xref: /netbsd-src/sys/nfs/nfs_subs.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: nfs_subs.c,v 1.219 2010/03/02 23:19:09 pooka Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
35  */
36 
37 /*
38  * Copyright 2000 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Frank van der Linden for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *      This product includes software developed for the NetBSD Project by
54  *      Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.219 2010/03/02 23:19:09 pooka Exp $");
74 
75 #ifdef _KERNEL_OPT
76 #include "opt_nfs.h"
77 #endif
78 
79 /*
80  * These functions support the macros and help fiddle mbuf chains for
81  * the nfs op functions. They do things like create the rpc header and
82  * copy data between mbuf chains and uio lists.
83  */
84 #include <sys/param.h>
85 #include <sys/proc.h>
86 #include <sys/systm.h>
87 #include <sys/kernel.h>
88 #include <sys/kmem.h>
89 #include <sys/mount.h>
90 #include <sys/vnode.h>
91 #include <sys/namei.h>
92 #include <sys/mbuf.h>
93 #include <sys/socket.h>
94 #include <sys/stat.h>
95 #include <sys/filedesc.h>
96 #include <sys/time.h>
97 #include <sys/dirent.h>
98 #include <sys/once.h>
99 #include <sys/kauth.h>
100 #include <sys/atomic.h>
101 
102 #include <uvm/uvm_extern.h>
103 
104 #include <nfs/rpcv2.h>
105 #include <nfs/nfsproto.h>
106 #include <nfs/nfsnode.h>
107 #include <nfs/nfs.h>
108 #include <nfs/xdr_subs.h>
109 #include <nfs/nfsm_subs.h>
110 #include <nfs/nfsmount.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113 
114 #include <miscfs/specfs/specdev.h>
115 
116 #include <netinet/in.h>
117 
118 static u_int32_t nfs_xid;
119 
120 int nuidhash_max = NFS_MAXUIDHASH;
121 /*
122  * Data items converted to xdr at startup, since they are constant
123  * This is kinda hokey, but may save a little time doing byte swaps
124  */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 	rpc_auth_kerb;
129 u_int32_t nfs_prog, nfs_true, nfs_false;
130 
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 
142 /* NFS client/server stats. */
143 struct nfsstats nfsstats;
144 
145 /*
146  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
147  */
148 const int nfsv3_procid[NFS_NPROCS] = {
149 	NFSPROC_NULL,
150 	NFSPROC_GETATTR,
151 	NFSPROC_SETATTR,
152 	NFSPROC_NOOP,
153 	NFSPROC_LOOKUP,
154 	NFSPROC_READLINK,
155 	NFSPROC_READ,
156 	NFSPROC_NOOP,
157 	NFSPROC_WRITE,
158 	NFSPROC_CREATE,
159 	NFSPROC_REMOVE,
160 	NFSPROC_RENAME,
161 	NFSPROC_LINK,
162 	NFSPROC_SYMLINK,
163 	NFSPROC_MKDIR,
164 	NFSPROC_RMDIR,
165 	NFSPROC_READDIR,
166 	NFSPROC_FSSTAT,
167 	NFSPROC_NOOP,
168 	NFSPROC_NOOP,
169 	NFSPROC_NOOP,
170 	NFSPROC_NOOP,
171 	NFSPROC_NOOP
172 };
173 
174 /*
175  * and the reverse mapping from generic to Version 2 procedure numbers
176  */
177 const int nfsv2_procid[NFS_NPROCS] = {
178 	NFSV2PROC_NULL,
179 	NFSV2PROC_GETATTR,
180 	NFSV2PROC_SETATTR,
181 	NFSV2PROC_LOOKUP,
182 	NFSV2PROC_NOOP,
183 	NFSV2PROC_READLINK,
184 	NFSV2PROC_READ,
185 	NFSV2PROC_WRITE,
186 	NFSV2PROC_CREATE,
187 	NFSV2PROC_MKDIR,
188 	NFSV2PROC_SYMLINK,
189 	NFSV2PROC_CREATE,
190 	NFSV2PROC_REMOVE,
191 	NFSV2PROC_RMDIR,
192 	NFSV2PROC_RENAME,
193 	NFSV2PROC_LINK,
194 	NFSV2PROC_READDIR,
195 	NFSV2PROC_NOOP,
196 	NFSV2PROC_STATFS,
197 	NFSV2PROC_NOOP,
198 	NFSV2PROC_NOOP,
199 	NFSV2PROC_NOOP,
200 	NFSV2PROC_NOOP,
201 };
202 
203 /*
204  * Maps errno values to nfs error numbers.
205  * Use NFSERR_IO as the catch all for ones not specifically defined in
206  * RFC 1094.
207  */
208 static const u_char nfsrv_v2errmap[ELAST] = {
209   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
210   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
211   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
212   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
213   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
214   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
215   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
216   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
217   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
218   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
219   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
220   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
221   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
222   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
223   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
225   NFSERR_IO,	NFSERR_IO,
226 };
227 
228 /*
229  * Maps errno values to nfs error numbers.
230  * Although it is not obvious whether or not NFS clients really care if
231  * a returned error value is in the specified list for the procedure, the
232  * safest thing to do is filter them appropriately. For Version 2, the
233  * X/Open XNFS document is the only specification that defines error values
234  * for each RPC (The RFC simply lists all possible error values for all RPCs),
235  * so I have decided to not do this for Version 2.
236  * The first entry is the default error return and the rest are the valid
237  * errors for that RPC in increasing numeric order.
