1 /* $NetBSD: nfs_subs.c,v 1.130 2003/11/29 19:31:13 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 35 */ 36 37 /* 38 * Copyright 2000 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Frank van der Linden for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.130 2003/11/29 19:31:13 yamt Exp $"); 74 75 #include "fs_nfs.h" 76 #include "opt_nfs.h" 77 #include "opt_nfsserver.h" 78 #include "opt_iso.h" 79 #include "opt_inet.h" 80 81 /* 82 * These functions support the macros and help fiddle mbuf chains for 83 * the nfs op functions. They do things like create the rpc header and 84 * copy data between mbuf chains and uio lists. 85 */ 86 #include <sys/param.h> 87 #include <sys/proc.h> 88 #include <sys/systm.h> 89 #include <sys/kernel.h> 90 #include <sys/mount.h> 91 #include <sys/vnode.h> 92 #include <sys/namei.h> 93 #include <sys/mbuf.h> 94 #include <sys/socket.h> 95 #include <sys/stat.h> 96 #include <sys/malloc.h> 97 #include <sys/filedesc.h> 98 #include <sys/time.h> 99 #include <sys/dirent.h> 100 101 #include <uvm/uvm_extern.h> 102 103 #include <nfs/rpcv2.h> 104 #include <nfs/nfsproto.h> 105 #include <nfs/nfsnode.h> 106 #include <nfs/nfs.h> 107 #include <nfs/xdr_subs.h> 108 #include <nfs/nfsm_subs.h> 109 #include <nfs/nfsmount.h> 110 #include <nfs/nqnfs.h> 111 #include <nfs/nfsrtt.h> 112 #include <nfs/nfs_var.h> 113 114 #include <miscfs/specfs/specdev.h> 115 116 #include <netinet/in.h> 117 #ifdef ISO 118 #include <netiso/iso.h> 119 #endif 120 121 /* 122 * Data items converted to xdr at startup, since they are constant 123 * This is kinda hokey, but may save a little time doing byte swaps 124 */ 125 u_int32_t nfs_xdrneg1; 126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 128 rpc_auth_kerb; 129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false; 130 131 /* And other global data */ 132 const nfstype nfsv2_type[9] = 133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 134 const nfstype nfsv3_type[9] = 135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 136 const enum vtype nv2tov_type[8] = 137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 138 const enum vtype nv3tov_type[8] = 139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 140 int nfs_ticks; 141 int nfs_commitsize; 142 143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies"); 144 145 /* NFS client/server stats. */ 146 struct nfsstats nfsstats; 147 148 /* 149 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 150 */ 151 const int nfsv3_procid[NFS_NPROCS] = { 152 NFSPROC_NULL, 153 NFSPROC_GETATTR, 154 NFSPROC_SETATTR, 155 NFSPROC_NOOP, 156 NFSPROC_LOOKUP, 157 NFSPROC_READLINK, 158 NFSPROC_READ, 159 NFSPROC_NOOP, 160 NFSPROC_WRITE, 161 NFSPROC_CREATE, 162 NFSPROC_REMOVE, 163 NFSPROC_RENAME, 164 NFSPROC_LINK, 165 NFSPROC_SYMLINK, 166 NFSPROC_MKDIR, 167 NFSPROC_RMDIR, 168 NFSPROC_READDIR, 169 NFSPROC_FSSTAT, 170 NFSPROC_NOOP, 171 NFSPROC_NOOP, 172 NFSPROC_NOOP, 173 NFSPROC_NOOP, 174 NFSPROC_NOOP, 175 NFSPROC_NOOP, 176 NFSPROC_NOOP, 177 NFSPROC_NOOP 178 }; 179 180 /* 181 * and the reverse mapping from generic to Version 2 procedure numbers 182 */ 183 const int nfsv2_procid[NFS_NPROCS] = { 184 NFSV2PROC_NULL, 185 NFSV2PROC_GETATTR, 186 NFSV2PROC_SETATTR, 187 NFSV2PROC_LOOKUP, 188 NFSV2PROC_NOOP, 189 NFSV2PROC_READLINK, 190 NFSV2PROC_READ, 191 NFSV2PROC_WRITE, 192 NFSV2PROC_CREATE, 193 NFSV2PROC_MKDIR, 194 NFSV2PROC_SYMLINK, 195 NFSV2PROC_CREATE, 196 NFSV2PROC_REMOVE, 197 NFSV2PROC_RMDIR, 198 NFSV2PROC_RENAME, 199 NFSV2PROC_LINK, 200 NFSV2PROC_READDIR, 201 NFSV2PROC_NOOP, 202 NFSV2PROC_STATFS, 203 NFSV2PROC_NOOP, 204 NFSV2PROC_NOOP, 205 NFSV2PROC_NOOP, 206 NFSV2PROC_NOOP, 207 NFSV2PROC_NOOP, 208 NFSV2PROC_NOOP, 209 NFSV2PROC_NOOP, 210 }; 211 212 /* 213 * Maps errno values to nfs error numbers. 214 * Use NFSERR_IO as the catch all for ones not specifically defined in 215 * RFC 1094. 216 */ 217 static const u_char nfsrv_v2errmap[ELAST] = { 218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 234 NFSERR_IO, NFSERR_IO, 235 }; 236 237 /* 238 * Maps errno values to nfs error numbers. 239 * Although it is not obvious whether or not NFS clients really care if 240 * a returned error value is in the specified list for the procedure, the 241 * safest thing to do is filter them appropriately. For Version 2, the 242 * X/Open XNFS document is the only specification that defines error values 243 * for each RPC (The RFC simply lists all possible error values for all RPCs), 244 * so I have decided to not do this for Version 2. 245 * The first entry is the default error return and the rest are the valid 246 * errors for that RPC in increasing numeric order. 247 */ 248 static const short nfsv3err_null[] = { 249 0, 250 0, 251 }; 252 253 static const short nfsv3err_getattr[] = { 254 NFSERR_IO, 255 NFSERR_IO, 256 NFSERR_STALE, 257 NFSERR_BADHANDLE, 258 NFSERR_SERVERFAULT, 259 0, 260 }; 261 262 static const short nfsv3err_setattr[] = { 263 NFSERR_IO, 264 NFSERR_PERM, 265 NFSERR_IO, 266 NFSERR_ACCES, 267 NFSERR_INVAL, 268 NFSERR_NOSPC, 269 NFSERR_ROFS, 270 NFSERR_DQUOT, 271 NFSERR_STALE, 272 NFSERR_BADHANDLE, 273 NFSERR_NOT_SYNC, 274 NFSERR_SERVERFAULT, 275 0, 276 }; 277 278 static const short nfsv3err_lookup[] = { 279 NFSERR_IO, 280 NFSERR_NOENT, 281 NFSERR_IO, 282 NFSERR_ACCES, 283 NFSERR_NOTDIR, 284 NFSERR_NAMETOL, 285 NFSERR_STALE, 286 NFSERR_BADHANDLE, 287 NFSERR_SERVERFAULT, 288 0, 289 }; 290 291 static const short nfsv3err_access[] = { 292 NFSERR_IO, 293 NFSERR_IO, 294 NFSERR_STALE, 295 NFSERR_BADHANDLE, 296 NFSERR_SERVERFAULT, 297 0, 298 }; 299 300 static const short nfsv3err_readlink[] = { 301 NFSERR_IO, 302 NFSERR_IO, 303 NFSERR_ACCES, 304 NFSERR_INVAL, 305 NFSERR_STALE, 306 NFSERR_BADHANDLE, 307 NFSERR_NOTSUPP, 308 NFSERR_SERVERFAULT, 309 0, 310 }; 311 312 static const short nfsv3err_read[] = { 313 NFSERR_IO, 314 NFSERR_IO, 315 NFSERR_NXIO, 316 NFSERR_ACCES, 317 NFSERR_INVAL, 318 NFSERR_STALE, 319 NFSERR_BADHANDLE, 320 NFSERR_SERVERFAULT, 321 NFSERR_JUKEBOX, 322 0, 323 }; 324 325 static const short nfsv3err_write[] = { 326 NFSERR_IO, 327 NFSERR_IO, 328 NFSERR_ACCES, 329 NFSERR_INVAL, 330 NFSERR_FBIG, 331 NFSERR_NOSPC, 332 NFSERR_ROFS, 333 NFSERR_DQUOT, 334 NFSERR_STALE, 335 NFSERR_BADHANDLE, 336 NFSERR_SERVERFAULT, 337 NFSERR_JUKEBOX, 338 0, 339 }; 340 341 static const short nfsv3err_create[] = { 342 NFSERR_IO, 343 NFSERR_IO, 344 NFSERR_ACCES, 345 NFSERR_EXIST, 346 NFSERR_NOTDIR, 347 NFSERR_NOSPC, 348 NFSERR_ROFS, 349 NFSERR_NAMETOL, 350 NFSERR_DQUOT, 351 NFSERR_STALE, 352 NFSERR_BADHANDLE, 353 NFSERR_NOTSUPP, 354 NFSERR_SERVERFAULT, 355 0, 356 }; 357 358 static const short nfsv3err_mkdir[] = { 359 NFSERR_IO, 360 NFSERR_IO, 361 NFSERR_ACCES, 362 NFSERR_EXIST, 363 NFSERR_NOTDIR, 364 NFSERR_NOSPC, 365 NFSERR_ROFS, 366 NFSERR_NAMETOL, 367 NFSERR_DQUOT, 368 NFSERR_STALE, 369 NFSERR_BADHANDLE, 370 NFSERR_NOTSUPP, 371 NFSERR_SERVERFAULT, 372 0, 373 }; 374 375 static const short nfsv3err_symlink[] = { 376 NFSERR_IO, 377 NFSERR_IO, 378 NFSERR_ACCES, 379 NFSERR_EXIST, 380 NFSERR_NOTDIR, 381 NFSERR_NOSPC, 382 NFSERR_ROFS, 383 NFSERR_NAMETOL, 384 NFSERR_DQUOT, 385 NFSERR_STALE, 386 NFSERR_BADHANDLE, 387 NFSERR_NOTSUPP, 388 NFSERR_SERVERFAULT, 389 0, 390 }; 391 392 static const short nfsv3err_mknod[] = { 393 NFSERR_IO, 394 NFSERR_IO, 395 NFSERR_ACCES, 396 NFSERR_EXIST, 397 NFSERR_NOTDIR, 398 NFSERR_NOSPC, 399 NFSERR_ROFS, 400 NFSERR_NAMETOL, 401 NFSERR_DQUOT, 402 NFSERR_STALE, 403 NFSERR_BADHANDLE, 404 NFSERR_NOTSUPP, 405 NFSERR_SERVERFAULT, 406 NFSERR_BADTYPE, 407 0, 408 }; 409 410 static const short nfsv3err_remove[] = { 411 NFSERR_IO, 412 NFSERR_NOENT, 413 NFSERR_IO, 414 NFSERR_ACCES, 415 NFSERR_NOTDIR, 416 NFSERR_ROFS, 417 NFSERR_NAMETOL, 418 NFSERR_STALE, 419 NFSERR_BADHANDLE, 420 NFSERR_SERVERFAULT, 421 0, 422 }; 423 424 static const short nfsv3err_rmdir[] = { 425 NFSERR_IO, 426 NFSERR_NOENT, 427 NFSERR_IO, 428 NFSERR_ACCES, 429 NFSERR_EXIST, 430 NFSERR_NOTDIR, 431 NFSERR_INVAL, 432 NFSERR_ROFS, 433 NFSERR_NAMETOL, 434 NFSERR_NOTEMPTY, 435 NFSERR_STALE, 436 NFSERR_BADHANDLE, 437 NFSERR_NOTSUPP, 438 NFSERR_SERVERFAULT, 439 0, 440 }; 441 442 static const short nfsv3err_rename[] = { 443 NFSERR_IO, 444 NFSERR_NOENT, 445 NFSERR_IO, 446 NFSERR_ACCES, 447 NFSERR_EXIST, 448 NFSERR_XDEV, 449 NFSERR_NOTDIR, 450 NFSERR_ISDIR, 451 NFSERR_INVAL, 452 NFSERR_NOSPC, 453 NFSERR_ROFS, 454 NFSERR_MLINK, 455 NFSERR_NAMETOL, 456 NFSERR_NOTEMPTY, 457 NFSERR_DQUOT, 458 NFSERR_STALE, 459 NFSERR_BADHANDLE, 460 NFSERR_NOTSUPP, 461 NFSERR_SERVERFAULT, 462 0, 463 }; 464 465 static const short nfsv3err_link[] = { 466 NFSERR_IO, 467 NFSERR_IO, 468 NFSERR_ACCES, 469 NFSERR_EXIST, 470 NFSERR_XDEV, 471 NFSERR_NOTDIR, 472 NFSERR_INVAL, 473 NFSERR_NOSPC, 474 