1 /* $NetBSD: nfs_subs.c,v 1.205 2008/07/15 16:06:58 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 35 */ 36 37 /* 38 * Copyright 2000 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Frank van der Linden for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.205 2008/07/15 16:06:58 christos Exp $"); 74 75 #include "fs_nfs.h" 76 #include "opt_nfs.h" 77 #include "opt_nfsserver.h" 78 #include "opt_iso.h" 79 #include "opt_inet.h" 80 81 /* 82 * These functions support the macros and help fiddle mbuf chains for 83 * the nfs op functions. They do things like create the rpc header and 84 * copy data between mbuf chains and uio lists. 85 */ 86 #include <sys/param.h> 87 #include <sys/proc.h> 88 #include <sys/systm.h> 89 #include <sys/kernel.h> 90 #include <sys/kmem.h> 91 #include <sys/mount.h> 92 #include <sys/vnode.h> 93 #include <sys/namei.h> 94 #include <sys/mbuf.h> 95 #include <sys/socket.h> 96 #include <sys/stat.h> 97 #include <sys/filedesc.h> 98 #include <sys/time.h> 99 #include <sys/dirent.h> 100 #include <sys/once.h> 101 #include <sys/kauth.h> 102 103 #include <uvm/uvm_extern.h> 104 105 #include <nfs/rpcv2.h> 106 #include <nfs/nfsproto.h> 107 #include <nfs/nfsnode.h> 108 #include <nfs/nfs.h> 109 #include <nfs/xdr_subs.h> 110 #include <nfs/nfsm_subs.h> 111 #include <nfs/nfsmount.h> 112 #include <nfs/nfsrtt.h> 113 #include <nfs/nfs_var.h> 114 115 #include <miscfs/specfs/specdev.h> 116 117 #include <netinet/in.h> 118 #ifdef ISO 119 #include <netiso/iso.h> 120 #endif 121 122 /* 123 * Data items converted to xdr at startup, since they are constant 124 * This is kinda hokey, but may save a little time doing byte swaps 125 */ 126 u_int32_t nfs_xdrneg1; 127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 129 rpc_auth_kerb; 130 u_int32_t nfs_prog, nfs_true, nfs_false; 131 132 /* And other global data */ 133 const nfstype nfsv2_type[9] = 134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 135 const nfstype nfsv3_type[9] = 136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 137 const enum vtype nv2tov_type[8] = 138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 139 const enum vtype nv3tov_type[8] = 140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 141 int nfs_ticks; 142 int nfs_commitsize; 143 144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies"); 145 146 /* NFS client/server stats. */ 147 struct nfsstats nfsstats; 148 149 /* 150 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 151 */ 152 const int nfsv3_procid[NFS_NPROCS] = { 153 NFSPROC_NULL, 154 NFSPROC_GETATTR, 155 NFSPROC_SETATTR, 156 NFSPROC_NOOP, 157 NFSPROC_LOOKUP, 158 NFSPROC_READLINK, 159 NFSPROC_READ, 160 NFSPROC_NOOP, 161 NFSPROC_WRITE, 162 NFSPROC_CREATE, 163 NFSPROC_REMOVE, 164 NFSPROC_RENAME, 165 NFSPROC_LINK, 166 NFSPROC_SYMLINK, 167 NFSPROC_MKDIR, 168 NFSPROC_RMDIR, 169 NFSPROC_READDIR, 170 NFSPROC_FSSTAT, 171 NFSPROC_NOOP, 172 NFSPROC_NOOP, 173 NFSPROC_NOOP, 174 NFSPROC_NOOP, 175 NFSPROC_NOOP 176 }; 177 178 /* 179 * and the reverse mapping from generic to Version 2 procedure numbers 180 */ 181 const int nfsv2_procid[NFS_NPROCS] = { 182 NFSV2PROC_NULL, 183 NFSV2PROC_GETATTR, 184 NFSV2PROC_SETATTR, 185 NFSV2PROC_LOOKUP, 186 NFSV2PROC_NOOP, 187 NFSV2PROC_READLINK, 188 NFSV2PROC_READ, 189 NFSV2PROC_WRITE, 190 NFSV2PROC_CREATE, 191 NFSV2PROC_MKDIR, 192 NFSV2PROC_SYMLINK, 193 NFSV2PROC_CREATE, 194 NFSV2PROC_REMOVE, 195 NFSV2PROC_RMDIR, 196 NFSV2PROC_RENAME, 197 NFSV2PROC_LINK, 198 NFSV2PROC_READDIR, 199 NFSV2PROC_NOOP, 200 NFSV2PROC_STATFS, 201 NFSV2PROC_NOOP, 202 NFSV2PROC_NOOP, 203 NFSV2PROC_NOOP, 204 NFSV2PROC_NOOP, 205 }; 206 207 /* 208 * Maps errno values to nfs error numbers. 209 * Use NFSERR_IO as the catch all for ones not specifically defined in 210 * RFC 1094. 211 */ 212 static const u_char nfsrv_v2errmap[ELAST] = { 213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 229 NFSERR_IO, NFSERR_IO, 230 }; 231 232 /* 233 * Maps errno values to nfs error numbers. 234 * Although it is not obvious whether or not NFS clients really care if 235 * a returned error value is in the specified list for the procedure, the 236 * safest thing to do is filter them appropriately. For Version 2, the 237 * X/Open XNFS document is the only specification that defines error values 238 * for each RPC (The RFC simply lists all possible error values for all RPCs), 239 * so I have decided to not do this for Version 2. 240 * The first entry is the default error return and the rest are the valid 241 * errors for that RPC in increasing numeric order. 242 */ 243 static const short nfsv3err_null[] = { 244 0, 245 0, 246 }; 247 248 static const short nfsv3err_getattr[] = { 249 NFSERR_IO, 250 NFSERR_IO, 251 NFSERR_STALE, 252 NFSERR_BADHANDLE, 253 NFSERR_SERVERFAULT, 254 0, 255 }; 256 257 static const short nfsv3err_setattr[] = { 258 NFSERR_IO, 259 NFSERR_PERM, 260 NFSERR_IO, 261 NFSERR_ACCES, 262 NFSERR_INVAL, 263 NFSERR_NOSPC, 264 NFSERR_ROFS, 265 NFSERR_DQUOT, 266 NFSERR_STALE, 267 NFSERR_BADHANDLE, 268 NFSERR_NOT_SYNC, 269 NFSERR_SERVERFAULT, 270 0, 271 }; 272 273 static const short nfsv3err_lookup[] = { 274 NFSERR_IO, 275 NFSERR_NOENT, 276 NFSERR_IO, 277 NFSERR_ACCES, 278 NFSERR_NOTDIR, 279 NFSERR_NAMETOL, 280 NFSERR_STALE, 281 NFSERR_BADHANDLE, 282 NFSERR_SERVERFAULT, 283 0, 284 }; 285 286 static const short nfsv3err_access[] = { 287 NFSERR_IO, 288 NFSERR_IO, 289 NFSERR_STALE, 290 NFSERR_BADHANDLE, 291 NFSERR_SERVERFAULT, 292 0, 293 }; 294 295 static const short nfsv3err_readlink[] = { 296 NFSERR_IO, 297 NFSERR_IO, 298 NFSERR_ACCES, 299 NFSERR_INVAL, 300 NFSERR_STALE, 301 NFSERR_BADHANDLE, 302 NFSERR_NOTSUPP, 303 NFSERR_SERVERFAULT, 304 0, 305 }; 306 307 static const short nfsv3err_read[] = { 308 NFSERR_IO, 309 NFSERR_IO, 310 NFSERR_NXIO, 311 NFSERR_ACCES, 312 NFSERR_INVAL, 313 NFSERR_STALE, 314 NFSERR_BADHANDLE, 315 NFSERR_SERVERFAULT, 316 NFSERR_JUKEBOX, 317 0, 318 }; 319 320 static const short nfsv3err_write[] = { 321 NFSERR_IO, 322 NFSERR_IO, 323 NFSERR_ACCES, 324 NFSERR_INVAL, 325 NFSERR_FBIG, 326 NFSERR_NOSPC, 327 NFSERR_ROFS, 328 NFSERR_DQUOT, 329 NFSERR_STALE, 330 NFSERR_BADHANDLE, 331 NFSERR_SERVERFAULT, 332 NFSERR_JUKEBOX, 333 0, 334 }; 335 336 static const short nfsv3err_create[] = { 337 NFSERR_IO, 338 NFSERR_IO, 339 NFSERR_ACCES, 340 NFSERR_EXIST, 341 NFSERR_NOTDIR, 342 NFSERR_NOSPC, 343 NFSERR_ROFS, 344 NFSERR_NAMETOL, 345 NFSERR_DQUOT, 346 NFSERR_STALE, 347 NFSERR_BADHANDLE, 348 NFSERR_NOTSUPP, 349 NFSERR_SERVERFAULT, 350 0, 351 }; 352 353 static const short nfsv3err_mkdir[] = { 354 NFSERR_IO, 355 NFSERR_IO, 356 NFSERR_ACCES, 357 NFSERR_EXIST, 358 NFSERR_NOTDIR, 359 NFSERR_NOSPC, 360 NFSERR_ROFS, 361 NFSERR_NAMETOL, 362 NFSERR_DQUOT, 363 NFSERR_STALE, 364 NFSERR_BADHANDLE, 365 NFSERR_NOTSUPP, 366 NFSERR_SERVERFAULT, 367 0, 368 }; 369 370 static const short nfsv3err_symlink[] = { 371 NFSERR_IO, 372 NFSERR_IO, 373 NFSERR_ACCES, 374 NFSERR_EXIST, 375 NFSERR_NOTDIR, 376 NFSERR_NOSPC, 377 NFSERR_ROFS, 378 NFSERR_NAMETOL, 379 NFSERR_DQUOT, 380 NFSERR_STALE, 381 NFSERR_BADHANDLE, 382 NFSERR_NOTSUPP, 383 NFSERR_SERVERFAULT, 384 0, 385 }; 386 387 static const short nfsv3err_mknod[] = { 388 NFSERR_IO, 389 NFSERR_IO, 390 NFSERR_ACCES, 391 NFSERR_EXIST, 392 NFSERR_NOTDIR, 393 NFSERR_NOSPC, 394 NFSERR_ROFS, 395 NFSERR_NAMETOL, 396 NFSERR_DQUOT, 397 NFSERR_STALE, 398 NFSERR_BADHANDLE, 399 NFSERR_NOTSUPP, 400 NFSERR_SERVERFAULT, 401 NFSERR_BADTYPE, 402 0, 403 }; 404 405 static const short nfsv3err_remove[] = { 406 NFSERR_IO, 407 NFSERR_NOENT, 408 NFSERR_IO, 409 NFSERR_ACCES, 410 NFSERR_NOTDIR, 411 NFSERR_ROFS, 412 NFSERR_NAMETOL, 413 NFSERR_STALE, 414 NFSERR_BADHANDLE, 415 NFSERR_SERVERFAULT, 416 0, 417 }; 418 419 static const short nfsv3err_rmdir[] = { 420 NFSERR_IO, 421 NFSERR_NOENT, 422 NFSERR_IO, 423 NFSERR_ACCES, 424 NFSERR_EXIST, 425 NFSERR_NOTDIR, 426 NFSERR_INVAL, 427 NFSERR_ROFS, 428 NFSERR_NAMETOL, 429 NFSERR_NOTEMPTY, 430 NFSERR_STALE, 431 NFSERR_BADHANDLE, 432 NFSERR_NOTSUPP, 433 NFSERR_SERVERFAULT, 434 0, 435 }; 436 437 static const short nfsv3err_rename[] = { 438 NFSERR_IO, 439 NFSERR_NOENT, 440 NFSERR_IO, 441 NFSERR_ACCES, 442 NFSERR_EXIST, 443 NFSERR_XDEV, 444 NFSERR_NOTDIR, 445 NFSERR_ISDIR, 446 NFSERR_INVAL, 447 NFSERR_NOSPC, 448 NFSERR_ROFS, 449 NFSERR_MLINK, 450 NFSERR_NAMETOL, 451 NFSERR_NOTEMPTY, 452 NFSERR_DQUOT, 453 NFSERR_STALE, 454 NFSERR_BADHANDLE, 455 NFSERR_NOTSUPP, 456 NFSERR_SERVERFAULT, 457 0, 458 }; 459 460 static const short nfsv3err_link[] = { 461 NFSERR_IO, 462 NFSERR_IO, 463 NFSERR_ACCES, 464 NFSERR_EXIST, 465 NFSERR_XDEV, 466 NFSERR_NOTDIR, 467 NFSERR_INVAL, 468 NFSERR_NOSPC, 469 NFSERR_ROFS, 470 NFSERR_MLINK, 471 NFSERR_NAMETOL, 472 NFSERR_DQUOT, 473 NFSERR_STALE, 474 NFSERR_BADHANDLE, 475 NFSERR_NOTSUPP, 476 NFSERR_SERVERFAULT, 477 0, 478 }; 479 480 static const short nfsv3err_readdir[] = { 481 NFSERR_IO, 482 NFSERR_IO, 483 NFSERR_ACCES, 484 NFSERR_NOTDIR, 485 NFSERR_STALE, 486 NFSERR_BADHANDLE, 487 NFSERR_BAD_COOKIE, 488 NFSERR_TOOSMALL, 489 NFSERR_SERVERFAULT, 490 0, 491 }; 492 493 static const short nfsv3err_readdirplus[] = { 494 NFSERR_IO, 495 NFSERR_IO, 496 NFSERR_ACCES, 497 NFSERR_NOTDIR, 498 NFSERR_STALE, 499 NFSERR_BADHANDLE, 500 NFSERR_BAD_COOKIE, 501 NFSERR_NOTSUPP, 502 NFSERR_TOOSMALL, 503 NFSERR_SERVERFAULT, 504 0, 505 }; 506 507 static const short nfsv3err_fsstat[] = { 508 NFSERR_IO, 509 NFSERR_IO, 510 NFSERR_STALE, 511 NFSERR_BADHANDLE, 512 NFSERR_SERVERFAULT, 513 0, 514 }; 515 516 static const short nfsv3err_fsinfo[] = { 517 NFSERR_STALE, 518 NFSERR_STALE, 519 NFSERR_BADHANDLE, 520 NFSERR_SERVERFAULT, 521 0, 522 }; 523 524 static const short nfsv3err_pathconf[] = { 525 NFSERR_STALE, 526 NFSERR_STALE, 527 NFSERR_BADHANDLE, 528 NFSERR_SERVERFAULT, 529 0, 530 }; 531 532 static const short nfsv3err_commit[] = { 533 NFSERR_IO, 534 NFSERR_IO, 535 NFSERR_STALE, 536 NFSERR_BADHANDLE, 537 NFSERR_SERVERFAULT, 538 0, 539 }; 540 541 static const short * const nfsrv_v3errmap[] = { 542 nfsv3err_null, 543 nfsv3err_getattr, 544 nfsv3err_setattr, 545 nfsv3err_lookup, 546 nfsv3err_access, 547 nfsv3err_readlink, 548 nfsv3err_read, 549 nfsv3err_write, 550 nfsv3err_create, 551 nfsv3err_mkdir, 552 nfsv3err_symlink, 553 nfsv3err_mknod, 554 nfsv3err_remove, 555 nfsv3err_rmdir, 556 nfsv3err_rename, 557 nfsv3err_link, 558 nfsv3err_readdir, 559 nfsv3err_readdirplus, 560 nfsv3err_fsstat, 561 nfsv3err_fsinfo, 562 nfsv3err_pathconf, 563 nfsv3err_commit, 564 }; 565 566 extern struct vfs_hooks nfs_export_hooks; 567 extern struct nfsrtt nfsrtt; 568 extern struct nfsnodehashhead *nfsnodehashtbl; 569 extern u_long nfsnodehash; 570 571 u_long nfsdirhashmask; 572 573 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *)); 574 575 /* 576 * Create the header for an rpc request packet 577 * The hsiz is the size of the rest of the nfs request header. 