1 /* $NetBSD: nfs_subs.c,v 1.219 2010/03/02 23:19:09 pooka Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 35 */ 36 37 /* 38 * Copyright 2000 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Frank van der Linden for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.219 2010/03/02 23:19:09 pooka Exp $"); 74 75 #ifdef _KERNEL_OPT 76 #include "opt_nfs.h" 77 #endif 78 79 /* 80 * These functions support the macros and help fiddle mbuf chains for 81 * the nfs op functions. They do things like create the rpc header and 82 * copy data between mbuf chains and uio lists. 83 */ 84 #include <sys/param.h> 85 #include <sys/proc.h> 86 #include <sys/systm.h> 87 #include <sys/kernel.h> 88 #include <sys/kmem.h> 89 #include <sys/mount.h> 90 #include <sys/vnode.h> 91 #include <sys/namei.h> 92 #include <sys/mbuf.h> 93 #include <sys/socket.h> 94 #include <sys/stat.h> 95 #include <sys/filedesc.h> 96 #include <sys/time.h> 97 #include <sys/dirent.h> 98 #include <sys/once.h> 99 #include <sys/kauth.h> 100 #include <sys/atomic.h> 101 102 #include <uvm/uvm_extern.h> 103 104 #include <nfs/rpcv2.h> 105 #include <nfs/nfsproto.h> 106 #include <nfs/nfsnode.h> 107 #include <nfs/nfs.h> 108 #include <nfs/xdr_subs.h> 109 #include <nfs/nfsm_subs.h> 110 #include <nfs/nfsmount.h> 111 #include <nfs/nfsrtt.h> 112 #include <nfs/nfs_var.h> 113 114 #include <miscfs/specfs/specdev.h> 115 116 #include <netinet/in.h> 117 118 static u_int32_t nfs_xid; 119 120 int nuidhash_max = NFS_MAXUIDHASH; 121 /* 122 * Data items converted to xdr at startup, since they are constant 123 * This is kinda hokey, but may save a little time doing byte swaps 124 */ 125 u_int32_t nfs_xdrneg1; 126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 128 rpc_auth_kerb; 129 u_int32_t nfs_prog, nfs_true, nfs_false; 130 131 /* And other global data */ 132 const nfstype nfsv2_type[9] = 133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 134 const nfstype nfsv3_type[9] = 135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 136 const enum vtype nv2tov_type[8] = 137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 138 const enum vtype nv3tov_type[8] = 139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 140 int nfs_ticks; 141 142 /* NFS client/server stats. */ 143 struct nfsstats nfsstats; 144 145 /* 146 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 147 */ 148 const int nfsv3_procid[NFS_NPROCS] = { 149 NFSPROC_NULL, 150 NFSPROC_GETATTR, 151 NFSPROC_SETATTR, 152 NFSPROC_NOOP, 153 NFSPROC_LOOKUP, 154 NFSPROC_READLINK, 155 NFSPROC_READ, 156 NFSPROC_NOOP, 157 NFSPROC_WRITE, 158 NFSPROC_CREATE, 159 NFSPROC_REMOVE, 160 NFSPROC_RENAME, 161 NFSPROC_LINK, 162 NFSPROC_SYMLINK, 163 NFSPROC_MKDIR, 164 NFSPROC_RMDIR, 165 NFSPROC_READDIR, 166 NFSPROC_FSSTAT, 167 NFSPROC_NOOP, 168 NFSPROC_NOOP, 169 NFSPROC_NOOP, 170 NFSPROC_NOOP, 171 NFSPROC_NOOP 172 }; 173 174 /* 175 * and the reverse mapping from generic to Version 2 procedure numbers 176 */ 177 const int nfsv2_procid[NFS_NPROCS] = { 178 NFSV2PROC_NULL, 179 NFSV2PROC_GETATTR, 180 NFSV2PROC_SETATTR, 181 NFSV2PROC_LOOKUP, 182 NFSV2PROC_NOOP, 183 NFSV2PROC_READLINK, 184 NFSV2PROC_READ, 185 NFSV2PROC_WRITE, 186 NFSV2PROC_CREATE, 187 NFSV2PROC_MKDIR, 188 NFSV2PROC_SYMLINK, 189 NFSV2PROC_CREATE, 190 NFSV2PROC_REMOVE, 191 NFSV2PROC_RMDIR, 192 NFSV2PROC_RENAME, 193 NFSV2PROC_LINK, 194 NFSV2PROC_READDIR, 195 NFSV2PROC_NOOP, 196 NFSV2PROC_STATFS, 197 NFSV2PROC_NOOP, 198 NFSV2PROC_NOOP, 199 NFSV2PROC_NOOP, 200 NFSV2PROC_NOOP, 201 }; 202 203 /* 204 * Maps errno values to nfs error numbers. 205 * Use NFSERR_IO as the catch all for ones not specifically defined in 206 * RFC 1094. 207 */ 208 static const u_char nfsrv_v2errmap[ELAST] = { 209 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 210 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 211 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 212 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 213 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 214 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 215 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 216 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 217 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 218 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 221 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 222 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 225 NFSERR_IO, NFSERR_IO, 226 }; 227 228 /* 229 * Maps errno values to nfs error numbers. 230 * Although it is not obvious whether or not NFS clients really care if 231 * a returned error value is in the specified list for the procedure, the 232 * safest thing to do is filter them appropriately. For Version 2, the 233 * X/Open XNFS document is the only specification that defines error values 234 * for each RPC (The RFC simply lists all possible error values for all RPCs), 235 * so I have decided to not do this for Version 2. 236 * The first entry is the default error return and the rest are the valid 237 * errors for that RPC in increasing numeric order. 238 */ 239 static const short nfsv3err_null[] = { 240 0, 241 0, 242 }; 243 244 static const short nfsv3err_getattr[] = { 245 NFSERR_IO, 246 NFSERR_IO, 247 NFSERR_STALE, 248 NFSERR_BADHANDLE, 249 NFSERR_SERVERFAULT, 250 0, 251 }; 252 253 static const short nfsv3err_setattr[] = { 254 NFSERR_IO, 255 NFSERR_PERM, 256 NFSERR_IO, 257 NFSERR_ACCES, 258 NFSERR_INVAL, 259 NFSERR_NOSPC, 260 NFSERR_ROFS, 261 NFSERR_DQUOT, 262 NFSERR_STALE, 263 NFSERR_BADHANDLE, 264 NFSERR_NOT_SYNC, 265 NFSERR_SERVERFAULT, 266 0, 267 }; 268 269 static const short nfsv3err_lookup[] = { 270 NFSERR_IO, 271 NFSERR_NOENT, 272 NFSERR_IO, 273 NFSERR_ACCES, 274 NFSERR_NOTDIR, 275 NFSERR_NAMETOL, 276 NFSERR_STALE, 277 NFSERR_BADHANDLE, 278 NFSERR_SERVERFAULT, 279 0, 280 }; 281 282 static const short nfsv3err_access[] = { 283 NFSERR_IO, 284 NFSERR_IO, 285 NFSERR_STALE, 286 NFSERR_BADHANDLE, 287 NFSERR_SERVERFAULT, 288 0, 289 }; 290 291 static const short nfsv3err_readlink[] = { 292 NFSERR_IO, 293 NFSERR_IO, 294 NFSERR_ACCES, 295 NFSERR_INVAL, 296 NFSERR_STALE, 297 NFSERR_BADHANDLE, 298 NFSERR_NOTSUPP, 299 