NFSERR_ROFS, 475 NFSERR_MLINK, 476 NFSERR_NAMETOL, 477 NFSERR_DQUOT, 478 NFSERR_STALE, 479 NFSERR_BADHANDLE, 480 NFSERR_NOTSUPP, 481 NFSERR_SERVERFAULT, 482 0, 483 }; 484 485 static const short nfsv3err_readdir[] = { 486 NFSERR_IO, 487 NFSERR_IO, 488 NFSERR_ACCES, 489 NFSERR_NOTDIR, 490 NFSERR_STALE, 491 NFSERR_BADHANDLE, 492 NFSERR_BAD_COOKIE, 493 NFSERR_TOOSMALL, 494 NFSERR_SERVERFAULT, 495 0, 496 }; 497 498 static const short nfsv3err_readdirplus[] = { 499 NFSERR_IO, 500 NFSERR_IO, 501 NFSERR_ACCES, 502 NFSERR_NOTDIR, 503 NFSERR_STALE, 504 NFSERR_BADHANDLE, 505 NFSERR_BAD_COOKIE, 506 NFSERR_NOTSUPP, 507 NFSERR_TOOSMALL, 508 NFSERR_SERVERFAULT, 509 0, 510 }; 511 512 static const short nfsv3err_fsstat[] = { 513 NFSERR_IO, 514 NFSERR_IO, 515 NFSERR_STALE, 516 NFSERR_BADHANDLE, 517 NFSERR_SERVERFAULT, 518 0, 519 }; 520 521 static const short nfsv3err_fsinfo[] = { 522 NFSERR_STALE, 523 NFSERR_STALE, 524 NFSERR_BADHANDLE, 525 NFSERR_SERVERFAULT, 526 0, 527 }; 528 529 static const short nfsv3err_pathconf[] = { 530 NFSERR_STALE, 531 NFSERR_STALE, 532 NFSERR_BADHANDLE, 533 NFSERR_SERVERFAULT, 534 0, 535 }; 536 537 static const short nfsv3err_commit[] = { 538 NFSERR_IO, 539 NFSERR_IO, 540 NFSERR_STALE, 541 NFSERR_BADHANDLE, 542 NFSERR_SERVERFAULT, 543 0, 544 }; 545 546 static const short * const nfsrv_v3errmap[] = { 547 nfsv3err_null, 548 nfsv3err_getattr, 549 nfsv3err_setattr, 550 nfsv3err_lookup, 551 nfsv3err_access, 552 nfsv3err_readlink, 553 nfsv3err_read, 554 nfsv3err_write, 555 nfsv3err_create, 556 nfsv3err_mkdir, 557 nfsv3err_symlink, 558 nfsv3err_mknod, 559 nfsv3err_remove, 560 nfsv3err_rmdir, 561 nfsv3err_rename, 562 nfsv3err_link, 563 nfsv3err_readdir, 564 nfsv3err_readdirplus, 565 nfsv3err_fsstat, 566 nfsv3err_fsinfo, 567 nfsv3err_pathconf, 568 nfsv3err_commit, 569 }; 570 571 extern struct nfsrtt nfsrtt; 572 extern time_t nqnfsstarttime; 573 extern int nqsrv_clockskew; 574 extern int nqsrv_writeslack; 575 extern int nqsrv_maxlease; 576 extern const int nqnfs_piggy[NFS_NPROCS]; 577 extern struct nfsnodehashhead *nfsnodehashtbl; 578 extern u_long nfsnodehash; 579 580 u_long nfsdirhashmask; 581 582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *)); 583 584 /* 585 * Create the header for an rpc request packet 586 * The hsiz is the size of the rest of the nfs request header. 587 * (just used to decide if a cluster is a good idea) 588 */ 589 struct mbuf * 590 nfsm_reqh(np, procid, hsiz, bposp) 591 struct nfsnode *np; 592 u_long procid; 593 int hsiz; 594 caddr_t *bposp; 595 { 596 struct mbuf *mb; 597 caddr_t bpos; 598 #ifndef NFS_V2_ONLY 599 struct nfsmount *nmp; 600 u_int32_t *tl; 601 int nqflag; 602 #endif 603 604 mb = m_get(M_WAIT, MT_DATA); 605 MCLAIM(mb, &nfs_mowner); 606 if (hsiz >= MINCLSIZE) 607 m_clget(mb, M_WAIT); 608 mb->m_len = 0; 609 bpos = mtod(mb, caddr_t); 610 611 #ifndef NFS_V2_ONLY 612 /* 613 * For NQNFS, add lease request. 614 */ 615 if (np) { 616 nmp = VFSTONFS(np->n_vnode->v_mount); 617 if (nmp->nm_flag & NFSMNT_NQNFS) { 618 nqflag = NQNFS_NEEDLEASE(np, procid); 619 if (nqflag) { 620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED); 621 *tl++ = txdr_unsigned(nqflag); 622 *tl = txdr_unsigned(nmp->nm_leaseterm); 623 } else { 624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 625 *tl = 0; 626 } 627 } 628 } 629 #endif 630 /* Finally, return values */ 631 *bposp = bpos; 632 return (mb); 633 } 634 635 /* 636 * Build the RPC header and fill in the authorization info. 637 * The authorization string argument is only used when the credentials 638 * come from outside of the kernel. 639 * Returns the head of the mbuf list. 640 */ 641 struct mbuf * 642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len, 643 verf_str, mrest, mrest_len, mbp, xidp) 644 struct ucred *cr; 645 int nmflag; 646 int procid; 647 int auth_type; 648 int auth_len; 649 char *auth_str; 650 int verf_len; 651 char *verf_str; 652 struct mbuf *mrest; 653 int mrest_len; 654 struct mbuf **mbp; 655 u_int32_t *xidp; 656 { 657 struct mbuf *mb; 658 u_int32_t *tl; 659 caddr_t bpos; 660 int i; 661 struct mbuf *mreq; 662 int siz, grpsiz, authsiz; 663 664 authsiz = nfsm_rndup(auth_len); 665 mb = m_gethdr(M_WAIT, MT_DATA); 666 MCLAIM(mb, &nfs_mowner); 667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 668 m_clget(mb, M_WAIT); 669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 671 } else { 672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 673 } 674 mb->m_len = 0; 675 mreq = mb; 676 bpos = mtod(mb, caddr_t); 677 678 /* 679 * First the RPC header. 680 */ 681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 682 683 *tl++ = *xidp = nfs_getxid(); 684 *tl++ = rpc_call; 685 *tl++ = rpc_vers; 686 if (nmflag & NFSMNT_NQNFS) { 687 *tl++ = txdr_unsigned(NQNFS_PROG); 688 *tl++ = txdr_unsigned(NQNFS_VER3); 689 } else { 690 *tl++ = txdr_unsigned(NFS_PROG); 691 if (nmflag & NFSMNT_NFSV3) 692 *tl++ = txdr_unsigned(NFS_VER3); 693 else 694 *tl++ = txdr_unsigned(NFS_VER2); 695 } 696 if (nmflag & NFSMNT_NFSV3) 697 *tl++ = txdr_unsigned(procid); 698 else 699 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 700 701 /* 702 * And then the authorization cred. 703 */ 704 *tl++ = txdr_unsigned(auth_type); 705 *tl = txdr_unsigned(authsiz); 706 switch (auth_type) { 707 case RPCAUTH_UNIX: 708 nfsm_build(tl, u_int32_t *, auth_len); 709 *tl++ = 0; /* stamp ?? */ 710 *tl++ = 0; /* NULL hostname */ 711 *tl++ = txdr_unsigned(cr->cr_uid); 712 *tl++ = txdr_unsigned(cr->cr_gid); 713 grpsiz = (auth_len >> 2) - 5; 714 *tl++ = txdr_unsigned(grpsiz); 715 for (i = 0; i < grpsiz; i++) 716 *tl++ = txdr_unsigned(cr->cr_groups[i]); 717 break; 718 case RPCAUTH_KERB4: 719 siz = auth_len; 720 while (siz > 0) { 721 if (M_TRAILINGSPACE(mb) == 0) { 722 struct mbuf *mb2; 723 mb2 = m_get(M_WAIT, MT_DATA); 724 MCLAIM(mb2, &nfs_mowner); 725 if (siz >= MINCLSIZE) 726 m_clget(mb2, M_WAIT); 727 mb->m_next = mb2; 728 mb = mb2; 729 mb->m_len = 0; 730 bpos = mtod(mb, caddr_t); 731 } 732 i = min(siz, M_TRAILINGSPACE(mb)); 733 memcpy(bpos, auth_str, i); 734 mb->m_len += i; 735 auth_str += i; 736 bpos += i; 737 siz -= i; 738 } 739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 740 for (i = 0; i < siz; i++) 741 *bpos++ = '\0'; 742 mb->m_len += siz; 743 } 744 break; 745 }; 746 747 /* 748 * And the verifier... 749 */ 750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 751 if (verf_str) { 752 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 753 *tl = txdr_unsigned(verf_len); 754 siz = verf_len; 755 while (siz > 0) { 756 if (M_TRAILINGSPACE(mb) == 0) { 757 struct mbuf *mb2; 758 mb2 = m_get(M_WAIT, MT_DATA); 759 MCLAIM(mb2, &nfs_mowner); 760 if (siz >= MINCLSIZE) 761 m_clget(mb2, M_WAIT); 762 mb->m_next = mb2; 763 mb = mb2; 764 mb->m_len = 0; 765 bpos = mtod(mb, caddr_t); 766 } 767 i = min(siz, M_TRAILINGSPACE(mb)); 768 memcpy(bpos, verf_str, i); 769 mb->m_len += i; 770 verf_str += i; 771 bpos += i; 772 siz -= i; 773 } 774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 775 for (i = 0; i < siz; i++) 776 *bpos++ = '\0'; 777 mb->m_len += siz; 778 } 779 } else { 780 *tl++ = txdr_unsigned(RPCAUTH_NULL); 781 *tl = 0; 782 } 783 mb->m_next = mrest; 784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 785 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 786 *mbp = mb; 787 return (mreq); 788 } 789 790 /* 791 * copies mbuf chain to the uio scatter/gather list 792 */ 793 int 794 nfsm_mbuftouio(mrep, uiop, siz, dpos) 795 struct mbuf **mrep; 796 struct uio *uiop; 797 int siz; 798 caddr_t *dpos; 799 { 800 char *mbufcp, *uiocp; 801 int xfer, left, len; 802 struct mbuf *mp; 803 long uiosiz, rem; 804 int error = 0; 805 806 mp = *mrep; 807 mbufcp = *dpos; 808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp; 809 rem = nfsm_rndup(siz)-siz; 810 while (siz > 0) { 811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 812 return (EFBIG); 813 left = uiop->uio_iov->iov_len; 814 uiocp = uiop->uio_iov->iov_base; 815 if (left > siz) 816 left = siz; 817 uiosiz = left; 818 while (left > 0) { 819 while (len == 0) { 820 mp = mp->m_next; 821 if (mp == NULL) 822 return (EBADRPC); 823 mbufcp = mtod(mp, caddr_t); 824 len = mp->m_len; 825 } 826 xfer = (left > len) ? len : left; 827 #ifdef notdef 828 /* Not Yet.. */ 829 if (uiop->uio_iov->iov_op != NULL) 830 (*(uiop->uio_iov->iov_op)) 831 (mbufcp, uiocp, xfer); 832 else 833 #endif 834 if (uiop->uio_segflg == UIO_SYSSPACE) 835 memcpy(uiocp, mbufcp, xfer); 836 else 837 copyout(mbufcp, uiocp, xfer); 838 left -= xfer; 839 len -= xfer; 840 mbufcp += xfer; 841 uiocp += xfer; 842 uiop->uio_offset += xfer; 843 uiop->uio_resid -= xfer; 844 } 845 if (uiop->uio_iov->iov_len <= siz) { 846 uiop->uio_iovcnt--; 847 uiop->uio_iov++; 848 } else { 849 uiop->uio_iov->iov_base = 850 (caddr_t)uiop->uio_iov->iov_base + uiosiz; 851 uiop->uio_iov->iov_len -= uiosiz; 852 } 853 siz -= uiosiz; 854 } 855 *dpos = mbufcp; 856 *mrep = mp; 857 if (rem > 0) { 858 if (len < rem) 859 error = nfs_adv(mrep, dpos, rem, len); 860 else 861 *dpos += rem; 862 } 863 return (error); 864 } 865 866 /* 867 * copies a uio scatter/gather list to an mbuf chain. 