578 * (just used to decide if a cluster is a good idea) 579 */ 580 struct mbuf * 581 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp) 582 { 583 struct mbuf *mb; 584 char *bpos; 585 586 mb = m_get(M_WAIT, MT_DATA); 587 MCLAIM(mb, &nfs_mowner); 588 if (hsiz >= MINCLSIZE) 589 m_clget(mb, M_WAIT); 590 mb->m_len = 0; 591 bpos = mtod(mb, void *); 592 593 /* Finally, return values */ 594 *bposp = bpos; 595 return (mb); 596 } 597 598 /* 599 * Build the RPC header and fill in the authorization info. 600 * The authorization string argument is only used when the credentials 601 * come from outside of the kernel. 602 * Returns the head of the mbuf list. 603 */ 604 struct mbuf * 605 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len, 606 verf_str, mrest, mrest_len, mbp, xidp) 607 kauth_cred_t cr; 608 int nmflag; 609 int procid; 610 int auth_type; 611 int auth_len; 612 char *auth_str; 613 int verf_len; 614 char *verf_str; 615 struct mbuf *mrest; 616 int mrest_len; 617 struct mbuf **mbp; 618 u_int32_t *xidp; 619 { 620 struct mbuf *mb; 621 u_int32_t *tl; 622 char *bpos; 623 int i; 624 struct mbuf *mreq; 625 int siz, grpsiz, authsiz; 626 627 authsiz = nfsm_rndup(auth_len); 628 mb = m_gethdr(M_WAIT, MT_DATA); 629 MCLAIM(mb, &nfs_mowner); 630 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 631 m_clget(mb, M_WAIT); 632 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 633 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 634 } else { 635 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 636 } 637 mb->m_len = 0; 638 mreq = mb; 639 bpos = mtod(mb, void *); 640 641 /* 642 * First the RPC header. 643 */ 644 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 645 646 *tl++ = *xidp = nfs_getxid(); 647 *tl++ = rpc_call; 648 *tl++ = rpc_vers; 649 *tl++ = txdr_unsigned(NFS_PROG); 650 if (nmflag & NFSMNT_NFSV3) 651 *tl++ = txdr_unsigned(NFS_VER3); 652 else 653 *tl++ = txdr_unsigned(NFS_VER2); 654 if (nmflag & NFSMNT_NFSV3) 655 *tl++ = txdr_unsigned(procid); 656 else 657 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 658 659 /* 660 * And then the authorization cred. 661 */ 662 *tl++ = txdr_unsigned(auth_type); 663 *tl = txdr_unsigned(authsiz); 664 switch (auth_type) { 665 case RPCAUTH_UNIX: 666 nfsm_build(tl, u_int32_t *, auth_len); 667 *tl++ = 0; /* stamp ?? */ 668 *tl++ = 0; /* NULL hostname */ 669 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr)); 670 *tl++ = txdr_unsigned(kauth_cred_getegid(cr)); 671 grpsiz = (auth_len >> 2) - 5; 672 *tl++ = txdr_unsigned(grpsiz); 673 for (i = 0; i < grpsiz; i++) 674 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */ 675 break; 676 case RPCAUTH_KERB4: 677 siz = auth_len; 678 while (siz > 0) { 679 if (M_TRAILINGSPACE(mb) == 0) { 680 struct mbuf *mb2; 681 mb2 = m_get(M_WAIT, MT_DATA); 682 MCLAIM(mb2, &nfs_mowner); 683 if (siz >= MINCLSIZE) 684 m_clget(mb2, M_WAIT); 685 mb->m_next = mb2; 686 mb = mb2; 687 mb->m_len = 0; 688 bpos = mtod(mb, void *); 689 } 690 i = min(siz, M_TRAILINGSPACE(mb)); 691 memcpy(bpos, auth_str, i); 692 mb->m_len += i; 693 auth_str += i; 694 bpos += i; 695 siz -= i; 696 } 697 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 698 for (i = 0; i < siz; i++) 699 *bpos++ = '\0'; 700 mb->m_len += siz; 701 } 702 break; 703 }; 704 705 /* 706 * And the verifier... 707 */ 708 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 709 if (verf_str) { 710 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 711 *tl = txdr_unsigned(verf_len); 712 siz = verf_len; 713 while (siz > 0) { 714 if (M_TRAILINGSPACE(mb) == 0) { 715 struct mbuf *mb2; 716 mb2 = m_get(M_WAIT, MT_DATA); 717 MCLAIM(mb2, &nfs_mowner); 718 if (siz >= MINCLSIZE) 719 m_clget(mb2, M_WAIT); 720 mb->m_next = mb2; 721 mb = mb2; 722 mb->m_len = 0; 723 bpos = mtod(mb, void *); 724 } 725 i = min(siz, M_TRAILINGSPACE(mb)); 726 memcpy(bpos, verf_str, i); 727 mb->m_len += i; 728 verf_str += i; 729 bpos += i; 730 siz -= i; 731 } 732 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 733 for (i = 0; i < siz; i++) 734 *bpos++ = '\0'; 735 mb->m_len += siz; 736 } 737 } else { 738 *tl++ = txdr_unsigned(RPCAUTH_NULL); 739 *tl = 0; 740 } 741 mb->m_next = mrest; 742 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 743 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 744 *mbp = mb; 745 return (mreq); 746 } 747 748 /* 749 * copies mbuf chain to the uio scatter/gather list 750 */ 751 int 752 nfsm_mbuftouio(mrep, uiop, siz, dpos) 753 struct mbuf **mrep; 754 struct uio *uiop; 755 int siz; 756 char **dpos; 757 { 758 char *mbufcp, *uiocp; 759 int xfer, left, len; 760 struct mbuf *mp; 761 long uiosiz, rem; 762 int error = 0; 763 764 mp = *mrep; 765 mbufcp = *dpos; 766 len = mtod(mp, char *) + mp->m_len - mbufcp; 767 rem = nfsm_rndup(siz)-siz; 768 while (siz > 0) { 769 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 770 return (EFBIG); 771 left = uiop->uio_iov->iov_len; 772 uiocp = uiop->uio_iov->iov_base; 773 if (left > siz) 774 left = siz; 775 uiosiz = left; 776 while (left > 0) { 777 while (len == 0) { 778 mp = mp->m_next; 779 if (mp == NULL) 780 return (EBADRPC); 781 mbufcp = mtod(mp, void *); 782 len = mp->m_len; 783 } 784 xfer = (left > len) ? len : left; 785 error = copyout_vmspace(uiop->uio_vmspace, mbufcp, 786 uiocp, xfer); 787 if (error) { 788 return error; 789 } 790 left -= xfer; 791 len -= xfer; 792 mbufcp += xfer; 793 uiocp += xfer; 794 uiop->uio_offset += xfer; 795 uiop->uio_resid -= xfer; 796 } 797 if (uiop->uio_iov->iov_len <= siz) { 798 uiop->uio_iovcnt--; 799 uiop->uio_iov++; 800 } else { 801 uiop->uio_iov->iov_base = 802 (char *)uiop->uio_iov->iov_base + uiosiz; 803 uiop->uio_iov->iov_len -= uiosiz; 804 } 805 siz -= uiosiz; 806 } 807 *dpos = mbufcp; 808 *mrep = mp; 809 if (rem > 0) { 810 if (len < rem) 811 error = nfs_adv(mrep, dpos, rem, len); 812 else 813 *dpos += rem; 814 } 815 return (error); 816 } 817 818 /* 819 * copies a uio scatter/gather list to an mbuf chain. 820 * NOTE: can ony handle iovcnt == 1 821 */ 822 int 823 nfsm_uiotombuf(uiop, mq, siz, bpos) 824 struct uio *uiop; 825 struct mbuf **mq; 826 int siz; 827 char **bpos; 828 { 829 char *uiocp; 830 struct mbuf *mp, *mp2; 831 int xfer, left, mlen; 832 int uiosiz, clflg, rem; 833 char *cp; 834 int error; 835 836 #ifdef DIAGNOSTIC 837 if (uiop->uio_iovcnt != 1) 838 panic("nfsm_uiotombuf: iovcnt != 1"); 839 #endif 840 841 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 842 clflg = 1; 843 else 844 clflg = 0; 845 rem = nfsm_rndup(siz)-siz; 846 mp = mp2 = *mq; 847 while (siz > 0) { 848 left = uiop->uio_iov->iov_len; 849 uiocp = uiop->uio_iov->iov_base; 850 if (left > siz) 851 left = siz; 852 uiosiz = left; 853 while (left > 0) { 854 mlen = M_TRAILINGSPACE(mp); 855 if (mlen == 0) { 856 mp = m_get(M_WAIT, MT_DATA); 857 MCLAIM(mp, &nfs_mowner); 858 if (clflg) 859 m_clget(mp, M_WAIT); 860 mp->m_len = 0; 861 mp2->m_next = mp; 862 mp2 = mp; 863 mlen = M_TRAILINGSPACE(mp); 864 } 865 xfer = (left > mlen) ? mlen : left; 866 cp = mtod(mp, char *) + mp->m_len; 867 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp, 868 xfer); 869 if (error) { 870 /* XXX */ 871 } 872 mp->m_len += xfer; 873 left -= xfer; 874 uiocp += xfer; 875 uiop->uio_offset += xfer; 876 uiop->uio_resid -= xfer; 877 } 878 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + 879 uiosiz; 880 uiop->uio_iov->iov_len -= uiosiz; 881 siz -= uiosiz; 882 } 883 if (rem > 0) { 884 if (rem > M_TRAILINGSPACE(mp)) { 885 mp = m_get(M_WAIT, MT_DATA); 886 MCLAIM(mp, &nfs_mowner); 887 mp->m_len = 0; 888 mp2->m_next = mp; 889 } 890 cp = mtod(mp, char *) + mp->m_len; 891 for (left = 0; left < rem; left++) 892 *cp++ = '\0'; 893 mp->m_len += rem; 894 *bpos = cp; 895 } else 896 *bpos = mtod(mp, char *) + mp->m_len; 897 *mq = mp; 898 return (0); 899 } 900 901 /* 902 * Get at least "siz" bytes of correctly aligned data. 903 * When called the mbuf pointers are not necessarily correct, 904 * dsosp points to what ought to be in m_data and left contains 905 * what ought to be in m_len. 906 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 907 * cases. (The macros use the vars. dpos and dpos2) 908 */ 909 int 910 nfsm_disct(mdp, dposp, siz, left, cp2) 911 struct mbuf **mdp; 912 char **dposp; 913 int siz; 914 int left; 915 char **cp2; 916 { 917 struct mbuf *m1, *m2; 918 struct mbuf *havebuf = NULL; 919 char *src = *dposp; 920 char *dst; 921 int len; 922 923 #ifdef DEBUG 924 if (left < 0) 925 panic("nfsm_disct: left < 0"); 926 #endif 927 m1 = *mdp; 928 /* 929 * Skip through the mbuf chain looking for an mbuf with 930 * some data. If the first mbuf found has enough data 931 * and it is correctly aligned return it. 932 */ 933 while (left == 0) { 934 havebuf = m1; 935 *mdp = m1 = m1->m_next; 936 if (m1 == NULL) 937 return (EBADRPC); 938 src = mtod(m1, void *); 939 left = m1->m_len; 940 /* 941 * If we start a new mbuf and it is big enough 942 * and correctly aligned just return it, don't 943 * do any pull up. 944 */ 945 if (left >= siz && nfsm_aligned(src)) { 946 *cp2 = src; 947 *dposp = src + siz; 948 return (0); 949 } 950 } 951 if ((m1->m_flags & M_EXT) != 0) { 952 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz && 953 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) { 954 /* 955 * If the first mbuf with data has external data 956 * and there is a previous mbuf with some trailing 957 * space, use it to move the data into. 958 */ 959 m2 = m1; 960 *mdp = m1 = havebuf; 961 *cp2 = mtod(m1, char *) + m1->m_len; 962 } else if (havebuf) { 963 /* 964 * If the first mbuf has a external data 965 * and there is no previous empty mbuf 966 * allocate a new mbuf and move the external 967 * data to the new mbuf. Also make the first 968 * mbuf look empty. 969 */ 970 m2 = m1; 971 *mdp = m1 = m_get(M_WAIT, MT_DATA); 972 MCLAIM(m1, m2->m_owner); 973 if ((m2->m_flags & M_PKTHDR) != 0) { 974 /* XXX MOVE */ 975 M_COPY_PKTHDR(m1, m2); 976 m_tag_delete_chain(m2, NULL); 977 m2->m_flags &= ~M_PKTHDR; 978 } 979 if (havebuf) { 980 havebuf->m_next = m1; 981 } 982 m1->m_next = m2; 983 MRESETDATA(m1); 984 m1->m_len = 0; 985 m2->m_data = src; 986 m2->m_len = left; 987 *cp2 = mtod(m1, char *); 988 } else { 989 struct mbuf **nextp = &m1->m_next; 990 991 m1->m_len -= left; 992 do { 993 m2 = m_get(M_WAIT, MT_DATA); 994 MCLAIM(m2, m1->m_owner); 995 if (left >= MINCLSIZE) { 996 MCLGET(m2, M_WAIT); 997 } 998 m2->m_next = *nextp; 999 *nextp = m2; 1000 nextp = &m2->m_next; 1001 len = (m2->m_flags & M_EXT) != 0 ? 1002 MCLBYTES : MLEN; 1003 if (len > left) { 1004 len = left; 1005 } 1006 memcpy(mtod(m2, char *), src, len); 1007 m2->m_len = len; 1008 src += len; 1009 left -= len; 1010 } while (left > 0); 1011 *mdp = m1 = m1->m_next; 1012 m2 = m1->m_next; 1013 *cp2 = mtod(m1, char *); 1014 } 1015 } else { 1016 /* 1017 * If the first mbuf has no external data 1018 * move the data to the front of the mbuf. 1019 */ 1020 MRESETDATA(m1); 1021 dst = mtod(m1, char *); 1022 if (dst != src) { 1023 memmove(dst, src, left); 1024 } 1025 m1->m_len = left; 1026 m2 = m1->m_next; 1027 *cp2 = m1->m_data; 1028 } 1029 *dposp = *cp2 + siz; 1030 /* 1031 * Loop through mbufs pulling data up into first mbuf until 1032 * the first mbuf is full or there is no more data to 1033 * pullup. 1034 */ 1035 dst = mtod(m1, char *) + m1->m_len; 1036 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) { 1037 if ((len = min(len, m2->m_len)) != 0) { 1038 memcpy(dst, mtod(m2, char *), len); 1039 } 1040 m1->m_len += len; 1041 dst += len; 1042 m2->m_data += len; 1043 m2->m_len -= len; 1044 m2 = m2->m_next; 1045 } 1046 if (m1->m_len < siz) 1047 return (EBADRPC); 1048 return (0); 1049 } 1050 1051 /* 1052 * Advance the position in the mbuf chain. 1053 */ 1054 int 1055 nfs_adv(mdp, dposp, offs, left) 1056 struct mbuf **mdp; 1057 char **dposp; 1058 int offs; 1059 int left; 1060 { 1061 struct mbuf *m; 1062 int s; 1063 1064 m = *mdp; 1065 s = left; 1066 while (s < offs) { 1067 offs -= s; 1068 m = m->m_next; 1069 if (m == NULL) 1070 return (EBADRPC); 1071 s = m->m_len; 1072 } 1073 *mdp = m; 1074 *dposp = mtod(m, char *) + offs; 1075 return (0); 1076 } 1077 1078 /* 1079 * Copy a string into mbufs for the hard cases... 1080 */ 1081 int 1082 nfsm_strtmbuf(mb, bpos, cp, siz) 1083 struct mbuf **mb; 1084 char **bpos; 1085 const char *cp; 1086 long siz; 1087 { 1088 struct mbuf *m1 = NULL, *m2; 1089 long left, xfer, len, tlen; 1090 u_int32_t *tl; 1091 int putsize; 1092 1093 putsize = 1; 1094 m2 = *mb; 1095 left = M_TRAILINGSPACE(m2); 1096 if (left > 0) { 1097 tl = ((u_int32_t *)(*bpos)); 1098 *tl++ = txdr_unsigned(siz); 1099 putsize = 0; 1100 left -= NFSX_UNSIGNED; 1101 m2->m_len += NFSX_UNSIGNED; 1102 if (left > 0) { 1103 memcpy((void *) tl, cp, left); 1104 siz -= left; 1105 cp += left; 1106 m2->m_len += left; 1107 left = 0; 1108 } 1109 } 1110 /* Loop around adding mbufs */ 1111 while (siz > 0) { 1112 m1 = m_get(M_WAIT, MT_DATA); 1113 MCLAIM(m1, &nfs_mowner); 1114 if (siz > MLEN) 1115 m_clget(m1, M_WAIT); 1116 m1->m_len = NFSMSIZ(m1); 1117 m2->m_next = m1; 1118 m2 = m1; 1119 tl = mtod(m1, u_int32_t *); 1120 tlen = 0; 1121 if (putsize) { 1122 *tl++ = txdr_unsigned(siz); 1123 m1->m_len -= NFSX_UNSIGNED; 1124 tlen = NFSX_UNSIGNED; 1125 putsize = 0; 1126 } 1127 if (siz < m1->m_len) { 1128 len = nfsm_rndup(siz); 1129 xfer = siz; 1130 if (xfer < len) 1131 *(tl+(xfer>>2)) = 0; 1132 } else { 1133 xfer = len = m1->m_len; 1134 } 1135 memcpy((void *) tl, cp, xfer); 1136 m1->m_len = len+tlen; 1137 siz -= xfer; 1138 cp += xfer; 1139 } 1140 *mb = m1; 1141 *bpos = mtod(m1, char *) + m1->m_len; 1142 return (0); 1143 } 1144 1145 /* 1146 * Directory caching routines. They work as follows: 1147 * - a cache is maintained per VDIR nfsnode. 1148 * - for each offset cookie that is exported to userspace, and can 1149 * thus be thrown back at us as an offset to VOP_READDIR, store 1150 * information in the cache. 1151 * - cached are: 1152 * - cookie itself 1153 * - blocknumber (essentially just a search key in the buffer cache) 1154 * - entry number in block. 1155 * - offset cookie of block in which this entry is stored 1156 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1157 * - entries are looked up in a hash table 1158 * - also maintained is an LRU list of entries, used to determine 1159 * which ones to delete if the cache grows too large. 1160 * - if 32 <-> 64 translation mode is requested for a filesystem, 1161 * the cache also functions as a translation table 1162 * - in the translation case, invalidating the cache does not mean 1163 * flushing it, but just marking entries as invalid, except for 1164 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1165 * still be able to use the cache as a translation table. 1166 * - 32 bit cookies are uniquely created by combining the hash table 1167 * entry value, and one generation count per hash table entry, 1168 * incremented each time an entry is appended to the chain. 1169 * - the cache is invalidated each time a direcory is modified 1170 * - sanity checks are also done; if an entry in a block turns 1171 * out not to have a matching cookie, the cache is invalidated 1172 * and a new block starting from the wanted offset is fetched from 1173 * the server. 1174 * - directory entries as read from the server are extended to contain 1175 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1176 * the cache and exporting them to userspace through the cookie 1177 * argument to VOP_READDIR. 1178 */ 1179 1180 u_long 1181 nfs_dirhash(off) 1182 off_t off; 1183 { 1184 int i; 1185 char *cp = (char *)&off; 1186 u_long sum = 0L; 1187 1188 for (i = 0 ; i < sizeof (off); i++) 1189 sum += *cp++; 1190 1191 return sum; 1192 } 1193 1194 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock) 1195 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np)) 1196 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np)) 1197 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np))) 1198 1199 void 1200 nfs_initdircache(vp) 1201 struct vnode *vp; 1202 { 1203 struct nfsnode *np = VTONFS(vp); 1204 struct nfsdirhashhead *dircache; 1205 1206 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true, 1207 &nfsdirhashmask); 1208 1209 NFSDC_LOCK(np); 1210 if (np->n_dircache == NULL) { 1211 np->n_dircachesize = 0; 1212 np->n_dircache = dircache; 1213 dircache = NULL; 1214 TAILQ_INIT(&np->n_dirchain); 1215 } 1216 NFSDC_UNLOCK(np); 1217 if (dircache) 1218 hashdone(dircache, HASH_LIST, nfsdirhashmask); 1219 } 1220 1221 void 1222 nfs_initdirxlatecookie(vp) 1223 struct vnode *vp; 1224 { 1225 struct nfsnode *np = VTONFS(vp); 1226 unsigned *dirgens; 1227 1228 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1229 1230 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP); 1231 NFSDC_LOCK(np); 1232 if (np->n_dirgens == NULL) { 1233 np->n_dirgens = dirgens; 1234 dirgens = NULL; 1235 } 1236 NFSDC_UNLOCK(np); 1237 if (dirgens) 1238 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned)); 1239 } 1240 1241 static const struct nfsdircache dzero; 1242 1243 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *)); 1244 static void nfs_putdircache_unlocked __P((struct nfsnode *, 1245 struct nfsdircache *)); 1246 1247 static void 1248 nfs_unlinkdircache(np, ndp) 1249 struct nfsnode *np; 1250 struct nfsdircache *ndp; 1251 { 1252 1253 NFSDC_ASSERT_LOCKED(np); 1254 KASSERT(ndp != &dzero); 1255 1256 if (LIST_NEXT(ndp, dc_hash) == (void *)-1) 1257 return; 1258 1259 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1260 LIST_REMOVE(ndp, dc_hash); 1261 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */ 1262 1263 nfs_putdircache_unlocked(np, ndp); 1264 } 1265 1266 void 1267 nfs_putdircache(np, ndp) 1268 struct nfsnode *np; 1269 struct nfsdircache *ndp; 1270 { 1271 int ref; 1272 1273 if (ndp == &dzero) 1274 return; 1275 1276 KASSERT(ndp->dc_refcnt > 0); 1277 NFSDC_LOCK(np); 1278 ref = --ndp->dc_refcnt; 1279 NFSDC_UNLOCK(np); 1280 1281 if (ref == 0) 1282 kmem_free(ndp, sizeof(*ndp)); 1283 } 1284 1285 static void 1286 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp) 1287 { 1288 int ref; 1289 1290 NFSDC_ASSERT_LOCKED(np); 1291 1292 if (ndp == &dzero) 1293 return; 1294 1295 KASSERT(ndp->dc_refcnt > 0); 1296 ref = --ndp->dc_refcnt; 1297 if (ref == 0) 1298 kmem_free(ndp, sizeof(*ndp)); 1299 } 1300 1301 struct nfsdircache * 1302 nfs_searchdircache(vp, off, do32, hashent) 1303 struct vnode *vp; 1304 off_t off; 1305 int do32; 1306 int *hashent; 1307 { 1308 struct nfsdirhashhead *ndhp; 1309 struct nfsdircache *ndp = NULL; 1310 struct nfsnode *np = VTONFS(vp); 1311 unsigned ent; 1312 1313 /* 1314 * Zero is always a valid cookie. 