STALE, 408 NFSERR_BADHANDLE, 409 NFSERR_NOTSUPP, 410 NFSERR_SERVERFAULT, 411 NFSERR_BADTYPE, 412 0, 413 }; 414 415 static const short nfsv3err_remove[] = { 416 NFSERR_IO, 417 NFSERR_NOENT, 418 NFSERR_IO, 419 NFSERR_ACCES, 420 NFSERR_NOTDIR, 421 NFSERR_ROFS, 422 NFSERR_NAMETOL, 423 NFSERR_STALE, 424 NFSERR_BADHANDLE, 425 NFSERR_SERVERFAULT, 426 0, 427 }; 428 429 static const short nfsv3err_rmdir[] = { 430 NFSERR_IO, 431 NFSERR_NOENT, 432 NFSERR_IO, 433 NFSERR_ACCES, 434 NFSERR_EXIST, 435 NFSERR_NOTDIR, 436 NFSERR_INVAL, 437 NFSERR_ROFS, 438 NFSERR_NAMETOL, 439 NFSERR_NOTEMPTY, 440 NFSERR_STALE, 441 NFSERR_BADHANDLE, 442 NFSERR_NOTSUPP, 443 NFSERR_SERVERFAULT, 444 0, 445 }; 446 447 static const short nfsv3err_rename[] = { 448 NFSERR_IO, 449 NFSERR_NOENT, 450 NFSERR_IO, 451 NFSERR_ACCES, 452 NFSERR_EXIST, 453 NFSERR_XDEV, 454 NFSERR_NOTDIR, 455 NFSERR_ISDIR, 456 NFSERR_INVAL, 457 NFSERR_NOSPC, 458 NFSERR_ROFS, 459 NFSERR_MLINK, 460 NFSERR_NAMETOL, 461 NFSERR_NOTEMPTY, 462 NFSERR_DQUOT, 463 NFSERR_STALE, 464 NFSERR_BADHANDLE, 465 NFSERR_NOTSUPP, 466 NFSERR_SERVERFAULT, 467 0, 468 }; 469 470 static const short nfsv3err_link[] = { 471 NFSERR_IO, 472 NFSERR_IO, 473 NFSERR_ACCES, 474 NFSERR_EXIST, 475 NFSERR_XDEV, 476 NFSERR_NOTDIR, 477 NFSERR_INVAL, 478 NFSERR_NOSPC, 479 NFSERR_ROFS, 480 NFSERR_MLINK, 481 NFSERR_NAMETOL, 482 NFSERR_DQUOT, 483 NFSERR_STALE, 484 NFSERR_BADHANDLE, 485 NFSERR_NOTSUPP, 486 NFSERR_SERVERFAULT, 487 0, 488 }; 489 490 static const short nfsv3err_readdir[] = { 491 NFSERR_IO, 492 NFSERR_IO, 493 NFSERR_ACCES, 494 NFSERR_NOTDIR, 495 NFSERR_STALE, 496 NFSERR_BADHANDLE, 497 NFSERR_BAD_COOKIE, 498 NFSERR_TOOSMALL, 499 NFSERR_SERVERFAULT, 500 0, 501 }; 502 503 static const short nfsv3err_readdirplus[] = { 504 NFSERR_IO, 505 NFSERR_IO, 506 NFSERR_ACCES, 507 NFSERR_NOTDIR, 508 NFSERR_STALE, 509 NFSERR_BADHANDLE, 510 NFSERR_BAD_COOKIE, 511 NFSERR_NOTSUPP, 512 NFSERR_TOOSMALL, 513 NFSERR_SERVERFAULT, 514 0, 515 }; 516 517 static const short nfsv3err_fsstat[] = { 518 NFSERR_IO, 519 NFSERR_IO, 520 NFSERR_STALE, 521 NFSERR_BADHANDLE, 522 NFSERR_SERVERFAULT, 523 0, 524 }; 525 526 static const short nfsv3err_fsinfo[] = { 527 NFSERR_STALE, 528 NFSERR_STALE, 529 NFSERR_BADHANDLE, 530 NFSERR_SERVERFAULT, 531 0, 532 }; 533 534 static const short nfsv3err_pathconf[] = { 535 NFSERR_STALE, 536 NFSERR_STALE, 537 NFSERR_BADHANDLE, 538 NFSERR_SERVERFAULT, 539 0, 540 }; 541 542 static const short nfsv3err_commit[] = { 543 NFSERR_IO, 544 NFSERR_IO, 545 NFSERR_STALE, 546 NFSERR_BADHANDLE, 547 NFSERR_SERVERFAULT, 548 0, 549 }; 550 551 static const short * const nfsrv_v3errmap[] = { 552 nfsv3err_null, 553 nfsv3err_getattr, 554 nfsv3err_setattr, 555 nfsv3err_lookup, 556 nfsv3err_access, 557 nfsv3err_readlink, 558 nfsv3err_read, 559 nfsv3err_write, 560 nfsv3err_create, 561 nfsv3err_mkdir, 562 nfsv3err_symlink, 563 nfsv3err_mknod, 564 nfsv3err_remove, 565 nfsv3err_rmdir, 566 nfsv3err_rename, 567 nfsv3err_link, 568 nfsv3err_readdir, 569 nfsv3err_readdirplus, 570 nfsv3err_fsstat, 571 nfsv3err_fsinfo, 572 nfsv3err_pathconf, 573 nfsv3err_commit, 574 }; 575 576 extern struct nfsrtt nfsrtt; 577 extern time_t nqnfsstarttime; 578 extern int nqsrv_clockskew; 579 extern int nqsrv_writeslack; 580 extern int nqsrv_maxlease; 581 extern const int nqnfs_piggy[NFS_NPROCS]; 582 extern struct nfsnodehashhead *nfsnodehashtbl; 583 extern u_long nfsnodehash; 584 585 u_long nfsdirhashmask; 586 587 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *)); 588 589 /* 590 * Create the header for an rpc request packet 591 * The hsiz is the size of the rest of the nfs request header. 592 * (just used to decide if a cluster is a good idea) 593 */ 594 struct mbuf * 595 nfsm_reqh(np, procid, hsiz, bposp) 596 struct nfsnode *np; 597 u_long procid; 598 int hsiz; 599 caddr_t *bposp; 600 { 601 struct mbuf *mb; 602 caddr_t bpos; 603 #ifndef NFS_V2_ONLY 604 struct nfsmount *nmp; 605 u_int32_t *tl; 606 int nqflag; 607 #endif 608 609 mb = m_get(M_WAIT, MT_DATA); 610 MCLAIM(mb, &nfs_mowner); 611 if (hsiz >= MINCLSIZE) 612 m_clget(mb, M_WAIT); 613 mb->m_len = 0; 614 bpos = mtod(mb, caddr_t); 615 616 #ifndef NFS_V2_ONLY 617 /* 618 * For NQNFS, add lease request. 619 */ 620 if (np) { 621 nmp = VFSTONFS(np->n_vnode->v_mount); 622 if (nmp->nm_flag & NFSMNT_NQNFS) { 623 nqflag = NQNFS_NEEDLEASE(np, procid); 624 if (nqflag) { 625 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED); 626 *tl++ = txdr_unsigned(nqflag); 627 *tl = txdr_unsigned(nmp->nm_leaseterm); 628 } else { 629 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 630 *tl = 0; 631 } 632 } 633 } 634 #endif 635 /* Finally, return values */ 636 *bposp = bpos; 637 return (mb); 638 } 639 640 /* 641 * Build the RPC header and fill in the authorization info. 642 * The authorization string argument is only used when the credentials 643 * come from outside of the kernel. 644 * Returns the head of the mbuf list. 645 */ 646 struct mbuf * 647 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len, 648 verf_str, mrest, mrest_len, mbp, xidp) 649 struct ucred *cr; 650 int nmflag; 651 int procid; 652 int auth_type; 653 int auth_len; 654 char *auth_str; 655 int verf_len; 656 char *verf_str; 657 struct mbuf *mrest; 658 int mrest_len; 659 struct mbuf **mbp; 660 u_int32_t *xidp; 661 { 662 struct mbuf *mb; 663 u_int32_t *tl; 664 caddr_t bpos; 665 int i; 666 struct mbuf *mreq; 667 int siz, grpsiz, authsiz; 668 struct timeval tv; 669 static u_int32_t base; 670 671 authsiz = nfsm_rndup(auth_len); 672 mb = m_gethdr(M_WAIT, MT_DATA); 673 MCLAIM(mb, &nfs_mowner); 674 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 675 m_clget(mb, M_WAIT); 676 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 677 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 678 } else { 679 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 680 } 681 mb->m_len = 0; 682 mreq = mb; 683 bpos = mtod(mb, caddr_t); 684 685 /* 686 * First the RPC header. 687 */ 688 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 689 690 /* 691 * derive initial xid from system time 692 * XXX time is invalid if root not yet mounted 693 */ 694 if (!base && (rootvp)) { 695 microtime(&tv); 696 base = tv.tv_sec << 12; 697 nfs_xid = base; 698 } 699 /* 700 * Skip zero xid if it should ever happen. 701 */ 702 if (++nfs_xid == 0) 703 nfs_xid++; 704 705 *tl++ = *xidp = txdr_unsigned(nfs_xid); 706 *tl++ = rpc_call; 707 *tl++ = rpc_vers; 708 if (nmflag & NFSMNT_NQNFS) { 709 *tl++ = txdr_unsigned(NQNFS_PROG); 710 *tl++ = txdr_unsigned(NQNFS_VER3); 711 } else { 712 *tl++ = txdr_unsigned(NFS_PROG); 713 if (nmflag & NFSMNT_NFSV3) 714 *tl++ = txdr_unsigned(NFS_VER3); 715 else 716 *tl++ = txdr_unsigned(NFS_VER2); 717 } 718 if (nmflag & NFSMNT_NFSV3) 719 *tl++ = txdr_unsigned(procid); 720 else 721 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 722 723 /* 724 * And then the authorization cred. 725 */ 726 *tl++ = txdr_unsigned(auth_type); 727 *tl = txdr_unsigned(authsiz); 728 switch (auth_type) { 729 case RPCAUTH_UNIX: 730 nfsm_build(tl, u_int32_t *, auth_len); 731 *tl++ = 0; /* stamp ?? */ 732 *tl++ = 0; /* NULL hostname */ 733 *tl++ = txdr_unsigned(cr->cr_uid); 734 *tl++ = txdr_unsigned(cr->cr_gid); 735 grpsiz = (auth_len >> 2) - 5; 736 *tl++ = txdr_unsigned(grpsiz); 737 for (i = 0; i < grpsiz; i++) 738 *tl++ = txdr_unsigned(cr->cr_groups[i]); 739 break; 740 case RPCAUTH_KERB4: 741 siz = auth_len; 742 while (siz > 0) { 743 if (M_TRAILINGSPACE(mb) == 0) { 744 struct mbuf *mb2; 745 mb2 = m_get(M_WAIT, MT_DATA); 746 MCLAIM(mb2, &nfs_mowner); 747 if (siz >= MINCLSIZE) 748 m_clget(mb2, M_WAIT); 749 mb->m_next = mb2; 750 mb = mb2; 751 mb->m_len = 0; 752 bpos = mtod(mb, caddr_t); 753 } 754 i = min(siz, M_TRAILINGSPACE(mb)); 755 memcpy(bpos, auth_str, i); 756 mb->m_len += i; 757 auth_str += i; 758 bpos += i; 759 siz -= i; 760 } 761 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 762 for (i = 0; i < siz; i++) 763 *bpos++ = '\0'; 764 mb->m_len += siz; 765 } 766 break; 767 }; 768 769 /* 770 * And the verifier... 