868 * NOTE: can ony handle iovcnt == 1 869 */ 870 int 871 nfsm_uiotombuf(uiop, mq, siz, bpos) 872 struct uio *uiop; 873 struct mbuf **mq; 874 int siz; 875 caddr_t *bpos; 876 { 877 char *uiocp; 878 struct mbuf *mp, *mp2; 879 int xfer, left, mlen; 880 int uiosiz, clflg, rem; 881 char *cp; 882 883 #ifdef DIAGNOSTIC 884 if (uiop->uio_iovcnt != 1) 885 panic("nfsm_uiotombuf: iovcnt != 1"); 886 #endif 887 888 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 889 clflg = 1; 890 else 891 clflg = 0; 892 rem = nfsm_rndup(siz)-siz; 893 mp = mp2 = *mq; 894 while (siz > 0) { 895 left = uiop->uio_iov->iov_len; 896 uiocp = uiop->uio_iov->iov_base; 897 if (left > siz) 898 left = siz; 899 uiosiz = left; 900 while (left > 0) { 901 mlen = M_TRAILINGSPACE(mp); 902 if (mlen == 0) { 903 mp = m_get(M_WAIT, MT_DATA); 904 MCLAIM(mp, &nfs_mowner); 905 if (clflg) 906 m_clget(mp, M_WAIT); 907 mp->m_len = 0; 908 mp2->m_next = mp; 909 mp2 = mp; 910 mlen = M_TRAILINGSPACE(mp); 911 } 912 xfer = (left > mlen) ? mlen : left; 913 #ifdef notdef 914 /* Not Yet.. */ 915 if (uiop->uio_iov->iov_op != NULL) 916 (*(uiop->uio_iov->iov_op)) 917 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 918 else 919 #endif 920 if (uiop->uio_segflg == UIO_SYSSPACE) 921 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer); 922 else 923 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 924 mp->m_len += xfer; 925 left -= xfer; 926 uiocp += xfer; 927 uiop->uio_offset += xfer; 928 uiop->uio_resid -= xfer; 929 } 930 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base + 931 uiosiz; 932 uiop->uio_iov->iov_len -= uiosiz; 933 siz -= uiosiz; 934 } 935 if (rem > 0) { 936 if (rem > M_TRAILINGSPACE(mp)) { 937 mp = m_get(M_WAIT, MT_DATA); 938 MCLAIM(mp, &nfs_mowner); 939 mp->m_len = 0; 940 mp2->m_next = mp; 941 } 942 cp = mtod(mp, caddr_t)+mp->m_len; 943 for (left = 0; left < rem; left++) 944 *cp++ = '\0'; 945 mp->m_len += rem; 946 *bpos = cp; 947 } else 948 *bpos = mtod(mp, caddr_t)+mp->m_len; 949 *mq = mp; 950 return (0); 951 } 952 953 /* 954 * Get at least "siz" bytes of correctly aligned data. 955 * When called the mbuf pointers are not necessarily correct, 956 * dsosp points to what ought to be in m_data and left contains 957 * what ought to be in m_len. 958 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 959 * cases. (The macros use the vars. dpos and dpos2) 960 */ 961 int 962 nfsm_disct(mdp, dposp, siz, left, cp2) 963 struct mbuf **mdp; 964 caddr_t *dposp; 965 int siz; 966 int left; 967 caddr_t *cp2; 968 { 969 struct mbuf *m1, *m2; 970 struct mbuf *havebuf = NULL; 971 caddr_t src = *dposp; 972 caddr_t dst; 973 int len; 974 975 #ifdef DEBUG 976 if (left < 0) 977 panic("nfsm_disct: left < 0"); 978 #endif 979 m1 = *mdp; 980 /* 981 * Skip through the mbuf chain looking for an mbuf with 982 * some data. If the first mbuf found has enough data 983 * and it is correctly aligned return it. 984 */ 985 while (left == 0) { 986 havebuf = m1; 987 *mdp = m1 = m1->m_next; 988 if (m1 == NULL) 989 return (EBADRPC); 990 src = mtod(m1, caddr_t); 991 left = m1->m_len; 992 /* 993 * If we start a new mbuf and it is big enough 994 * and correctly aligned just return it, don't 995 * do any pull up. 996 */ 997 if (left >= siz && nfsm_aligned(src)) { 998 *cp2 = src; 999 *dposp = src + siz; 1000 return (0); 1001 } 1002 } 1003 if (m1->m_flags & M_EXT) { 1004 if (havebuf) { 1005 /* If the first mbuf with data has external data 1006 * and there is a previous empty mbuf use it 1007 * to move the data into. 1008 */ 1009 m2 = m1; 1010 *mdp = m1 = havebuf; 1011 if (m1->m_flags & M_EXT) { 1012 MEXTREMOVE(m1); 1013 } 1014 } else { 1015 /* 1016 * If the first mbuf has a external data 1017 * and there is no previous empty mbuf 1018 * allocate a new mbuf and move the external 1019 * data to the new mbuf. Also make the first 1020 * mbuf look empty. 1021 */ 1022 m2 = m_get(M_WAIT, MT_DATA); 1023 m2->m_ext = m1->m_ext; 1024 m2->m_data = src; 1025 m2->m_len = left; 1026 MCLADDREFERENCE(m1, m2); 1027 MEXTREMOVE(m1); 1028 m2->m_next = m1->m_next; 1029 m1->m_next = m2; 1030 } 1031 m1->m_len = 0; 1032 if (m1->m_flags & M_PKTHDR) 1033 dst = m1->m_pktdat; 1034 else 1035 dst = m1->m_dat; 1036 m1->m_data = dst; 1037 } else { 1038 /* 1039 * If the first mbuf has no external data 1040 * move the data to the front of the mbuf. 1041 */ 1042 if (m1->m_flags & M_PKTHDR) 1043 dst = m1->m_pktdat; 1044 else 1045 dst = m1->m_dat; 1046 m1->m_data = dst; 1047 if (dst != src) 1048 memmove(dst, src, left); 1049 dst += left; 1050 m1->m_len = left; 1051 m2 = m1->m_next; 1052 } 1053 *cp2 = m1->m_data; 1054 *dposp = mtod(m1, caddr_t) + siz; 1055 /* 1056 * Loop through mbufs pulling data up into first mbuf until 1057 * the first mbuf is full or there is no more data to 1058 * pullup. 1059 */ 1060 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) { 1061 if ((len = min(len, m2->m_len)) != 0) 1062 memcpy(dst, m2->m_data, len); 1063 m1->m_len += len; 1064 dst += len; 1065 m2->m_data += len; 1066 m2->m_len -= len; 1067 m2 = m2->m_next; 1068 } 1069 if (m1->m_len < siz) 1070 return (EBADRPC); 1071 return (0); 1072 } 1073 1074 /* 1075 * Advance the position in the mbuf chain. 1076 */ 1077 int 1078 nfs_adv(mdp, dposp, offs, left) 1079 struct mbuf **mdp; 1080 caddr_t *dposp; 1081 int offs; 1082 int left; 1083 { 1084 struct mbuf *m; 1085 int s; 1086 1087 m = *mdp; 1088 s = left; 1089 while (s < offs) { 1090 offs -= s; 1091 m = m->m_next; 1092 if (m == NULL) 1093 return (EBADRPC); 1094 s = m->m_len; 1095 } 1096 *mdp = m; 1097 *dposp = mtod(m, caddr_t)+offs; 1098 return (0); 1099 } 1100 1101 /* 1102 * Copy a string into mbufs for the hard cases... 1103 */ 1104 int 1105 nfsm_strtmbuf(mb, bpos, cp, siz) 1106 struct mbuf **mb; 1107 char **bpos; 1108 const char *cp; 1109 long siz; 1110 { 1111 struct mbuf *m1 = NULL, *m2; 1112 long left, xfer, len, tlen; 1113 u_int32_t *tl; 1114 int putsize; 1115 1116 putsize = 1; 1117 m2 = *mb; 1118 left = M_TRAILINGSPACE(m2); 1119 if (left > 0) { 1120 tl = ((u_int32_t *)(*bpos)); 1121 *tl++ = txdr_unsigned(siz); 1122 putsize = 0; 1123 left -= NFSX_UNSIGNED; 1124 m2->m_len += NFSX_UNSIGNED; 1125 if (left > 0) { 1126 memcpy((caddr_t) tl, cp, left); 1127 siz -= left; 1128 cp += left; 1129 m2->m_len += left; 1130 left = 0; 1131 } 1132 } 1133 /* Loop around adding mbufs */ 1134 while (siz > 0) { 1135 m1 = m_get(M_WAIT, MT_DATA); 1136 MCLAIM(m1, &nfs_mowner); 1137 if (siz > MLEN) 1138 m_clget(m1, M_WAIT); 1139 m1->m_len = NFSMSIZ(m1); 1140 m2->m_next = m1; 1141 m2 = m1; 1142 tl = mtod(m1, u_int32_t *); 1143 tlen = 0; 1144 if (putsize) { 1145 *tl++ = txdr_unsigned(siz); 1146 m1->m_len -= NFSX_UNSIGNED; 1147 tlen = NFSX_UNSIGNED; 1148 putsize = 0; 1149 } 1150 if (siz < m1->m_len) { 1151 len = nfsm_rndup(siz); 1152 xfer = siz; 1153 if (xfer < len) 1154 *(tl+(xfer>>2)) = 0; 1155 } else { 1156 xfer = len = m1->m_len; 1157 } 1158 memcpy((caddr_t) tl, cp, xfer); 1159 m1->m_len = len+tlen; 1160 siz -= xfer; 1161 cp += xfer; 1162 } 1163 *mb = m1; 1164 *bpos = mtod(m1, caddr_t)+m1->m_len; 1165 return (0); 1166 } 1167 1168 /* 1169 * Directory caching routines. They work as follows: 1170 * - a cache is maintained per VDIR nfsnode. 1171 * - for each offset cookie that is exported to userspace, and can 1172 * thus be thrown back at us as an offset to VOP_READDIR, store 1173 * information in the cache. 1174 * - cached are: 1175 * - cookie itself 1176 * - blocknumber (essentially just a search key in the buffer cache) 1177 * - entry number in block. 1178 * - offset cookie of block in which this entry is stored 1179 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1180 * - entries are looked up in a hash table 1181 * - also maintained is an LRU list of entries, used to determine 1182 * which ones to delete if the cache grows too large. 1183 * - if 32 <-> 64 translation mode is requested for a filesystem, 1184 * the cache also functions as a translation table 1185 * - in the translation case, invalidating the cache does not mean 1186 * flushing it, but just marking entries as invalid, except for 1187 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1188 * still be able to use the cache as a translation table. 1189 * - 32 bit cookies are uniquely created by combining the hash table 1190 * entry value, and one generation count per hash table entry, 1191 * incremented each time an entry is appended to the chain. 