1315 */ 1316 if (off == 0) 1317 /* XXXUNCONST */ 1318 return (struct nfsdircache *)__UNCONST(&dzero); 1319 1320 if (!np->n_dircache) 1321 return NULL; 1322 1323 /* 1324 * We use a 32bit cookie as search key, directly reconstruct 1325 * the hashentry. Else use the hashfunction. 1326 */ 1327 if (do32) { 1328 ent = (u_int32_t)off >> 24; 1329 if (ent >= NFS_DIRHASHSIZ) 1330 return NULL; 1331 ndhp = &np->n_dircache[ent]; 1332 } else { 1333 ndhp = NFSDIRHASH(np, off); 1334 } 1335 1336 if (hashent) 1337 *hashent = (int)(ndhp - np->n_dircache); 1338 1339 NFSDC_LOCK(np); 1340 if (do32) { 1341 LIST_FOREACH(ndp, ndhp, dc_hash) { 1342 if (ndp->dc_cookie32 == (u_int32_t)off) { 1343 /* 1344 * An invalidated entry will become the 1345 * start of a new block fetched from 1346 * the server. 1347 */ 1348 if (ndp->dc_flags & NFSDC_INVALID) { 1349 ndp->dc_blkcookie = ndp->dc_cookie; 1350 ndp->dc_entry = 0; 1351 ndp->dc_flags &= ~NFSDC_INVALID; 1352 } 1353 break; 1354 } 1355 } 1356 } else { 1357 LIST_FOREACH(ndp, ndhp, dc_hash) { 1358 if (ndp->dc_cookie == off) 1359 break; 1360 } 1361 } 1362 if (ndp != NULL) 1363 ndp->dc_refcnt++; 1364 NFSDC_UNLOCK(np); 1365 return ndp; 1366 } 1367 1368 1369 struct nfsdircache * 1370 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en, 1371 daddr_t blkno) 1372 { 1373 struct nfsnode *np = VTONFS(vp); 1374 struct nfsdirhashhead *ndhp; 1375 struct nfsdircache *ndp = NULL; 1376 struct nfsdircache *newndp = NULL; 1377 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1378 int hashent = 0, gen, overwrite; /* XXX: GCC */ 1379 1380 /* 1381 * XXX refuse entries for offset 0. amd(8) erroneously sets 1382 * cookie 0 for the '.' entry, making this necessary. This 1383 * isn't so bad, as 0 is a special case anyway. 1384 */ 1385 if (off == 0) 1386 /* XXXUNCONST */ 1387 return (struct nfsdircache *)__UNCONST(&dzero); 1388 1389 if (!np->n_dircache) 1390 /* 1391 * XXX would like to do this in nfs_nget but vtype 1392 * isn't known at that time. 1393 */ 1394 nfs_initdircache(vp); 1395 1396 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens) 1397 nfs_initdirxlatecookie(vp); 1398 1399 retry: 1400 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1401 1402 NFSDC_LOCK(np); 1403 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) { 1404 /* 1405 * Overwriting an old entry. Check if it's the same. 1406 * If so, just return. If not, remove the old entry. 1407 */ 1408 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1409 goto done; 1410 nfs_unlinkdircache(np, ndp); 1411 nfs_putdircache_unlocked(np, ndp); 1412 ndp = NULL; 1413 } 1414 1415 ndhp = &np->n_dircache[hashent]; 1416 1417 if (!ndp) { 1418 if (newndp == NULL) { 1419 NFSDC_UNLOCK(np); 1420 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP); 1421 newndp->dc_refcnt = 1; 1422 LIST_NEXT(newndp, dc_hash) = (void *)-1; 1423 goto retry; 1424 } 1425 ndp = newndp; 1426 newndp = NULL; 1427 overwrite = 0; 1428 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1429 /* 1430 * We're allocating a new entry, so bump the 1431 * generation number. 1432 */ 1433 KASSERT(np->n_dirgens); 1434 gen = ++np->n_dirgens[hashent]; 1435 if (gen == 0) { 1436 np->n_dirgens[hashent]++; 1437 gen++; 1438 } 1439 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1440 } 1441 } else 1442 overwrite = 1; 1443 1444 ndp->dc_cookie = off; 1445 ndp->dc_blkcookie = blkoff; 1446 ndp->dc_entry = en; 1447 ndp->dc_flags = 0; 1448 1449 if (overwrite) 1450 goto done; 1451 1452 /* 1453 * If the maximum directory cookie cache size has been reached 1454 * for this node, take one off the front. The idea is that 1455 * directories are typically read front-to-back once, so that 1456 * the oldest entries can be thrown away without much performance 1457 * loss. 1458 */ 1459 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1460 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain)); 1461 } else 1462 np->n_dircachesize++; 1463 1464 KASSERT(ndp->dc_refcnt == 1); 1465 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1466 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1467 ndp->dc_refcnt++; 1468 done: 1469 KASSERT(ndp->dc_refcnt > 0); 1470 NFSDC_UNLOCK(np); 1471 if (newndp) 1472 nfs_putdircache(np, newndp); 1473 return ndp; 1474 } 1475 1476 void 1477 nfs_invaldircache(vp, flags) 1478 struct vnode *vp; 1479 int flags; 1480 { 1481 struct nfsnode *np = VTONFS(vp); 1482 struct nfsdircache *ndp = NULL; 1483 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1484 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE; 1485 1486 #ifdef DIAGNOSTIC 1487 if (vp->v_type != VDIR) 1488 panic("nfs: invaldircache: not dir"); 1489 #endif 1490 1491 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0) 1492 np->n_flag &= ~NEOFVALID; 1493 1494 if (!np->n_dircache) 1495 return; 1496 1497 NFSDC_LOCK(np); 1498 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1499 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) { 1500 KASSERT(!forcefree || ndp->dc_refcnt == 1); 1501 nfs_unlinkdircache(np, ndp); 1502 } 1503 np->n_dircachesize = 0; 1504 if (forcefree && np->n_dirgens) { 1505 kmem_free(np->n_dirgens, 1506 NFS_DIRHASHSIZ * sizeof(unsigned)); 1507 np->n_dirgens = NULL; 1508 } 1509 } else { 1510 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) 1511 ndp->dc_flags |= NFSDC_INVALID; 1512 } 1513 1514 NFSDC_UNLOCK(np); 1515 } 1516 1517 /* 1518 * Called once before VFS init to initialize shared and 1519 * server-specific data structures. 1520 */ 1521 static int 1522 nfs_init0(void) 1523 { 1524 1525 nfsrtt.pos = 0; 1526 rpc_vers = txdr_unsigned(RPC_VER2); 1527 rpc_call = txdr_unsigned(RPC_CALL); 1528 rpc_reply = txdr_unsigned(RPC_REPLY); 1529 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1530 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1531 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1532 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1533 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1534 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1535 nfs_prog = txdr_unsigned(NFS_PROG); 1536 nfs_true = txdr_unsigned(true); 1537 nfs_false = txdr_unsigned(false); 1538 nfs_xdrneg1 = txdr_unsigned(-1); 1539 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1540 if (nfs_ticks < 1) 1541 nfs_ticks = 1; 1542 #ifdef NFSSERVER 1543 vfs_hooks_attach(&nfs_export_hooks); 1544 nfsrv_init(0); /* Init server data structures */ 1545 nfsrv_initcache(); /* Init the server request cache */ 1546 { 1547 extern krwlock_t netexport_lock; /* XXX */ 1548 rw_init(&netexport_lock); 1549 } 1550 #endif /* NFSSERVER */ 1551 1552 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) 1553 nfsdreq_init(); 1554 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */ 1555 1556 /* 1557 * Initialize reply list and start timer 1558 */ 1559 TAILQ_INIT(&nfs_reqq); 1560 nfs_timer_init(); 1561 MOWNER_ATTACH(&nfs_mowner); 1562 1563 #ifdef NFS 1564 /* Initialize the kqueue structures */ 1565 nfs_kqinit(); 1566 /* Initialize the iod structures */ 1567 nfs_iodinit(); 1568 #endif 1569 return 0; 1570 } 1571 1572 void 1573 nfs_init(void) 1574 { 1575 static ONCE_DECL(nfs_init_once); 1576 1577 RUN_ONCE(&nfs_init_once, nfs_init0); 1578 } 1579 1580 #ifdef NFS 1581 /* 1582 * Called once at VFS init to initialize client-specific data structures. 1583 */ 1584 void 1585 nfs_vfs_init() 1586 { 1587 /* Initialize NFS server / client shared data. */ 1588 nfs_init(); 1589 1590 nfs_nhinit(); /* Init the nfsnode table */ 1591 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4); 1592 } 1593 1594 void 1595 nfs_vfs_reinit() 1596 { 1597 nfs_nhreinit(); 1598 } 1599 1600 void 1601 nfs_vfs_done() 1602 { 1603 nfs_nhdone(); 1604 } 1605 1606 /* 1607 * Attribute cache routines. 