771 */ 772 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 773 if (verf_str) { 774 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 775 *tl = txdr_unsigned(verf_len); 776 siz = verf_len; 777 while (siz > 0) { 778 if (M_TRAILINGSPACE(mb) == 0) { 779 struct mbuf *mb2; 780 mb2 = m_get(M_WAIT, MT_DATA); 781 MCLAIM(mb2, &nfs_mowner); 782 if (siz >= MINCLSIZE) 783 m_clget(mb2, M_WAIT); 784 mb->m_next = mb2; 785 mb = mb2; 786 mb->m_len = 0; 787 bpos = mtod(mb, caddr_t); 788 } 789 i = min(siz, M_TRAILINGSPACE(mb)); 790 memcpy(bpos, verf_str, i); 791 mb->m_len += i; 792 verf_str += i; 793 bpos += i; 794 siz -= i; 795 } 796 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 797 for (i = 0; i < siz; i++) 798 *bpos++ = '\0'; 799 mb->m_len += siz; 800 } 801 } else { 802 *tl++ = txdr_unsigned(RPCAUTH_NULL); 803 *tl = 0; 804 } 805 mb->m_next = mrest; 806 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 807 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 808 *mbp = mb; 809 return (mreq); 810 } 811 812 /* 813 * copies mbuf chain to the uio scatter/gather list 814 */ 815 int 816 nfsm_mbuftouio(mrep, uiop, siz, dpos) 817 struct mbuf **mrep; 818 struct uio *uiop; 819 int siz; 820 caddr_t *dpos; 821 { 822 char *mbufcp, *uiocp; 823 int xfer, left, len; 824 struct mbuf *mp; 825 long uiosiz, rem; 826 int error = 0; 827 828 mp = *mrep; 829 mbufcp = *dpos; 830 len = mtod(mp, caddr_t)+mp->m_len-mbufcp; 831 rem = nfsm_rndup(siz)-siz; 832 while (siz > 0) { 833 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 834 return (EFBIG); 835 left = uiop->uio_iov->iov_len; 836 uiocp = uiop->uio_iov->iov_base; 837 if (left > siz) 838 left = siz; 839 uiosiz = left; 840 while (left > 0) { 841 while (len == 0) { 842 mp = mp->m_next; 843 if (mp == NULL) 844 return (EBADRPC); 845 mbufcp = mtod(mp, caddr_t); 846 len = mp->m_len; 847 } 848 xfer = (left > len) ? len : left; 849 #ifdef notdef 850 /* Not Yet.. */ 851 if (uiop->uio_iov->iov_op != NULL) 852 (*(uiop->uio_iov->iov_op)) 853 (mbufcp, uiocp, xfer); 854 else 855 #endif 856 if (uiop->uio_segflg == UIO_SYSSPACE) 857 memcpy(uiocp, mbufcp, xfer); 858 else 859 copyout(mbufcp, uiocp, xfer); 860 left -= xfer; 861 len -= xfer; 862 mbufcp += xfer; 863 uiocp += xfer; 864 uiop->uio_offset += xfer; 865 uiop->uio_resid -= xfer; 866 } 867 if (uiop->uio_iov->iov_len <= siz) { 868 uiop->uio_iovcnt--; 869 uiop->uio_iov++; 870 } else { 871 uiop->uio_iov->iov_base = 872 (caddr_t)uiop->uio_iov->iov_base + uiosiz; 873 uiop->uio_iov->iov_len -= uiosiz; 874 } 875 siz -= uiosiz; 876 } 877 *dpos = mbufcp; 878 *mrep = mp; 879 if (rem > 0) { 880 if (len < rem) 881 error = nfs_adv(mrep, dpos, rem, len); 882 else 883 *dpos += rem; 884 } 885 return (error); 886 } 887 888 /* 889 * copies a uio scatter/gather list to an mbuf chain. 890 * NOTE: can ony handle iovcnt == 1 891 */ 892 int 893 nfsm_uiotombuf(uiop, mq, siz, bpos) 894 struct uio *uiop; 895 struct mbuf **mq; 896 int siz; 897 caddr_t *bpos; 898 { 899 char *uiocp; 900 struct mbuf *mp, *mp2; 901 int xfer, left, mlen; 902 int uiosiz, clflg, rem; 903 char *cp; 904 905 #ifdef DIAGNOSTIC 906 if (uiop->uio_iovcnt != 1) 907 panic("nfsm_uiotombuf: iovcnt != 1"); 908 #endif 909 910 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 911 clflg = 1; 912 else 913 clflg = 0; 914 rem = nfsm_rndup(siz)-siz; 915 mp = mp2 = *mq; 916 while (siz > 0) { 917 left = uiop->uio_iov->iov_len; 918 uiocp = uiop->uio_iov->iov_base; 919 if (left > siz) 920 left = siz; 921 uiosiz = left; 922 while (left > 0) { 923 mlen = M_TRAILINGSPACE(mp); 924 if (mlen == 0) { 925 mp = m_get(M_WAIT, MT_DATA); 926 MCLAIM(mp, &nfs_mowner); 927 if (clflg) 928 m_clget(mp, M_WAIT); 929 mp->m_len = 0; 930 mp2->m_next = mp; 931 mp2 = mp; 932 mlen = M_TRAILINGSPACE(mp); 933 } 934 xfer = (left > mlen) ? mlen : left; 935 #ifdef notdef 936 /* Not Yet.. */ 937 if (uiop->uio_iov->iov_op != NULL) 938 (*(uiop->uio_iov->iov_op)) 939 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 940 else 941 #endif 942 if (uiop->uio_segflg == UIO_SYSSPACE) 943 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer); 944 else 945 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 946 mp->m_len += xfer; 947 left -= xfer; 948 uiocp += xfer; 949 uiop->uio_offset += xfer; 950 uiop->uio_resid -= xfer; 951 } 952 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base + 953 uiosiz; 954 uiop->uio_iov->iov_len -= uiosiz; 955 siz -= uiosiz; 956 } 957 if (rem > 0) { 958 if (rem > M_TRAILINGSPACE(mp)) { 959 mp = m_get(M_WAIT, MT_DATA); 960 MCLAIM(mp, &nfs_mowner); 961 mp->m_len = 0; 962 mp2->m_next = mp; 963 } 964 cp = mtod(mp, caddr_t)+mp->m_len; 965 for (left = 0; left < rem; left++) 966 *cp++ = '\0'; 967 mp->m_len += rem; 968 *bpos = cp; 969 } else 970 *bpos = mtod(mp, caddr_t)+mp->m_len; 971 *mq = mp; 972 return (0); 973 } 974 975 /* 976 * Get at least "siz" bytes of correctly aligned data. 977 * When called the mbuf pointers are not necessarily correct, 978 * dsosp points to what ought to be in m_data and left contains 979 * what ought to be in m_len. 980 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 981 * cases. (The macros use the vars. dpos and dpos2) 982 */ 983 int 984 nfsm_disct(mdp, dposp, siz, left, cp2) 985 struct mbuf **mdp; 986 caddr_t *dposp; 987 int siz; 988 int left; 989 caddr_t *cp2; 990 { 991 struct mbuf *m1, *m2; 992 struct mbuf *havebuf = NULL; 993 caddr_t src = *dposp; 994 caddr_t dst; 995 int len; 996 997 #ifdef DEBUG 998 if (left < 0) 999 panic("nfsm_disct: left < 0"); 1000 #endif 1001 m1 = *mdp; 1002 /* 1003 * Skip through the mbuf chain looking for an mbuf with 1004 * some data. If the first mbuf found has enough data 1005 * and it is correctly aligned return it. 1006 */ 1007 while (left == 0) { 1008 havebuf = m1; 1009 *mdp = m1 = m1->m_next; 1010 if (m1 == NULL) 1011 return (EBADRPC); 1012 src = mtod(m1, caddr_t); 1013 left = m1->m_len; 1014 /* 1015 * If we start a new mbuf and it is big enough 1016 * and correctly aligned just return it, don't 1017 * do any pull up. 1018 */ 1019 if (left >= siz && nfsm_aligned(src)) { 1020 *cp2 = src; 1021 *dposp = src + siz; 1022 return (0); 1023 } 1024 } 1025 if (m1->m_flags & M_EXT) { 1026 if (havebuf) { 1027 /* If the first mbuf with data has external data 1028 * and there is a previous empty mbuf use it 1029 * to move the data into. 1030 */ 1031 m2 = m1; 1032 *mdp = m1 = havebuf; 1033 if (m1->m_flags & M_EXT) { 1034 MEXTREMOVE(m1); 1035 } 1036 } else { 1037 /* 1038 * If the first mbuf has a external data 1039 * and there is no previous empty mbuf 1040 * allocate a new mbuf and move the external 1041 * data to the new mbuf. Also make the first 1042 * mbuf look empty. 1043 */ 1044 m2 = m_get(M_WAIT, MT_DATA); 1045 m2->m_ext = m1->m_ext; 1046 m2->m_data = src; 1047 m2->m_len = left; 1048 MCLADDREFERENCE(m1, m2); 1049 MEXTREMOVE(m1); 1050 m2->m_next = m1->m_next; 1051 m1->m_next = m2; 1052 } 1053 m1->m_len = 0; 1054 dst = m1->m_dat; 1055 } else { 1056 /* 1057 * If the first mbuf has no external data 1058 * move the data to the front of the mbuf. 1059 */ 1060 if ((dst = m1->m_dat) != src) 1061 memmove(dst, src, left); 1062 dst += left; 1063 m1->m_len = left; 1064 m2 = m1->m_next; 1065 } 1066 m1->m_flags &= ~M_PKTHDR; 1067 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */ 1068 *dposp = mtod(m1, caddr_t) + siz; 1069 /* 1070 * Loop through mbufs pulling data up into first mbuf until 1071 * the first mbuf is full or there is no more data to 1072 * pullup. 