1192 * - the cache is invalidated each time a direcory is modified 1193 * - sanity checks are also done; if an entry in a block turns 1194 * out not to have a matching cookie, the cache is invalidated 1195 * and a new block starting from the wanted offset is fetched from 1196 * the server. 1197 * - directory entries as read from the server are extended to contain 1198 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1199 * the cache and exporting them to userspace through the cookie 1200 * argument to VOP_READDIR. 1201 */ 1202 1203 u_long 1204 nfs_dirhash(off) 1205 off_t off; 1206 { 1207 int i; 1208 char *cp = (char *)&off; 1209 u_long sum = 0L; 1210 1211 for (i = 0 ; i < sizeof (off); i++) 1212 sum += *cp++; 1213 1214 return sum; 1215 } 1216 1217 void 1218 nfs_initdircache(vp) 1219 struct vnode *vp; 1220 { 1221 struct nfsnode *np = VTONFS(vp); 1222 1223 KASSERT(np->n_dircache == NULL); 1224 1225 np->n_dircachesize = 0; 1226 np->n_dblkno = 1; 1227 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF, 1228 M_WAITOK, &nfsdirhashmask); 1229 TAILQ_INIT(&np->n_dirchain); 1230 } 1231 1232 void 1233 nfs_initdirxlatecookie(vp) 1234 struct vnode *vp; 1235 { 1236 struct nfsnode *np = VTONFS(vp); 1237 1238 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1239 KASSERT(np->n_dirgens == NULL); 1240 1241 MALLOC(np->n_dirgens, unsigned *, 1242 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, M_WAITOK); 1243 memset((caddr_t)np->n_dirgens, 0, NFS_DIRHASHSIZ * sizeof (unsigned)); 1244 } 1245 1246 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0}; 1247 1248 struct nfsdircache * 1249 nfs_searchdircache(vp, off, do32, hashent) 1250 struct vnode *vp; 1251 off_t off; 1252 int do32; 1253 int *hashent; 1254 { 1255 struct nfsdirhashhead *ndhp; 1256 struct nfsdircache *ndp = NULL; 1257 struct nfsnode *np = VTONFS(vp); 1258 unsigned ent; 1259 1260 /* 1261 * Zero is always a valid cookie. 1262 */ 1263 if (off == 0) 1264 return &dzero; 1265 1266 /* 1267 * We use a 32bit cookie as search key, directly reconstruct 1268 * the hashentry. Else use the hashfunction. 1269 */ 1270 if (do32) { 1271 ent = (u_int32_t)off >> 24; 1272 if (ent >= NFS_DIRHASHSIZ) 1273 return NULL; 1274 ndhp = &np->n_dircache[ent]; 1275 } else { 1276 ndhp = NFSDIRHASH(np, off); 1277 } 1278 1279 if (hashent) 1280 *hashent = (int)(ndhp - np->n_dircache); 1281 if (do32) { 1282 LIST_FOREACH(ndp, ndhp, dc_hash) { 1283 if (ndp->dc_cookie32 == (u_int32_t)off) { 1284 /* 1285 * An invalidated entry will become the 1286 * start of a new block fetched from 1287 * the server. 1288 */ 1289 if (ndp->dc_blkno == -1) { 1290 ndp->dc_blkcookie = ndp->dc_cookie; 1291 ndp->dc_blkno = np->n_dblkno++; 1292 ndp->dc_entry = 0; 1293 } 1294 break; 1295 } 1296 } 1297 } else { 1298 LIST_FOREACH(ndp, ndhp, dc_hash) { 1299 if (ndp->dc_cookie == off) 1300 break; 1301 } 1302 } 1303 return ndp; 1304 } 1305 1306 1307 struct nfsdircache * 1308 nfs_enterdircache(vp, off, blkoff, en, blkno) 1309 struct vnode *vp; 1310 off_t off, blkoff; 1311 int en; 1312 daddr_t blkno; 1313 { 1314 struct nfsnode *np = VTONFS(vp); 1315 struct nfsdirhashhead *ndhp; 1316 struct nfsdircache *ndp = NULL, *first; 1317 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1318 int hashent, gen, overwrite; 1319 1320 if (!np->n_dircache) 1321 /* 1322 * XXX would like to do this in nfs_nget but vtype 1323 * isn't known at that time. 1324 */ 1325 nfs_initdircache(vp); 1326 1327 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens) 1328 nfs_initdirxlatecookie(vp); 1329 1330 /* 1331 * XXX refuse entries for offset 0. amd(8) erroneously sets 1332 * cookie 0 for the '.' entry, making this necessary. This 1333 * isn't so bad, as 0 is a special case anyway. 1334 */ 1335 if (off == 0) 1336 return &dzero; 1337 1338 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1339 1340 if (ndp && ndp->dc_blkno != -1) { 1341 /* 1342 * Overwriting an old entry. Check if it's the same. 1343 * If so, just return. If not, remove the old entry. 1344 */ 1345 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1346 return ndp; 1347 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1348 LIST_REMOVE(ndp, dc_hash); 1349 FREE(ndp, M_NFSDIROFF); 1350 ndp = 0; 1351 } 1352 1353 ndhp = &np->n_dircache[hashent]; 1354 1355 if (!ndp) { 1356 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF, 1357 M_WAITOK); 1358 overwrite = 0; 1359 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1360 /* 1361 * We're allocating a new entry, so bump the 1362 * generation number. 1363 */ 1364 gen = ++np->n_dirgens[hashent]; 1365 if (gen == 0) { 1366 np->n_dirgens[hashent]++; 1367 gen++; 1368 } 1369 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1370 } 1371 } else 1372 overwrite = 1; 1373 1374 /* 1375 * If the entry number is 0, we are at the start of a new block, so 1376 * allocate a new blocknumber. 1377 */ 1378 if (en == 0) 1379 ndp->dc_blkno = np->n_dblkno++; 1380 else 1381 ndp->dc_blkno = blkno; 1382 1383 ndp->dc_cookie = off; 1384 ndp->dc_blkcookie = blkoff; 1385 ndp->dc_entry = en; 1386 1387 if (overwrite) 1388 return ndp; 1389 1390 /* 1391 * If the maximum directory cookie cache size has been reached 1392 * for this node, take one off the front. The idea is that 1393 * directories are typically read front-to-back once, so that 1394 * the oldest entries can be thrown away without much performance 1395 * loss. 1396 */ 1397 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1398 first = TAILQ_FIRST(&np->n_dirchain); 1399 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain); 1400 LIST_REMOVE(first, dc_hash); 1401 FREE(first, M_NFSDIROFF); 1402 } else 1403 np->n_dircachesize++; 1404 1405 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1406 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1407 return ndp; 1408 } 1409 1410 void 1411 nfs_invaldircache(vp, forcefree) 1412 struct vnode *vp; 1413 int forcefree; 1414 { 1415 struct nfsnode *np = VTONFS(vp); 1416 struct nfsdircache *ndp = NULL; 1417 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1418 1419 #ifdef DIAGNOSTIC 1420 if (vp->v_type != VDIR) 1421 panic("nfs: invaldircache: not dir"); 1422 #endif 1423 1424 if (!np->n_dircache) 1425 return; 1426 1427 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1428 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != 0) { 1429 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1430 LIST_REMOVE(ndp, dc_hash); 1431 FREE(ndp, M_NFSDIROFF); 1432 } 1433 np->n_dircachesize = 0; 1434 if (forcefree && np->n_dirgens) { 1435 FREE(np->n_dirgens, M_NFSDIROFF); 1436 np->n_dirgens = NULL; 1437 } 1438 } else { 1439 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) { 1440 ndp->dc_blkno = -1; 1441 } 1442 } 1443 1444 np->n_dblkno = 1; 1445 } 1446 1447 /* 1448 * Called once before VFS init to initialize shared and 1449 * server-specific data structures. 1450 */ 1451 void 1452 nfs_init() 1453 { 1454 nfsrtt.pos = 0; 1455 rpc_vers = txdr_unsigned(RPC_VER2); 1456 rpc_call = txdr_unsigned(RPC_CALL); 1457 rpc_reply = txdr_unsigned(RPC_REPLY); 1458 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1459 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1460 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1461 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1462 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1463 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1464 nfs_prog = txdr_unsigned(NFS_PROG); 1465 nqnfs_prog = txdr_unsigned(NQNFS_PROG); 1466 nfs_true = txdr_unsigned(TRUE); 1467 nfs_false = txdr_unsigned(FALSE); 1468 nfs_xdrneg1 = txdr_unsigned(-1); 1469 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1470 if (nfs_ticks < 1) 1471 nfs_ticks = 1; 1472 #ifdef NFSSERVER 1473 nfsrv_init(0); /* Init server data structures */ 1474 nfsrv_initcache(); /* Init the server request cache */ 1475 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 1476 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr); 1477 #endif /* NFSSERVER */ 1478 1479 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY) 1480 /* 1481 * Initialize the nqnfs data structures. 1482 */ 1483 if (nqnfsstarttime == 0) { 1484 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease 1485 + nqsrv_clockskew + nqsrv_writeslack; 1486 NQLOADNOVRAM(nqnfsstarttime); 1487 CIRCLEQ_INIT(&nqtimerhead); 1488 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE, 1489 M_WAITOK, &nqfhhash); 1490 } 1491 #endif 1492 1493 exithook_establish(nfs_exit, NULL); 1494 1495 /* 1496 * Initialize reply list and start timer 1497 */ 1498 TAILQ_INIT(&nfs_reqq); 1499 nfs_timer(NULL); 1500 MOWNER_ATTACH(&nfs_mowner); 1501 1502 #ifdef NFS 1503 /* Initialize the kqueue structures */ 1504 nfs_kqinit(); 1505 /* Initialize the iod structures */ 1506 nfs_iodinit(); 1507 #endif 1508 } 1509 1510 #ifdef NFS 1511 /* 1512 * Called once at VFS init to initialize client-specific data structures. 