1608 * nfs_loadattrcache() - loads or updates the cache contents from attributes 1609 * that are on the mbuf list 1610 * nfs_getattrcache() - returns valid attributes if found in cache, returns 1611 * error otherwise 1612 */ 1613 1614 /* 1615 * Load the attribute cache (that lives in the nfsnode entry) with 1616 * the values on the mbuf list and 1617 * Iff vap not NULL 1618 * copy the attributes to *vaper 1619 */ 1620 int 1621 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags) 1622 struct vnode **vpp; 1623 struct mbuf **mdp; 1624 char **dposp; 1625 struct vattr *vaper; 1626 int flags; 1627 { 1628 int32_t t1; 1629 char *cp2; 1630 int error = 0; 1631 struct mbuf *md; 1632 int v3 = NFS_ISV3(*vpp); 1633 1634 md = *mdp; 1635 t1 = (mtod(md, char *) + md->m_len) - *dposp; 1636 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2); 1637 if (error) 1638 return (error); 1639 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags); 1640 } 1641 1642 int 1643 nfs_loadattrcache(vpp, fp, vaper, flags) 1644 struct vnode **vpp; 1645 struct nfs_fattr *fp; 1646 struct vattr *vaper; 1647 int flags; 1648 { 1649 struct vnode *vp = *vpp; 1650 struct vattr *vap; 1651 int v3 = NFS_ISV3(vp); 1652 enum vtype vtyp; 1653 u_short vmode; 1654 struct timespec mtime; 1655 struct timespec ctime; 1656 int32_t rdev; 1657 struct nfsnode *np; 1658 extern int (**spec_nfsv2nodeop_p) __P((void *)); 1659 uid_t uid; 1660 gid_t gid; 1661 1662 if (v3) { 1663 vtyp = nfsv3tov_type(fp->fa_type); 1664 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1665 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1), 1666 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2)); 1667 fxdr_nfsv3time(&fp->fa3_mtime, &mtime); 1668 fxdr_nfsv3time(&fp->fa3_ctime, &ctime); 1669 } else { 1670 vtyp = nfsv2tov_type(fp->fa_type); 1671 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1672 if (vtyp == VNON || vtyp == VREG) 1673 vtyp = IFTOVT(vmode); 1674 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); 1675 fxdr_nfsv2time(&fp->fa2_mtime, &mtime); 1676 ctime.tv_sec = fxdr_unsigned(u_int32_t, 1677 fp->fa2_ctime.nfsv2_sec); 1678 ctime.tv_nsec = 0; 1679 1680 /* 1681 * Really ugly NFSv2 kludge. 1682 */ 1683 if (vtyp == VCHR && rdev == 0xffffffff) 1684 vtyp = VFIFO; 1685 } 1686 1687 vmode &= ALLPERMS; 1688 1689 /* 1690 * If v_type == VNON it is a new node, so fill in the v_type, 1691 * n_mtime fields. Check to see if it represents a special 1692 * device, and if so, check for a possible alias. Once the 1693 * correct vnode has been obtained, fill in the rest of the 1694 * information. 1695 */ 1696 np = VTONFS(vp); 1697 if (vp->v_type == VNON) { 1698 vp->v_type = vtyp; 1699 if (vp->v_type == VFIFO) { 1700 extern int (**fifo_nfsv2nodeop_p) __P((void *)); 1701 vp->v_op = fifo_nfsv2nodeop_p; 1702 } else if (vp->v_type == VREG) { 1703 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE); 1704 } else if (vp->v_type == VCHR || vp->v_type == VBLK) { 1705 vp->v_op = spec_nfsv2nodeop_p; 1706 spec_node_init(vp, (dev_t)rdev); 1707 } 1708 np->n_mtime = mtime; 1709 } 1710 uid = fxdr_unsigned(uid_t, fp->fa_uid); 1711 gid = fxdr_unsigned(gid_t, fp->fa_gid); 1712 vap = np->n_vattr; 1713 1714 /* 1715 * Invalidate access cache if uid, gid, mode or ctime changed. 1716 */ 1717 if (np->n_accstamp != -1 && 1718 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode 1719 || timespeccmp(&ctime, &vap->va_ctime, !=))) 1720 np->n_accstamp = -1; 1721 1722 vap->va_type = vtyp; 1723 vap->va_mode = vmode; 1724 vap->va_rdev = (dev_t)rdev; 1725 vap->va_mtime = mtime; 1726 vap->va_ctime = ctime; 1727 vap->va_birthtime.tv_sec = VNOVAL; 1728 vap->va_birthtime.tv_nsec = VNOVAL; 1729 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 1730 switch (vtyp) { 1731 case VDIR: 1732 vap->va_blocksize = NFS_DIRFRAGSIZ; 1733 break; 1734 case VBLK: 1735 vap->va_blocksize = BLKDEV_IOSIZE; 1736 break; 1737 case VCHR: 1738 vap->va_blocksize = MAXBSIZE; 1739 break; 1740 default: 1741 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize : 1742 fxdr_unsigned(int32_t, fp->fa2_blocksize); 1743 break; 1744 } 1745 if (v3) { 1746 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1747 vap->va_uid = uid; 1748 vap->va_gid = gid; 1749 vap->va_size = fxdr_hyper(&fp->fa3_size); 1750 vap->va_bytes = fxdr_hyper(&fp->fa3_used); 1751 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid); 1752 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); 1753 vap->va_flags = 0; 1754 vap->va_filerev = 0; 1755 } else { 1756 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1757 vap->va_uid = uid; 1758 vap->va_gid = gid; 1759 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); 1760 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks) 1761 * NFS_FABLKSIZE; 1762 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); 1763 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); 1764 vap->va_flags = 0; 1765 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec); 1766 vap->va_filerev = 0; 1767 } 1768 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) { 1769 return EFBIG; 1770 } 1771 if (vap->va_size != np->n_size) { 1772 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) { 1773 vap->va_size = np->n_size; 1774 } else { 1775 np->n_size = vap->va_size; 1776 if (vap->va_type == VREG) { 1777 /* 1778 * we can't free pages if NAC_NOTRUNC because 1779 * the pages can be owned by ourselves. 1780 */ 1781 if (flags & NAC_NOTRUNC) { 1782 np->n_flag |= NTRUNCDELAYED; 1783 } else { 1784 genfs_node_wrlock(vp); 1785 mutex_enter(&vp->v_interlock); 1786 (void)VOP_PUTPAGES(vp, 0, 1787 0, PGO_SYNCIO | PGO_CLEANIT | 1788 PGO_FREE | PGO_ALLPAGES); 1789 uvm_vnp_setsize(vp, np->n_size); 1790 genfs_node_unlock(vp); 1791 } 1792 } 1793 } 1794 } 1795 np->n_attrstamp = time_second; 1796 if (vaper != NULL) { 1797 memcpy((void *)vaper, (void *)vap, sizeof(*vap)); 1798 if (np->n_flag & NCHG) { 1799 if (np->n_flag & NACC) 1800 vaper->va_atime = np->n_atim; 1801 if (np->n_flag & NUPD) 1802 vaper->va_mtime = np->n_mtim; 1803 } 1804 } 1805 return (0); 1806 } 1807 1808 /* 1809 * Check the time stamp 1810 * If the cache is valid, copy contents to *vap and return 0 1811 * otherwise return an error 1812 */ 1813 int 1814 nfs_getattrcache(vp, vaper) 1815 struct vnode *vp; 1816 struct vattr *vaper; 1817 { 1818 struct nfsnode *np = VTONFS(vp); 1819 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1820 struct vattr *vap; 1821 1822 if (np->n_attrstamp == 0 || 1823 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) { 1824 nfsstats.attrcache_misses++; 1825 return (ENOENT); 1826 } 1827 nfsstats.attrcache_hits++; 1828 vap = np->n_vattr; 1829 if (vap->va_size != np->n_size) { 1830 if (vap->va_type == VREG) { 1831 if ((np->n_flag & NMODIFIED) != 0 && 1832 vap->va_size < np->n_size) { 1833 vap->va_size = np->n_size; 1834 } else { 1835 np->n_size = vap->va_size; 1836 } 1837 genfs_node_wrlock(vp); 1838 uvm_vnp_setsize(vp, np->n_size); 1839 genfs_node_unlock(vp); 1840 } else 1841 np->n_size = vap->va_size; 1842 } 1843 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr)); 1844 if (np->n_flag & NCHG) { 1845 if (np->n_flag & NACC) 1846 vaper->va_atime = np->n_atim; 1847 if (np->n_flag & NUPD) 1848 vaper->va_mtime = np->n_mtim; 1849 } 1850 return (0); 1851 } 1852 1853 void 1854 nfs_delayedtruncate(vp) 1855 struct vnode *vp; 1856 { 1857 struct nfsnode *np = VTONFS(vp); 1858 1859 if (np->n_flag & NTRUNCDELAYED) { 1860 np->n_flag &= ~NTRUNCDELAYED; 1861 genfs_node_wrlock(vp); 1862 mutex_enter(&vp->v_interlock); 1863 (void)VOP_PUTPAGES(vp, 0, 1864 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES); 1865 uvm_vnp_setsize(vp, np->n_size); 1866 genfs_node_unlock(vp); 1867 } 1868 } 1869 1870 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */ 1871 #define NFS_WCCKLUDGE(nmp, now) \ 1872 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \ 1873 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0) 1874 1875 /* 1876 * nfs_check_wccdata: check inaccurate wcc_data 1877 * 1878 * => return non-zero if we shouldn't trust the wcc_data. 1879 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed". 1880 */ 1881 1882 int 1883 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime, 1884 struct timespec *mtime, bool docheck) 1885 { 1886 int error = 0; 1887 1888 #if !defined(NFS_V2_ONLY) 1889 1890 if (docheck) { 1891 struct vnode *vp = NFSTOV(np); 1892 struct nfsmount *nmp; 1893 long now = time_second; 1894 const struct timespec *omtime = &np->n_vattr->va_mtime; 1895 const struct timespec *octime = &np->n_vattr->va_ctime; 1896 const char *reason = NULL; /* XXX: gcc */ 1897 1898 if (timespeccmp(omtime, mtime, <=)) { 1899 reason = "mtime"; 1900 error = EINVAL; 1901 } 1902 1903 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) { 1904 reason = "ctime"; 1905 error = EINVAL; 1906 } 1907 1908 nmp = VFSTONFS(vp->v_mount); 1909 if (error) { 1910 1911 /* 1912 * despite of the fact that we've updated the file, 1913 * timestamps of the file were not updated as we 1914 * expected. 1915 * it means that the server has incompatible 1916 * semantics of timestamps or (more likely) 1917 * the server time is not precise enough to 1918 * track each modifications. 1919 * in that case, we disable wcc processing. 1920 * 1921 * yes, strictly speaking, we should disable all 1922 * caching. it's a compromise. 1923 */ 1924 1925 mutex_enter(&nmp->nm_lock); 1926 if (!NFS_WCCKLUDGE(nmp, now)) { 1927 printf("%s: inaccurate wcc data (%s) detected," 1928 " disabling wcc" 1929 " (ctime %u.%09u %u.%09u," 1930 " mtime %u.%09u %u.