238  */
239 static const short nfsv3err_null[] = {
240 	0,
241 	0,
242 };
243 
244 static const short nfsv3err_getattr[] = {
245 	NFSERR_IO,
246 	NFSERR_IO,
247 	NFSERR_STALE,
248 	NFSERR_BADHANDLE,
249 	NFSERR_SERVERFAULT,
250 	0,
251 };
252 
253 static const short nfsv3err_setattr[] = {
254 	NFSERR_IO,
255 	NFSERR_PERM,
256 	NFSERR_IO,
257 	NFSERR_ACCES,
258 	NFSERR_INVAL,
259 	NFSERR_NOSPC,
260 	NFSERR_ROFS,
261 	NFSERR_DQUOT,
262 	NFSERR_STALE,
263 	NFSERR_BADHANDLE,
264 	NFSERR_NOT_SYNC,
265 	NFSERR_SERVERFAULT,
266 	0,
267 };
268 
269 static const short nfsv3err_lookup[] = {
270 	NFSERR_IO,
271 	NFSERR_NOENT,
272 	NFSERR_IO,
273 	NFSERR_ACCES,
274 	NFSERR_NOTDIR,
275 	NFSERR_NAMETOL,
276 	NFSERR_STALE,
277 	NFSERR_BADHANDLE,
278 	NFSERR_SERVERFAULT,
279 	0,
280 };
281 
282 static const short nfsv3err_access[] = {
283 	NFSERR_IO,
284 	NFSERR_IO,
285 	NFSERR_STALE,
286 	NFSERR_BADHANDLE,
287 	NFSERR_SERVERFAULT,
288 	0,
289 };
290 
291 static const short nfsv3err_readlink[] = {
292 	NFSERR_IO,
293 	NFSERR_IO,
294 	NFSERR_ACCES,
295 	NFSERR_INVAL,
296 	NFSERR_STALE,
297 	NFSERR_BADHANDLE,
298 	NFSERR_NOTSUPP,
299 	NFSERR_SERVERFAULT,
300 	0,
301 };
302 
303 static const short nfsv3err_read[] = {
304 	NFSERR_IO,
305 	NFSERR_IO,
306 	NFSERR_NXIO,
307 	NFSERR_ACCES,
308 	NFSERR_INVAL,
309 	NFSERR_STALE,
310 	NFSERR_BADHANDLE,
311 	NFSERR_SERVERFAULT,
312 	NFSERR_JUKEBOX,
313 	0,
314 };
315 
316 static const short nfsv3err_write[] = {
317 	NFSERR_IO,
318 	NFSERR_IO,
319 	NFSERR_ACCES,
320 	NFSERR_INVAL,
321 	NFSERR_FBIG,
322 	NFSERR_NOSPC,
323 	NFSERR_ROFS,
324 	NFSERR_DQUOT,
325 	NFSERR_STALE,
326 	NFSERR_BADHANDLE,
327 	NFSERR_SERVERFAULT,
328 	NFSERR_JUKEBOX,
329 	0,
330 };
331 
332 static const short nfsv3err_create[] = {
333 	NFSERR_IO,
334 	NFSERR_IO,
335 	NFSERR_ACCES,
336 	NFSERR_EXIST,
337 	NFSERR_NOTDIR,
338 	NFSERR_NOSPC,
339 	NFSERR_ROFS,
340 	NFSERR_NAMETOL,
341 	NFSERR_DQUOT,
342 	NFSERR_STALE,
343 	NFSERR_BADHANDLE,
344 	NFSERR_NOTSUPP,
345 	NFSERR_SERVERFAULT,
346 	0,
347 };
348 
349 static const short nfsv3err_mkdir[] = {
350 	NFSERR_IO,
351 	NFSERR_IO,
352 	NFSERR_ACCES,
353 	NFSERR_EXIST,
354 	NFSERR_NOTDIR,
355 	NFSERR_NOSPC,
356 	NFSERR_ROFS,
357 	NFSERR_NAMETOL,
358 	NFSERR_DQUOT,
359 	NFSERR_STALE,
360 	NFSERR_BADHANDLE,
361 	NFSERR_NOTSUPP,
362 	NFSERR_SERVERFAULT,
363 	0,
364 };
365 
366 static const short nfsv3err_symlink[] = {
367 	NFSERR_IO,
368 	NFSERR_IO,
369 	NFSERR_ACCES,
370 	NFSERR_EXIST,
371 	NFSERR_NOTDIR,
372 	NFSERR_NOSPC,
373 	NFSERR_ROFS,
374 	NFSERR_NAMETOL,
375 	NFSERR_DQUOT,
376 	NFSERR_STALE,
377 	NFSERR_BADHANDLE,
378 	NFSERR_NOTSUPP,
379 	NFSERR_SERVERFAULT,
380 	0,
381 };
382 
383 static const short nfsv3err_mknod[] = {
384 	NFSERR_IO,
385 	NFSERR_IO,
386 	NFSERR_ACCES,
387 	NFSERR_EXIST,
388 	NFSERR_NOTDIR,
389 	NFSERR_NOSPC,
390 	NFSERR_ROFS,
391 	NFSERR_NAMETOL,
392 	NFSERR_DQUOT,
393 	NFSERR_STALE,
394 	NFSERR_BADHANDLE,
395 	NFSERR_NOTSUPP,
396 	NFSERR_SERVERFAULT,
397 	NFSERR_BADTYPE,
398 	0,
399 };
400 
401 static const short nfsv3err_remove[] = {
402 	NFSERR_IO,
403 	NFSERR_NOENT,
404 	NFSERR_IO,
405 	NFSERR_ACCES,
406 	NFSERR_NOTDIR,
407 	NFSERR_ROFS,
408 	NFSERR_NAMETOL,
409 	NFSERR_STALE,
410 	NFSERR_BADHANDLE,
411 	NFSERR_SERVERFAULT,
412 	0,
413 };
414 
415 static const short nfsv3err_rmdir[] = {
416 	NFSERR_IO,
417 	NFSERR_NOENT,
418 	NFSERR_IO,
419 	NFSERR_ACCES,
420 	NFSERR_EXIST,
421 	NFSERR_NOTDIR,
422 	NFSERR_INVAL,
423 	NFSERR_ROFS,
424 	NFSERR_NAMETOL,
425 	NFSERR_NOTEMPTY,
426 	NFSERR_STALE,
427 	NFSERR_BADHANDLE,
428 	NFSERR_NOTSUPP,
429 	NFSERR_SERVERFAULT,
430 	0,
431 };
432 
433 static const short nfsv3err_rename[] = {
434 	NFSERR_IO,
435 	NFSERR_NOENT,
436 	NFSERR_IO,
437 	NFSERR_ACCES,
438 	NFSERR_EXIST,
439 	NFSERR_XDEV,
440 	NFSERR_NOTDIR,
441 	NFSERR_ISDIR,
442 	NFSERR_INVAL,
443 	NFSERR_NOSPC,
444 	NFSERR_ROFS,
445 	NFSERR_MLINK,
446 	NFSERR_NAMETOL,
447 	NFSERR_NOTEMPTY,
448 	NFSERR_DQUOT,
449 	NFSERR_STALE,
450 	NFSERR_BADHANDLE,
451 	NFSERR_NOTSUPP,
452 	NFSERR_SERVERFAULT,
453 	0,
454 };
455 
456 static const short nfsv3err_link[] = {
457 	NFSERR_IO,
458 	NFSERR_IO,
459 	NFSERR_ACCES,
460 	NFSERR_EXIST,
461 	NFSERR_XDEV,
462 	NFSERR_NOTDIR,
463 	NFSERR_INVAL,
464 	NFSERR_NOSPC,
465 	NFSERR_ROFS,
466 	NFSERR_MLINK,
467 	NFSERR_NAMETOL,
468 	NFSERR_DQUOT,
469 	NFSERR_STALE,
470 	NFSERR_BADHANDLE,
471 	NFSERR_NOTSUPP,
472 	NFSERR_SERVERFAULT,
473 	0,
474 };
475 
476 static const short nfsv3err_readdir[] = {
477 	NFSERR_IO,
478 	NFSERR_IO,
479 	NFSERR_ACCES,
480 	NFSERR_NOTDIR,
481 	NFSERR_STALE,
482 	NFSERR_BADHANDLE,
483 	NFSERR_BAD_COOKIE,
484 	NFSERR_TOOSMALL,
485 	NFSERR_SERVERFAULT,
486 	0,
487 };
488 
489 static const short nfsv3err_readdirplus[] = {
490 	NFSERR_IO,
491 	NFSERR_IO,
492 	NFSERR_ACCES,
493 	NFSERR_NOTDIR,
494 	NFSERR_STALE,
495 	NFSERR_BADHANDLE,
496 	NFSERR_BAD_COOKIE,
497 	NFSERR_NOTSUPP,