1513 */ 1514 void 1515 nfs_vfs_init() 1516 { 1517 nfs_nhinit(); /* Init the nfsnode table */ 1518 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4); 1519 } 1520 1521 void 1522 nfs_vfs_reinit() 1523 { 1524 nfs_nhreinit(); 1525 } 1526 1527 void 1528 nfs_vfs_done() 1529 { 1530 nfs_nhdone(); 1531 } 1532 1533 /* 1534 * Attribute cache routines. 1535 * nfs_loadattrcache() - loads or updates the cache contents from attributes 1536 * that are on the mbuf list 1537 * nfs_getattrcache() - returns valid attributes if found in cache, returns 1538 * error otherwise 1539 */ 1540 1541 /* 1542 * Load the attribute cache (that lives in the nfsnode entry) with 1543 * the values on the mbuf list and 1544 * Iff vap not NULL 1545 * copy the attributes to *vaper 1546 */ 1547 int 1548 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags) 1549 struct vnode **vpp; 1550 struct mbuf **mdp; 1551 caddr_t *dposp; 1552 struct vattr *vaper; 1553 int flags; 1554 { 1555 int32_t t1; 1556 caddr_t cp2; 1557 int error = 0; 1558 struct mbuf *md; 1559 int v3 = NFS_ISV3(*vpp); 1560 1561 md = *mdp; 1562 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp; 1563 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2); 1564 if (error) 1565 return (error); 1566 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags); 1567 } 1568 1569 int 1570 nfs_loadattrcache(vpp, fp, vaper, flags) 1571 struct vnode **vpp; 1572 struct nfs_fattr *fp; 1573 struct vattr *vaper; 1574 int flags; 1575 { 1576 struct vnode *vp = *vpp; 1577 struct vattr *vap; 1578 int v3 = NFS_ISV3(vp); 1579 enum vtype vtyp; 1580 u_short vmode; 1581 struct timespec mtime; 1582 struct vnode *nvp; 1583 int32_t rdev; 1584 struct nfsnode *np; 1585 extern int (**spec_nfsv2nodeop_p) __P((void *)); 1586 uid_t uid; 1587 gid_t gid; 1588 1589 if (v3) { 1590 vtyp = nfsv3tov_type(fp->fa_type); 1591 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1592 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1), 1593 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2)); 1594 fxdr_nfsv3time(&fp->fa3_mtime, &mtime); 1595 } else { 1596 vtyp = nfsv2tov_type(fp->fa_type); 1597 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1598 if (vtyp == VNON || vtyp == VREG) 1599 vtyp = IFTOVT(vmode); 1600 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); 1601 fxdr_nfsv2time(&fp->fa2_mtime, &mtime); 1602 1603 /* 1604 * Really ugly NFSv2 kludge. 1605 */ 1606 if (vtyp == VCHR && rdev == 0xffffffff) 1607 vtyp = VFIFO; 1608 } 1609 1610 vmode &= ALLPERMS; 1611 1612 /* 1613 * If v_type == VNON it is a new node, so fill in the v_type, 1614 * n_mtime fields. Check to see if it represents a special 1615 * device, and if so, check for a possible alias. Once the 1616 * correct vnode has been obtained, fill in the rest of the 1617 * information. 1618 */ 1619 np = VTONFS(vp); 1620 if (vp->v_type == VNON) { 1621 vp->v_type = vtyp; 1622 if (vp->v_type == VFIFO) { 1623 extern int (**fifo_nfsv2nodeop_p) __P((void *)); 1624 vp->v_op = fifo_nfsv2nodeop_p; 1625 } 1626 if (vp->v_type == VCHR || vp->v_type == VBLK) { 1627 vp->v_op = spec_nfsv2nodeop_p; 1628 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount); 1629 if (nvp) { 1630 /* 1631 * Discard unneeded vnode, but save its nfsnode. 1632 * Since the nfsnode does not have a lock, its 1633 * vnode lock has to be carried over. 1634 */ 1635 /* 1636 * XXX is the old node sure to be locked here? 1637 */ 1638 KASSERT(lockstatus(&vp->v_lock) == 1639 LK_EXCLUSIVE); 1640 nvp->v_data = vp->v_data; 1641 vp->v_data = NULL; 1642 VOP_UNLOCK(vp, 0); 1643 vp->v_op = spec_vnodeop_p; 1644 vrele(vp); 1645 vgone(vp); 1646 lockmgr(&nvp->v_lock, LK_EXCLUSIVE, 1647 &nvp->v_interlock); 1648 /* 1649 * Reinitialize aliased node. 1650 */ 1651 np->n_vnode = nvp; 1652 *vpp = vp = nvp; 1653 } 1654 } 1655 np->n_mtime = mtime; 1656 } 1657 uid = fxdr_unsigned(uid_t, fp->fa_uid); 1658 gid = fxdr_unsigned(gid_t, fp->fa_gid); 1659 vap = np->n_vattr; 1660 1661 /* 1662 * Invalidate access cache if uid, gid or mode changed. 1663 */ 1664 if (np->n_accstamp != -1 && 1665 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode)) 1666 np->n_accstamp = -1; 1667 1668 vap->va_type = vtyp; 1669 vap->va_mode = vmode; 1670 vap->va_rdev = (dev_t)rdev; 1671 vap->va_mtime = mtime; 1672 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 1673 switch (vtyp) { 1674 case VDIR: 1675 vap->va_blocksize = NFS_DIRFRAGSIZ; 1676 break; 1677 case VBLK: 1678 vap->va_blocksize = BLKDEV_IOSIZE; 1679 break; 1680 case VCHR: 1681 vap->va_blocksize = MAXBSIZE; 1682 break; 1683 default: 1684 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize : 1685 fxdr_unsigned(int32_t, fp->fa2_blocksize); 1686 break; 1687 } 1688 if (v3) { 1689 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1690 vap->va_uid = uid; 1691 vap->va_gid = gid; 1692 vap->va_size = fxdr_hyper(&fp->fa3_size); 1693 vap->va_bytes = fxdr_hyper(&fp->fa3_used); 1694 vap->va_fileid = fxdr_unsigned(int32_t, 1695 fp->fa3_fileid.nfsuquad[1]); 1696 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); 1697 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime); 1698 vap->va_flags = 0; 1699 vap->va_filerev = 0; 1700 } else { 1701 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1702 vap->va_uid = uid; 1703 vap->va_gid = gid; 1704 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); 1705 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks) 1706 * NFS_FABLKSIZE; 1707 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); 1708 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); 1709 vap->va_flags = 0; 1710 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t, 1711 fp->fa2_ctime.nfsv2_sec); 1712 vap->va_ctime.tv_nsec = 0; 1713 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec); 1714 vap->va_filerev = 0; 1715 } 1716 if (vap->va_size != np->n_size) { 1717 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) { 1718 vap->va_size = np->n_size; 1719 } else { 1720 np->n_size = vap->va_size; 1721 if (vap->va_type == VREG) { 1722 if ((flags & NAC_NOTRUNC) 1723 && np->n_size < vp->v_size) { 1724 /* 1725 * we can't free pages now because 1726 * the pages can be owned by ourselves. 1727 */ 1728 np->n_flag |= NTRUNCDELAYED; 1729 } 1730 else { 1731 uvm_vnp_setsize(vp, np->n_size); 1732 } 1733 } 1734 } 1735 } 1736 np->n_attrstamp = time.tv_sec; 1737 if (vaper != NULL) { 1738 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap)); 1739 if (np->n_flag & NCHG) { 1740 if (np->n_flag & NACC) 1741 vaper->va_atime = np->n_atim; 1742 if (np->n_flag & NUPD) 1743 vaper->va_mtime = np->n_mtim; 1744 } 1745 } 1746 return (0); 1747 } 1748 1749 /* 1750 * Check the time stamp 1751 * If the cache is valid, copy contents to *vap and return 0 1752 * otherwise return an error 1753 */ 1754 int 1755 nfs_getattrcache(vp, vaper) 1756 struct vnode *vp; 1757 struct vattr *vaper; 1758 { 1759 struct nfsnode *np = VTONFS(vp); 1760 struct vattr *vap; 1761 1762 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) { 1763 nfsstats.attrcache_misses++; 1764 return (ENOENT); 1765 } 1766 nfsstats.attrcache_hits++; 1767 vap = np->n_vattr; 1768 if (vap->va_size != np->n_size) { 1769 if (vap->va_type == VREG) { 1770 if (np->n_flag & NMODIFIED) { 1771 if (vap->va_size < np->n_size) 1772 vap->va_size = np->n_size; 1773 else 1774 np->n_size = vap->va_size; 1775 } else 1776 np->n_size = vap->va_size; 1777 uvm_vnp_setsize(vp, np->n_size); 1778 } else 1779 np->n_size = vap->va_size; 1780 } 1781 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr)); 1782 if (np->n_flag & NCHG) { 1783 if (np->n_flag & NACC) 1784 vaper->va_atime = np->n_atim; 1785 if (np->n_flag & NUPD) 1786 vaper->va_mtime = np->n_mtim; 1787 } 1788 return (0); 1789 } 1790 1791 void 1792 nfs_delayedtruncate(vp) 1793 struct vnode *vp; 1794 { 1795 struct nfsnode *np = VTONFS(vp); 1796 1797 if (np->n_flag & NTRUNCDELAYED) { 1798 np->n_flag &= ~NTRUNCDELAYED; 1799 uvm_vnp_setsize(vp, np->n_size); 1800 } 1801 } 1802 1803 /* 1804 * Heuristic to see if the server XDR encodes directory cookies or not. 1805 * it is not supposed to, but a lot of servers may do this. Also, since 1806 * most/all servers will implement V2 as well, it is expected that they 1807 * may return just 32 bits worth of cookie information, so we need to 1808 * find out in which 32 bits this information is available. We do this 1809 * to avoid trouble with emulated binaries that can't handle 64 bit 1810 * directory offsets. 