%09u)\n", 1931 vp->v_mount->mnt_stat.f_mntfromname, 1932 reason, 1933 (unsigned int)octime->tv_sec, 1934 (unsigned int)octime->tv_nsec, 1935 (unsigned int)ctime->tv_sec, 1936 (unsigned int)ctime->tv_nsec, 1937 (unsigned int)omtime->tv_sec, 1938 (unsigned int)omtime->tv_nsec, 1939 (unsigned int)mtime->tv_sec, 1940 (unsigned int)mtime->tv_nsec); 1941 } 1942 nmp->nm_iflag |= NFSMNT_WCCKLUDGE; 1943 nmp->nm_wcckludgetime = now; 1944 mutex_exit(&nmp->nm_lock); 1945 } else if (NFS_WCCKLUDGE(nmp, now)) { 1946 error = EPERM; /* XXX */ 1947 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) { 1948 mutex_enter(&nmp->nm_lock); 1949 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) { 1950 printf("%s: re-enabling wcc\n", 1951 vp->v_mount->mnt_stat.f_mntfromname); 1952 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE; 1953 } 1954 mutex_exit(&nmp->nm_lock); 1955 } 1956 } 1957 1958 #endif /* !defined(NFS_V2_ONLY) */ 1959 1960 return error; 1961 } 1962 1963 /* 1964 * Heuristic to see if the server XDR encodes directory cookies or not. 1965 * it is not supposed to, but a lot of servers may do this. Also, since 1966 * most/all servers will implement V2 as well, it is expected that they 1967 * may return just 32 bits worth of cookie information, so we need to 1968 * find out in which 32 bits this information is available. We do this 1969 * to avoid trouble with emulated binaries that can't handle 64 bit 1970 * directory offsets. 1971 */ 1972 1973 void 1974 nfs_cookieheuristic(vp, flagp, l, cred) 1975 struct vnode *vp; 1976 int *flagp; 1977 struct lwp *l; 1978 kauth_cred_t cred; 1979 { 1980 struct uio auio; 1981 struct iovec aiov; 1982 char *tbuf, *cp; 1983 struct dirent *dp; 1984 off_t *cookies = NULL, *cop; 1985 int error, eof, nc, len; 1986 1987 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK); 1988 1989 aiov.iov_base = tbuf; 1990 aiov.iov_len = NFS_DIRFRAGSIZ; 1991 auio.uio_iov = &aiov; 1992 auio.uio_iovcnt = 1; 1993 auio.uio_rw = UIO_READ; 1994 auio.uio_resid = NFS_DIRFRAGSIZ; 1995 auio.uio_offset = 0; 1996 UIO_SETUP_SYSSPACE(&auio); 1997 1998 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc); 1999 2000 len = NFS_DIRFRAGSIZ - auio.uio_resid; 2001 if (error || len == 0) { 2002 FREE(tbuf, M_TEMP); 2003 if (cookies) 2004 free(cookies, M_TEMP); 2005 return; 2006 } 2007 2008 /* 2009 * Find the first valid entry and look at its offset cookie. 2010 */ 2011 2012 cp = tbuf; 2013 for (cop = cookies; len > 0; len -= dp->d_reclen) { 2014 dp = (struct dirent *)cp; 2015 if (dp->d_fileno != 0 && len >= dp->d_reclen) { 2016 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) { 2017 *flagp |= NFSMNT_SWAPCOOKIE; 2018 nfs_invaldircache(vp, 0); 2019 nfs_vinvalbuf(vp, 0, cred, l, 1); 2020 } 2021 break; 2022 } 2023 cop++; 2024 cp += dp->d_reclen; 2025 } 2026 2027 FREE(tbuf, M_TEMP); 2028 free(cookies, M_TEMP); 2029 } 2030 #endif /* NFS */ 2031 2032 #ifdef NFSSERVER 2033 /* 2034 * Set up nameidata for a lookup() call and do it. 2035 * 2036 * If pubflag is set, this call is done for a lookup operation on the 2037 * public filehandle. In that case we allow crossing mountpoints and 2038 * absolute pathnames. However, the caller is expected to check that 2039 * the lookup result is within the public fs, and deny access if 2040 * it is not. 2041 */ 2042 int 2043 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag) 2044 struct nameidata *ndp; 2045 nfsrvfh_t *nsfh; 2046 uint32_t len; 2047 struct nfssvc_sock *slp; 2048 struct mbuf *nam; 2049 struct mbuf **mdp; 2050 char **dposp; 2051 struct vnode **retdirp; 2052 struct lwp *l; 2053 int kerbflag, pubflag; 2054 { 2055 int i, rem; 2056 struct mbuf *md; 2057 char *fromcp, *tocp, *cp; 2058 struct iovec aiov; 2059 struct uio auio; 2060 struct vnode *dp; 2061 int error, rdonly, linklen; 2062 struct componentname *cnp = &ndp->ni_cnd; 2063 2064 *retdirp = NULL; 2065 2066 if ((len + 1) > MAXPATHLEN) 2067 return (ENAMETOOLONG); 2068 if (len == 0) 2069 return (EACCES); 2070 cnp->cn_pnbuf = PNBUF_GET(); 2071 2072 /* 2073 * Copy the name from the mbuf list to ndp->ni_pnbuf 2074 * and set the various ndp fields appropriately. 2075 */ 2076 fromcp = *dposp; 2077 tocp = cnp->cn_pnbuf; 2078 md = *mdp; 2079 rem = mtod(md, char *) + md->m_len - fromcp; 2080 for (i = 0; i < len; i++) { 2081 while (rem == 0) { 2082 md = md->m_next; 2083 if (md == NULL) { 2084 error = EBADRPC; 2085 goto out; 2086 } 2087 fromcp = mtod(md, void *); 2088 rem = md->m_len; 2089 } 2090 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) { 2091 error = EACCES; 2092 goto out; 2093 } 2094 *tocp++ = *fromcp++; 2095 rem--; 2096 } 2097 *tocp = '\0'; 2098 *mdp = md; 2099 *dposp = fromcp; 2100 len = nfsm_rndup(len)-len; 2101 if (len > 0) { 2102 if (rem >= len) 2103 *dposp += len; 2104 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0) 2105 goto out; 2106 } 2107 2108 /* 2109 * Extract and set starting directory. 2110 */ 2111 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp, 2112 nam, &rdonly, kerbflag, pubflag); 2113 if (error) 2114 goto out; 2115 if (dp->v_type != VDIR) { 2116 vrele(dp); 2117 error = ENOTDIR; 2118 goto out; 2119 } 2120 2121 if (rdonly) 2122 cnp->cn_flags |= RDONLY; 2123 2124 *retdirp = dp; 2125 2126 if (pubflag) { 2127 /* 2128 * Oh joy. For WebNFS, handle those pesky '%' escapes, 2129 * and the 'native path' indicator. 2130 */ 2131 cp = PNBUF_GET(); 2132 fromcp = cnp->cn_pnbuf; 2133 tocp = cp; 2134 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) { 2135 switch ((unsigned char)*fromcp) { 2136 case WEBNFS_NATIVE_CHAR: 2137 /* 2138 * 'Native' path for us is the same 2139 * as a path according to the NFS spec, 2140 * just skip the escape char. 2141 */ 2142 fromcp++; 2143 break; 2144 /* 2145 * More may be added in the future, range 0x80-0xff 2146 */ 2147 default: 2148 error = EIO; 2149 vrele(dp); 2150 PNBUF_PUT(cp); 2151 goto out; 2152 } 2153 } 2154 /* 2155 * Translate the '%' escapes, URL-style. 2156 */ 2157 while (*fromcp != '\0') { 2158 if (*fromcp == WEBNFS_ESC_CHAR) { 2159 if (fromcp[1] != '\0' && fromcp[2] != '\0') { 2160 fromcp++; 2161 *tocp++ = HEXSTRTOI(fromcp); 2162 fromcp += 2; 2163 continue; 2164 } else { 2165 error = ENOENT; 2166 vrele(dp); 2167 PNBUF_PUT(cp); 2168 goto out; 2169 } 2170 } else 2171 *tocp++ = *fromcp++; 2172 } 2173 *tocp = '\0'; 2174 PNBUF_PUT(cnp->cn_pnbuf); 2175 cnp->cn_pnbuf = cp; 2176 } 2177 2178 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1; 2179 ndp->ni_segflg = UIO_SYSSPACE; 2180 ndp->ni_rootdir = rootvnode; 2181 ndp->ni_erootdir = NULL; 2182 2183 if (pubflag) { 2184 ndp->ni_loopcnt = 0; 2185 if (cnp->cn_pnbuf[0] == '/') 2186 dp = rootvnode; 2187 } else { 2188 cnp->cn_flags |= NOCROSSMOUNT; 2189 } 2190 2191 VREF(dp); 2192 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY); 2193 2194 for (;;) { 2195 cnp->cn_nameptr = cnp->cn_pnbuf; 2196 ndp->ni_startdir = dp; 2197 2198 /* 2199 * And call lookup() to do the real work 2200 */ 2201 error = lookup(ndp); 2202 if (error) { 2203 if (ndp->ni_dvp) { 2204 vput(ndp->ni_dvp); 2205 } 2206 PNBUF_PUT(cnp->cn_pnbuf); 2207 return (error); 2208 } 2209 2210 /* 2211 * Check for encountering a symbolic link 2212 */ 2213 if ((cnp->cn_flags & ISSYMLINK) == 0) { 2214 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) { 2215 if (ndp->ni_dvp == ndp->ni_vp) { 2216 vrele(ndp->ni_dvp); 2217 } else { 2218 vput(ndp->ni_dvp); 2219 } 2220 } 2221 if (cnp->cn_flags & (SAVENAME | SAVESTART)) 2222 cnp->cn_flags |= HASBUF; 2223 else 2224 PNBUF_PUT(cnp->cn_pnbuf); 2225 return (0); 2226 } else { 2227 if (!pubflag) { 2228 error = EINVAL; 2229 break; 2230 } 2231 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) { 2232 error = ELOOP; 2233 break; 2234 } 2235 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) { 2236 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred); 2237 if (error != 0) 2238 break; 2239 } 2240 if (ndp->ni_pathlen > 1) 2241 cp = PNBUF_GET(); 2242 else 2243 cp = cnp->cn_pnbuf; 2244 aiov.iov_base = cp; 2245 aiov.iov_len = MAXPATHLEN; 2246 auio.uio_iov = &aiov; 2247 auio.uio_iovcnt = 1; 2248 auio.uio_offset = 0; 2249 auio.uio_rw = UIO_READ; 2250 auio.uio_resid = MAXPATHLEN; 2251 UIO_SETUP_SYSSPACE(&auio); 2252 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred); 2253 if (error) { 2254 badlink: 2255 if (ndp->ni_pathlen > 1) 2256 PNBUF_PUT(cp); 2257 break; 2258 } 2259 linklen = MAXPATHLEN - auio.uio_resid; 2260 if (linklen == 0) { 2261 error = ENOENT; 2262 goto badlink; 2263 } 2264 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) { 2265 error = ENAMETOOLONG; 2266 goto badlink; 2267 } 2268 if (ndp->ni_pathlen > 1) { 2269 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen); 2270 PNBUF_PUT(cnp->cn_pnbuf); 2271 cnp->cn_pnbuf = cp; 2272 } else 2273 cnp->cn_pnbuf[linklen] = '\0'; 2274 ndp->ni_pathlen += linklen; 2275 vput(ndp->ni_vp); 2276 dp = ndp->ni_dvp; 2277 2278 /* 2279 * Check if root directory should replace current directory. 2280 */ 2281 if (cnp->cn_pnbuf[0] == '/') { 2282 vput(dp); 2283 dp = ndp->ni_rootdir; 2284 VREF(dp); 2285 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY); 2286 } 2287 } 2288 } 2289 vput(ndp->ni_dvp); 2290 vput(ndp->ni_vp); 2291 ndp->ni_vp = NULL; 2292 out: 2293 PNBUF_PUT(cnp->cn_pnbuf); 2294 return (error); 2295 } 2296 #endif /* NFSSERVER */ 2297 2298 /* 2299 * A fiddled version of m_adj() that ensures null fill to a 32-bit 2300 * boundary and only trims off the back end 2301 * 2302 * 1. trim off 'len' bytes as m_adj(mp, -len). 2303 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain. 2304 */ 2305 void 2306 nfs_zeropad(mp, len, nul) 2307 struct mbuf *mp; 2308 int len; 2309 int nul; 2310 { 2311 struct mbuf *m; 2312 int count; 2313 2314 /* 2315 * Trim from tail. Scan the mbuf chain, 2316 * calculating its length and finding the last mbuf. 2317 * If the adjustment only affects this mbuf, then just 2318 * adjust and return. Otherwise, rescan and truncate 2319 * after the remaining size. 2320 */ 2321 count = 0; 2322 m = mp; 2323 for (;;) { 2324 count += m->m_len; 2325 if (m->m_next == NULL) 2326 break; 2327 m = m->m_next; 2328 } 2329 2330 KDASSERT(count >= len); 2331 2332 if (m->m_len >= len) { 2333 m->m_len -= len; 2334 } else { 2335 count -= len; 2336 /* 2337 * Correct length for chain is "count". 