1073 */ 1074 while ((len = (MLEN - m1->m_len)) != 0 && m2) { 1075 if ((len = min(len, m2->m_len)) != 0) 1076 memcpy(dst, m2->m_data, len); 1077 m1->m_len += len; 1078 dst += len; 1079 m2->m_data += len; 1080 m2->m_len -= len; 1081 m2 = m2->m_next; 1082 } 1083 if (m1->m_len < siz) 1084 return (EBADRPC); 1085 return (0); 1086 } 1087 1088 /* 1089 * Advance the position in the mbuf chain. 1090 */ 1091 int 1092 nfs_adv(mdp, dposp, offs, left) 1093 struct mbuf **mdp; 1094 caddr_t *dposp; 1095 int offs; 1096 int left; 1097 { 1098 struct mbuf *m; 1099 int s; 1100 1101 m = *mdp; 1102 s = left; 1103 while (s < offs) { 1104 offs -= s; 1105 m = m->m_next; 1106 if (m == NULL) 1107 return (EBADRPC); 1108 s = m->m_len; 1109 } 1110 *mdp = m; 1111 *dposp = mtod(m, caddr_t)+offs; 1112 return (0); 1113 } 1114 1115 /* 1116 * Copy a string into mbufs for the hard cases... 1117 */ 1118 int 1119 nfsm_strtmbuf(mb, bpos, cp, siz) 1120 struct mbuf **mb; 1121 char **bpos; 1122 const char *cp; 1123 long siz; 1124 { 1125 struct mbuf *m1 = NULL, *m2; 1126 long left, xfer, len, tlen; 1127 u_int32_t *tl; 1128 int putsize; 1129 1130 putsize = 1; 1131 m2 = *mb; 1132 left = M_TRAILINGSPACE(m2); 1133 if (left > 0) { 1134 tl = ((u_int32_t *)(*bpos)); 1135 *tl++ = txdr_unsigned(siz); 1136 putsize = 0; 1137 left -= NFSX_UNSIGNED; 1138 m2->m_len += NFSX_UNSIGNED; 1139 if (left > 0) { 1140 memcpy((caddr_t) tl, cp, left); 1141 siz -= left; 1142 cp += left; 1143 m2->m_len += left; 1144 left = 0; 1145 } 1146 } 1147 /* Loop around adding mbufs */ 1148 while (siz > 0) { 1149 m1 = m_get(M_WAIT, MT_DATA); 1150 MCLAIM(m1, &nfs_mowner); 1151 if (siz > MLEN) 1152 m_clget(m1, M_WAIT); 1153 m1->m_len = NFSMSIZ(m1); 1154 m2->m_next = m1; 1155 m2 = m1; 1156 tl = mtod(m1, u_int32_t *); 1157 tlen = 0; 1158 if (putsize) { 1159 *tl++ = txdr_unsigned(siz); 1160 m1->m_len -= NFSX_UNSIGNED; 1161 tlen = NFSX_UNSIGNED; 1162 putsize = 0; 1163 } 1164 if (siz < m1->m_len) { 1165 len = nfsm_rndup(siz); 1166 xfer = siz; 1167 if (xfer < len) 1168 *(tl+(xfer>>2)) = 0; 1169 } else { 1170 xfer = len = m1->m_len; 1171 } 1172 memcpy((caddr_t) tl, cp, xfer); 1173 m1->m_len = len+tlen; 1174 siz -= xfer; 1175 cp += xfer; 1176 } 1177 *mb = m1; 1178 *bpos = mtod(m1, caddr_t)+m1->m_len; 1179 return (0); 1180 } 1181 1182 /* 1183 * Directory caching routines. They work as follows: 1184 * - a cache is maintained per VDIR nfsnode. 1185 * - for each offset cookie that is exported to userspace, and can 1186 * thus be thrown back at us as an offset to VOP_READDIR, store 1187 * information in the cache. 1188 * - cached are: 1189 * - cookie itself 1190 * - blocknumber (essentially just a search key in the buffer cache) 1191 * - entry number in block. 1192 * - offset cookie of block in which this entry is stored 1193 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1194 * - entries are looked up in a hash table 1195 * - also maintained is an LRU list of entries, used to determine 1196 * which ones to delete if the cache grows too large. 1197 * - if 32 <-> 64 translation mode is requested for a filesystem, 1198 * the cache also functions as a translation table 1199 * - in the translation case, invalidating the cache does not mean 1200 * flushing it, but just marking entries as invalid, except for 1201 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1202 * still be able to use the cache as a translation table. 1203 * - 32 bit cookies are uniquely created by combining the hash table 1204 * entry value, and one generation count per hash table entry, 1205 * incremented each time an entry is appended to the chain. 1206 * - the cache is invalidated each time a direcory is modified 1207 * - sanity checks are also done; if an entry in a block turns 1208 * out not to have a matching cookie, the cache is invalidated 1209 * and a new block starting from the wanted offset is fetched from 1210 * the server. 1211 * - directory entries as read from the server are extended to contain 1212 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1213 * the cache and exporting them to userspace through the cookie 1214 * argument to VOP_READDIR. 1215 */ 1216 1217 u_long 1218 nfs_dirhash(off) 1219 off_t off; 1220 { 1221 int i; 1222 char *cp = (char *)&off; 1223 u_long sum = 0L; 1224 1225 for (i = 0 ; i < sizeof (off); i++) 1226 sum += *cp++; 1227 1228 return sum; 1229 } 1230 1231 void 1232 nfs_initdircache(vp) 1233 struct vnode *vp; 1234 { 1235 struct nfsnode *np = VTONFS(vp); 1236 1237 KASSERT(np->n_dircache == NULL); 1238 1239 np->n_dircachesize = 0; 1240 np->n_dblkno = 1; 1241 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF, 1242 M_WAITOK, &nfsdirhashmask); 1243 TAILQ_INIT(&np->n_dirchain); 1244 } 1245 1246 void 1247 nfs_initdirxlatecookie(vp) 1248 struct vnode *vp; 1249 { 1250 struct nfsnode *np = VTONFS(vp); 1251 1252 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1253 KASSERT(np->n_dirgens == NULL); 1254 1255 MALLOC(np->n_dirgens, unsigned *, 1256 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, M_WAITOK); 1257 memset((caddr_t)np->n_dirgens, 0, NFS_DIRHASHSIZ * sizeof (unsigned)); 1258 } 1259 1260 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0}; 1261 1262 struct nfsdircache * 1263 nfs_searchdircache(vp, off, do32, hashent) 1264 struct vnode *vp; 1265 off_t off; 1266 int do32; 1267 int *hashent; 1268 { 1269 struct nfsdirhashhead *ndhp; 1270 struct nfsdircache *ndp = NULL; 1271 struct nfsnode *np = VTONFS(vp); 1272 unsigned ent; 1273 1274 /* 1275 * Zero is always a valid cookie. 1276 */ 1277 if (off == 0) 1278 return &dzero; 1279 1280 /* 1281 * We use a 32bit cookie as search key, directly reconstruct 1282 * the hashentry. Else use the hashfunction. 1283 */ 1284 if (do32) { 1285 ent = (u_int32_t)off >> 24; 1286 if (ent >= NFS_DIRHASHSIZ) 1287 return NULL; 1288 ndhp = &np->n_dircache[ent]; 1289 } else { 1290 ndhp = NFSDIRHASH(np, off); 1291 } 1292 1293 if (hashent) 1294 *hashent = (int)(ndhp - np->n_dircache); 1295 if (do32) { 1296 LIST_FOREACH(ndp, ndhp, dc_hash) { 1297 if (ndp->dc_cookie32 == (u_int32_t)off) { 1298 /* 1299 * An invalidated entry will become the 1300 * start of a new block fetched from 1301 * the server. 1302 */ 1303 if (ndp->dc_blkno == -1) { 1304 ndp->dc_blkcookie = ndp->dc_cookie; 1305 ndp->dc_blkno = np->n_dblkno++; 1306 ndp->dc_entry = 0; 1307 } 1308 break; 1309 } 1310 } 1311 } else { 1312 LIST_FOREACH(ndp, ndhp, dc_hash) { 1313 if (ndp->dc_cookie == off) 1314 break; 1315 } 1316 } 1317 return ndp; 1318 } 1319 1320 1321 struct nfsdircache * 1322 nfs_enterdircache(vp, off, blkoff, en, blkno) 1323 struct vnode *vp; 1324 off_t off, blkoff; 1325 int en; 1326 daddr_t blkno; 1327 { 1328 struct nfsnode *np = VTONFS(vp); 1329 struct nfsdirhashhead *ndhp; 1330 struct nfsdircache *ndp = NULL, *first; 1331 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1332 int hashent, gen, overwrite; 1333 1334 if (!np->n_dircache) 1335 /* 1336 * XXX would like to do this in nfs_nget but vtype 1337 * isn't known at that time. 1338 */ 1339 nfs_initdircache(vp); 1340 1341 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens) 1342 nfs_initdirxlatecookie(vp); 1343 1344 /* 1345 * XXX refuse entries for offset 0. amd(8) erroneously sets 1346 * cookie 0 for the '.' entry, making this necessary. This 1347 * isn't so bad, as 0 is a special case anyway. 1348 */ 1349 if (off == 0) 1350 return &dzero; 1351 1352 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1353 1354 if (ndp && ndp->dc_blkno != -1) { 1355 /* 1356 * Overwriting an old entry. Check if it's the same. 1357 * If so, just return. If not, remove the old entry. 