1811 */ 1812 1813 void 1814 nfs_cookieheuristic(vp, flagp, p, cred) 1815 struct vnode *vp; 1816 int *flagp; 1817 struct proc *p; 1818 struct ucred *cred; 1819 { 1820 struct uio auio; 1821 struct iovec aiov; 1822 caddr_t buf, cp; 1823 struct dirent *dp; 1824 off_t *cookies = NULL, *cop; 1825 int error, eof, nc, len; 1826 1827 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK); 1828 1829 aiov.iov_base = buf; 1830 aiov.iov_len = NFS_DIRFRAGSIZ; 1831 auio.uio_iov = &aiov; 1832 auio.uio_iovcnt = 1; 1833 auio.uio_rw = UIO_READ; 1834 auio.uio_segflg = UIO_SYSSPACE; 1835 auio.uio_procp = p; 1836 auio.uio_resid = NFS_DIRFRAGSIZ; 1837 auio.uio_offset = 0; 1838 1839 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc); 1840 1841 len = NFS_DIRFRAGSIZ - auio.uio_resid; 1842 if (error || len == 0) { 1843 FREE(buf, M_TEMP); 1844 if (cookies) 1845 free(cookies, M_TEMP); 1846 return; 1847 } 1848 1849 /* 1850 * Find the first valid entry and look at its offset cookie. 1851 */ 1852 1853 cp = buf; 1854 for (cop = cookies; len > 0; len -= dp->d_reclen) { 1855 dp = (struct dirent *)cp; 1856 if (dp->d_fileno != 0 && len >= dp->d_reclen) { 1857 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) { 1858 *flagp |= NFSMNT_SWAPCOOKIE; 1859 nfs_invaldircache(vp, 0); 1860 nfs_vinvalbuf(vp, 0, cred, p, 1); 1861 } 1862 break; 1863 } 1864 cop++; 1865 cp += dp->d_reclen; 1866 } 1867 1868 FREE(buf, M_TEMP); 1869 free(cookies, M_TEMP); 1870 } 1871 #endif /* NFS */ 1872 1873 /* 1874 * Set up nameidata for a lookup() call and do it. 1875 * 1876 * If pubflag is set, this call is done for a lookup operation on the 1877 * public filehandle. In that case we allow crossing mountpoints and 1878 * absolute pathnames. However, the caller is expected to check that 1879 * the lookup result is within the public fs, and deny access if 1880 * it is not. 1881 */ 1882 int 1883 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag) 1884 struct nameidata *ndp; 1885 fhandle_t *fhp; 1886 uint32_t len; 1887 struct nfssvc_sock *slp; 1888 struct mbuf *nam; 1889 struct mbuf **mdp; 1890 caddr_t *dposp; 1891 struct vnode **retdirp; 1892 struct proc *p; 1893 int kerbflag, pubflag; 1894 { 1895 int i, rem; 1896 struct mbuf *md; 1897 char *fromcp, *tocp, *cp; 1898 struct iovec aiov; 1899 struct uio auio; 1900 struct vnode *dp; 1901 int error, rdonly, linklen; 1902 struct componentname *cnp = &ndp->ni_cnd; 1903 1904 *retdirp = (struct vnode *)0; 1905 1906 if ((len + 1) > MAXPATHLEN) 1907 return (ENAMETOOLONG); 1908 cnp->cn_pnbuf = PNBUF_GET(); 1909 1910 /* 1911 * Copy the name from the mbuf list to ndp->ni_pnbuf 1912 * and set the various ndp fields appropriately. 1913 */ 1914 fromcp = *dposp; 1915 tocp = cnp->cn_pnbuf; 1916 md = *mdp; 1917 rem = mtod(md, caddr_t) + md->m_len - fromcp; 1918 for (i = 0; i < len; i++) { 1919 while (rem == 0) { 1920 md = md->m_next; 1921 if (md == NULL) { 1922 error = EBADRPC; 1923 goto out; 1924 } 1925 fromcp = mtod(md, caddr_t); 1926 rem = md->m_len; 1927 } 1928 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) { 1929 error = EACCES; 1930 goto out; 1931 } 1932 *tocp++ = *fromcp++; 1933 rem--; 1934 } 1935 *tocp = '\0'; 1936 *mdp = md; 1937 *dposp = fromcp; 1938 len = nfsm_rndup(len)-len; 1939 if (len > 0) { 1940 if (rem >= len) 1941 *dposp += len; 1942 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0) 1943 goto out; 1944 } 1945 1946 /* 1947 * Extract and set starting directory. 1948 */ 1949 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp, 1950 nam, &rdonly, kerbflag, pubflag); 1951 if (error) 1952 goto out; 1953 if (dp->v_type != VDIR) { 1954 vrele(dp); 1955 error = ENOTDIR; 1956 goto out; 1957 } 1958 1959 if (rdonly) 1960 cnp->cn_flags |= RDONLY; 1961 1962 *retdirp = dp; 1963 1964 if (pubflag) { 1965 /* 1966 * Oh joy. For WebNFS, handle those pesky '%' escapes, 1967 * and the 'native path' indicator. 1968 */ 1969 cp = PNBUF_GET(); 1970 fromcp = cnp->cn_pnbuf; 1971 tocp = cp; 1972 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) { 1973 switch ((unsigned char)*fromcp) { 1974 case WEBNFS_NATIVE_CHAR: 1975 /* 1976 * 'Native' path for us is the same 1977 * as a path according to the NFS spec, 1978 * just skip the escape char. 1979 */ 1980 fromcp++; 1981 break; 1982 /* 1983 * More may be added in the future, range 0x80-0xff 1984 */ 1985 default: 1986 error = EIO; 1987 PNBUF_PUT(cp); 1988 goto out; 1989 } 1990 } 1991 /* 1992 * Translate the '%' escapes, URL-style. 1993 */ 1994 while (*fromcp != '\0') { 1995 if (*fromcp == WEBNFS_ESC_CHAR) { 1996 if (fromcp[1] != '\0' && fromcp[2] != '\0') { 1997 fromcp++; 1998 *tocp++ = HEXSTRTOI(fromcp); 1999 fromcp += 2; 2000 continue; 2001 } else { 2002 error = ENOENT; 2003 PNBUF_PUT(cp); 2004 goto out; 2005 } 2006 } else 2007 *tocp++ = *fromcp++; 2008 } 2009 *tocp = '\0'; 2010 PNBUF_PUT(cnp->cn_pnbuf); 2011 cnp->cn_pnbuf = cp; 2012 } 2013 2014 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1; 2015 ndp->ni_segflg = UIO_SYSSPACE; 2016 ndp->ni_rootdir = rootvnode; 2017 2018 if (pubflag) { 2019 ndp->ni_loopcnt = 0; 2020 if (cnp->cn_pnbuf[0] == '/') 2021 dp = rootvnode; 2022 } else { 2023 cnp->cn_flags |= NOCROSSMOUNT; 2024 } 2025 2026 cnp->cn_proc = p; 2027 VREF(dp); 2028 2029 for (;;) { 2030 cnp->cn_nameptr = cnp->cn_pnbuf; 2031 ndp->ni_startdir = dp; 2032 /* 2033 * And call lookup() to do the real work 2034 */ 2035 error = lookup(ndp); 2036 if (error) { 2037 PNBUF_PUT(cnp->cn_pnbuf); 2038 return (error); 2039 } 2040 /* 2041 * Check for encountering a symbolic link 2042 */ 2043 if ((cnp->cn_flags & ISSYMLINK) == 0) { 2044 if (cnp->cn_flags & (SAVENAME | SAVESTART)) 2045 cnp->cn_flags |= HASBUF; 2046 else 2047 PNBUF_PUT(cnp->cn_pnbuf); 2048 return (0); 2049 } else { 2050 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN)) 2051 VOP_UNLOCK(ndp->ni_dvp, 0); 2052 if (!pubflag) { 2053 error = EINVAL; 2054 break; 2055 } 2056 2057 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) { 2058 error = ELOOP; 2059 break; 2060 } 2061 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) { 2062 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred, 2063 cnp->cn_proc); 2064 if (error != 0) 2065 break; 2066 } 2067 if (ndp->ni_pathlen > 1) 2068 cp = PNBUF_GET(); 2069 else 2070 cp = cnp->cn_pnbuf; 2071 aiov.iov_base = cp; 2072 aiov.iov_len = MAXPATHLEN; 2073 auio.uio_iov = &aiov; 2074 auio.uio_iovcnt = 1; 2075 auio.uio_offset = 0; 2076 auio.uio_rw = UIO_READ; 2077 auio.uio_segflg = UIO_SYSSPACE; 2078 auio.uio_procp = (struct proc *)0; 2079 auio.uio_resid = MAXPATHLEN; 2080 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred); 2081 if (error) { 2082 badlink: 2083 if (ndp->ni_pathlen > 1) 2084 PNBUF_PUT(cp); 2085 break; 2086 } 2087 linklen = MAXPATHLEN - auio.uio_resid; 2088 if (linklen == 0) { 2089 error = ENOENT; 2090 goto badlink; 2091 } 2092 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) { 2093 error = ENAMETOOLONG; 2094 goto badlink; 2095 } 2096 if (ndp->ni_pathlen > 1) { 2097 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen); 2098 PNBUF_PUT(cnp->cn_pnbuf); 2099 cnp->cn_pnbuf = cp; 2100 } else 2101 cnp->cn_pnbuf[linklen] = '\0'; 2102 ndp->ni_pathlen += linklen; 2103 vput(ndp->ni_vp); 2104 dp = ndp->ni_dvp; 2105 /* 2106 * Check if root directory should replace current directory. 2107 */ 2108 if (cnp->cn_pnbuf[0] == '/') { 2109 vrele(dp); 2110 dp = ndp->ni_rootdir; 2111 VREF(dp); 2112 } 2113 } 2114 } 2115 vrele(ndp->ni_dvp); 2116 vput(ndp->ni_vp); 2117 ndp->ni_vp = NULL; 2118 out: 2119 PNBUF_PUT(cnp->cn_pnbuf); 2120 return (error); 2121 } 2122 2123 /* 2124 * A fiddled version of m_adj() that ensures null fill to a 32-bit 2125 * boundary and only trims off the back end 2126 * 2127 * 1. trim off 'len' bytes as m_adj(mp, -len). 2128 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain. 2129 */ 2130 void 2131 nfs_zeropad(mp, len, nul) 2132 struct mbuf *mp; 2133 int len; 2134 int nul; 2135 { 2136 struct mbuf *m; 2137 int count; 2138 2139 /* 2140 * Trim from tail. Scan the mbuf chain, 2141 * calculating its length and finding the last mbuf. 2142 * If the adjustment only affects this mbuf, then just 2143 * adjust and return. Otherwise, rescan and truncate 2144 * after the remaining size. 2145 */ 2146 count = 0; 2147 m = mp; 2148 for (;;) { 2149 count += m->m_len; 2150 if (m->m_next == NULL) 2151 break; 2152 m = m->m_next; 2153 } 2154 2155 KDASSERT(count >= len); 2156 2157 if (m->m_len >= len) { 2158 m->m_len -= len; 2159 } else { 2160 count -= len; 2161 /* 2162 * Correct length for chain is "count". 2163 * Find the mbuf with last data, adjust its length, 2164 * and toss data from remaining mbufs on chain. 