2338 * Find the mbuf with last data, adjust its length, 2339 * and toss data from remaining mbufs on chain. 2340 */ 2341 for (m = mp; m; m = m->m_next) { 2342 if (m->m_len >= count) { 2343 m->m_len = count; 2344 break; 2345 } 2346 count -= m->m_len; 2347 } 2348 KASSERT(m && m->m_next); 2349 m_freem(m->m_next); 2350 m->m_next = NULL; 2351 } 2352 2353 KDASSERT(m->m_next == NULL); 2354 2355 /* 2356 * zero-padding. 2357 */ 2358 if (nul > 0) { 2359 char *cp; 2360 int i; 2361 2362 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) { 2363 struct mbuf *n; 2364 2365 KDASSERT(MLEN >= nul); 2366 n = m_get(M_WAIT, MT_DATA); 2367 MCLAIM(n, &nfs_mowner); 2368 n->m_len = nul; 2369 n->m_next = NULL; 2370 m->m_next = n; 2371 cp = mtod(n, void *); 2372 } else { 2373 cp = mtod(m, char *) + m->m_len; 2374 m->m_len += nul; 2375 } 2376 for (i = 0; i < nul; i++) 2377 *cp++ = '\0'; 2378 } 2379 return; 2380 } 2381 2382 /* 2383 * Make these functions instead of macros, so that the kernel text size 2384 * doesn't get too big... 2385 */ 2386 void 2387 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp) 2388 struct nfsrv_descript *nfsd; 2389 int before_ret; 2390 struct vattr *before_vap; 2391 int after_ret; 2392 struct vattr *after_vap; 2393 struct mbuf **mbp; 2394 char **bposp; 2395 { 2396 struct mbuf *mb = *mbp; 2397 char *bpos = *bposp; 2398 u_int32_t *tl; 2399 2400 if (before_ret) { 2401 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2402 *tl = nfs_false; 2403 } else { 2404 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 2405 *tl++ = nfs_true; 2406 txdr_hyper(before_vap->va_size, tl); 2407 tl += 2; 2408 txdr_nfsv3time(&(before_vap->va_mtime), tl); 2409 tl += 2; 2410 txdr_nfsv3time(&(before_vap->va_ctime), tl); 2411 } 2412 *bposp = bpos; 2413 *mbp = mb; 2414 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 2415 } 2416 2417 void 2418 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp) 2419 struct nfsrv_descript *nfsd; 2420 int after_ret; 2421 struct vattr *after_vap; 2422 struct mbuf **mbp; 2423 char **bposp; 2424 { 2425 struct mbuf *mb = *mbp; 2426 char *bpos = *bposp; 2427 u_int32_t *tl; 2428 struct nfs_fattr *fp; 2429 2430 if (after_ret) { 2431 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2432 *tl = nfs_false; 2433 } else { 2434 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 2435 *tl++ = nfs_true; 2436 fp = (struct nfs_fattr *)tl; 2437 nfsm_srvfattr(nfsd, after_vap, fp); 2438 } 2439 *mbp = mb; 2440 *bposp = bpos; 2441 } 2442 2443 void 2444 nfsm_srvfattr(nfsd, vap, fp) 2445 struct nfsrv_descript *nfsd; 2446 struct vattr *vap; 2447 struct nfs_fattr *fp; 2448 { 2449 2450 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 2451 fp->fa_uid = txdr_unsigned(vap->va_uid); 2452 fp->fa_gid = txdr_unsigned(vap->va_gid); 2453 if (nfsd->nd_flag & ND_NFSV3) { 2454 fp->fa_type = vtonfsv3_type(vap->va_type); 2455 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 2456 txdr_hyper(vap->va_size, &fp->fa3_size); 2457 txdr_hyper(vap->va_bytes, &fp->fa3_used); 2458 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 2459 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 2460 fp->fa3_fsid.nfsuquad[0] = 0; 2461 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 2462 txdr_hyper(vap->va_fileid, &fp->fa3_fileid); 2463 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 2464 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 2465 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 2466 } else { 2467 fp->fa_type = vtonfsv2_type(vap->va_type); 2468 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 2469 fp->fa2_size = txdr_unsigned(vap->va_size); 2470 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 2471 if (vap->va_type == VFIFO) 2472 fp->fa2_rdev = 0xffffffff; 2473 else 2474 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 2475 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 2476 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 2477 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 2478 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 2479 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 2480 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 2481 } 2482 } 2483 2484 #ifdef NFSSERVER 2485 /* 2486 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) 2487 * - look up fsid in mount list (if not found ret error) 2488 * - get vp and export rights by calling VFS_FHTOVP() 2489 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon 2490 * - if not lockflag unlock it with VOP_UNLOCK() 2491 */ 2492 int 2493 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp, 2494 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp, 2495 int kerbflag, int pubflag) 2496 { 2497 struct mount *mp; 2498 kauth_cred_t credanon; 2499 int error, exflags; 2500 struct sockaddr_in *saddr; 2501 fhandle_t *fhp; 2502 2503 fhp = NFSRVFH_FHANDLE(nsfh); 2504 *vpp = (struct vnode *)0; 2505 2506 if (nfs_ispublicfh(nsfh)) { 2507 if (!pubflag || !nfs_pub.np_valid) 2508 return (ESTALE); 2509 fhp = nfs_pub.np_handle; 2510 } 2511 2512 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon); 2513 if (error) { 2514 return error; 2515 } 2516 2517 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp); 2518 if (error) 2519 return (error); 2520 2521 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) { 2522 saddr = mtod(nam, struct sockaddr_in *); 2523 if ((saddr->sin_family == AF_INET) && 2524 ntohs(saddr->sin_port) >= IPPORT_RESERVED) { 2525 vput(*vpp); 2526 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2527 } 2528 #ifdef INET6 2529 if ((saddr->sin_family == AF_INET6) && 2530 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) { 2531 vput(*vpp); 2532 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2533 } 2534 #endif 2535 } 2536 /* 2537 * Check/setup credentials. 2538 */ 2539 if (exflags & MNT_EXKERB) { 2540 if (!kerbflag) { 2541 vput(*vpp); 2542 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2543 } 2544 } else if (kerbflag) { 2545 vput(*vpp); 2546 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2547 } else if (kauth_cred_geteuid(cred) == 0 || /* NFS maproot, see below */ 2548 (exflags & MNT_EXPORTANON)) { 2549 /* 2550 * This is used by the NFS maproot option. While we can change 2551 * the secmodel on our own host, we can't change it on the 2552 * clients. As means of least surprise, we're doing the 2553 * traditional thing here. 2554 * Should look into adding a "mapprivileged" or similar where 2555 * the users can be explicitly specified... 2556 * [elad, yamt 2008-03-05] 2557 */ 2558 kauth_cred_clone(credanon, cred); 2559 } 2560 if (exflags & MNT_EXRDONLY) 2561 *rdonlyp = 1; 2562 else 2563 *rdonlyp = 0; 2564 if (!lockflag) 2565 VOP_UNLOCK(*vpp, 0); 2566 return (0); 2567 } 2568 2569 /* 2570 * WebNFS: check if a filehandle is a public filehandle. For v3, this 2571 * means a length of 0, for v2 it means all zeroes. 2572 */ 2573 int 2574 nfs_ispublicfh(const nfsrvfh_t *nsfh) 2575 { 2576 const char *cp = (const void *)(NFSRVFH_DATA(nsfh)); 2577 int i; 2578 2579 if (NFSRVFH_SIZE(nsfh) == 0) { 2580 return true; 2581 } 2582 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) { 2583 return false; 2584 } 2585 for (i = 0; i < NFSX_V2FH; i++) 2586 if (*cp++ != 0) 2587 return false; 2588 return true; 2589 } 2590 #endif /* NFSSERVER */ 2591 2592 /* 2593 * This function compares two net addresses by family and returns true 2594 * if they are the same host. 2595 * If there is any doubt, return false. 2596 * The AF_INET family is handled as a special case so that address mbufs 2597 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 2598 */ 2599 int 2600 netaddr_match(family, haddr, nam) 2601 int family; 2602 union nethostaddr *haddr; 2603 struct mbuf *nam; 2604 { 2605 struct sockaddr_in *inetaddr; 2606 2607 switch (family) { 2608 case AF_INET: 2609 inetaddr = mtod(nam, struct sockaddr_in *); 2610 if (inetaddr->sin_family == AF_INET && 2611 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 2612 return (1); 2613 break; 2614 #ifdef INET6 2615 case AF_INET6: 2616 { 2617 struct sockaddr_in6 *sin6_1, *sin6_2; 2618 2619 sin6_1 = mtod(nam, struct sockaddr_in6 *); 2620 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 2621 if (sin6_1->sin6_family == AF_INET6 && 2622 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 2623 return 1; 2624 } 2625 #endif 2626 #ifdef ISO 2627 case AF_ISO: 2628 { 2629 struct sockaddr_iso *isoaddr1, *isoaddr2; 2630 2631 isoaddr1 = mtod(nam, struct sockaddr_iso *); 2632 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); 2633 if (isoaddr1->siso_family == AF_ISO && 2634 isoaddr1->siso_nlen > 0 && 2635 isoaddr1->siso_nlen == isoaddr2->siso_nlen && 2636 SAME_ISOADDR(isoaddr1, isoaddr2)) 2637 return (1); 2638 break; 2639 } 2640 #endif /* ISO */ 2641 default: 2642 break; 2643 }; 2644 return (0); 2645 } 2646 2647 /* 2648 * The write verifier has changed (probably due to a server reboot), so all 2649 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 2650 * as dirty or are being written out just now, all this takes is clearing 2651 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 2652 * the mount point. 