1358 */ 1359 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1360 return ndp; 1361 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1362 LIST_REMOVE(ndp, dc_hash); 1363 FREE(ndp, M_NFSDIROFF); 1364 ndp = 0; 1365 } 1366 1367 ndhp = &np->n_dircache[hashent]; 1368 1369 if (!ndp) { 1370 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF, 1371 M_WAITOK); 1372 overwrite = 0; 1373 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1374 /* 1375 * We're allocating a new entry, so bump the 1376 * generation number. 1377 */ 1378 gen = ++np->n_dirgens[hashent]; 1379 if (gen == 0) { 1380 np->n_dirgens[hashent]++; 1381 gen++; 1382 } 1383 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1384 } 1385 } else 1386 overwrite = 1; 1387 1388 /* 1389 * If the entry number is 0, we are at the start of a new block, so 1390 * allocate a new blocknumber. 1391 */ 1392 if (en == 0) 1393 ndp->dc_blkno = np->n_dblkno++; 1394 else 1395 ndp->dc_blkno = blkno; 1396 1397 ndp->dc_cookie = off; 1398 ndp->dc_blkcookie = blkoff; 1399 ndp->dc_entry = en; 1400 1401 if (overwrite) 1402 return ndp; 1403 1404 /* 1405 * If the maximum directory cookie cache size has been reached 1406 * for this node, take one off the front. The idea is that 1407 * directories are typically read front-to-back once, so that 1408 * the oldest entries can be thrown away without much performance 1409 * loss. 1410 */ 1411 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1412 first = TAILQ_FIRST(&np->n_dirchain); 1413 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain); 1414 LIST_REMOVE(first, dc_hash); 1415 FREE(first, M_NFSDIROFF); 1416 } else 1417 np->n_dircachesize++; 1418 1419 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1420 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1421 return ndp; 1422 } 1423 1424 void 1425 nfs_invaldircache(vp, forcefree) 1426 struct vnode *vp; 1427 int forcefree; 1428 { 1429 struct nfsnode *np = VTONFS(vp); 1430 struct nfsdircache *ndp = NULL; 1431 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1432 1433 #ifdef DIAGNOSTIC 1434 if (vp->v_type != VDIR) 1435 panic("nfs: invaldircache: not dir"); 1436 #endif 1437 1438 if (!np->n_dircache) 1439 return; 1440 1441 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1442 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != 0) { 1443 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1444 LIST_REMOVE(ndp, dc_hash); 1445 FREE(ndp, M_NFSDIROFF); 1446 } 1447 np->n_dircachesize = 0; 1448 if (forcefree && np->n_dirgens) { 1449 FREE(np->n_dirgens, M_NFSDIROFF); 1450 np->n_dirgens = NULL; 1451 } 1452 } else { 1453 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) { 1454 ndp->dc_blkno = -1; 1455 } 1456 } 1457 1458 np->n_dblkno = 1; 1459 } 1460 1461 /* 1462 * Called once before VFS init to initialize shared and 1463 * server-specific data structures. 1464 */ 1465 void 1466 nfs_init() 1467 { 1468 nfsrtt.pos = 0; 1469 rpc_vers = txdr_unsigned(RPC_VER2); 1470 rpc_call = txdr_unsigned(RPC_CALL); 1471 rpc_reply = txdr_unsigned(RPC_REPLY); 1472 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1473 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1474 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1475 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1476 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1477 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1478 nfs_prog = txdr_unsigned(NFS_PROG); 1479 nqnfs_prog = txdr_unsigned(NQNFS_PROG); 1480 nfs_true = txdr_unsigned(TRUE); 1481 nfs_false = txdr_unsigned(FALSE); 1482 nfs_xdrneg1 = txdr_unsigned(-1); 1483 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1484 if (nfs_ticks < 1) 1485 nfs_ticks = 1; 1486 #ifdef NFSSERVER 1487 nfsrv_init(0); /* Init server data structures */ 1488 nfsrv_initcache(); /* Init the server request cache */ 1489 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 1490 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr); 1491 #endif /* NFSSERVER */ 1492 1493 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY) 1494 /* 1495 * Initialize the nqnfs data structures. 1496 */ 1497 if (nqnfsstarttime == 0) { 1498 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease 1499 + nqsrv_clockskew + nqsrv_writeslack; 1500 NQLOADNOVRAM(nqnfsstarttime); 1501 CIRCLEQ_INIT(&nqtimerhead); 1502 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE, 1503 M_WAITOK, &nqfhhash); 1504 } 1505 #endif 1506 1507 exithook_establish(nfs_exit, NULL); 1508 1509 /* 1510 * Initialize reply list and start timer 1511 */ 1512 TAILQ_INIT(&nfs_reqq); 1513 nfs_timer(NULL); 1514 MOWNER_ATTACH(&nfs_mowner); 1515 1516 #ifdef NFS 1517 /* Initialize the kqueue structures */ 1518 nfs_kqinit(); 1519 /* Initialize the iod structures */ 1520 nfs_iodinit(); 1521 #endif 1522 } 1523 1524 #ifdef NFS 1525 /* 1526 * Called once at VFS init to initialize client-specific data structures. 1527 */ 1528 void 1529 nfs_vfs_init() 1530 { 1531 nfs_nhinit(); /* Init the nfsnode table */ 1532 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4); 1533 } 1534 1535 void 1536 nfs_vfs_reinit() 1537 { 1538 nfs_nhreinit(); 1539 } 1540 1541 void 1542 nfs_vfs_done() 1543 { 1544 nfs_nhdone(); 1545 } 1546 1547 /* 1548 * Attribute cache routines. 1549 * nfs_loadattrcache() - loads or updates the cache contents from attributes 1550 * that are on the mbuf list 1551 * nfs_getattrcache() - returns valid attributes if found in cache, returns 1552 * error otherwise 1553 */ 1554 1555 /* 1556 * Load the attribute cache (that lives in the nfsnode entry) with 1557 * the values on the mbuf list and 1558 * Iff vap not NULL 1559 * copy the attributes to *vaper 1560 */ 1561 int 1562 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags) 1563 struct vnode **vpp; 1564 struct mbuf **mdp; 1565 caddr_t *dposp; 1566 struct vattr *vaper; 1567 int flags; 1568 { 1569 int32_t t1; 1570 caddr_t cp2; 1571 int error = 0; 1572 struct mbuf *md; 1573 int v3 = NFS_ISV3(*vpp); 1574 1575 md = *mdp; 1576 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp; 1577 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2); 1578 if (error) 1579 return (error); 1580 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags); 1581 } 1582 1583 int 1584 nfs_loadattrcache(vpp, fp, vaper, flags) 1585 struct vnode **vpp; 1586 struct nfs_fattr *fp; 1587 struct vattr *vaper; 1588 int flags; 1589 { 1590 struct vnode *vp = *vpp; 1591 struct vattr *vap; 1592 int v3 = NFS_ISV3(vp); 1593 enum vtype vtyp; 1594 u_short vmode; 1595 struct timespec mtime; 1596 struct vnode *nvp; 1597 int32_t rdev; 1598 struct nfsnode *np; 1599 extern int (**spec_nfsv2nodeop_p) __P((void *)); 1600 uid_t uid; 1601 gid_t gid; 1602 1603 if (v3) { 1604 vtyp = nfsv3tov_type(fp->fa_type); 1605 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1606 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1), 1607 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2)); 1608 fxdr_nfsv3time(&fp->fa3_mtime, &mtime); 1609 } else { 1610 vtyp = nfsv2tov_type(fp->fa_type); 1611 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1612 if (vtyp == VNON || vtyp == VREG) 1613 vtyp = IFTOVT(vmode); 1614 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); 1615 fxdr_nfsv2time(&fp->fa2_mtime, &mtime); 1616 1617 /* 1618 * Really ugly NFSv2 kludge. 1619 */ 1620 if (vtyp == VCHR && rdev == 0xffffffff) 1621 vtyp = VFIFO; 1622 } 1623 1624 vmode &= ALLPERMS; 1625 1626 /* 1627 * If v_type == VNON it is a new node, so fill in the v_type, 1628 * n_mtime fields. Check to see if it represents a special 1629 * device, and if so, check for a possible alias. Once the 1630 * correct vnode has been obtained, fill in the rest of the 1631 * information. 