NFSERR_SERVERFAULT, 300 0, 301 }; 302 303 static const short nfsv3err_read[] = { 304 NFSERR_IO, 305 NFSERR_IO, 306 NFSERR_NXIO, 307 NFSERR_ACCES, 308 NFSERR_INVAL, 309 NFSERR_STALE, 310 NFSERR_BADHANDLE, 311 NFSERR_SERVERFAULT, 312 NFSERR_JUKEBOX, 313 0, 314 }; 315 316 static const short nfsv3err_write[] = { 317 NFSERR_IO, 318 NFSERR_IO, 319 NFSERR_ACCES, 320 NFSERR_INVAL, 321 NFSERR_FBIG, 322 NFSERR_NOSPC, 323 NFSERR_ROFS, 324 NFSERR_DQUOT, 325 NFSERR_STALE, 326 NFSERR_BADHANDLE, 327 NFSERR_SERVERFAULT, 328 NFSERR_JUKEBOX, 329 0, 330 }; 331 332 static const short nfsv3err_create[] = { 333 NFSERR_IO, 334 NFSERR_IO, 335 NFSERR_ACCES, 336 NFSERR_EXIST, 337 NFSERR_NOTDIR, 338 NFSERR_NOSPC, 339 NFSERR_ROFS, 340 NFSERR_NAMETOL, 341 NFSERR_DQUOT, 342 NFSERR_STALE, 343 NFSERR_BADHANDLE, 344 NFSERR_NOTSUPP, 345 NFSERR_SERVERFAULT, 346 0, 347 }; 348 349 static const short nfsv3err_mkdir[] = { 350 NFSERR_IO, 351 NFSERR_IO, 352 NFSERR_ACCES, 353 NFSERR_EXIST, 354 NFSERR_NOTDIR, 355 NFSERR_NOSPC, 356 NFSERR_ROFS, 357 NFSERR_NAMETOL, 358 NFSERR_DQUOT, 359 NFSERR_STALE, 360 NFSERR_BADHANDLE, 361 NFSERR_NOTSUPP, 362 NFSERR_SERVERFAULT, 363 0, 364 }; 365 366 static const short nfsv3err_symlink[] = { 367 NFSERR_IO, 368 NFSERR_IO, 369 NFSERR_ACCES, 370 NFSERR_EXIST, 371 NFSERR_NOTDIR, 372 NFSERR_NOSPC, 373 NFSERR_ROFS, 374 NFSERR_NAMETOL, 375 NFSERR_DQUOT, 376 NFSERR_STALE, 377 NFSERR_BADHANDLE, 378 NFSERR_NOTSUPP, 379 NFSERR_SERVERFAULT, 380 0, 381 }; 382 383 static const short nfsv3err_mknod[] = { 384 NFSERR_IO, 385 NFSERR_IO, 386 NFSERR_ACCES, 387 NFSERR_EXIST, 388 NFSERR_NOTDIR, 389 NFSERR_NOSPC, 390 NFSERR_ROFS, 391 NFSERR_NAMETOL, 392 NFSERR_DQUOT, 393 NFSERR_STALE, 394 NFSERR_BADHANDLE, 395 NFSERR_NOTSUPP, 396 NFSERR_SERVERFAULT, 397 NFSERR_BADTYPE, 398 0, 399 }; 400 401 static const short nfsv3err_remove[] = { 402 NFSERR_IO, 403 NFSERR_NOENT, 404 NFSERR_IO, 405 NFSERR_ACCES, 406 NFSERR_NOTDIR, 407 NFSERR_ROFS, 408 NFSERR_NAMETOL, 409 NFSERR_STALE, 410 NFSERR_BADHANDLE, 411 NFSERR_SERVERFAULT, 412 0, 413 }; 414 415 static const short nfsv3err_rmdir[] = { 416 NFSERR_IO, 417 NFSERR_NOENT, 418 NFSERR_IO, 419 NFSERR_ACCES, 420 NFSERR_EXIST, 421 NFSERR_NOTDIR, 422 NFSERR_INVAL, 423 NFSERR_ROFS, 424 NFSERR_NAMETOL, 425 NFSERR_NOTEMPTY, 426 NFSERR_STALE, 427 NFSERR_BADHANDLE, 428 NFSERR_NOTSUPP, 429 NFSERR_SERVERFAULT, 430 0, 431 }; 432 433 static const short nfsv3err_rename[] = { 434 NFSERR_IO, 435 NFSERR_NOENT, 436 NFSERR_IO, 437 NFSERR_ACCES, 438 NFSERR_EXIST, 439 NFSERR_XDEV, 440 NFSERR_NOTDIR, 441 NFSERR_ISDIR, 442 NFSERR_INVAL, 443 NFSERR_NOSPC, 444 NFSERR_ROFS, 445 NFSERR_MLINK, 446 NFSERR_NAMETOL, 447 NFSERR_NOTEMPTY, 448 NFSERR_DQUOT, 449 NFSERR_STALE, 450 NFSERR_BADHANDLE, 451 NFSERR_NOTSUPP, 452 NFSERR_SERVERFAULT, 453 0, 454 }; 455 456 static const short nfsv3err_link[] = { 457 NFSERR_IO, 458 NFSERR_IO, 459 NFSERR_ACCES, 460 NFSERR_EXIST, 461 NFSERR_XDEV, 462 NFSERR_NOTDIR, 463 NFSERR_INVAL, 464 NFSERR_NOSPC, 465 NFSERR_ROFS, 466 NFSERR_MLINK, 467 NFSERR_NAMETOL, 468 NFSERR_DQUOT, 469 NFSERR_STALE, 470 NFSERR_BADHANDLE, 471 NFSERR_NOTSUPP, 472 NFSERR_SERVERFAULT, 473 0, 474 }; 475 476 static const short nfsv3err_readdir[] = { 477 NFSERR_IO, 478 NFSERR_IO, 479 NFSERR_ACCES, 480 NFSERR_NOTDIR, 481 NFSERR_STALE, 482 NFSERR_BADHANDLE, 483 NFSERR_BAD_COOKIE, 484 NFSERR_TOOSMALL, 485 NFSERR_SERVERFAULT, 486 0, 487 }; 488 489 static const short nfsv3err_readdirplus[] = { 490 NFSERR_IO, 491 NFSERR_IO, 492 NFSERR_ACCES, 493 NFSERR_NOTDIR, 494 NFSERR_STALE, 495 NFSERR_BADHANDLE, 496 NFSERR_BAD_COOKIE, 497 NFSERR_NOTSUPP, 498 NFSERR_TOOSMALL, 499 NFSERR_SERVERFAULT, 500 0, 501 }; 502 503 static const short nfsv3err_fsstat[] = { 504 NFSERR_IO, 505 NFSERR_IO, 506 NFSERR_STALE, 507 NFSERR_BADHANDLE, 508 NFSERR_SERVERFAULT, 509 0, 510 }; 511 512 static const short nfsv3err_fsinfo[] = { 513 NFSERR_STALE, 514 NFSERR_STALE, 515 NFSERR_BADHANDLE, 516 NFSERR_SERVERFAULT, 517 0, 518 }; 519 520 static const short nfsv3err_pathconf[] = { 521 NFSERR_STALE, 522 NFSERR_STALE, 523 NFSERR_BADHANDLE, 524 NFSERR_SERVERFAULT, 525 0, 526 }; 527 528 static const short nfsv3err_commit[] = { 529 NFSERR_IO, 530 NFSERR_IO, 531 NFSERR_STALE, 532 NFSERR_BADHANDLE, 533 NFSERR_SERVERFAULT, 534 0, 535 }; 536 537 static const short * const nfsrv_v3errmap[] = { 538 nfsv3err_null, 539 nfsv3err_getattr, 540 nfsv3err_setattr, 541 nfsv3err_lookup, 542 nfsv3err_access, 543 nfsv3err_readlink, 544 nfsv3err_read, 545 nfsv3err_write, 546 nfsv3err_create, 547 nfsv3err_mkdir, 548 nfsv3err_symlink, 549 nfsv3err_mknod, 550 nfsv3err_remove, 551 nfsv3err_rmdir, 552 nfsv3err_rename, 553 nfsv3err_link, 554 nfsv3err_readdir, 555 nfsv3err_readdirplus, 556 nfsv3err_fsstat, 557 nfsv3err_fsinfo, 558 nfsv3err_pathconf, 559 nfsv3err_commit, 560 }; 561 562 extern struct nfsrtt nfsrtt; 563 564 u_long nfsdirhashmask; 565 566 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *); 567 568 /* 569 * Create the header for an rpc request packet 570 * The hsiz is the size of the rest of the nfs request header. 571 * (just used to decide if a cluster is a good idea) 572 */ 573 struct mbuf * 574 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp) 575 { 576 struct mbuf *mb; 577 char *bpos; 578 579 mb = m_get(M_WAIT, MT_DATA); 580 MCLAIM(mb, &nfs_mowner); 581 if (hsiz >= MINCLSIZE) 582 m_clget(mb, M_WAIT); 583 mb->m_len = 0; 584 bpos = mtod(mb, void *); 585 586 /* Finally, return values */ 587 *bposp = bpos; 588 return (mb); 589 } 590 591 /* 592 * Build the RPC header and fill in the authorization info. 593 * The authorization string argument is only used when the credentials 594 * come from outside of the kernel. 595 * Returns the head of the mbuf list. 596 */ 597 struct mbuf * 598 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid, 599 int auth_type, int auth_len, char *auth_str, int verf_len, 600 char *verf_str, struct mbuf *mrest, int mrest_len, 601 struct mbuf **mbp, uint32_t *xidp) 602 { 603 struct mbuf *mb; 604 u_int32_t *tl; 605 char *bpos; 606 int i; 607 struct mbuf *mreq; 608 int siz, grpsiz, authsiz; 609 610 authsiz = nfsm_rndup(auth_len); 611 mb = m_gethdr(M_WAIT, MT_DATA); 612 MCLAIM(mb, &nfs_mowner); 613 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 614 m_clget(mb, M_WAIT); 615 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 616 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 617 } else { 618 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 619 } 620 mb->m_len = 0; 621 mreq = mb; 622 bpos = mtod(mb, void *); 623 624 /* 625 * First the RPC header. 