498 	NFSERR_TOOSMALL,
499 	NFSERR_SERVERFAULT,
500 	0,
501 };
502 
503 static const short nfsv3err_fsstat[] = {
504 	NFSERR_IO,
505 	NFSERR_IO,
506 	NFSERR_STALE,
507 	NFSERR_BADHANDLE,
508 	NFSERR_SERVERFAULT,
509 	0,
510 };
511 
512 static const short nfsv3err_fsinfo[] = {
513 	NFSERR_STALE,
514 	NFSERR_STALE,
515 	NFSERR_BADHANDLE,
516 	NFSERR_SERVERFAULT,
517 	0,
518 };
519 
520 static const short nfsv3err_pathconf[] = {
521 	NFSERR_STALE,
522 	NFSERR_STALE,
523 	NFSERR_BADHANDLE,
524 	NFSERR_SERVERFAULT,
525 	0,
526 };
527 
528 static const short nfsv3err_commit[] = {
529 	NFSERR_IO,
530 	NFSERR_IO,
531 	NFSERR_STALE,
532 	NFSERR_BADHANDLE,
533 	NFSERR_SERVERFAULT,
534 	0,
535 };
536 
537 static const short * const nfsrv_v3errmap[] = {
538 	nfsv3err_null,
539 	nfsv3err_getattr,
540 	nfsv3err_setattr,
541 	nfsv3err_lookup,
542 	nfsv3err_access,
543 	nfsv3err_readlink,
544 	nfsv3err_read,
545 	nfsv3err_write,
546 	nfsv3err_create,
547 	nfsv3err_mkdir,
548 	nfsv3err_symlink,
549 	nfsv3err_mknod,
550 	nfsv3err_remove,
551 	nfsv3err_rmdir,
552 	nfsv3err_rename,
553 	nfsv3err_link,
554 	nfsv3err_readdir,
555 	nfsv3err_readdirplus,
556 	nfsv3err_fsstat,
557 	nfsv3err_fsinfo,
558 	nfsv3err_pathconf,
559 	nfsv3err_commit,
560 };
561 
562 extern struct nfsrtt nfsrtt;
563 
564 u_long nfsdirhashmask;
565 
566 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
567 
568 /*
569  * Create the header for an rpc request packet
570  * The hsiz is the size of the rest of the nfs request header.
571  * (just used to decide if a cluster is a good idea)
572  */
573 struct mbuf *
574 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
575 {
576 	struct mbuf *mb;
577 	char *bpos;
578 
579 	mb = m_get(M_WAIT, MT_DATA);
580 	MCLAIM(mb, &nfs_mowner);
581 	if (hsiz >= MINCLSIZE)
582 		m_clget(mb, M_WAIT);
583 	mb->m_len = 0;
584 	bpos = mtod(mb, void *);
585 
586 	/* Finally, return values */
587 	*bposp = bpos;
588 	return (mb);
589 }
590 
591 /*
592  * Build the RPC header and fill in the authorization info.
593  * The authorization string argument is only used when the credentials
594  * come from outside of the kernel.
595  * Returns the head of the mbuf list.
596  */
597 struct mbuf *
598 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
599 	int auth_type, int auth_len, char *auth_str, int verf_len,
600 	char *verf_str, struct mbuf *mrest, int mrest_len,
601 	struct mbuf **mbp, uint32_t *xidp)
602 {
603 	struct mbuf *mb;
604 	u_int32_t *tl;
605 	char *bpos;
606 	int i;
607 	struct mbuf *mreq;
608 	int siz, grpsiz, authsiz;
609 
610 	authsiz = nfsm_rndup(auth_len);
611 	mb = m_gethdr(M_WAIT, MT_DATA);
612 	MCLAIM(mb, &nfs_mowner);
613 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
614 		m_clget(mb, M_WAIT);
615 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
616 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
617 	} else {
618 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
619 	}
620 	mb->m_len = 0;
621 	mreq = mb;
622 	bpos = mtod(mb, void *);
623 
624 	/*
625 	 * First the RPC header.
626 	 */
627 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
628 
629 	*tl++ = *xidp = nfs_getxid();
630 	*tl++ = rpc_call;
631 	*tl++ = rpc_vers;
632 	*tl++ = txdr_unsigned(NFS_PROG);
633 	if (nmflag & NFSMNT_NFSV3)
634 		*tl++ = txdr_unsigned(NFS_VER3);
635 	else
636 		*tl++ = txdr_unsigned(NFS_VER2);
637 	if (nmflag & NFSMNT_NFSV3)
638 		*tl++ = txdr_unsigned(procid);
639 	else
640 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
641 
642 	/*
643 	 * And then the authorization cred.
644 	 */
645 	*tl++ = txdr_unsigned(auth_type);
646 	*tl = txdr_unsigned(authsiz);
647 	switch (auth_type) {
648 	case RPCAUTH_UNIX:
649 		nfsm_build(tl, u_int32_t *, auth_len);
650 		*tl++ = 0;		/* stamp ?? */
651 		*tl++ = 0;		/* NULL hostname */
652 		*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
653 		*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
654 		grpsiz = (auth_len >> 2) - 5;
655 		*tl++ = txdr_unsigned(grpsiz);
656 		for (i = 0; i < grpsiz; i++)
657 			*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
658 		break;
659 	case RPCAUTH_KERB4:
660 		siz = auth_len;
661 		while (siz > 0) {
662 			if (M_TRAILINGSPACE(mb) == 0) {
663 				struct mbuf *mb2;
664 				mb2 = m_get(M_WAIT, MT_DATA);
665 				MCLAIM(mb2, &nfs_mowner);
666 				if (siz >= MINCLSIZE)
667 					m_clget(mb2, M_WAIT);
668 				mb->m_next = mb2;
669 				mb = mb2;
670 				mb->m_len = 0;
671 				bpos = mtod(mb, void *);
672 			}
673 			i = min(siz, M_TRAILINGSPACE(mb));
674 			memcpy(bpos, auth_str, i);
675 			mb->m_len += i;
676 			auth_str += i;
677 			bpos += i;
678 			siz -= i;
679 		}
680 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
681 			for (i = 0; i < siz; i++)
682 				*bpos++ = '\0';
683 			mb->m_len += siz;
684 		}
685 		break;
686 	};
687 
688 	/*
689 	 * And the verifier...