2165 */ 2166 for (m = mp; m; m = m->m_next) { 2167 if (m->m_len >= count) { 2168 m->m_len = count; 2169 break; 2170 } 2171 count -= m->m_len; 2172 } 2173 m_freem(m->m_next); 2174 m->m_next = NULL; 2175 } 2176 2177 KDASSERT(m->m_next == NULL); 2178 2179 /* 2180 * zero-padding. 2181 */ 2182 if (nul > 0) { 2183 char *cp; 2184 int i; 2185 2186 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) { 2187 struct mbuf *n; 2188 2189 KDASSERT(MLEN >= nul); 2190 n = m_get(M_WAIT, MT_DATA); 2191 MCLAIM(n, &nfs_mowner); 2192 n->m_len = nul; 2193 n->m_next = NULL; 2194 m->m_next = n; 2195 cp = mtod(n, caddr_t); 2196 } else { 2197 cp = mtod(m, caddr_t) + m->m_len; 2198 m->m_len += nul; 2199 } 2200 for (i = 0; i < nul; i++) 2201 *cp++ = '\0'; 2202 } 2203 return; 2204 } 2205 2206 /* 2207 * Make these functions instead of macros, so that the kernel text size 2208 * doesn't get too big... 2209 */ 2210 void 2211 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp) 2212 struct nfsrv_descript *nfsd; 2213 int before_ret; 2214 struct vattr *before_vap; 2215 int after_ret; 2216 struct vattr *after_vap; 2217 struct mbuf **mbp; 2218 char **bposp; 2219 { 2220 struct mbuf *mb = *mbp; 2221 char *bpos = *bposp; 2222 u_int32_t *tl; 2223 2224 if (before_ret) { 2225 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2226 *tl = nfs_false; 2227 } else { 2228 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 2229 *tl++ = nfs_true; 2230 txdr_hyper(before_vap->va_size, tl); 2231 tl += 2; 2232 txdr_nfsv3time(&(before_vap->va_mtime), tl); 2233 tl += 2; 2234 txdr_nfsv3time(&(before_vap->va_ctime), tl); 2235 } 2236 *bposp = bpos; 2237 *mbp = mb; 2238 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 2239 } 2240 2241 void 2242 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp) 2243 struct nfsrv_descript *nfsd; 2244 int after_ret; 2245 struct vattr *after_vap; 2246 struct mbuf **mbp; 2247 char **bposp; 2248 { 2249 struct mbuf *mb = *mbp; 2250 char *bpos = *bposp; 2251 u_int32_t *tl; 2252 struct nfs_fattr *fp; 2253 2254 if (after_ret) { 2255 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2256 *tl = nfs_false; 2257 } else { 2258 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 2259 *tl++ = nfs_true; 2260 fp = (struct nfs_fattr *)tl; 2261 nfsm_srvfattr(nfsd, after_vap, fp); 2262 } 2263 *mbp = mb; 2264 *bposp = bpos; 2265 } 2266 2267 void 2268 nfsm_srvfattr(nfsd, vap, fp) 2269 struct nfsrv_descript *nfsd; 2270 struct vattr *vap; 2271 struct nfs_fattr *fp; 2272 { 2273 2274 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 2275 fp->fa_uid = txdr_unsigned(vap->va_uid); 2276 fp->fa_gid = txdr_unsigned(vap->va_gid); 2277 if (nfsd->nd_flag & ND_NFSV3) { 2278 fp->fa_type = vtonfsv3_type(vap->va_type); 2279 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 2280 txdr_hyper(vap->va_size, &fp->fa3_size); 2281 txdr_hyper(vap->va_bytes, &fp->fa3_used); 2282 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 2283 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 2284 fp->fa3_fsid.nfsuquad[0] = 0; 2285 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 2286 fp->fa3_fileid.nfsuquad[0] = 0; 2287 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid); 2288 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 2289 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 2290 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 2291 } else { 2292 fp->fa_type = vtonfsv2_type(vap->va_type); 2293 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 2294 fp->fa2_size = txdr_unsigned(vap->va_size); 2295 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 2296 if (vap->va_type == VFIFO) 2297 fp->fa2_rdev = 0xffffffff; 2298 else 2299 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 2300 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 2301 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 2302 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 2303 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 2304 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 2305 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 2306 } 2307 } 2308 2309 /* 2310 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) 2311 * - look up fsid in mount list (if not found ret error) 2312 * - get vp and export rights by calling VFS_FHTOVP() 2313 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon 2314 * - if not lockflag unlock it with VOP_UNLOCK() 2315 */ 2316 int 2317 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag) 2318 fhandle_t *fhp; 2319 int lockflag; 2320 struct vnode **vpp; 2321 struct ucred *cred; 2322 struct nfssvc_sock *slp; 2323 struct mbuf *nam; 2324 int *rdonlyp; 2325 int kerbflag; 2326 { 2327 struct mount *mp; 2328 int i; 2329 struct ucred *credanon; 2330 int error, exflags; 2331 struct sockaddr_in *saddr; 2332 2333 *vpp = (struct vnode *)0; 2334 2335 if (nfs_ispublicfh(fhp)) { 2336 if (!pubflag || !nfs_pub.np_valid) 2337 return (ESTALE); 2338 fhp = &nfs_pub.np_handle; 2339 } 2340 2341 mp = vfs_getvfs(&fhp->fh_fsid); 2342 if (!mp) 2343 return (ESTALE); 2344 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon); 2345 if (error) 2346 return (error); 2347 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp); 2348 if (error) 2349 return (error); 2350 2351 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) { 2352 saddr = mtod(nam, struct sockaddr_in *); 2353 if ((saddr->sin_family == AF_INET) && 2354 ntohs(saddr->sin_port) >= IPPORT_RESERVED) { 2355 vput(*vpp); 2356 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2357 } 2358 #ifdef INET6 2359 if ((saddr->sin_family == AF_INET6) && 2360 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) { 2361 vput(*vpp); 2362 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2363 } 2364 #endif 2365 } 2366 /* 2367 * Check/setup credentials. 2368 */ 2369 if (exflags & MNT_EXKERB) { 2370 if (!kerbflag) { 2371 vput(*vpp); 2372 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2373 } 2374 } else if (kerbflag) { 2375 vput(*vpp); 2376 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2377 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { 2378 cred->cr_uid = credanon->cr_uid; 2379 cred->cr_gid = credanon->cr_gid; 2380 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++) 2381 cred->cr_groups[i] = credanon->cr_groups[i]; 2382 cred->cr_ngroups = i; 2383 } 2384 if (exflags & MNT_EXRDONLY) 2385 *rdonlyp = 1; 2386 else 2387 *rdonlyp = 0; 2388 if (!lockflag) 2389 VOP_UNLOCK(*vpp, 0); 2390 return (0); 2391 } 2392 2393 /* 2394 * WebNFS: check if a filehandle is a public filehandle. For v3, this 2395 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has 2396 * transformed this to all zeroes in both cases, so check for it. 2397 */ 2398 int 2399 nfs_ispublicfh(fhp) 2400 fhandle_t *fhp; 2401 { 2402 char *cp = (char *)fhp; 2403 int i; 2404 2405 for (i = 0; i < NFSX_V3FH; i++) 2406 if (*cp++ != 0) 2407 return (FALSE); 2408 return (TRUE); 2409 } 2410 2411 /* 2412 * This function compares two net addresses by family and returns TRUE 2413 * if they are the same host. 2414 * If there is any doubt, return FALSE. 2415 * The AF_INET family is handled as a special case so that address mbufs 2416 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 2417 */ 2418 int 2419 netaddr_match(family, haddr, nam) 2420 int family; 2421 union nethostaddr *haddr; 2422 struct mbuf *nam; 2423 { 2424 struct sockaddr_in *inetaddr; 2425 2426 switch (family) { 2427 case AF_INET: 2428 inetaddr = mtod(nam, struct sockaddr_in *); 2429 if (inetaddr->sin_family == AF_INET && 2430 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 2431 return (1); 2432 break; 2433 #ifdef INET6 2434 case AF_INET6: 2435 { 2436 struct sockaddr_in6 *sin6_1, *sin6_2; 2437 2438 sin6_1 = mtod(nam, struct sockaddr_in6 *); 2439 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 2440 if (sin6_1->sin6_family == AF_INET6 && 2441 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 2442 return 1; 2443 } 2444 #endif 2445 #ifdef ISO 2446 case AF_ISO: 2447 { 2448 struct sockaddr_iso *isoaddr1, *isoaddr2; 2449 2450 isoaddr1 = mtod(nam, struct sockaddr_iso *); 2451 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); 2452 if (isoaddr1->siso_family == AF_ISO && 2453 isoaddr1->siso_nlen > 0 && 2454 isoaddr1->siso_nlen == isoaddr2->siso_nlen && 2455 SAME_ISOADDR(isoaddr1, isoaddr2)) 2456 return (1); 2457 break; 2458 } 2459 #endif /* ISO */ 2460 default: 2461 break; 2462 }; 2463 return (0); 2464 } 2465 2466 /* 2467 * The write verifier has changed (probably due to a server reboot), so all 2468 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 2469 * as dirty or are being written out just now, all this takes is clearing 2470 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 2471 * the mount point. 