626 */ 627 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 628 629 *tl++ = *xidp = nfs_getxid(); 630 *tl++ = rpc_call; 631 *tl++ = rpc_vers; 632 *tl++ = txdr_unsigned(NFS_PROG); 633 if (nmflag & NFSMNT_NFSV3) 634 *tl++ = txdr_unsigned(NFS_VER3); 635 else 636 *tl++ = txdr_unsigned(NFS_VER2); 637 if (nmflag & NFSMNT_NFSV3) 638 *tl++ = txdr_unsigned(procid); 639 else 640 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 641 642 /* 643 * And then the authorization cred. 644 */ 645 *tl++ = txdr_unsigned(auth_type); 646 *tl = txdr_unsigned(authsiz); 647 switch (auth_type) { 648 case RPCAUTH_UNIX: 649 nfsm_build(tl, u_int32_t *, auth_len); 650 *tl++ = 0; /* stamp ?? */ 651 *tl++ = 0; /* NULL hostname */ 652 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr)); 653 *tl++ = txdr_unsigned(kauth_cred_getegid(cr)); 654 grpsiz = (auth_len >> 2) - 5; 655 *tl++ = txdr_unsigned(grpsiz); 656 for (i = 0; i < grpsiz; i++) 657 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */ 658 break; 659 case RPCAUTH_KERB4: 660 siz = auth_len; 661 while (siz > 0) { 662 if (M_TRAILINGSPACE(mb) == 0) { 663 struct mbuf *mb2; 664 mb2 = m_get(M_WAIT, MT_DATA); 665 MCLAIM(mb2, &nfs_mowner); 666 if (siz >= MINCLSIZE) 667 m_clget(mb2, M_WAIT); 668 mb->m_next = mb2; 669 mb = mb2; 670 mb->m_len = 0; 671 bpos = mtod(mb, void *); 672 } 673 i = min(siz, M_TRAILINGSPACE(mb)); 674 memcpy(bpos, auth_str, i); 675 mb->m_len += i; 676 auth_str += i; 677 bpos += i; 678 siz -= i; 679 } 680 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 681 for (i = 0; i < siz; i++) 682 *bpos++ = '\0'; 683 mb->m_len += siz; 684 } 685 break; 686 }; 687 688 /* 689 * And the verifier... 690 */ 691 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 692 if (verf_str) { 693 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 694 *tl = txdr_unsigned(verf_len); 695 siz = verf_len; 696 while (siz > 0) { 697 if (M_TRAILINGSPACE(mb) == 0) { 698 struct mbuf *mb2; 699 mb2 = m_get(M_WAIT, MT_DATA); 700 MCLAIM(mb2, &nfs_mowner); 701 if (siz >= MINCLSIZE) 702 m_clget(mb2, M_WAIT); 703 mb->m_next = mb2; 704 mb = mb2; 705 mb->m_len = 0; 706 bpos = mtod(mb, void *); 707 } 708 i = min(siz, M_TRAILINGSPACE(mb)); 709 memcpy(bpos, verf_str, i); 710 mb->m_len += i; 711 verf_str += i; 712 bpos += i; 713 siz -= i; 714 } 715 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 716 for (i = 0; i < siz; i++) 717 *bpos++ = '\0'; 718 mb->m_len += siz; 719 } 720 } else { 721 *tl++ = txdr_unsigned(RPCAUTH_NULL); 722 *tl = 0; 723 } 724 mb->m_next = mrest; 725 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 726 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 727 *mbp = mb; 728 return (mreq); 729 } 730 731 /* 732 * copies mbuf chain to the uio scatter/gather list 733 */ 734 int 735 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos) 736 { 737 char *mbufcp, *uiocp; 738 int xfer, left, len; 739 struct mbuf *mp; 740 long uiosiz, rem; 741 int error = 0; 742 743 mp = *mrep; 744 mbufcp = *dpos; 745 len = mtod(mp, char *) + mp->m_len - mbufcp; 746 rem = nfsm_rndup(siz)-siz; 747 while (siz > 0) { 748 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 749 return (EFBIG); 750 left = uiop->uio_iov->iov_len; 751 uiocp = uiop->uio_iov->iov_base; 752 if (left > siz) 753 left = siz; 754 uiosiz = left; 755 while (left > 0) { 756 while (len == 0) { 757 mp = mp->m_next; 758 if (mp == NULL) 759 return (EBADRPC); 760 mbufcp = mtod(mp, void *); 761 len = mp->m_len; 762 } 763 xfer = (left > len) ? len : left; 764 error = copyout_vmspace(uiop->uio_vmspace, mbufcp, 765 uiocp, xfer); 766 if (error) { 767 return error; 768 } 769 left -= xfer; 770 len -= xfer; 771 mbufcp += xfer; 772 uiocp += xfer; 773 uiop->uio_offset += xfer; 774 uiop->uio_resid -= xfer; 775 } 776 if (uiop->uio_iov->iov_len <= siz) { 777 uiop->uio_iovcnt--; 778 uiop->uio_iov++; 779 } else { 780 uiop->uio_iov->iov_base = 781 (char *)uiop->uio_iov->iov_base + uiosiz; 782 uiop->uio_iov->iov_len -= uiosiz; 783 } 784 siz -= uiosiz; 785 } 786 *dpos = mbufcp; 787 *mrep = mp; 788 if (rem > 0) { 789 if (len < rem) 790 error = nfs_adv(mrep, dpos, rem, len); 791 else 792 *dpos += rem; 793 } 794 return (error); 795 } 796 797 /* 798 * copies a uio scatter/gather list to an mbuf chain. 799 * NOTE: can ony handle iovcnt == 1 800 */ 801 int 802 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos) 803 { 804 char *uiocp; 805 struct mbuf *mp, *mp2; 806 int xfer, left, mlen; 807 int uiosiz, clflg, rem; 808 char *cp; 809 int error; 810 811 #ifdef DIAGNOSTIC 812 if (uiop->uio_iovcnt != 1) 813 panic("nfsm_uiotombuf: iovcnt != 1"); 814 #endif 815 816 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 817 clflg = 1; 818 else 819 clflg = 0; 820 rem = nfsm_rndup(siz)-siz; 821 mp = mp2 = *mq; 822 while (siz > 0) { 823 left = uiop->uio_iov->iov_len; 824 uiocp = uiop->uio_iov->iov_base; 825 if (left > siz) 826 left = siz; 827 uiosiz = left; 828 while (left > 0) { 829 mlen = M_TRAILINGSPACE(mp); 830 if (mlen == 0) { 831 mp = m_get(M_WAIT, MT_DATA); 832 MCLAIM(mp, &nfs_mowner); 833 if (clflg) 834 m_clget(mp, M_WAIT); 835 mp->m_len = 0; 836 mp2->m_next = mp; 837 mp2 = mp; 838 mlen = M_TRAILINGSPACE(mp); 839 } 840 xfer = (left > mlen) ? mlen : left; 841 cp = mtod(mp, char *) + mp->m_len; 842 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp, 843 xfer); 844 if (error) { 845 /* XXX */ 846 } 847 mp->m_len += xfer; 848 left -= xfer; 849 uiocp += xfer; 850 uiop->uio_offset += xfer; 851 uiop->uio_resid -= xfer; 852 } 853 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + 854 uiosiz; 855 uiop->uio_iov->iov_len -= uiosiz; 856 siz -= uiosiz; 857 } 858 if (rem > 0) { 859 if (rem > M_TRAILINGSPACE(mp)) { 860 mp = m_get(M_WAIT, MT_DATA); 861 MCLAIM(mp, &nfs_mowner); 862 mp->m_len = 0; 863 mp2->m_next = mp; 864 } 865 cp = mtod(mp, char *) + mp->m_len; 866 for (left = 0; left < rem; left++) 867 *cp++ = '\0'; 868 mp->m_len += rem; 869 *bpos = cp; 870 } else 871 *bpos = mtod(mp, char *) + mp->m_len; 872 *mq = mp; 873 return (0); 874 } 875 876 /* 877 * Get at least "siz" bytes of correctly aligned data. 878 * When called the mbuf pointers are not necessarily correct, 879 * dsosp points to what ought to be in m_data and left contains 880 * what ought to be in m_len. 881 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 882 * cases. (The macros use the vars. dpos and dpos2) 883 */ 884 int 885 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2) 886 { 887 struct mbuf *m1, *m2; 888 struct mbuf *havebuf = NULL; 889 char *src = *dposp; 890 char *dst; 891 int len; 892 893 #ifdef DEBUG 894 if (left < 0) 895 panic("nfsm_disct: left < 0"); 896 #endif 897 m1 = *mdp; 898 /* 899 * Skip through the mbuf chain looking for an mbuf with 900 * some data. If the first mbuf found has enough data 901 * and it is correctly aligned return it. 902 */ 903 while (left == 0) { 904 havebuf = m1; 905 *mdp = m1 = m1->m_next; 906 if (m1 == NULL) 907 return (EBADRPC); 908 src = mtod(m1, void *); 909 left = m1->m_len; 910 /* 911 * If we start a new mbuf and it is big enough 912 * and correctly aligned just return it, don't 913 * do any pull up. 914 */ 915 if (left >= siz && nfsm_aligned(src)) { 916 *cp2 = src; 917 *dposp = src + siz; 918 return (0); 919 } 920 } 921 if ((m1->m_flags & M_EXT) != 0) { 922 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz && 923 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) { 924 /* 925 * If the first mbuf with data has external data 926 * and there is a previous mbuf with some trailing 927 * space, use it to move the data into. 928 */ 929 m2 = m1; 930 *mdp = m1 = havebuf; 931 *cp2 = mtod(m1, char *) + m1->m_len; 932 } else if (havebuf) { 933 /* 934 * If the first mbuf has a external data 935 * and there is no previous empty mbuf 936 * allocate a new mbuf and move the external 937 * data to the new mbuf. Also make the first 938 * mbuf look empty. 939 */ 940 m2 = m1; 941 *mdp = m1 = m_get(M_WAIT, MT_DATA); 942 MCLAIM(m1, m2->m_owner); 943 if ((m2->m_flags & M_PKTHDR) != 0) { 944 /* XXX MOVE */ 945 M_COPY_PKTHDR(m1, m2); 946 m_tag_delete_chain(m2, NULL); 947 m2->m_flags &= ~M_PKTHDR; 948 } 949 if (havebuf) { 950 havebuf->m_next = m1; 951 } 952 m1->m_next = m2; 953 MRESETDATA(m1); 954 m1->m_len = 0; 955 m2->m_data = src; 956 m2->m_len = left; 957 *cp2 = mtod(m1, char *); 958 } else { 959 struct mbuf **nextp = &m1->m_next; 960 961 m1->m_len -= left; 962 do { 963 m2 = m_get(M_WAIT, MT_DATA); 964 MCLAIM(m2, m1->m_owner); 965 if (left >= MINCLSIZE) { 966 MCLGET(m2, M_WAIT); 967 } 968 m2->m_next = *nextp; 969 *nextp = m2; 970 nextp = &m2->m_next; 971 len = (m2->m_flags & M_EXT) != 0 ? 972 MCLBYTES : MLEN; 973 if (len > left) { 974 len = left; 975 } 976 memcpy(mtod(m2, char *), src, len); 977 m2->m_len = len; 978 src += len; 979 left -= len; 980 } while (left > 0); 981 *mdp = m1 = m1->m_next; 982 m2 = m1->m_next; 983 *cp2 = mtod(m1, char *); 984 } 985 } else { 986 /* 987 * If the first mbuf has no external data 988 * move the data to the front of the mbuf. 989 */ 990 MRESETDATA(m1); 991 dst = mtod(m1, char *); 992 if (dst != src) { 993 memmove(dst, src, left); 994 } 995 m1->m_len = left; 996 m2 = m1->m_next; 997 *cp2 = m1->m_data; 998 } 999 *dposp = *cp2 + siz; 1000 /* 1001 * Loop through mbufs pulling data up into first mbuf until 1002 * the first mbuf is full or there is no more data to 1003 * pullup. 1004 */ 1005 dst = mtod(m1, char *) + m1->m_len; 1006 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) { 1007 if ((len = min(len, m2->m_len)) != 0) { 1008 memcpy(dst, mtod(m2, char *), len); 1009 } 1010 m1->m_len += len; 1011 dst += len; 1012 m2->m_data += len; 1013 m2->m_len -= len; 1014 m2 = m2->m_next; 1015 } 1016 if (m1->m_len < siz) 1017 return (EBADRPC); 1018 return (0); 1019 } 1020 1021 /* 1022 * Advance the position in the mbuf chain. 1023 */ 1024 int 1025 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left) 1026 { 1027 struct mbuf *m; 1028 int s; 1029 1030 m = *mdp; 1031 s = left; 1032 while (s < offs) { 1033 offs -= s; 1034 m = m->m_next; 1035 if (m == NULL) 1036 return (EBADRPC); 1037 s = m->m_len; 1038 } 1039 *mdp = m; 1040 *dposp = mtod(m, char *) + offs; 1041 return (0); 1042 } 1043 1044 /* 1045 * Copy a string into mbufs for the hard cases... 1046 */ 1047 int 1048 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz) 1049 { 1050 struct mbuf *m1 = NULL, *m2; 1051 long left, xfer, len, tlen; 1052 u_int32_t *tl; 1053 int putsize; 1054 1055 putsize = 1; 1056 m2 = *mb; 1057 left = M_TRAILINGSPACE(m2); 1058 if (left > 0) { 1059 tl = ((u_int32_t *)(*bpos)); 1060 *tl++ = txdr_unsigned(siz); 1061 putsize = 0; 1062 left -= NFSX_UNSIGNED; 1063 m2->m_len += NFSX_UNSIGNED; 1064 if (left > 0) { 1065 memcpy((void *) tl, cp, left); 1066 siz -= left; 1067 cp += left; 1068 m2->m_len += left; 1069 left = 0; 1070 } 1071 } 1072 /* Loop around adding mbufs */ 1073 while (siz > 0) { 1074 m1 = m_get(M_WAIT, MT_DATA); 1075 MCLAIM(m1, &nfs_mowner); 1076 if (siz > MLEN) 1077 m_clget(m1, M_WAIT); 1078 m1->m_len = NFSMSIZ(m1); 1079 m2->m_next = m1; 1080 m2 = m1; 1081 tl = mtod(m1, u_int32_t *); 1082 tlen = 0; 1083 if (putsize) { 1084 *tl++ = txdr_unsigned(siz); 1085 m1->m_len -= NFSX_UNSIGNED; 1086 tlen = NFSX_UNSIGNED; 1087 putsize = 0; 1088 } 1089 if (siz < m1->m_len) { 1090 len = nfsm_rndup(siz); 1091 xfer = siz; 1092 if (xfer < len) 1093 *(tl+(xfer>>2)) = 0; 1094 } else { 1095 xfer = len = m1->m_len; 1096 } 1097 memcpy((void *) tl, cp, xfer); 1098 m1->m_len = len+tlen; 1099 siz -= xfer; 1100 cp += xfer; 1101 } 1102 *mb = m1; 1103 *bpos = mtod(m1, char *) + m1->m_len; 1104 return (0); 1105 } 1106 1107 /* 1108 * Directory caching routines. They work as follows: 1109 * - a cache is maintained per VDIR nfsnode. 1110 * - for each offset cookie that is exported to userspace, and can 1111 * thus be thrown back at us as an offset to VOP_READDIR, store 1112 * information in the cache. 