690 	 */
691 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
692 	if (verf_str) {
693 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
694 		*tl = txdr_unsigned(verf_len);
695 		siz = verf_len;
696 		while (siz > 0) {
697 			if (M_TRAILINGSPACE(mb) == 0) {
698 				struct mbuf *mb2;
699 				mb2 = m_get(M_WAIT, MT_DATA);
700 				MCLAIM(mb2, &nfs_mowner);
701 				if (siz >= MINCLSIZE)
702 					m_clget(mb2, M_WAIT);
703 				mb->m_next = mb2;
704 				mb = mb2;
705 				mb->m_len = 0;
706 				bpos = mtod(mb, void *);
707 			}
708 			i = min(siz, M_TRAILINGSPACE(mb));
709 			memcpy(bpos, verf_str, i);
710 			mb->m_len += i;
711 			verf_str += i;
712 			bpos += i;
713 			siz -= i;
714 		}
715 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
716 			for (i = 0; i < siz; i++)
717 				*bpos++ = '\0';
718 			mb->m_len += siz;
719 		}
720 	} else {
721 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
722 		*tl = 0;
723 	}
724 	mb->m_next = mrest;
725 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
726 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
727 	*mbp = mb;
728 	return (mreq);
729 }
730 
731 /*
732  * copies mbuf chain to the uio scatter/gather list
733  */
734 int
735 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
736 {
737 	char *mbufcp, *uiocp;
738 	int xfer, left, len;
739 	struct mbuf *mp;
740 	long uiosiz, rem;
741 	int error = 0;
742 
743 	mp = *mrep;
744 	mbufcp = *dpos;
745 	len = mtod(mp, char *) + mp->m_len - mbufcp;
746 	rem = nfsm_rndup(siz)-siz;
747 	while (siz > 0) {
748 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
749 			return (EFBIG);
750 		left = uiop->uio_iov->iov_len;
751 		uiocp = uiop->uio_iov->iov_base;
752 		if (left > siz)
753 			left = siz;
754 		uiosiz = left;
755 		while (left > 0) {
756 			while (len == 0) {
757 				mp = mp->m_next;
758 				if (mp == NULL)
759 					return (EBADRPC);
760 				mbufcp = mtod(mp, void *);
761 				len = mp->m_len;
762 			}
763 			xfer = (left > len) ? len : left;
764 			error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
765 			    uiocp, xfer);
766 			if (error) {
767 				return error;
768 			}
769 			left -= xfer;
770 			len -= xfer;
771 			mbufcp += xfer;
772 			uiocp += xfer;
773 			uiop->uio_offset += xfer;
774 			uiop->uio_resid -= xfer;
775 		}
776 		if (uiop->uio_iov->iov_len <= siz) {
777 			uiop->uio_iovcnt--;
778 			uiop->uio_iov++;
779 		} else {
780 			uiop->uio_iov->iov_base =
781 			    (char *)uiop->uio_iov->iov_base + uiosiz;
782 			uiop->uio_iov->iov_len -= uiosiz;
783 		}
784 		siz -= uiosiz;
785 	}
786 	*dpos = mbufcp;
787 	*mrep = mp;
788 	if (rem > 0) {
789 		if (len < rem)
790 			error = nfs_adv(mrep, dpos, rem, len);
791 		else
792 			*dpos += rem;
793 	}
794 	return (error);
795 }
796 
797 /*
798  * copies a uio scatter/gather list to an mbuf chain.
799  * NOTE: can ony handle iovcnt == 1
800  */
801 int
802 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
803 {
804 	char *uiocp;
805 	struct mbuf *mp, *mp2;
806 	int xfer, left, mlen;
807 	int uiosiz, clflg, rem;
808 	char *cp;
809 	int error;
810 
811 #ifdef DIAGNOSTIC
812 	if (uiop->uio_iovcnt != 1)
813 		panic("nfsm_uiotombuf: iovcnt != 1");
814 #endif
815 
816 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
817 		clflg = 1;
818 	else
819 		clflg = 0;
820 	rem = nfsm_rndup(siz)-siz;
821 	mp = mp2 = *mq;
822 	while (siz > 0) {
823 		left = uiop->uio_iov->iov_len;
824 		uiocp = uiop->uio_iov->iov_base;
825 		if (left > siz)
826 			left = siz;
827 		uiosiz = left;
828 		while (left > 0) {
829 			mlen = M_TRAILINGSPACE(mp);
830 			if (mlen == 0) {
831 				mp = m_get(M_WAIT, MT_DATA);
832 				MCLAIM(mp, &nfs_mowner);
833 				if (clflg)
834 					m_clget(mp, M_WAIT);
835 				mp->m_len = 0;
836 				mp2->m_next = mp;
837 				mp2 = mp;
838 				mlen = M_TRAILINGSPACE(mp);
839 			}
840 			xfer = (left > mlen) ? mlen : left;
841 			cp = mtod(mp, char *) + mp->m_len;
842 			error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
843 			    xfer);
844 			if (error) {
845 				/* XXX */
846 			}
847 			mp->m_len += xfer;
848 			left -= xfer;
849 			uiocp += xfer;
850 			uiop->uio_offset += xfer;
851 			uiop->uio_resid -= xfer;
852 		}
853 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
854 		    uiosiz;
855 		uiop->uio_iov->iov_len -= uiosiz;
856 		siz -= uiosiz;
857 	}
858 	if (rem > 0) {
859 		if (rem > M_TRAILINGSPACE(mp)) {
860 			mp = m_get(M_WAIT, MT_DATA);
861 			MCLAIM(mp, &nfs_mowner);
862 			mp->m_len = 0;
863 			mp2->m_next = mp;
864 		}
865 		cp = mtod(mp, char *) + mp->m_len;
866 		for (left = 0; left < rem; left++)
867 			*cp++ = '\0';
868 		mp->m_len += rem;
869 		*bpos = cp;
870 	} else
871 		*bpos = mtod(mp, char *) + mp->m_len;
872 	*mq = mp;
873 	return (0);
874 }
875 
876 /*
877  * Get at least "siz" bytes of correctly aligned data.
878  * When called the mbuf pointers are not necessarily correct,
879  * dsosp points to what ought to be in m_data and left contains
880  * what ought to be in m_len.
881  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
882  * cases. (The macros use the vars. dpos and dpos2)
883  */
884 int
885 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
886 {
887 	struct mbuf *m1, *m2;
888 	struct mbuf *havebuf = NULL;
889 	char *src = *dposp;
890 	char *dst;
891 	int len;
892 
893 #ifdef DEBUG
894 	if (left < 0)
895 		panic("nfsm_disct: left < 0");
896 #endif
897 	m1 = *mdp;
898 	/*
899 	 * Skip through the mbuf chain looking for an mbuf with
900 	 * some data. If the first mbuf found has enough data
901 	 * and it is correctly aligned return it.
902 	 */
903 	while (left == 0) {
904 		havebuf = m1;
905 		*mdp = m1 = m1->m_next;
906 		if (m1 == NULL)
907 			return (EBADRPC);
908 		src = mtod(m1, void *);
909 		left = m1->m_len;
910 		/*
911 		 * If we start a new mbuf and it is big enough
912 		 * and correctly aligned just return it, don't
913 		 * do any pull up.
914 		 */
915 		if (left >= siz && nfsm_aligned(src)) {
916 			*cp2 = src;
917 			*dposp = src + siz;
918 			return (0);
919 		}
920 	}
921 	if ((m1->m_flags & M_EXT) != 0) {
922 		if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
923 		    nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
924 			/*
925 			 * If the first mbuf with data has external data
926 			 * and there is a previous mbuf with some trailing
927 			 * space, use it to move the data into.
928 			 */
929 			m2 = m1;
930 			*mdp = m1 = havebuf;
931 			*cp2 = mtod(m1, char *) + m1->m_len;
932 		} else if (havebuf) {
933 			/*
934 			 * If the first mbuf has a external data
935 			 * and there is no previous empty mbuf
936 			 * allocate a new mbuf and move the external
937 			 * data to the new mbuf. Also make the first
938 			 * mbuf look empty.