1632 */ 1633 np = VTONFS(vp); 1634 if (vp->v_type == VNON) { 1635 vp->v_type = vtyp; 1636 if (vp->v_type == VFIFO) { 1637 extern int (**fifo_nfsv2nodeop_p) __P((void *)); 1638 vp->v_op = fifo_nfsv2nodeop_p; 1639 } 1640 if (vp->v_type == VCHR || vp->v_type == VBLK) { 1641 vp->v_op = spec_nfsv2nodeop_p; 1642 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount); 1643 if (nvp) { 1644 /* 1645 * Discard unneeded vnode, but save its nfsnode. 1646 * Since the nfsnode does not have a lock, its 1647 * vnode lock has to be carried over. 1648 */ 1649 /* 1650 * XXX is the old node sure to be locked here? 1651 */ 1652 KASSERT(lockstatus(&vp->v_lock) == 1653 LK_EXCLUSIVE); 1654 nvp->v_data = vp->v_data; 1655 vp->v_data = NULL; 1656 VOP_UNLOCK(vp, 0); 1657 vp->v_op = spec_vnodeop_p; 1658 vrele(vp); 1659 vgone(vp); 1660 lockmgr(&nvp->v_lock, LK_EXCLUSIVE, 1661 &nvp->v_interlock); 1662 /* 1663 * Reinitialize aliased node. 1664 */ 1665 np->n_vnode = nvp; 1666 *vpp = vp = nvp; 1667 } 1668 } 1669 np->n_mtime = mtime.tv_sec; 1670 } 1671 uid = fxdr_unsigned(uid_t, fp->fa_uid); 1672 gid = fxdr_unsigned(gid_t, fp->fa_gid); 1673 vap = np->n_vattr; 1674 1675 /* 1676 * Invalidate access cache if uid, gid or mode changed. 1677 */ 1678 if (np->n_accstamp != -1 && 1679 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode)) 1680 np->n_accstamp = -1; 1681 1682 vap->va_type = vtyp; 1683 vap->va_mode = vmode; 1684 vap->va_rdev = (dev_t)rdev; 1685 vap->va_mtime = mtime; 1686 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 1687 switch (vtyp) { 1688 case VDIR: 1689 vap->va_blocksize = NFS_DIRFRAGSIZ; 1690 break; 1691 case VBLK: 1692 vap->va_blocksize = BLKDEV_IOSIZE; 1693 break; 1694 case VCHR: 1695 vap->va_blocksize = MAXBSIZE; 1696 break; 1697 default: 1698 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize : 1699 fxdr_unsigned(int32_t, fp->fa2_blocksize); 1700 break; 1701 } 1702 if (v3) { 1703 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1704 vap->va_uid = uid; 1705 vap->va_gid = gid; 1706 vap->va_size = fxdr_hyper(&fp->fa3_size); 1707 vap->va_bytes = fxdr_hyper(&fp->fa3_used); 1708 vap->va_fileid = fxdr_unsigned(int32_t, 1709 fp->fa3_fileid.nfsuquad[1]); 1710 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); 1711 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime); 1712 vap->va_flags = 0; 1713 vap->va_filerev = 0; 1714 } else { 1715 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1716 vap->va_uid = uid; 1717 vap->va_gid = gid; 1718 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); 1719 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks) 1720 * NFS_FABLKSIZE; 1721 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); 1722 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); 1723 vap->va_flags = 0; 1724 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t, 1725 fp->fa2_ctime.nfsv2_sec); 1726 vap->va_ctime.tv_nsec = 0; 1727 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec); 1728 vap->va_filerev = 0; 1729 } 1730 if (vap->va_size != np->n_size) { 1731 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) { 1732 vap->va_size = np->n_size; 1733 } else { 1734 np->n_size = vap->va_size; 1735 if (vap->va_type == VREG) { 1736 if ((flags & NAC_NOTRUNC) 1737 && np->n_size < vp->v_size) { 1738 /* 1739 * we can't free pages now because 1740 * the pages can be owned by ourselves. 1741 */ 1742 np->n_flag |= NTRUNCDELAYED; 1743 } 1744 else { 1745 uvm_vnp_setsize(vp, np->n_size); 1746 } 1747 } 1748 } 1749 } 1750 np->n_attrstamp = time.tv_sec; 1751 if (vaper != NULL) { 1752 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap)); 1753 if (np->n_flag & NCHG) { 1754 if (np->n_flag & NACC) 1755 vaper->va_atime = np->n_atim; 1756 if (np->n_flag & NUPD) 1757 vaper->va_mtime = np->n_mtim; 1758 } 1759 } 1760 return (0); 1761 } 1762 1763 /* 1764 * Check the time stamp 1765 * If the cache is valid, copy contents to *vap and return 0 1766 * otherwise return an error 1767 */ 1768 int 1769 nfs_getattrcache(vp, vaper) 1770 struct vnode *vp; 1771 struct vattr *vaper; 1772 { 1773 struct nfsnode *np = VTONFS(vp); 1774 struct vattr *vap; 1775 1776 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) { 1777 nfsstats.attrcache_misses++; 1778 return (ENOENT); 1779 } 1780 nfsstats.attrcache_hits++; 1781 vap = np->n_vattr; 1782 if (vap->va_size != np->n_size) { 1783 if (vap->va_type == VREG) { 1784 if (np->n_flag & NMODIFIED) { 1785 if (vap->va_size < np->n_size) 1786 vap->va_size = np->n_size; 1787 else 1788 np->n_size = vap->va_size; 1789 } else 1790 np->n_size = vap->va_size; 1791 uvm_vnp_setsize(vp, np->n_size); 1792 } else 1793 np->n_size = vap->va_size; 1794 } 1795 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr)); 1796 if (np->n_flag & NCHG) { 1797 if (np->n_flag & NACC) 1798 vaper->va_atime = np->n_atim; 1799 if (np->n_flag & NUPD) 1800 vaper->va_mtime = np->n_mtim; 1801 } 1802 return (0); 1803 } 1804 1805 void 1806 nfs_delayedtruncate(vp) 1807 struct vnode *vp; 1808 { 1809 struct nfsnode *np = VTONFS(vp); 1810 1811 if (np->n_flag & NTRUNCDELAYED) { 1812 np->n_flag &= ~NTRUNCDELAYED; 1813 uvm_vnp_setsize(vp, np->n_size); 1814 } 1815 } 1816 1817 /* 1818 * Heuristic to see if the server XDR encodes directory cookies or not. 1819 * it is not supposed to, but a lot of servers may do this. Also, since 1820 * most/all servers will implement V2 as well, it is expected that they 1821 * may return just 32 bits worth of cookie information, so we need to 1822 * find out in which 32 bits this information is available. We do this 1823 * to avoid trouble with emulated binaries that can't handle 64 bit 1824 * directory offsets. 1825 */ 1826 1827 void 1828 nfs_cookieheuristic(vp, flagp, p, cred) 1829 struct vnode *vp; 1830 int *flagp; 1831 struct proc *p; 1832 struct ucred *cred; 1833 { 1834 struct uio auio; 1835 struct iovec aiov; 1836 caddr_t buf, cp; 1837 struct dirent *dp; 1838 off_t *cookies = NULL, *cop; 1839 int error, eof, nc, len; 1840 1841 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK); 1842 1843 aiov.iov_base = buf; 1844 aiov.iov_len = NFS_DIRFRAGSIZ; 1845 auio.uio_iov = &aiov; 1846 auio.uio_iovcnt = 1; 1847 auio.uio_rw = UIO_READ; 1848 auio.uio_segflg = UIO_SYSSPACE; 1849 auio.uio_procp = p; 1850 auio.uio_resid = NFS_DIRFRAGSIZ; 1851 auio.uio_offset = 0; 1852 1853 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc); 1854 1855 len = NFS_DIRFRAGSIZ - auio.uio_resid; 1856 if (error || len == 0) { 1857 FREE(buf, M_TEMP); 1858 if (cookies) 1859 free(cookies, M_TEMP); 1860 return; 1861 } 1862 1863 /* 1864 * Find the first valid entry and look at its offset cookie. 1865 */ 1866 1867 cp = buf; 1868 for (cop = cookies; len > 0; len -= dp->d_reclen) { 1869 dp = (struct dirent *)cp; 1870 if (dp->d_fileno != 0 && len >= dp->d_reclen) { 1871 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) { 1872 *flagp |= NFSMNT_SWAPCOOKIE; 1873 nfs_invaldircache(vp, 0); 1874 nfs_vinvalbuf(vp, 0, cred, p, 1); 1875 } 1876 break; 1877 } 1878 cop++; 1879 cp += dp->d_reclen; 1880 } 1881 1882 FREE(buf, M_TEMP); 1883 free(cookies, M_TEMP); 1884 } 1885 #endif /* NFS */ 1886 1887 /* 1888 * Set up nameidata for a lookup() call and do it. 1889 * 1890 * If pubflag is set, this call is done for a lookup operation on the 1891 * public filehandle. In that case we allow crossing mountpoints and 1892 * absolute pathnames. However, the caller is expected to check that 1893 * the lookup result is within the public fs, and deny access if 1894 * it is not. 1895 */ 1896 int 1897 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag) 1898 struct nameidata *ndp; 1899 fhandle_t *fhp; 1900 uint32_t len; 1901 struct nfssvc_sock *slp; 1902 struct mbuf *nam; 1903 struct mbuf **mdp; 1904 caddr_t *dposp; 1905 struct vnode **retdirp; 1906 struct proc *p; 1907 int kerbflag, pubflag; 1908 { 1909 int i, rem; 1910 struct mbuf *md; 1911 char *fromcp, *tocp, *cp; 1912 struct iovec aiov; 1913 struct uio auio; 1914 struct vnode *dp; 1915 int error, rdonly, linklen; 1916 struct componentname *cnp = &ndp->ni_cnd; 1917 1918 *retdirp = (struct vnode *)0; 1919 1920 if ((len + 1) > MAXPATHLEN) 1921 return (ENAMETOOLONG); 1922 cnp->cn_pnbuf = PNBUF_GET(); 1923 1924 /* 1925 * Copy the name from the mbuf list to ndp->ni_pnbuf 1926 * and set the various ndp fields appropriately. 