1113 * - cached are: 1114 * - cookie itself 1115 * - blocknumber (essentially just a search key in the buffer cache) 1116 * - entry number in block. 1117 * - offset cookie of block in which this entry is stored 1118 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1119 * - entries are looked up in a hash table 1120 * - also maintained is an LRU list of entries, used to determine 1121 * which ones to delete if the cache grows too large. 1122 * - if 32 <-> 64 translation mode is requested for a filesystem, 1123 * the cache also functions as a translation table 1124 * - in the translation case, invalidating the cache does not mean 1125 * flushing it, but just marking entries as invalid, except for 1126 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1127 * still be able to use the cache as a translation table. 1128 * - 32 bit cookies are uniquely created by combining the hash table 1129 * entry value, and one generation count per hash table entry, 1130 * incremented each time an entry is appended to the chain. 1131 * - the cache is invalidated each time a direcory is modified 1132 * - sanity checks are also done; if an entry in a block turns 1133 * out not to have a matching cookie, the cache is invalidated 1134 * and a new block starting from the wanted offset is fetched from 1135 * the server. 1136 * - directory entries as read from the server are extended to contain 1137 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1138 * the cache and exporting them to userspace through the cookie 1139 * argument to VOP_READDIR. 1140 */ 1141 1142 u_long 1143 nfs_dirhash(off_t off) 1144 { 1145 int i; 1146 char *cp = (char *)&off; 1147 u_long sum = 0L; 1148 1149 for (i = 0 ; i < sizeof (off); i++) 1150 sum += *cp++; 1151 1152 return sum; 1153 } 1154 1155 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock) 1156 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np)) 1157 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np)) 1158 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np))) 1159 1160 void 1161 nfs_initdircache(struct vnode *vp) 1162 { 1163 struct nfsnode *np = VTONFS(vp); 1164 struct nfsdirhashhead *dircache; 1165 1166 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true, 1167 &nfsdirhashmask); 1168 1169 NFSDC_LOCK(np); 1170 if (np->n_dircache == NULL) { 1171 np->n_dircachesize = 0; 1172 np->n_dircache = dircache; 1173 dircache = NULL; 1174 TAILQ_INIT(&np->n_dirchain); 1175 } 1176 NFSDC_UNLOCK(np); 1177 if (dircache) 1178 hashdone(dircache, HASH_LIST, nfsdirhashmask); 1179 } 1180 1181 void 1182 nfs_initdirxlatecookie(struct vnode *vp) 1183 { 1184 struct nfsnode *np = VTONFS(vp); 1185 unsigned *dirgens; 1186 1187 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1188 1189 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP); 1190 NFSDC_LOCK(np); 1191 if (np->n_dirgens == NULL) { 1192 np->n_dirgens = dirgens; 1193 dirgens = NULL; 1194 } 1195 NFSDC_UNLOCK(np); 1196 if (dirgens) 1197 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned)); 1198 } 1199 1200 static const struct nfsdircache dzero; 1201 1202 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *); 1203 static void nfs_putdircache_unlocked(struct nfsnode *, 1204 struct nfsdircache *); 1205 1206 static void 1207 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp) 1208 { 1209 1210 NFSDC_ASSERT_LOCKED(np); 1211 KASSERT(ndp != &dzero); 1212 1213 if (LIST_NEXT(ndp, dc_hash) == (void *)-1) 1214 return; 1215 1216 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1217 LIST_REMOVE(ndp, dc_hash); 1218 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */ 1219 1220 nfs_putdircache_unlocked(np, ndp); 1221 } 1222 1223 void 1224 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp) 1225 { 1226 int ref; 1227 1228 if (ndp == &dzero) 1229 return; 1230 1231 KASSERT(ndp->dc_refcnt > 0); 1232 NFSDC_LOCK(np); 1233 ref = --ndp->dc_refcnt; 1234 NFSDC_UNLOCK(np); 1235 1236 if (ref == 0) 1237 kmem_free(ndp, sizeof(*ndp)); 1238 } 1239 1240 static void 1241 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp) 1242 { 1243 int ref; 1244 1245 NFSDC_ASSERT_LOCKED(np); 1246 1247 if (ndp == &dzero) 1248 return; 1249 1250 KASSERT(ndp->dc_refcnt > 0); 1251 ref = --ndp->dc_refcnt; 1252 if (ref == 0) 1253 kmem_free(ndp, sizeof(*ndp)); 1254 } 1255 1256 struct nfsdircache * 1257 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent) 1258 { 1259 struct nfsdirhashhead *ndhp; 1260 struct nfsdircache *ndp = NULL; 1261 struct nfsnode *np = VTONFS(vp); 1262 unsigned ent; 1263 1264 /* 1265 * Zero is always a valid cookie. 1266 */ 1267 if (off == 0) 1268 /* XXXUNCONST */ 1269 return (struct nfsdircache *)__UNCONST(&dzero); 1270 1271 if (!np->n_dircache) 1272 return NULL; 1273 1274 /* 1275 * We use a 32bit cookie as search key, directly reconstruct 1276 * the hashentry. Else use the hashfunction. 1277 */ 1278 if (do32) { 1279 ent = (u_int32_t)off >> 24; 1280 if (ent >= NFS_DIRHASHSIZ) 1281 return NULL; 1282 ndhp = &np->n_dircache[ent]; 1283 } else { 1284 ndhp = NFSDIRHASH(np, off); 1285 } 1286 1287 if (hashent) 1288 *hashent = (int)(ndhp - np->n_dircache); 1289 1290 NFSDC_LOCK(np); 1291 if (do32) { 1292 LIST_FOREACH(ndp, ndhp, dc_hash) { 1293 if (ndp->dc_cookie32 == (u_int32_t)off) { 1294 /* 1295 * An invalidated entry will become the 1296 * start of a new block fetched from 1297 * the server. 1298 */ 1299 if (ndp->dc_flags & NFSDC_INVALID) { 1300 ndp->dc_blkcookie = ndp->dc_cookie; 1301 ndp->dc_entry = 0; 1302 ndp->dc_flags &= ~NFSDC_INVALID; 1303 } 1304 break; 1305 } 1306 } 1307 } else { 1308 LIST_FOREACH(ndp, ndhp, dc_hash) { 1309 if (ndp->dc_cookie == off) 1310 break; 1311 } 1312 } 1313 if (ndp != NULL) 1314 ndp->dc_refcnt++; 1315 NFSDC_UNLOCK(np); 1316 return ndp; 1317 } 1318 1319 1320 struct nfsdircache * 1321 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en, 1322 daddr_t blkno) 1323 { 1324 struct nfsnode *np = VTONFS(vp); 1325 struct nfsdirhashhead *ndhp; 1326 struct nfsdircache *ndp = NULL; 1327 struct nfsdircache *newndp = NULL; 1328 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1329 int hashent = 0, gen, overwrite; /* XXX: GCC */ 1330 1331 /* 1332 * XXX refuse entries for offset 0. amd(8) erroneously sets 1333 * cookie 0 for the '.' entry, making this necessary. This 1334 * isn't so bad, as 0 is a special case anyway. 