939 			 */
940 			m2 = m1;
941 			*mdp = m1 = m_get(M_WAIT, MT_DATA);
942 			MCLAIM(m1, m2->m_owner);
943 			if ((m2->m_flags & M_PKTHDR) != 0) {
944 				/* XXX MOVE */
945 				M_COPY_PKTHDR(m1, m2);
946 				m_tag_delete_chain(m2, NULL);
947 				m2->m_flags &= ~M_PKTHDR;
948 			}
949 			if (havebuf) {
950 				havebuf->m_next = m1;
951 			}
952 			m1->m_next = m2;
953 			MRESETDATA(m1);
954 			m1->m_len = 0;
955 			m2->m_data = src;
956 			m2->m_len = left;
957 			*cp2 = mtod(m1, char *);
958 		} else {
959 			struct mbuf **nextp = &m1->m_next;
960 
961 			m1->m_len -= left;
962 			do {
963 				m2 = m_get(M_WAIT, MT_DATA);
964 				MCLAIM(m2, m1->m_owner);
965 				if (left >= MINCLSIZE) {
966 					MCLGET(m2, M_WAIT);
967 				}
968 				m2->m_next = *nextp;
969 				*nextp = m2;
970 				nextp = &m2->m_next;
971 				len = (m2->m_flags & M_EXT) != 0 ?
972 				    MCLBYTES : MLEN;
973 				if (len > left) {
974 					len = left;
975 				}
976 				memcpy(mtod(m2, char *), src, len);
977 				m2->m_len = len;
978 				src += len;
979 				left -= len;
980 			} while (left > 0);
981 			*mdp = m1 = m1->m_next;
982 			m2 = m1->m_next;
983 			*cp2 = mtod(m1, char *);
984 		}
985 	} else {
986 		/*
987 		 * If the first mbuf has no external data
988 		 * move the data to the front of the mbuf.
989 		 */
990 		MRESETDATA(m1);
991 		dst = mtod(m1, char *);
992 		if (dst != src) {
993 			memmove(dst, src, left);
994 		}
995 		m1->m_len = left;
996 		m2 = m1->m_next;
997 		*cp2 = m1->m_data;
998 	}
999 	*dposp = *cp2 + siz;
1000 	/*
1001 	 * Loop through mbufs pulling data up into first mbuf until
1002 	 * the first mbuf is full or there is no more data to
1003 	 * pullup.
1004 	 */
1005 	dst = mtod(m1, char *) + m1->m_len;
1006 	while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1007 		if ((len = min(len, m2->m_len)) != 0) {
1008 			memcpy(dst, mtod(m2, char *), len);
1009 		}
1010 		m1->m_len += len;
1011 		dst += len;
1012 		m2->m_data += len;
1013 		m2->m_len -= len;
1014 		m2 = m2->m_next;
1015 	}
1016 	if (m1->m_len < siz)
1017 		return (EBADRPC);
1018 	return (0);
1019 }
1020 
1021 /*
1022  * Advance the position in the mbuf chain.
1023  */
1024 int
1025 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
1026 {
1027 	struct mbuf *m;
1028 	int s;
1029 
1030 	m = *mdp;
1031 	s = left;
1032 	while (s < offs) {
1033 		offs -= s;
1034 		m = m->m_next;
1035 		if (m == NULL)
1036 			return (EBADRPC);
1037 		s = m->m_len;
1038 	}
1039 	*mdp = m;
1040 	*dposp = mtod(m, char *) + offs;
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Copy a string into mbufs for the hard cases...
1046  */
1047 int
1048 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
1049 {
1050 	struct mbuf *m1 = NULL, *m2;
1051 	long left, xfer, len, tlen;
1052 	u_int32_t *tl;
1053 	int putsize;
1054 
1055 	putsize = 1;
1056 	m2 = *mb;
1057 	left = M_TRAILINGSPACE(m2);
1058 	if (left > 0) {
1059 		tl = ((u_int32_t *)(*bpos));
1060 		*tl++ = txdr_unsigned(siz);
1061 		putsize = 0;
1062 		left -= NFSX_UNSIGNED;
1063 		m2->m_len += NFSX_UNSIGNED;
1064 		if (left > 0) {
1065 			memcpy((void *) tl, cp, left);
1066 			siz -= left;
1067 			cp += left;
1068 			m2->m_len += left;
1069 			left = 0;
1070 		}
1071 	}
1072 	/* Loop around adding mbufs */
1073 	while (siz > 0) {
1074 		m1 = m_get(M_WAIT, MT_DATA);
1075 		MCLAIM(m1, &nfs_mowner);
1076 		if (siz > MLEN)
1077 			m_clget(m1, M_WAIT);
1078 		m1->m_len = NFSMSIZ(m1);
1079 		m2->m_next = m1;
1080 		m2 = m1;
1081 		tl = mtod(m1, u_int32_t *);
1082 		tlen = 0;
1083 		if (putsize) {
1084 			*tl++ = txdr_unsigned(siz);
1085 			m1->m_len -= NFSX_UNSIGNED;
1086 			tlen = NFSX_UNSIGNED;
1087 			putsize = 0;
1088 		}
1089 		if (siz < m1->m_len) {
1090 			len = nfsm_rndup(siz);
1091 			xfer = siz;
1092 			if (xfer < len)
1093 				*(tl+(xfer>>2)) = 0;
1094 		} else {
1095 			xfer = len = m1->m_len;
1096 		}
1097 		memcpy((void *) tl, cp, xfer);
1098 		m1->m_len = len+tlen;
1099 		siz -= xfer;
1100 		cp += xfer;
1101 	}
1102 	*mb = m1;
1103 	*bpos = mtod(m1, char *) + m1->m_len;
1104 	return (0);
1105 }
1106 
1107 /*
1108  * Directory caching routines. They work as follows:
1109  * - a cache is maintained per VDIR nfsnode.
1110  * - for each offset cookie that is exported to userspace, and can
1111  *   thus be thrown back at us as an offset to VOP_READDIR, store
1112  *   information in the cache.
1113  * - cached are:
1114  *   - cookie itself
1115  *   - blocknumber (essentially just a search key in the buffer cache)
1116  *   - entry number in block.
1117  *   - offset cookie of block in which this entry is stored
1118  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1119  * - entries are looked up in a hash table
1120  * - also maintained is an LRU list of entries, used to determine
1121  *   which ones to delete if the cache grows too large.
1122  * - if 32 <-> 64 translation mode is requested for a filesystem,
1123  *   the cache also functions as a translation table
1124  * - in the translation case, invalidating the cache does not mean
1125  *   flushing it, but just marking entries as invalid, except for
1126  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
1127  *   still be able to use the cache as a translation table.
1128  * - 32 bit cookies are uniquely created by combining the hash table
1129  *   entry value, and one generation count per hash table entry,
1130  *   incremented each time an entry is appended to the chain.
1131  * - the cache is invalidated each time a direcory is modified
1132  * - sanity checks are also done; if an entry in a block turns
1133  *   out not to have a matching cookie, the cache is invalidated
1134  *   and a new block starting from the wanted offset is fetched from
1135  *   the server.