1927 */ 1928 fromcp = *dposp; 1929 tocp = cnp->cn_pnbuf; 1930 md = *mdp; 1931 rem = mtod(md, caddr_t) + md->m_len - fromcp; 1932 for (i = 0; i < len; i++) { 1933 while (rem == 0) { 1934 md = md->m_next; 1935 if (md == NULL) { 1936 error = EBADRPC; 1937 goto out; 1938 } 1939 fromcp = mtod(md, caddr_t); 1940 rem = md->m_len; 1941 } 1942 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) { 1943 error = EACCES; 1944 goto out; 1945 } 1946 *tocp++ = *fromcp++; 1947 rem--; 1948 } 1949 *tocp = '\0'; 1950 *mdp = md; 1951 *dposp = fromcp; 1952 len = nfsm_rndup(len)-len; 1953 if (len > 0) { 1954 if (rem >= len) 1955 *dposp += len; 1956 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0) 1957 goto out; 1958 } 1959 1960 /* 1961 * Extract and set starting directory. 1962 */ 1963 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp, 1964 nam, &rdonly, kerbflag, pubflag); 1965 if (error) 1966 goto out; 1967 if (dp->v_type != VDIR) { 1968 vrele(dp); 1969 error = ENOTDIR; 1970 goto out; 1971 } 1972 1973 if (rdonly) 1974 cnp->cn_flags |= RDONLY; 1975 1976 *retdirp = dp; 1977 1978 if (pubflag) { 1979 /* 1980 * Oh joy. For WebNFS, handle those pesky '%' escapes, 1981 * and the 'native path' indicator. 1982 */ 1983 cp = PNBUF_GET(); 1984 fromcp = cnp->cn_pnbuf; 1985 tocp = cp; 1986 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) { 1987 switch ((unsigned char)*fromcp) { 1988 case WEBNFS_NATIVE_CHAR: 1989 /* 1990 * 'Native' path for us is the same 1991 * as a path according to the NFS spec, 1992 * just skip the escape char. 1993 */ 1994 fromcp++; 1995 break; 1996 /* 1997 * More may be added in the future, range 0x80-0xff 1998 */ 1999 default: 2000 error = EIO; 2001 PNBUF_PUT(cp); 2002 goto out; 2003 } 2004 } 2005 /* 2006 * Translate the '%' escapes, URL-style. 2007 */ 2008 while (*fromcp != '\0') { 2009 if (*fromcp == WEBNFS_ESC_CHAR) { 2010 if (fromcp[1] != '\0' && fromcp[2] != '\0') { 2011 fromcp++; 2012 *tocp++ = HEXSTRTOI(fromcp); 2013 fromcp += 2; 2014 continue; 2015 } else { 2016 error = ENOENT; 2017 PNBUF_PUT(cp); 2018 goto out; 2019 } 2020 } else 2021 *tocp++ = *fromcp++; 2022 } 2023 *tocp = '\0'; 2024 PNBUF_PUT(cnp->cn_pnbuf); 2025 cnp->cn_pnbuf = cp; 2026 } 2027 2028 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1; 2029 ndp->ni_segflg = UIO_SYSSPACE; 2030 ndp->ni_rootdir = rootvnode; 2031 2032 if (pubflag) { 2033 ndp->ni_loopcnt = 0; 2034 if (cnp->cn_pnbuf[0] == '/') 2035 dp = rootvnode; 2036 } else { 2037 cnp->cn_flags |= NOCROSSMOUNT; 2038 } 2039 2040 cnp->cn_proc = p; 2041 VREF(dp); 2042 2043 for (;;) { 2044 cnp->cn_nameptr = cnp->cn_pnbuf; 2045 ndp->ni_startdir = dp; 2046 /* 2047 * And call lookup() to do the real work 2048 */ 2049 error = lookup(ndp); 2050 if (error) { 2051 PNBUF_PUT(cnp->cn_pnbuf); 2052 return (error); 2053 } 2054 /* 2055 * Check for encountering a symbolic link 2056 */ 2057 if ((cnp->cn_flags & ISSYMLINK) == 0) { 2058 if (cnp->cn_flags & (SAVENAME | SAVESTART)) 2059 cnp->cn_flags |= HASBUF; 2060 else 2061 PNBUF_PUT(cnp->cn_pnbuf); 2062 return (0); 2063 } else { 2064 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN)) 2065 VOP_UNLOCK(ndp->ni_dvp, 0); 2066 if (!pubflag) { 2067 error = EINVAL; 2068 break; 2069 } 2070 2071 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) { 2072 error = ELOOP; 2073 break; 2074 } 2075 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) { 2076 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred, 2077 cnp->cn_proc); 2078 if (error != 0) 2079 break; 2080 } 2081 if (ndp->ni_pathlen > 1) 2082 cp = PNBUF_GET(); 2083 else 2084 cp = cnp->cn_pnbuf; 2085 aiov.iov_base = cp; 2086 aiov.iov_len = MAXPATHLEN; 2087 auio.uio_iov = &aiov; 2088 auio.uio_iovcnt = 1; 2089 auio.uio_offset = 0; 2090 auio.uio_rw = UIO_READ; 2091 auio.uio_segflg = UIO_SYSSPACE; 2092 auio.uio_procp = (struct proc *)0; 2093 auio.uio_resid = MAXPATHLEN; 2094 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred); 2095 if (error) { 2096 badlink: 2097 if (ndp->ni_pathlen > 1) 2098 PNBUF_PUT(cp); 2099 break; 2100 } 2101 linklen = MAXPATHLEN - auio.uio_resid; 2102 if (linklen == 0) { 2103 error = ENOENT; 2104 goto badlink; 2105 } 2106 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) { 2107 error = ENAMETOOLONG; 2108 goto badlink; 2109 } 2110 if (ndp->ni_pathlen > 1) { 2111 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen); 2112 PNBUF_PUT(cnp->cn_pnbuf); 2113 cnp->cn_pnbuf = cp; 2114 } else 2115 cnp->cn_pnbuf[linklen] = '\0'; 2116 ndp->ni_pathlen += linklen; 2117 vput(ndp->ni_vp); 2118 dp = ndp->ni_dvp; 2119 /* 2120 * Check if root directory should replace current directory. 2121 */ 2122 if (cnp->cn_pnbuf[0] == '/') { 2123 vrele(dp); 2124 dp = ndp->ni_rootdir; 2125 VREF(dp); 2126 } 2127 } 2128 } 2129 vrele(ndp->ni_dvp); 2130 vput(ndp->ni_vp); 2131 ndp->ni_vp = NULL; 2132 out: 2133 PNBUF_PUT(cnp->cn_pnbuf); 2134 return (error); 2135 } 2136 2137 /* 2138 * A fiddled version of m_adj() that ensures null fill to a 32-bit 2139 * boundary and only trims off the back end 2140 * 2141 * 1. trim off 'len' bytes as m_adj(mp, -len). 2142 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain. 2143 */ 2144 void 2145 nfs_zeropad(mp, len, nul) 2146 struct mbuf *mp; 2147 int len; 2148 int nul; 2149 { 2150 struct mbuf *m; 2151 int count, i; 2152 char *cp; 2153 2154 /* 2155 * Trim from tail. Scan the mbuf chain, 2156 * calculating its length and finding the last mbuf. 2157 * If the adjustment only affects this mbuf, then just 2158 * adjust and return. Otherwise, rescan and truncate 2159 * after the remaining size. 2160 */ 2161 count = 0; 2162 m = mp; 2163 for (;;) { 2164 count += m->m_len; 2165 if (m->m_next == NULL) 2166 break; 2167 m = m->m_next; 2168 } 2169 2170 KDASSERT(count >= len); 2171 2172 if (m->m_len >= len) { 2173 m->m_len -= len; 2174 } else { 2175 count -= len; 2176 /* 2177 * Correct length for chain is "count". 2178 * Find the mbuf with last data, adjust its length, 2179 * and toss data from remaining mbufs on chain. 2180 */ 2181 for (m = mp; m; m = m->m_next) { 2182 if (m->m_len >= count) { 2183 m->m_len = count; 2184 break; 2185 } 2186 count -= m->m_len; 2187 } 2188 m_freem(m->m_next); 2189 m->m_next = NULL; 2190 } 2191 2192 /* 2193 * zero-padding. 