2472 */ 2473 void 2474 nfs_clearcommit(mp) 2475 struct mount *mp; 2476 { 2477 struct vnode *vp; 2478 struct nfsnode *np; 2479 struct vm_page *pg; 2480 struct nfsmount *nmp = VFSTONFS(mp); 2481 2482 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL); 2483 2484 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 2485 KASSERT(vp->v_mount == mp); 2486 if (vp->v_type == VNON) 2487 continue; 2488 np = VTONFS(vp); 2489 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 2490 np->n_pushedhi = 0; 2491 np->n_commitflags &= 2492 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 2493 simple_lock(&vp->v_uobj.vmobjlock); 2494 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) { 2495 pg->flags &= ~PG_NEEDCOMMIT; 2496 } 2497 simple_unlock(&vp->v_uobj.vmobjlock); 2498 } 2499 simple_lock(&nmp->nm_slock); 2500 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 2501 simple_unlock(&nmp->nm_slock); 2502 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 2503 } 2504 2505 void 2506 nfs_merge_commit_ranges(vp) 2507 struct vnode *vp; 2508 { 2509 struct nfsnode *np = VTONFS(vp); 2510 2511 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 2512 2513 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2514 np->n_pushedlo = np->n_pushlo; 2515 np->n_pushedhi = np->n_pushhi; 2516 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2517 } else { 2518 if (np->n_pushlo < np->n_pushedlo) 2519 np->n_pushedlo = np->n_pushlo; 2520 if (np->n_pushhi > np->n_pushedhi) 2521 np->n_pushedhi = np->n_pushhi; 2522 } 2523 2524 np->n_pushlo = np->n_pushhi = 0; 2525 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 2526 2527 #ifdef NFS_DEBUG_COMMIT 2528 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2529 (unsigned)np->n_pushedhi); 2530 #endif 2531 } 2532 2533 int 2534 nfs_in_committed_range(vp, off, len) 2535 struct vnode *vp; 2536 off_t off, len; 2537 { 2538 struct nfsnode *np = VTONFS(vp); 2539 off_t lo, hi; 2540 2541 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2542 return 0; 2543 lo = off; 2544 hi = lo + len; 2545 2546 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 2547 } 2548 2549 int 2550 nfs_in_tobecommitted_range(vp, off, len) 2551 struct vnode *vp; 2552 off_t off, len; 2553 { 2554 struct nfsnode *np = VTONFS(vp); 2555 off_t lo, hi; 2556 2557 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2558 return 0; 2559 lo = off; 2560 hi = lo + len; 2561 2562 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 2563 } 2564 2565 void 2566 nfs_add_committed_range(vp, off, len) 2567 struct vnode *vp; 2568 off_t off, len; 2569 { 2570 struct nfsnode *np = VTONFS(vp); 2571 off_t lo, hi; 2572 2573 lo = off; 2574 hi = lo + len; 2575 2576 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2577 np->n_pushedlo = lo; 2578 np->n_pushedhi = hi; 2579 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2580 } else { 2581 if (hi > np->n_pushedhi) 2582 np->n_pushedhi = hi; 2583 if (lo < np->n_pushedlo) 2584 np->n_pushedlo = lo; 2585 } 2586 #ifdef NFS_DEBUG_COMMIT 2587 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2588 (unsigned)np->n_pushedhi); 2589 #endif 2590 } 2591 2592 void 2593 nfs_del_committed_range(vp, off, len) 2594 struct vnode *vp; 2595 off_t off, len; 2596 { 2597 struct nfsnode *np = VTONFS(vp); 2598 off_t lo, hi; 2599 2600 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2601 return; 2602 2603 lo = off; 2604 hi = lo + len; 2605 2606 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 2607 return; 2608 if (lo <= np->n_pushedlo) 2609 np->n_pushedlo = hi; 2610 else if (hi >= np->n_pushedhi) 2611 np->n_pushedhi = lo; 2612 else { 2613 /* 2614 * XXX There's only one range. If the deleted range 2615 * is in the middle, pick the largest of the 2616 * contiguous ranges that it leaves. 2617 */ 2618 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 2619 np->n_pushedhi = lo; 2620 else 2621 np->n_pushedlo = hi; 2622 } 2623 #ifdef NFS_DEBUG_COMMIT 2624 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2625 (unsigned)np->n_pushedhi); 2626 #endif 2627 } 2628 2629 void 2630 nfs_add_tobecommitted_range(vp, off, len) 2631 struct vnode *vp; 2632 off_t off, len; 2633 { 2634 struct nfsnode *np = VTONFS(vp); 2635 off_t lo, hi; 2636 2637 lo = off; 2638 hi = lo + len; 2639 2640 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 2641 np->n_pushlo = lo; 2642 np->n_pushhi = hi; 2643 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 2644 } else { 2645 if (lo < np->n_pushlo) 2646 np->n_pushlo = lo; 2647 if (hi > np->n_pushhi) 2648 np->n_pushhi = hi; 2649 } 2650 #ifdef NFS_DEBUG_COMMIT 2651 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2652 (unsigned)np->n_pushhi); 2653 #endif 2654 } 2655 2656 void 2657 nfs_del_tobecommitted_range(vp, off, len) 2658 struct vnode *vp; 2659 off_t off, len; 2660 { 2661 struct nfsnode *np = VTONFS(vp); 2662 off_t lo, hi; 2663 2664 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2665 return; 2666 2667 lo = off; 2668 hi = lo + len; 2669 2670 if (lo > np->n_pushhi || hi < np->n_pushlo) 2671 return; 2672 2673 if (lo <= np->n_pushlo) 2674 np->n_pushlo = hi; 2675 else if (hi >= np->n_pushhi) 2676 np->n_pushhi = lo; 2677 else { 2678 /* 2679 * XXX There's only one range. If the deleted range 2680 * is in the middle, pick the largest of the 2681 * contiguous ranges that it leaves. 2682 */ 2683 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 2684 np->n_pushhi = lo; 2685 else 2686 np->n_pushlo = hi; 2687 } 2688 #ifdef NFS_DEBUG_COMMIT 2689 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2690 (unsigned)np->n_pushhi); 2691 #endif 2692 } 2693 2694 /* 2695 * Map errnos to NFS error numbers. For Version 3 also filter out error 2696 * numbers not specified for the associated procedure. 2697 */ 2698 int 2699 nfsrv_errmap(nd, err) 2700 struct nfsrv_descript *nd; 2701 int err; 2702 { 2703 const short *defaulterrp, *errp; 2704 2705 if (nd->nd_flag & ND_NFSV3) { 2706 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2707 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2708 while (*++errp) { 2709 if (*errp == err) 2710 return (err); 2711 else if (*errp > err) 2712 break; 2713 } 2714 return ((int)*defaulterrp); 2715 } else 2716 return (err & 0xffff); 2717 } 2718 if (err <= ELAST) 2719 return ((int)nfsrv_v2errmap[err - 1]); 2720 return (NFSERR_IO); 2721 } 2722 2723 /* 2724 * Sort the group list in increasing numerical order. 2725 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort 2726 * that used to be here.) 2727 */ 2728 void 2729 nfsrvw_sort(list, num) 2730 gid_t *list; 2731 int num; 2732 { 2733 int i, j; 2734 gid_t v; 2735 2736 /* Insertion sort. */ 2737 for (i = 1; i < num; i++) { 2738 v = list[i]; 2739 /* find correct slot for value v, moving others up */ 2740 for (j = i; --j >= 0 && v < list[j];) 2741 list[j + 1] = list[j]; 2742 list[j + 1] = v; 2743 } 2744 } 2745 2746 /* 2747 * copy credentials making sure that the result can be compared with memcmp(). 2748 */ 2749 void 2750 nfsrv_setcred(incred, outcred) 2751 struct ucred *incred, *outcred; 2752 { 2753 int i; 2754 2755 memset((caddr_t)outcred, 0, sizeof (struct ucred)); 2756 outcred->cr_ref = 1; 2757 outcred->cr_uid = incred->cr_uid; 2758 outcred->cr_gid = incred->cr_gid; 2759 outcred->cr_ngroups = incred->cr_ngroups; 2760 for (i = 0; i < incred->cr_ngroups; i++) 2761 outcred->cr_groups[i] = incred->cr_groups[i]; 2762 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups); 2763 } 2764 2765 u_int32_t 2766 nfs_getxid() 2767 { 2768 static u_int32_t base; 2769 static u_int32_t nfs_xid = 0; 2770 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER; 2771 u_int32_t newxid; 2772 2773 simple_lock(&nfs_xidlock); 2774 /* 2775 * derive initial xid from system time 2776 * XXX time is invalid if root not yet mounted 2777 */ 2778 if (__predict_false(!base && (rootvp))) { 2779 struct timeval tv; 2780 2781 microtime(&tv); 2782 base = tv.tv_sec << 12; 2783 nfs_xid = base; 2784 } 2785 2786 /* 2787 * Skip zero xid if it should ever happen. 2788 */ 2789 if (__predict_false(++nfs_xid == 0)) 2790 nfs_xid++; 2791 newxid = nfs_xid; 2792 simple_unlock(&nfs_xidlock); 2793 2794 return txdr_unsigned(newxid); 2795 } 2796 2797 /* 2798 * assign a new xid for existing request. 2799 * used for NFSERR_JUKEBOX handling. 2800 */ 2801 void 2802 nfs_renewxid(struct nfsreq *req) 2803 { 2804 u_int32_t xid; 2805 int off; 2806 2807 xid = nfs_getxid(); 2808 if (req->r_nmp->nm_sotype == SOCK_STREAM) 2809 off = sizeof(u_int32_t); /* RPC record mark */ 2810 else 2811 off = 0; 2812 2813 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid); 2814 req->r_xid = xid; 2815 } 2816