1136  * - directory entries as read from the server are extended to contain
1137  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
1138  *   the cache and exporting them to userspace through the cookie
1139  *   argument to VOP_READDIR.
1140  */
1141 
1142 u_long
1143 nfs_dirhash(off_t off)
1144 {
1145 	int i;
1146 	char *cp = (char *)&off;
1147 	u_long sum = 0L;
1148 
1149 	for (i = 0 ; i < sizeof (off); i++)
1150 		sum += *cp++;
1151 
1152 	return sum;
1153 }
1154 
1155 #define	_NFSDC_MTX(np)		(&NFSTOV(np)->v_interlock)
1156 #define	NFSDC_LOCK(np)		mutex_enter(_NFSDC_MTX(np))
1157 #define	NFSDC_UNLOCK(np)	mutex_exit(_NFSDC_MTX(np))
1158 #define	NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1159 
1160 void
1161 nfs_initdircache(struct vnode *vp)
1162 {
1163 	struct nfsnode *np = VTONFS(vp);
1164 	struct nfsdirhashhead *dircache;
1165 
1166 	dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1167 	    &nfsdirhashmask);
1168 
1169 	NFSDC_LOCK(np);
1170 	if (np->n_dircache == NULL) {
1171 		np->n_dircachesize = 0;
1172 		np->n_dircache = dircache;
1173 		dircache = NULL;
1174 		TAILQ_INIT(&np->n_dirchain);
1175 	}
1176 	NFSDC_UNLOCK(np);
1177 	if (dircache)
1178 		hashdone(dircache, HASH_LIST, nfsdirhashmask);
1179 }
1180 
1181 void
1182 nfs_initdirxlatecookie(struct vnode *vp)
1183 {
1184 	struct nfsnode *np = VTONFS(vp);
1185 	unsigned *dirgens;
1186 
1187 	KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1188 
1189 	dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1190 	NFSDC_LOCK(np);
1191 	if (np->n_dirgens == NULL) {
1192 		np->n_dirgens = dirgens;
1193 		dirgens = NULL;
1194 	}
1195 	NFSDC_UNLOCK(np);
1196 	if (dirgens)
1197 		kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1198 }
1199 
1200 static const struct nfsdircache dzero;
1201 
1202 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
1203 static void nfs_putdircache_unlocked(struct nfsnode *,
1204     struct nfsdircache *);
1205 
1206 static void
1207 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
1208 {
1209 
1210 	NFSDC_ASSERT_LOCKED(np);
1211 	KASSERT(ndp != &dzero);
1212 
1213 	if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1214 		return;
1215 
1216 	TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1217 	LIST_REMOVE(ndp, dc_hash);
1218 	LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1219 
1220 	nfs_putdircache_unlocked(np, ndp);
1221 }
1222 
1223 void
1224 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
1225 {
1226 	int ref;
1227 
1228 	if (ndp == &dzero)
1229 		return;
1230 
1231 	KASSERT(ndp->dc_refcnt > 0);
1232 	NFSDC_LOCK(np);
1233 	ref = --ndp->dc_refcnt;
1234 	NFSDC_UNLOCK(np);
1235 
1236 	if (ref == 0)
1237 		kmem_free(ndp, sizeof(*ndp));
1238 }
1239 
1240 static void
1241 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1242 {
1243 	int ref;
1244 
1245 	NFSDC_ASSERT_LOCKED(np);
1246 
1247 	if (ndp == &dzero)
1248 		return;
1249 
1250 	KASSERT(ndp->dc_refcnt > 0);
1251 	ref = --ndp->dc_refcnt;
1252 	if (ref == 0)
1253 		kmem_free(ndp, sizeof(*ndp));
1254 }
1255 
1256 struct nfsdircache *
1257 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
1258 {
1259 	struct nfsdirhashhead *ndhp;
1260 	struct nfsdircache *ndp = NULL;
1261 	struct nfsnode *np = VTONFS(vp);
1262 	unsigned ent;
1263 
1264 	/*
1265 	 * Zero is always a valid cookie.
1266 	 */
1267 	if (off == 0)
1268 		/* XXXUNCONST */
1269 		return (struct nfsdircache *)__UNCONST(&dzero);
1270 
1271 	if (!np->n_dircache)
1272 		return NULL;
1273 
1274 	/*
1275 	 * We use a 32bit cookie as search key, directly reconstruct
1276 	 * the hashentry. Else use the hashfunction.
1277 	 */
1278 	if (do32) {
1279 		ent = (u_int32_t)off >> 24;
1280 		if (ent >= NFS_DIRHASHSIZ)
1281 			return NULL;
1282 		ndhp = &np->n_dircache[ent];
1283 	} else {
1284 		ndhp = NFSDIRHASH(np, off);
1285 	}
1286 
1287 	if (hashent)
1288 		*hashent = (int)(ndhp - np->n_dircache);
1289 
1290 	NFSDC_LOCK(np);
1291 	if (do32) {
1292 		LIST_FOREACH(ndp, ndhp, dc_hash) {
1293 			if (ndp->dc_cookie32 == (u_int32_t)off) {
1294 				/*
1295 				 * An invalidated entry will become the
1296 				 * start of a new block fetched from
1297 				 * the server.
1298 				 */
1299 				if (ndp->dc_flags & NFSDC_INVALID) {
1300 					ndp->dc_blkcookie = ndp->dc_cookie;
1301 					ndp->dc_entry = 0;
1302 					ndp->dc_flags &= ~NFSDC_INVALID;
1303 				}
1304 				break;
1305 			}
1306 		}
1307 	} else {
1308 		LIST_FOREACH(ndp, ndhp, dc_hash) {
1309 			if (ndp->dc_cookie == off)
1310 				break;
1311 		}
1312 	}
1313 	if (ndp != NULL)
1314 		ndp->dc_refcnt++;
1315 	NFSDC_UNLOCK(np);
1316 	return ndp;
1317 }
1318 
1319 
1320 struct nfsdircache *
1321 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1322     daddr_t blkno)
1323 {
1324 	struct nfsnode *np = VTONFS(vp);
1325 	struct nfsdirhashhead *ndhp;
1326 	struct nfsdircache *ndp = NULL;
1327 	struct nfsdircache *newndp = NULL;
1328 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1329 	int hashent = 0, gen, overwrite;	/* XXX: GCC */
1330 
1331 	/*
1332 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
1333 	 * cookie 0 for the '.' entry, making this necessary. This
1334 	 * isn't so bad, as 0 is a special case anyway.
1335 	 */
1336 	if (off == 0)
1337 		/* XXXUNCONST */
1338 		return (struct nfsdircache *)__UNCONST(&dzero);
1339 
1340 	if (!np->n_dircache)
1341 		/*
1342 		 * XXX would like to do this in nfs_nget but vtype
1343 		 * isn't known at that time.
1344 		 */
1345 		nfs_initdircache(vp);
1346 
1347 	if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1348 		nfs_initdirxlatecookie(vp);
1349 
1350 retry:
1351 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
1352 
1353 	NFSDC_LOCK(np);
1354 	if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1355 		/*
1356 		 * Overwriting an old entry. Check if it's the same.