2194 */ 2195 if (nul > 0) { 2196 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) { 2197 struct mbuf *n; 2198 2199 KDASSERT(MLEN >= nul); 2200 n = m_get(M_WAIT, MT_DATA); 2201 MCLAIM(n, &nfs_mowner); 2202 n->m_len = nul; 2203 n->m_next = m->m_next; 2204 m->m_next = n; 2205 m = n; 2206 cp = mtod(n, caddr_t); 2207 } else { 2208 cp = mtod(m, caddr_t) + m->m_len; 2209 m->m_len += nul; 2210 } 2211 for (i = 0; i < nul; i++) 2212 *cp++ = '\0'; 2213 } 2214 return; 2215 } 2216 2217 /* 2218 * Make these functions instead of macros, so that the kernel text size 2219 * doesn't get too big... 2220 */ 2221 void 2222 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp) 2223 struct nfsrv_descript *nfsd; 2224 int before_ret; 2225 struct vattr *before_vap; 2226 int after_ret; 2227 struct vattr *after_vap; 2228 struct mbuf **mbp; 2229 char **bposp; 2230 { 2231 struct mbuf *mb = *mbp; 2232 char *bpos = *bposp; 2233 u_int32_t *tl; 2234 2235 if (before_ret) { 2236 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2237 *tl = nfs_false; 2238 } else { 2239 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 2240 *tl++ = nfs_true; 2241 txdr_hyper(before_vap->va_size, tl); 2242 tl += 2; 2243 txdr_nfsv3time(&(before_vap->va_mtime), tl); 2244 tl += 2; 2245 txdr_nfsv3time(&(before_vap->va_ctime), tl); 2246 } 2247 *bposp = bpos; 2248 *mbp = mb; 2249 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 2250 } 2251 2252 void 2253 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp) 2254 struct nfsrv_descript *nfsd; 2255 int after_ret; 2256 struct vattr *after_vap; 2257 struct mbuf **mbp; 2258 char **bposp; 2259 { 2260 struct mbuf *mb = *mbp; 2261 char *bpos = *bposp; 2262 u_int32_t *tl; 2263 struct nfs_fattr *fp; 2264 2265 if (after_ret) { 2266 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2267 *tl = nfs_false; 2268 } else { 2269 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 2270 *tl++ = nfs_true; 2271 fp = (struct nfs_fattr *)tl; 2272 nfsm_srvfattr(nfsd, after_vap, fp); 2273 } 2274 *mbp = mb; 2275 *bposp = bpos; 2276 } 2277 2278 void 2279 nfsm_srvfattr(nfsd, vap, fp) 2280 struct nfsrv_descript *nfsd; 2281 struct vattr *vap; 2282 struct nfs_fattr *fp; 2283 { 2284 2285 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 2286 fp->fa_uid = txdr_unsigned(vap->va_uid); 2287 fp->fa_gid = txdr_unsigned(vap->va_gid); 2288 if (nfsd->nd_flag & ND_NFSV3) { 2289 fp->fa_type = vtonfsv3_type(vap->va_type); 2290 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 2291 txdr_hyper(vap->va_size, &fp->fa3_size); 2292 txdr_hyper(vap->va_bytes, &fp->fa3_used); 2293 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 2294 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 2295 fp->fa3_fsid.nfsuquad[0] = 0; 2296 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 2297 fp->fa3_fileid.nfsuquad[0] = 0; 2298 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid); 2299 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 2300 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 2301 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 2302 } else { 2303 fp->fa_type = vtonfsv2_type(vap->va_type); 2304 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 2305 fp->fa2_size = txdr_unsigned(vap->va_size); 2306 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 2307 if (vap->va_type == VFIFO) 2308 fp->fa2_rdev = 0xffffffff; 2309 else 2310 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 2311 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 2312 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 2313 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 2314 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 2315 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 2316 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 2317 } 2318 } 2319 2320 /* 2321 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) 2322 * - look up fsid in mount list (if not found ret error) 2323 * - get vp and export rights by calling VFS_FHTOVP() 2324 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon 2325 * - if not lockflag unlock it with VOP_UNLOCK() 2326 */ 2327 int 2328 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag) 2329 fhandle_t *fhp; 2330 int lockflag; 2331 struct vnode **vpp; 2332 struct ucred *cred; 2333 struct nfssvc_sock *slp; 2334 struct mbuf *nam; 2335 int *rdonlyp; 2336 int kerbflag; 2337 { 2338 struct mount *mp; 2339 int i; 2340 struct ucred *credanon; 2341 int error, exflags; 2342 struct sockaddr_in *saddr; 2343 2344 *vpp = (struct vnode *)0; 2345 2346 if (nfs_ispublicfh(fhp)) { 2347 if (!pubflag || !nfs_pub.np_valid) 2348 return (ESTALE); 2349 fhp = &nfs_pub.np_handle; 2350 } 2351 2352 mp = vfs_getvfs(&fhp->fh_fsid); 2353 if (!mp) 2354 return (ESTALE); 2355 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon); 2356 if (error) 2357 return (error); 2358 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp); 2359 if (error) 2360 return (error); 2361 2362 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) { 2363 saddr = mtod(nam, struct sockaddr_in *); 2364 if ((saddr->sin_family == AF_INET) && 2365 ntohs(saddr->sin_port) >= IPPORT_RESERVED) { 2366 vput(*vpp); 2367 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2368 } 2369 #ifdef INET6 2370 if ((saddr->sin_family == AF_INET6) && 2371 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) { 2372 vput(*vpp); 2373 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2374 } 2375 #endif 2376 } 2377 /* 2378 * Check/setup credentials. 2379 */ 2380 if (exflags & MNT_EXKERB) { 2381 if (!kerbflag) { 2382 vput(*vpp); 2383 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2384 } 2385 } else if (kerbflag) { 2386 vput(*vpp); 2387 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2388 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { 2389 cred->cr_uid = credanon->cr_uid; 2390 cred->cr_gid = credanon->cr_gid; 2391 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++) 2392 cred->cr_groups[i] = credanon->cr_groups[i]; 2393 cred->cr_ngroups = i; 2394 } 2395 if (exflags & MNT_EXRDONLY) 2396 *rdonlyp = 1; 2397 else 2398 *rdonlyp = 0; 2399 if (!lockflag) 2400 VOP_UNLOCK(*vpp, 0); 2401 return (0); 2402 } 2403 2404 /* 2405 * WebNFS: check if a filehandle is a public filehandle. For v3, this 2406 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has 2407 * transformed this to all zeroes in both cases, so check for it. 2408 */ 2409 int 2410 nfs_ispublicfh(fhp) 2411 fhandle_t *fhp; 2412 { 2413 char *cp = (char *)fhp; 2414 int i; 2415 2416 for (i = 0; i < NFSX_V3FH; i++) 2417 if (*cp++ != 0) 2418 return (FALSE); 2419 return (TRUE); 2420 } 2421 2422 /* 2423 * This function compares two net addresses by family and returns TRUE 2424 * if they are the same host. 2425 * If there is any doubt, return FALSE. 2426 * The AF_INET family is handled as a special case so that address mbufs 2427 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 2428 */ 2429 int 2430 netaddr_match(family, haddr, nam) 2431 int family; 2432 union nethostaddr *haddr; 2433 struct mbuf *nam; 2434 { 2435 struct sockaddr_in *inetaddr; 2436 2437 switch (family) { 2438 case AF_INET: 2439 inetaddr = mtod(nam, struct sockaddr_in *); 2440 if (inetaddr->sin_family == AF_INET && 2441 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 2442 return (1); 2443 break; 2444 #ifdef INET6 2445 case AF_INET6: 2446 { 2447 struct sockaddr_in6 *sin6_1, *sin6_2; 2448 2449 sin6_1 = mtod(nam, struct sockaddr_in6 *); 2450 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 2451 if (sin6_1->sin6_family == AF_INET6 && 2452 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 2453 return 1; 2454 } 2455 #endif 2456 #ifdef ISO 2457 case AF_ISO: 2458 { 2459 struct sockaddr_iso *isoaddr1, *isoaddr2; 2460 2461 isoaddr1 = mtod(nam, struct sockaddr_iso *); 2462 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); 2463 if (isoaddr1->siso_family == AF_ISO && 2464 isoaddr1->siso_nlen > 0 && 2465 isoaddr1->siso_nlen == isoaddr2->siso_nlen && 2466 SAME_ISOADDR(isoaddr1, isoaddr2)) 2467 return (1); 2468 break; 2469 } 2470 #endif /* ISO */ 2471 default: 2472 break; 2473 }; 2474 return (0); 2475 } 2476 2477 /* 2478 * The write verifier has changed (probably due to a server reboot), so all 2479 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 2480 * as dirty or are being written out just now, all this takes is clearing 2481 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 2482 * the mount point. 