1335 */ 1336 if (off == 0) 1337 /* XXXUNCONST */ 1338 return (struct nfsdircache *)__UNCONST(&dzero); 1339 1340 if (!np->n_dircache) 1341 /* 1342 * XXX would like to do this in nfs_nget but vtype 1343 * isn't known at that time. 1344 */ 1345 nfs_initdircache(vp); 1346 1347 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens) 1348 nfs_initdirxlatecookie(vp); 1349 1350 retry: 1351 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1352 1353 NFSDC_LOCK(np); 1354 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) { 1355 /* 1356 * Overwriting an old entry. Check if it's the same. 1357 * If so, just return. If not, remove the old entry. 1358 */ 1359 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1360 goto done; 1361 nfs_unlinkdircache(np, ndp); 1362 nfs_putdircache_unlocked(np, ndp); 1363 ndp = NULL; 1364 } 1365 1366 ndhp = &np->n_dircache[hashent]; 1367 1368 if (!ndp) { 1369 if (newndp == NULL) { 1370 NFSDC_UNLOCK(np); 1371 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP); 1372 newndp->dc_refcnt = 1; 1373 LIST_NEXT(newndp, dc_hash) = (void *)-1; 1374 goto retry; 1375 } 1376 ndp = newndp; 1377 newndp = NULL; 1378 overwrite = 0; 1379 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1380 /* 1381 * We're allocating a new entry, so bump the 1382 * generation number. 1383 */ 1384 KASSERT(np->n_dirgens); 1385 gen = ++np->n_dirgens[hashent]; 1386 if (gen == 0) { 1387 np->n_dirgens[hashent]++; 1388 gen++; 1389 } 1390 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1391 } 1392 } else 1393 overwrite = 1; 1394 1395 ndp->dc_cookie = off; 1396 ndp->dc_blkcookie = blkoff; 1397 ndp->dc_entry = en; 1398 ndp->dc_flags = 0; 1399 1400 if (overwrite) 1401 goto done; 1402 1403 /* 1404 * If the maximum directory cookie cache size has been reached 1405 * for this node, take one off the front. The idea is that 1406 * directories are typically read front-to-back once, so that 1407 * the oldest entries can be thrown away without much performance 1408 * loss. 1409 */ 1410 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1411 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain)); 1412 } else 1413 np->n_dircachesize++; 1414 1415 KASSERT(ndp->dc_refcnt == 1); 1416 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1417 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1418 ndp->dc_refcnt++; 1419 done: 1420 KASSERT(ndp->dc_refcnt > 0); 1421 NFSDC_UNLOCK(np); 1422 if (newndp) 1423 nfs_putdircache(np, newndp); 1424 return ndp; 1425 } 1426 1427 void 1428 nfs_invaldircache(struct vnode *vp, int flags) 1429 { 1430 struct nfsnode *np = VTONFS(vp); 1431 struct nfsdircache *ndp = NULL; 1432 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1433 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE; 1434 1435 #ifdef DIAGNOSTIC 1436 if (vp->v_type != VDIR) 1437 panic("nfs: invaldircache: not dir"); 1438 #endif 1439 1440 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0) 1441 np->n_flag &= ~NEOFVALID; 1442 1443 if (!np->n_dircache) 1444 return; 1445 1446 NFSDC_LOCK(np); 1447 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1448 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) { 1449 KASSERT(!forcefree || ndp->dc_refcnt == 1); 1450 nfs_unlinkdircache(np, ndp); 1451 } 1452 np->n_dircachesize = 0; 1453 if (forcefree && np->n_dirgens) { 1454 kmem_free(np->n_dirgens, 1455 NFS_DIRHASHSIZ * sizeof(unsigned)); 1456 np->n_dirgens = NULL; 1457 } 1458 } else { 1459 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) 1460 ndp->dc_flags |= NFSDC_INVALID; 1461 } 1462 1463 NFSDC_UNLOCK(np); 1464 } 1465 1466 /* 1467 * Called once before VFS init to initialize shared and 1468 * server-specific data structures. 1469 */ 1470 static int 1471 nfs_init0(void) 1472 { 1473 1474 nfsrtt.pos = 0; 1475 rpc_vers = txdr_unsigned(RPC_VER2); 1476 rpc_call = txdr_unsigned(RPC_CALL); 1477 rpc_reply = txdr_unsigned(RPC_REPLY); 1478 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1479 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1480 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1481 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1482 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1483 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1484 nfs_prog = txdr_unsigned(NFS_PROG); 1485 nfs_true = txdr_unsigned(true); 1486 nfs_false = txdr_unsigned(false); 1487 nfs_xdrneg1 = txdr_unsigned(-1); 1488 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1489 if (nfs_ticks < 1) 1490 nfs_ticks = 1; 1491 nfs_xid = arc4random(); 1492 nfsdreq_init(); 1493 1494 /* 1495 * Initialize reply list and start timer 1496 */ 1497 TAILQ_INIT(&nfs_reqq); 1498 nfs_timer_init(); 1499 MOWNER_ATTACH(&nfs_mowner); 1500 1501 return 0; 1502 } 1503 1504 /* 1505 * This is disgusting, but it must support both modular and monolothic 1506 * configurations. For monolithic builds NFSSERVER may not imply NFS. 1507 * 1508 * Yuck. 1509 */ 1510 void 1511 nfs_init(void) 1512 { 1513 static ONCE_DECL(nfs_init_once); 1514 1515 RUN_ONCE(&nfs_init_once, nfs_init0); 1516 } 1517 1518 void 1519 nfs_fini(void) 1520 { 1521 1522 nfsdreq_fini(); 1523 nfs_timer_fini(); 1524 MOWNER_DETACH(&nfs_mowner); 1525 } 1526 1527 /* 1528 * A fiddled version of m_adj() that ensures null fill to a 32-bit 1529 * boundary and only trims off the back end 1530 * 1531 * 1. trim off 'len' bytes as m_adj(mp, -len). 1532 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain. 1533 */ 1534 void 1535 nfs_zeropad(struct mbuf *mp, int len, int nul) 1536 { 1537 struct mbuf *m; 1538 int count; 1539 1540 /* 1541 * Trim from tail. Scan the mbuf chain, 1542 * calculating its length and finding the last mbuf. 1543 * If the adjustment only affects this mbuf, then just 1544 * adjust and return. Otherwise, rescan and truncate 1545 * after the remaining size. 1546 */ 1547 count = 0; 1548 m = mp; 1549 for (;;) { 1550 count += m->m_len; 1551 if (m->m_next == NULL) 1552 break; 1553 m = m->m_next; 1554 } 1555 1556 KDASSERT(count >= len); 1557 1558 if (m->m_len >= len) { 1559 m->m_len -= len; 1560 } else { 1561 count -= len; 1562 /* 1563 * Correct length for chain is "count". 