1357 		 * If so, just return. If not, remove the old entry.
1358 		 */
1359 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1360 			goto done;
1361 		nfs_unlinkdircache(np, ndp);
1362 		nfs_putdircache_unlocked(np, ndp);
1363 		ndp = NULL;
1364 	}
1365 
1366 	ndhp = &np->n_dircache[hashent];
1367 
1368 	if (!ndp) {
1369 		if (newndp == NULL) {
1370 			NFSDC_UNLOCK(np);
1371 			newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1372 			newndp->dc_refcnt = 1;
1373 			LIST_NEXT(newndp, dc_hash) = (void *)-1;
1374 			goto retry;
1375 		}
1376 		ndp = newndp;
1377 		newndp = NULL;
1378 		overwrite = 0;
1379 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1380 			/*
1381 			 * We're allocating a new entry, so bump the
1382 			 * generation number.
1383 			 */
1384 			KASSERT(np->n_dirgens);
1385 			gen = ++np->n_dirgens[hashent];
1386 			if (gen == 0) {
1387 				np->n_dirgens[hashent]++;
1388 				gen++;
1389 			}
1390 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1391 		}
1392 	} else
1393 		overwrite = 1;
1394 
1395 	ndp->dc_cookie = off;
1396 	ndp->dc_blkcookie = blkoff;
1397 	ndp->dc_entry = en;
1398 	ndp->dc_flags = 0;
1399 
1400 	if (overwrite)
1401 		goto done;
1402 
1403 	/*
1404 	 * If the maximum directory cookie cache size has been reached
1405 	 * for this node, take one off the front. The idea is that
1406 	 * directories are typically read front-to-back once, so that
1407 	 * the oldest entries can be thrown away without much performance
1408 	 * loss.
1409 	 */
1410 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1411 		nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1412 	} else
1413 		np->n_dircachesize++;
1414 
1415 	KASSERT(ndp->dc_refcnt == 1);
1416 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1417 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1418 	ndp->dc_refcnt++;
1419 done:
1420 	KASSERT(ndp->dc_refcnt > 0);
1421 	NFSDC_UNLOCK(np);
1422 	if (newndp)
1423 		nfs_putdircache(np, newndp);
1424 	return ndp;
1425 }
1426 
1427 void
1428 nfs_invaldircache(struct vnode *vp, int flags)
1429 {
1430 	struct nfsnode *np = VTONFS(vp);
1431 	struct nfsdircache *ndp = NULL;
1432 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1433 	const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1434 
1435 #ifdef DIAGNOSTIC
1436 	if (vp->v_type != VDIR)
1437 		panic("nfs: invaldircache: not dir");
1438 #endif
1439 
1440 	if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1441 		np->n_flag &= ~NEOFVALID;
1442 
1443 	if (!np->n_dircache)
1444 		return;
1445 
1446 	NFSDC_LOCK(np);
1447 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1448 		while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1449 			KASSERT(!forcefree || ndp->dc_refcnt == 1);
1450 			nfs_unlinkdircache(np, ndp);
1451 		}
1452 		np->n_dircachesize = 0;
1453 		if (forcefree && np->n_dirgens) {
1454 			kmem_free(np->n_dirgens,
1455 			    NFS_DIRHASHSIZ * sizeof(unsigned));
1456 			np->n_dirgens = NULL;
1457 		}
1458 	} else {
1459 		TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1460 			ndp->dc_flags |= NFSDC_INVALID;
1461 	}
1462 
1463 	NFSDC_UNLOCK(np);
1464 }
1465 
1466 /*
1467  * Called once before VFS init to initialize shared and
1468  * server-specific data structures.
1469  */
1470 static int
1471 nfs_init0(void)
1472 {
1473 
1474 	nfsrtt.pos = 0;
1475 	rpc_vers = txdr_unsigned(RPC_VER2);
1476 	rpc_call = txdr_unsigned(RPC_CALL);
1477 	rpc_reply = txdr_unsigned(RPC_REPLY);
1478 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1479 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1480 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1481 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1482 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1483 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1484 	nfs_prog = txdr_unsigned(NFS_PROG);
1485 	nfs_true = txdr_unsigned(true);
1486 	nfs_false = txdr_unsigned(false);
1487 	nfs_xdrneg1 = txdr_unsigned(-1);
1488 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1489 	if (nfs_ticks < 1)
1490 		nfs_ticks = 1;
1491 	nfs_xid = arc4random();
1492 	nfsdreq_init();
1493 
1494 	/*
1495 	 * Initialize reply list and start timer
1496 	 */
1497 	TAILQ_INIT(&nfs_reqq);
1498 	nfs_timer_init();
1499 	MOWNER_ATTACH(&nfs_mowner);
1500 
1501 	return 0;
1502 }
1503 
1504 /*
1505  * This is disgusting, but it must support both modular and monolothic
1506  * configurations.  For monolithic builds NFSSERVER may not imply NFS.
1507  *
1508  * Yuck.
1509  */
1510 void
1511 nfs_init(void)
1512 {
1513 	static ONCE_DECL(nfs_init_once);
1514 
1515 	RUN_ONCE(&nfs_init_once, nfs_init0);
1516 }
1517 
1518 void
1519 nfs_fini(void)
1520 {
1521 
1522 	nfsdreq_fini();
1523 	nfs_timer_fini();
1524 	MOWNER_DETACH(&nfs_mowner);
1525 }
1526 
1527 /*
1528  * A fiddled version of m_adj() that ensures null fill to a 32-bit
1529  * boundary and only trims off the back end
1530  *
1531  * 1. trim off 'len' bytes as m_adj(mp, -len).
1532  * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
1533  */
1534 void
1535 nfs_zeropad(struct mbuf *mp, int len, int nul)
1536 {
1537 	struct mbuf *m;
1538 	int count;
1539 
1540 	/*
1541 	 * Trim from tail.  Scan the mbuf chain,
1542 	 * calculating its length and finding the last mbuf.
1543 	 * If the adjustment only affects this mbuf, then just
1544 	 * adjust and return.  Otherwise, rescan and truncate
1545 	 * after the remaining size.
1546 	 */
1547 	count = 0;
1548 	m = mp;
1549 	for (;;) {
1550 		count += m->m_len;
1551 		if (m->m_next == NULL)
1552 			break;
1553 		m = m->m_next;
1554 	}
1555 
1556 	KDASSERT(count >= len);
1557 
1558 	if (m->m_len >= len) {
1559 		m->m_len -= len;
1560 	} else {
1561 		count -= len;
1562 		/*
1563 		 * Correct length for chain is "count".
1564 		 * Find the mbuf with last data, adjust its length,
1565 		 * and toss data from remaining mbufs on chain.
1566 		 */
1567 		for (m = mp; m; m = m->m_next) {
1568 			if (m->m_len >= count) {
1569 				m->m_len = count;
1570 				break;
1571 			}
1572 			count -= m->m_len;
1573 		}
1574 		KASSERT(m && m->m_next);
1575 		m_freem(m->m_next);
1576 		m->m_next = NULL;
1577 	}
1578 
1579 	KDASSERT(m->m_next == NULL);
1580 
1581 	/*
1582 	 * zero-padding.