2653 */ 2654 void 2655 nfs_clearcommit(mp) 2656 struct mount *mp; 2657 { 2658 struct vnode *vp; 2659 struct nfsnode *np; 2660 struct vm_page *pg; 2661 struct nfsmount *nmp = VFSTONFS(mp); 2662 2663 rw_enter(&nmp->nm_writeverflock, RW_WRITER); 2664 mutex_enter(&mntvnode_lock); 2665 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 2666 KASSERT(vp->v_mount == mp); 2667 if (vp->v_type != VREG) 2668 continue; 2669 np = VTONFS(vp); 2670 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 2671 np->n_pushedhi = 0; 2672 np->n_commitflags &= 2673 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 2674 mutex_enter(&vp->v_uobj.vmobjlock); 2675 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) { 2676 pg->flags &= ~PG_NEEDCOMMIT; 2677 } 2678 mutex_exit(&vp->v_uobj.vmobjlock); 2679 } 2680 mutex_exit(&mntvnode_lock); 2681 mutex_enter(&nmp->nm_lock); 2682 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 2683 mutex_exit(&nmp->nm_lock); 2684 rw_exit(&nmp->nm_writeverflock); 2685 } 2686 2687 void 2688 nfs_merge_commit_ranges(vp) 2689 struct vnode *vp; 2690 { 2691 struct nfsnode *np = VTONFS(vp); 2692 2693 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 2694 2695 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2696 np->n_pushedlo = np->n_pushlo; 2697 np->n_pushedhi = np->n_pushhi; 2698 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2699 } else { 2700 if (np->n_pushlo < np->n_pushedlo) 2701 np->n_pushedlo = np->n_pushlo; 2702 if (np->n_pushhi > np->n_pushedhi) 2703 np->n_pushedhi = np->n_pushhi; 2704 } 2705 2706 np->n_pushlo = np->n_pushhi = 0; 2707 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 2708 2709 #ifdef NFS_DEBUG_COMMIT 2710 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2711 (unsigned)np->n_pushedhi); 2712 #endif 2713 } 2714 2715 int 2716 nfs_in_committed_range(vp, off, len) 2717 struct vnode *vp; 2718 off_t off, len; 2719 { 2720 struct nfsnode *np = VTONFS(vp); 2721 off_t lo, hi; 2722 2723 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2724 return 0; 2725 lo = off; 2726 hi = lo + len; 2727 2728 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 2729 } 2730 2731 int 2732 nfs_in_tobecommitted_range(vp, off, len) 2733 struct vnode *vp; 2734 off_t off, len; 2735 { 2736 struct nfsnode *np = VTONFS(vp); 2737 off_t lo, hi; 2738 2739 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2740 return 0; 2741 lo = off; 2742 hi = lo + len; 2743 2744 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 2745 } 2746 2747 void 2748 nfs_add_committed_range(vp, off, len) 2749 struct vnode *vp; 2750 off_t off, len; 2751 { 2752 struct nfsnode *np = VTONFS(vp); 2753 off_t lo, hi; 2754 2755 lo = off; 2756 hi = lo + len; 2757 2758 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2759 np->n_pushedlo = lo; 2760 np->n_pushedhi = hi; 2761 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2762 } else { 2763 if (hi > np->n_pushedhi) 2764 np->n_pushedhi = hi; 2765 if (lo < np->n_pushedlo) 2766 np->n_pushedlo = lo; 2767 } 2768 #ifdef NFS_DEBUG_COMMIT 2769 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2770 (unsigned)np->n_pushedhi); 2771 #endif 2772 } 2773 2774 void 2775 nfs_del_committed_range(vp, off, len) 2776 struct vnode *vp; 2777 off_t off, len; 2778 { 2779 struct nfsnode *np = VTONFS(vp); 2780 off_t lo, hi; 2781 2782 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2783 return; 2784 2785 lo = off; 2786 hi = lo + len; 2787 2788 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 2789 return; 2790 if (lo <= np->n_pushedlo) 2791 np->n_pushedlo = hi; 2792 else if (hi >= np->n_pushedhi) 2793 np->n_pushedhi = lo; 2794 else { 2795 /* 2796 * XXX There's only one range. If the deleted range 2797 * is in the middle, pick the largest of the 2798 * contiguous ranges that it leaves. 2799 */ 2800 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 2801 np->n_pushedhi = lo; 2802 else 2803 np->n_pushedlo = hi; 2804 } 2805 #ifdef NFS_DEBUG_COMMIT 2806 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2807 (unsigned)np->n_pushedhi); 2808 #endif 2809 } 2810 2811 void 2812 nfs_add_tobecommitted_range(vp, off, len) 2813 struct vnode *vp; 2814 off_t off, len; 2815 { 2816 struct nfsnode *np = VTONFS(vp); 2817 off_t lo, hi; 2818 2819 lo = off; 2820 hi = lo + len; 2821 2822 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 2823 np->n_pushlo = lo; 2824 np->n_pushhi = hi; 2825 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 2826 } else { 2827 if (lo < np->n_pushlo) 2828 np->n_pushlo = lo; 2829 if (hi > np->n_pushhi) 2830 np->n_pushhi = hi; 2831 } 2832 #ifdef NFS_DEBUG_COMMIT 2833 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2834 (unsigned)np->n_pushhi); 2835 #endif 2836 } 2837 2838 void 2839 nfs_del_tobecommitted_range(vp, off, len) 2840 struct vnode *vp; 2841 off_t off, len; 2842 { 2843 struct nfsnode *np = VTONFS(vp); 2844 off_t lo, hi; 2845 2846 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2847 return; 2848 2849 lo = off; 2850 hi = lo + len; 2851 2852 if (lo > np->n_pushhi || hi < np->n_pushlo) 2853 return; 2854 2855 if (lo <= np->n_pushlo) 2856 np->n_pushlo = hi; 2857 else if (hi >= np->n_pushhi) 2858 np->n_pushhi = lo; 2859 else { 2860 /* 2861 * XXX There's only one range. If the deleted range 2862 * is in the middle, pick the largest of the 2863 * contiguous ranges that it leaves. 2864 */ 2865 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 2866 np->n_pushhi = lo; 2867 else 2868 np->n_pushlo = hi; 2869 } 2870 #ifdef NFS_DEBUG_COMMIT 2871 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2872 (unsigned)np->n_pushhi); 2873 #endif 2874 } 2875 2876 /* 2877 * Map errnos to NFS error numbers. For Version 3 also filter out error 2878 * numbers not specified for the associated procedure. 2879 */ 2880 int 2881 nfsrv_errmap(nd, err) 2882 struct nfsrv_descript *nd; 2883 int err; 2884 { 2885 const short *defaulterrp, *errp; 2886 2887 if (nd->nd_flag & ND_NFSV3) { 2888 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2889 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2890 while (*++errp) { 2891 if (*errp == err) 2892 return (err); 2893 else if (*errp > err) 2894 break; 2895 } 2896 return ((int)*defaulterrp); 2897 } else 2898 return (err & 0xffff); 2899 } 2900 if (err <= ELAST) 2901 return ((int)nfsrv_v2errmap[err - 1]); 2902 return (NFSERR_IO); 2903 } 2904 2905 u_int32_t 2906 nfs_getxid() 2907 { 2908 static u_int32_t base; 2909 static u_int32_t nfs_xid = 0; 2910 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER; 2911 u_int32_t newxid; 2912 2913 simple_lock(&nfs_xidlock); 2914 /* 2915 * derive initial xid from system time 2916 * XXX time is invalid if root not yet mounted 2917 */ 2918 if (__predict_false(!base && (rootvp))) { 2919 struct timeval tv; 2920 2921 microtime(&tv); 2922 base = tv.tv_sec << 12; 2923 nfs_xid = base; 2924 } 2925 2926 /* 2927 * Skip zero xid if it should ever happen. 2928 */ 2929 if (__predict_false(++nfs_xid == 0)) 2930 nfs_xid++; 2931 newxid = nfs_xid; 2932 simple_unlock(&nfs_xidlock); 2933 2934 return txdr_unsigned(newxid); 2935 } 2936 2937 /* 2938 * assign a new xid for existing request. 2939 * used for NFSERR_JUKEBOX handling. 2940 */ 2941 void 2942 nfs_renewxid(struct nfsreq *req) 2943 { 2944 u_int32_t xid; 2945 int off; 2946 2947 xid = nfs_getxid(); 2948 if (req->r_nmp->nm_sotype == SOCK_STREAM) 2949 off = sizeof(u_int32_t); /* RPC record mark */ 2950 else 2951 off = 0; 2952 2953 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid); 2954 req->r_xid = xid; 2955 } 2956 2957 #if defined(NFSSERVER) 2958 int 2959 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3) 2960 { 2961 int error; 2962 size_t fhsize; 2963 2964 fhsize = NFSD_MAXFHSIZE; 2965 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize); 2966 if (NFSX_FHTOOBIG_P(fhsize, v3)) { 2967 error = EOPNOTSUPP; 2968 } 2969 if (error != 0) { 2970 return error; 2971 } 2972 if (!v3 && fhsize < NFSX_V2FH) { 2973 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0, 2974 NFSX_V2FH - fhsize); 2975 fhsize = NFSX_V2FH; 2976 } 2977 if ((fhsize % NFSX_UNSIGNED) != 0) { 2978 return EOPNOTSUPP; 2979 } 2980 nsfh->nsfh_size = fhsize; 2981 return 0; 2982 } 2983 2984 int 2985 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2) 2986 { 2987 2988 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) { 2989 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1); 2990 } 2991 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1)); 2992 } 2993 2994 void 2995 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2) 2996 { 2997 size_t size; 2998 2999 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2); 3000 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size); 3001 } 3002 #endif /* defined(NFSSERVER) */ 3003 3004 #if defined(NFS) 3005 /* 3006 * Set the attribute timeout based on how recently the file has been modified. 3007 */ 3008 3009 time_t 3010 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np) 3011 { 3012 time_t timeo; 3013 3014 if ((nmp->nm_flag & NFSMNT_NOAC) != 0) 3015 return 0; 3016 3017 if (((np)->n_flag & NMODIFIED) != 0) 3018 return NFS_MINATTRTIMO; 3019 3020 timeo = (time_second - np->n_mtime.tv_sec) / 10; 3021 timeo = max(timeo, NFS_MINATTRTIMO); 3022 timeo = min(timeo, NFS_MAXATTRTIMO); 3023 return timeo; 3024 } 3025 #endif /* defined(NFS) */ 3026