1564 * Find the mbuf with last data, adjust its length, 1565 * and toss data from remaining mbufs on chain. 1566 */ 1567 for (m = mp; m; m = m->m_next) { 1568 if (m->m_len >= count) { 1569 m->m_len = count; 1570 break; 1571 } 1572 count -= m->m_len; 1573 } 1574 KASSERT(m && m->m_next); 1575 m_freem(m->m_next); 1576 m->m_next = NULL; 1577 } 1578 1579 KDASSERT(m->m_next == NULL); 1580 1581 /* 1582 * zero-padding. 1583 */ 1584 if (nul > 0) { 1585 char *cp; 1586 int i; 1587 1588 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) { 1589 struct mbuf *n; 1590 1591 KDASSERT(MLEN >= nul); 1592 n = m_get(M_WAIT, MT_DATA); 1593 MCLAIM(n, &nfs_mowner); 1594 n->m_len = nul; 1595 n->m_next = NULL; 1596 m->m_next = n; 1597 cp = mtod(n, void *); 1598 } else { 1599 cp = mtod(m, char *) + m->m_len; 1600 m->m_len += nul; 1601 } 1602 for (i = 0; i < nul; i++) 1603 *cp++ = '\0'; 1604 } 1605 return; 1606 } 1607 1608 /* 1609 * Make these functions instead of macros, so that the kernel text size 1610 * doesn't get too big... 1611 */ 1612 void 1613 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp) 1614 { 1615 struct mbuf *mb = *mbp; 1616 char *bpos = *bposp; 1617 u_int32_t *tl; 1618 1619 if (before_ret) { 1620 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1621 *tl = nfs_false; 1622 } else { 1623 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 1624 *tl++ = nfs_true; 1625 txdr_hyper(before_vap->va_size, tl); 1626 tl += 2; 1627 txdr_nfsv3time(&(before_vap->va_mtime), tl); 1628 tl += 2; 1629 txdr_nfsv3time(&(before_vap->va_ctime), tl); 1630 } 1631 *bposp = bpos; 1632 *mbp = mb; 1633 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 1634 } 1635 1636 void 1637 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp) 1638 { 1639 struct mbuf *mb = *mbp; 1640 char *bpos = *bposp; 1641 u_int32_t *tl; 1642 struct nfs_fattr *fp; 1643 1644 if (after_ret) { 1645 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1646 *tl = nfs_false; 1647 } else { 1648 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 1649 *tl++ = nfs_true; 1650 fp = (struct nfs_fattr *)tl; 1651 nfsm_srvfattr(nfsd, after_vap, fp); 1652 } 1653 *mbp = mb; 1654 *bposp = bpos; 1655 } 1656 1657 void 1658 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp) 1659 { 1660 1661 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 1662 fp->fa_uid = txdr_unsigned(vap->va_uid); 1663 fp->fa_gid = txdr_unsigned(vap->va_gid); 1664 if (nfsd->nd_flag & ND_NFSV3) { 1665 fp->fa_type = vtonfsv3_type(vap->va_type); 1666 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 1667 txdr_hyper(vap->va_size, &fp->fa3_size); 1668 txdr_hyper(vap->va_bytes, &fp->fa3_used); 1669 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 1670 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 1671 fp->fa3_fsid.nfsuquad[0] = 0; 1672 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 1673 txdr_hyper(vap->va_fileid, &fp->fa3_fileid); 1674 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 1675 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 1676 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 1677 } else { 1678 fp->fa_type = vtonfsv2_type(vap->va_type); 1679 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 1680 fp->fa2_size = txdr_unsigned(vap->va_size); 1681 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 1682 if (vap->va_type == VFIFO) 1683 fp->fa2_rdev = 0xffffffff; 1684 else 1685 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 1686 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 1687 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 1688 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 1689 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 1690 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 1691 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 1692 } 1693 } 1694 1695 /* 1696 * This function compares two net addresses by family and returns true 1697 * if they are the same host. 1698 * If there is any doubt, return false. 1699 * The AF_INET family is handled as a special case so that address mbufs 1700 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 1701 */ 1702 int 1703 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam) 1704 { 1705 struct sockaddr_in *inetaddr; 1706 1707 switch (family) { 1708 case AF_INET: 1709 inetaddr = mtod(nam, struct sockaddr_in *); 1710 if (inetaddr->sin_family == AF_INET && 1711 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 1712 return (1); 1713 break; 1714 case AF_INET6: 1715 { 1716 struct sockaddr_in6 *sin6_1, *sin6_2; 1717 1718 sin6_1 = mtod(nam, struct sockaddr_in6 *); 1719 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 1720 if (sin6_1->sin6_family == AF_INET6 && 1721 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 1722 return 1; 1723 } 1724 default: 1725 break; 1726 }; 1727 return (0); 1728 } 1729 1730 /* 1731 * The write verifier has changed (probably due to a server reboot), so all 1732 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 1733 * as dirty or are being written out just now, all this takes is clearing 1734 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 1735 * the mount point. 