2483 */ 2484 void 2485 nfs_clearcommit(mp) 2486 struct mount *mp; 2487 { 2488 struct vnode *vp; 2489 struct nfsnode *np; 2490 struct vm_page *pg; 2491 struct nfsmount *nmp = VFSTONFS(mp); 2492 2493 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL); 2494 2495 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 2496 KASSERT(vp->v_mount == mp); 2497 if (vp->v_type == VNON) 2498 continue; 2499 np = VTONFS(vp); 2500 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 2501 np->n_pushedhi = 0; 2502 np->n_commitflags &= 2503 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 2504 simple_lock(&vp->v_uobj.vmobjlock); 2505 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) { 2506 pg->flags &= ~PG_NEEDCOMMIT; 2507 } 2508 simple_unlock(&vp->v_uobj.vmobjlock); 2509 } 2510 simple_lock(&nmp->nm_slock); 2511 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 2512 simple_unlock(&nmp->nm_slock); 2513 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 2514 } 2515 2516 void 2517 nfs_merge_commit_ranges(vp) 2518 struct vnode *vp; 2519 { 2520 struct nfsnode *np = VTONFS(vp); 2521 2522 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 2523 2524 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2525 np->n_pushedlo = np->n_pushlo; 2526 np->n_pushedhi = np->n_pushhi; 2527 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2528 } else { 2529 if (np->n_pushlo < np->n_pushedlo) 2530 np->n_pushedlo = np->n_pushlo; 2531 if (np->n_pushhi > np->n_pushedhi) 2532 np->n_pushedhi = np->n_pushhi; 2533 } 2534 2535 np->n_pushlo = np->n_pushhi = 0; 2536 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 2537 2538 #ifdef NFS_DEBUG_COMMIT 2539 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2540 (unsigned)np->n_pushedhi); 2541 #endif 2542 } 2543 2544 int 2545 nfs_in_committed_range(vp, off, len) 2546 struct vnode *vp; 2547 off_t off, len; 2548 { 2549 struct nfsnode *np = VTONFS(vp); 2550 off_t lo, hi; 2551 2552 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2553 return 0; 2554 lo = off; 2555 hi = lo + len; 2556 2557 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 2558 } 2559 2560 int 2561 nfs_in_tobecommitted_range(vp, off, len) 2562 struct vnode *vp; 2563 off_t off, len; 2564 { 2565 struct nfsnode *np = VTONFS(vp); 2566 off_t lo, hi; 2567 2568 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2569 return 0; 2570 lo = off; 2571 hi = lo + len; 2572 2573 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 2574 } 2575 2576 void 2577 nfs_add_committed_range(vp, off, len) 2578 struct vnode *vp; 2579 off_t off, len; 2580 { 2581 struct nfsnode *np = VTONFS(vp); 2582 off_t lo, hi; 2583 2584 lo = off; 2585 hi = lo + len; 2586 2587 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2588 np->n_pushedlo = lo; 2589 np->n_pushedhi = hi; 2590 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2591 } else { 2592 if (hi > np->n_pushedhi) 2593 np->n_pushedhi = hi; 2594 if (lo < np->n_pushedlo) 2595 np->n_pushedlo = lo; 2596 } 2597 #ifdef NFS_DEBUG_COMMIT 2598 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2599 (unsigned)np->n_pushedhi); 2600 #endif 2601 } 2602 2603 void 2604 nfs_del_committed_range(vp, off, len) 2605 struct vnode *vp; 2606 off_t off, len; 2607 { 2608 struct nfsnode *np = VTONFS(vp); 2609 off_t lo, hi; 2610 2611 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2612 return; 2613 2614 lo = off; 2615 hi = lo + len; 2616 2617 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 2618 return; 2619 if (lo <= np->n_pushedlo) 2620 np->n_pushedlo = hi; 2621 else if (hi >= np->n_pushedhi) 2622 np->n_pushedhi = lo; 2623 else { 2624 /* 2625 * XXX There's only one range. If the deleted range 2626 * is in the middle, pick the largest of the 2627 * contiguous ranges that it leaves. 2628 */ 2629 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 2630 np->n_pushedhi = lo; 2631 else 2632 np->n_pushedlo = hi; 2633 } 2634 #ifdef NFS_DEBUG_COMMIT 2635 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2636 (unsigned)np->n_pushedhi); 2637 #endif 2638 } 2639 2640 void 2641 nfs_add_tobecommitted_range(vp, off, len) 2642 struct vnode *vp; 2643 off_t off, len; 2644 { 2645 struct nfsnode *np = VTONFS(vp); 2646 off_t lo, hi; 2647 2648 lo = off; 2649 hi = lo + len; 2650 2651 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 2652 np->n_pushlo = lo; 2653 np->n_pushhi = hi; 2654 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 2655 } else { 2656 if (lo < np->n_pushlo) 2657 np->n_pushlo = lo; 2658 if (hi > np->n_pushhi) 2659 np->n_pushhi = hi; 2660 } 2661 #ifdef NFS_DEBUG_COMMIT 2662 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2663 (unsigned)np->n_pushhi); 2664 #endif 2665 } 2666 2667 void 2668 nfs_del_tobecommitted_range(vp, off, len) 2669 struct vnode *vp; 2670 off_t off, len; 2671 { 2672 struct nfsnode *np = VTONFS(vp); 2673 off_t lo, hi; 2674 2675 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2676 return; 2677 2678 lo = off; 2679 hi = lo + len; 2680 2681 if (lo > np->n_pushhi || hi < np->n_pushlo) 2682 return; 2683 2684 if (lo <= np->n_pushlo) 2685 np->n_pushlo = hi; 2686 else if (hi >= np->n_pushhi) 2687 np->n_pushhi = lo; 2688 else { 2689 /* 2690 * XXX There's only one range. If the deleted range 2691 * is in the middle, pick the largest of the 2692 * contiguous ranges that it leaves. 2693 */ 2694 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 2695 np->n_pushhi = lo; 2696 else 2697 np->n_pushlo = hi; 2698 } 2699 #ifdef NFS_DEBUG_COMMIT 2700 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2701 (unsigned)np->n_pushhi); 2702 #endif 2703 } 2704 2705 /* 2706 * Map errnos to NFS error numbers. For Version 3 also filter out error 2707 * numbers not specified for the associated procedure. 2708 */ 2709 int 2710 nfsrv_errmap(nd, err) 2711 struct nfsrv_descript *nd; 2712 int err; 2713 { 2714 const short *defaulterrp, *errp; 2715 2716 if (nd->nd_flag & ND_NFSV3) { 2717 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2718 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2719 while (*++errp) { 2720 if (*errp == err) 2721 return (err); 2722 else if (*errp > err) 2723 break; 2724 } 2725 return ((int)*defaulterrp); 2726 } else 2727 return (err & 0xffff); 2728 } 2729 if (err <= ELAST) 2730 return ((int)nfsrv_v2errmap[err - 1]); 2731 return (NFSERR_IO); 2732 } 2733 2734 /* 2735 * Sort the group list in increasing numerical order. 2736 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort 2737 * that used to be here.) 2738 */ 2739 void 2740 nfsrvw_sort(list, num) 2741 gid_t *list; 2742 int num; 2743 { 2744 int i, j; 2745 gid_t v; 2746 2747 /* Insertion sort. */ 2748 for (i = 1; i < num; i++) { 2749 v = list[i]; 2750 /* find correct slot for value v, moving others up */ 2751 for (j = i; --j >= 0 && v < list[j];) 2752 list[j + 1] = list[j]; 2753 list[j + 1] = v; 2754 } 2755 } 2756 2757 /* 2758 * copy credentials making sure that the result can be compared with memcmp(). 2759 */ 2760 void 2761 nfsrv_setcred(incred, outcred) 2762 struct ucred *incred, *outcred; 2763 { 2764 int i; 2765 2766 memset((caddr_t)outcred, 0, sizeof (struct ucred)); 2767 outcred->cr_ref = 1; 2768 outcred->cr_uid = incred->cr_uid; 2769 outcred->cr_gid = incred->cr_gid; 2770 outcred->cr_ngroups = incred->cr_ngroups; 2771 for (i = 0; i < incred->cr_ngroups; i++) 2772 outcred->cr_groups[i] = incred->cr_groups[i]; 2773 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups); 2774 } 2775