1736 */ 1737 void 1738 nfs_clearcommit(struct mount *mp) 1739 { 1740 struct vnode *vp; 1741 struct nfsnode *np; 1742 struct vm_page *pg; 1743 struct nfsmount *nmp = VFSTONFS(mp); 1744 1745 rw_enter(&nmp->nm_writeverflock, RW_WRITER); 1746 mutex_enter(&mntvnode_lock); 1747 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 1748 KASSERT(vp->v_mount == mp); 1749 if (vp->v_type != VREG) 1750 continue; 1751 mutex_enter(&vp->v_interlock); 1752 if (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) { 1753 mutex_exit(&vp->v_interlock); 1754 continue; 1755 } 1756 np = VTONFS(vp); 1757 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 1758 np->n_pushedhi = 0; 1759 np->n_commitflags &= 1760 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 1761 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) { 1762 pg->flags &= ~PG_NEEDCOMMIT; 1763 } 1764 mutex_exit(&vp->v_interlock); 1765 } 1766 mutex_exit(&mntvnode_lock); 1767 mutex_enter(&nmp->nm_lock); 1768 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 1769 mutex_exit(&nmp->nm_lock); 1770 rw_exit(&nmp->nm_writeverflock); 1771 } 1772 1773 void 1774 nfs_merge_commit_ranges(struct vnode *vp) 1775 { 1776 struct nfsnode *np = VTONFS(vp); 1777 1778 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 1779 1780 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 1781 np->n_pushedlo = np->n_pushlo; 1782 np->n_pushedhi = np->n_pushhi; 1783 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 1784 } else { 1785 if (np->n_pushlo < np->n_pushedlo) 1786 np->n_pushedlo = np->n_pushlo; 1787 if (np->n_pushhi > np->n_pushedhi) 1788 np->n_pushedhi = np->n_pushhi; 1789 } 1790 1791 np->n_pushlo = np->n_pushhi = 0; 1792 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 1793 1794 #ifdef NFS_DEBUG_COMMIT 1795 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 1796 (unsigned)np->n_pushedhi); 1797 #endif 1798 } 1799 1800 int 1801 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len) 1802 { 1803 struct nfsnode *np = VTONFS(vp); 1804 off_t lo, hi; 1805 1806 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 1807 return 0; 1808 lo = off; 1809 hi = lo + len; 1810 1811 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 1812 } 1813 1814 int 1815 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len) 1816 { 1817 struct nfsnode *np = VTONFS(vp); 1818 off_t lo, hi; 1819 1820 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 1821 return 0; 1822 lo = off; 1823 hi = lo + len; 1824 1825 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 1826 } 1827 1828 void 1829 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len) 1830 { 1831 struct nfsnode *np = VTONFS(vp); 1832 off_t lo, hi; 1833 1834 lo = off; 1835 hi = lo + len; 1836 1837 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 1838 np->n_pushedlo = lo; 1839 np->n_pushedhi = hi; 1840 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 1841 } else { 1842 if (hi > np->n_pushedhi) 1843 np->n_pushedhi = hi; 1844 if (lo < np->n_pushedlo) 1845 np->n_pushedlo = lo; 1846 } 1847 #ifdef NFS_DEBUG_COMMIT 1848 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 1849 (unsigned)np->n_pushedhi); 1850 #endif 1851 } 1852 1853 void 1854 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len) 1855 { 1856 struct nfsnode *np = VTONFS(vp); 1857 off_t lo, hi; 1858 1859 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 1860 return; 1861 1862 lo = off; 1863 hi = lo + len; 1864 1865 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 1866 return; 1867 if (lo <= np->n_pushedlo) 1868 np->n_pushedlo = hi; 1869 else if (hi >= np->n_pushedhi) 1870 np->n_pushedhi = lo; 1871 else { 1872 /* 1873 * XXX There's only one range. If the deleted range 1874 * is in the middle, pick the largest of the 1875 * contiguous ranges that it leaves. 1876 */ 1877 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 1878 np->n_pushedhi = lo; 1879 else 1880 np->n_pushedlo = hi; 1881 } 1882 #ifdef NFS_DEBUG_COMMIT 1883 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 1884 (unsigned)np->n_pushedhi); 1885 #endif 1886 } 1887 1888 void 1889 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len) 1890 { 1891 struct nfsnode *np = VTONFS(vp); 1892 off_t lo, hi; 1893 1894 lo = off; 1895 hi = lo + len; 1896 1897 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 1898 np->n_pushlo = lo; 1899 np->n_pushhi = hi; 1900 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 1901 } else { 1902 if (lo < np->n_pushlo) 1903 np->n_pushlo = lo; 1904 if (hi > np->n_pushhi) 1905 np->n_pushhi = hi; 1906 } 1907 #ifdef NFS_DEBUG_COMMIT 1908 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 1909 (unsigned)np->n_pushhi); 1910 #endif 1911 } 1912 1913 void 1914 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len) 1915 { 1916 struct nfsnode *np = VTONFS(vp); 1917 off_t lo, hi; 1918 1919 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 1920 return; 1921 1922 lo = off; 1923 hi = lo + len; 1924 1925 if (lo > np->n_pushhi || hi < np->n_pushlo) 1926 return; 1927 1928 if (lo <= np->n_pushlo) 1929 np->n_pushlo = hi; 1930 else if (hi >= np->n_pushhi) 1931 np->n_pushhi = lo; 1932 else { 1933 /* 1934 * XXX There's only one range. If the deleted range 1935 * is in the middle, pick the largest of the 1936 * contiguous ranges that it leaves. 1937 */ 1938 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 1939 np->n_pushhi = lo; 1940 else 1941 np->n_pushlo = hi; 1942 } 1943 #ifdef NFS_DEBUG_COMMIT 1944 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 1945 (unsigned)np->n_pushhi); 1946 #endif 1947 } 1948 1949 /* 1950 * Map errnos to NFS error numbers. For Version 3 also filter out error 1951 * numbers not specified for the associated procedure. 1952 */ 1953 int 1954 nfsrv_errmap(struct nfsrv_descript *nd, int err) 1955 { 1956 const short *defaulterrp, *errp; 1957 1958 if (nd->nd_flag & ND_NFSV3) { 1959 if (nd->nd_procnum <= NFSPROC_COMMIT) { 1960 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 1961 while (*++errp) { 1962 if (*errp == err) 1963 return (err); 1964 else if (*errp > err) 1965 break; 1966 } 1967 return ((int)*defaulterrp); 1968 } else 1969 return (err & 0xffff); 1970 } 1971 if (err <= ELAST) 1972 return ((int)nfsrv_v2errmap[err - 1]); 1973 return (NFSERR_IO); 1974 } 1975 1976 u_int32_t 1977 nfs_getxid(void) 1978 { 1979 u_int32_t newxid; 1980 1981 /* get next xid. skip 0 */ 1982 do { 1983 newxid = atomic_inc_32_nv(&nfs_xid); 1984 } while (__predict_false(newxid == 0)); 1985 1986 return txdr_unsigned(newxid); 1987 } 1988 1989 /* 1990 * assign a new xid for existing request. 1991 * used for NFSERR_JUKEBOX handling. 1992 */ 1993 void 1994 nfs_renewxid(struct nfsreq *req) 1995 { 1996 u_int32_t xid; 1997 int off; 1998 1999 xid = nfs_getxid(); 2000 if (req->r_nmp->nm_sotype == SOCK_STREAM) 2001 off = sizeof(u_int32_t); /* RPC record mark */ 2002 else 2003 off = 0; 2004 2005 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid); 2006 req->r_xid = xid; 2007 } 2008