1583 	 */
1584 	if (nul > 0) {
1585 		char *cp;
1586 		int i;
1587 
1588 		if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
1589 			struct mbuf *n;
1590 
1591 			KDASSERT(MLEN >= nul);
1592 			n = m_get(M_WAIT, MT_DATA);
1593 			MCLAIM(n, &nfs_mowner);
1594 			n->m_len = nul;
1595 			n->m_next = NULL;
1596 			m->m_next = n;
1597 			cp = mtod(n, void *);
1598 		} else {
1599 			cp = mtod(m, char *) + m->m_len;
1600 			m->m_len += nul;
1601 		}
1602 		for (i = 0; i < nul; i++)
1603 			*cp++ = '\0';
1604 	}
1605 	return;
1606 }
1607 
1608 /*
1609  * Make these functions instead of macros, so that the kernel text size
1610  * doesn't get too big...
1611  */
1612 void
1613 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
1614 {
1615 	struct mbuf *mb = *mbp;
1616 	char *bpos = *bposp;
1617 	u_int32_t *tl;
1618 
1619 	if (before_ret) {
1620 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1621 		*tl = nfs_false;
1622 	} else {
1623 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
1624 		*tl++ = nfs_true;
1625 		txdr_hyper(before_vap->va_size, tl);
1626 		tl += 2;
1627 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
1628 		tl += 2;
1629 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
1630 	}
1631 	*bposp = bpos;
1632 	*mbp = mb;
1633 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
1634 }
1635 
1636 void
1637 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
1638 {
1639 	struct mbuf *mb = *mbp;
1640 	char *bpos = *bposp;
1641 	u_int32_t *tl;
1642 	struct nfs_fattr *fp;
1643 
1644 	if (after_ret) {
1645 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1646 		*tl = nfs_false;
1647 	} else {
1648 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
1649 		*tl++ = nfs_true;
1650 		fp = (struct nfs_fattr *)tl;
1651 		nfsm_srvfattr(nfsd, after_vap, fp);
1652 	}
1653 	*mbp = mb;
1654 	*bposp = bpos;
1655 }
1656 
1657 void
1658 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
1659 {
1660 
1661 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
1662 	fp->fa_uid = txdr_unsigned(vap->va_uid);
1663 	fp->fa_gid = txdr_unsigned(vap->va_gid);
1664 	if (nfsd->nd_flag & ND_NFSV3) {
1665 		fp->fa_type = vtonfsv3_type(vap->va_type);
1666 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
1667 		txdr_hyper(vap->va_size, &fp->fa3_size);
1668 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
1669 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
1670 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
1671 		fp->fa3_fsid.nfsuquad[0] = 0;
1672 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
1673 		txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
1674 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
1675 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
1676 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
1677 	} else {
1678 		fp->fa_type = vtonfsv2_type(vap->va_type);
1679 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1680 		fp->fa2_size = txdr_unsigned(vap->va_size);
1681 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
1682 		if (vap->va_type == VFIFO)
1683 			fp->fa2_rdev = 0xffffffff;
1684 		else
1685 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
1686 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
1687 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
1688 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
1689 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
1690 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
1691 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
1692 	}
1693 }
1694 
1695 /*
1696  * This function compares two net addresses by family and returns true
1697  * if they are the same host.
1698  * If there is any doubt, return false.
1699  * The AF_INET family is handled as a special case so that address mbufs
1700  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1701  */
1702 int
1703 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
1704 {
1705 	struct sockaddr_in *inetaddr;
1706 
1707 	switch (family) {
1708 	case AF_INET:
1709 		inetaddr = mtod(nam, struct sockaddr_in *);
1710 		if (inetaddr->sin_family == AF_INET &&
1711 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1712 			return (1);
1713 		break;
1714 	case AF_INET6:
1715 	    {
1716 		struct sockaddr_in6 *sin6_1, *sin6_2;
1717 
1718 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
1719 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
1720 		if (sin6_1->sin6_family == AF_INET6 &&
1721 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
1722 			return 1;
1723 	    }
1724 	default:
1725 		break;
1726 	};
1727 	return (0);
1728 }
1729 
1730 /*
1731  * The write verifier has changed (probably due to a server reboot), so all
1732  * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
1733  * as dirty or are being written out just now, all this takes is clearing
1734  * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
1735  * the mount point.
1736  */
1737 void
1738 nfs_clearcommit(struct mount *mp)
1739 {
1740 	struct vnode *vp;
1741 	struct nfsnode *np;
1742 	struct vm_page *pg;
1743 	struct nfsmount *nmp = VFSTONFS(mp);
1744 
1745 	rw_enter(&nmp->nm_writeverflock, RW_WRITER);
1746 	mutex_enter(&mntvnode_lock);
1747 	TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
1748 		KASSERT(vp->v_mount == mp);
1749 		if (vp->v_type != VREG)
1750 			continue;
1751 		mutex_enter(&vp->v_interlock);
1752 		if (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) {
1753 			mutex_exit(&vp->v_interlock);
1754 			continue;
1755 		}
1756 		np = VTONFS(vp);
1757 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
1758 		    np->n_pushedhi = 0;
1759 		np->n_commitflags &=
1760 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
1761 		TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
1762 			pg->flags &= ~PG_NEEDCOMMIT;
1763 		}
1764 		mutex_exit(&vp->v_interlock);
1765 	}
1766 	mutex_exit(&mntvnode_lock);
1767 	mutex_enter(&nmp->nm_lock);
1768 	nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
1769 	mutex_exit(&nmp->nm_lock);
1770 	rw_exit(&nmp->nm_writeverflock);
1771 }
1772 
1773 void
1774 nfs_merge_commit_ranges(struct vnode *vp)
1775 {
1776 	struct nfsnode *np = VTONFS(vp);
1777 
1778 	KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
1779 
1780 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
1781 		np->n_pushedlo = np->n_pushlo;
1782 		np->n_pushedhi = np->n_pushhi;
1783 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
1784 	} else {
1785 		if (np->n_pushlo < np->n_pushedlo)
1786 			np->n_pushedlo = np->n_pushlo;
1787 		if (np->n_pushhi > np->n_pushedhi)
1788 			np->n_pushedhi = np->n_pushhi;
1789 	}
1790 
1791 	np->n_pushlo = np->n_pushhi = 0;
1792 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
1793 
1794 #ifdef NFS_DEBUG_COMMIT
1795 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
1796 	    (unsigned)np->n_pushedhi);
1797 #endif
1798 }
1799 
1800 int
1801 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
1802 {
1803 	struct nfsnode *np = VTONFS(vp);
1804 	off_t lo, hi;
1805 
1806 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
1807 		return 0;
1808 	lo = off;
1809 	hi = lo + len;
1810 
1811 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
1812 }
1813 
1814 int
1815 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
1816 {
1817 	struct nfsnode *np = VTONFS(vp);
1818 	off_t lo, hi;
1819 
1820 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
1821 		return 0;
1822 	lo = off;
1823 	hi = lo + len;
1824 
1825 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
1826 }
1827 
1828 void
1829 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
1830 {
1831 	struct nfsnode *np = VTONFS(vp);
1832 	off_t lo, hi;
1833 
1834 	lo = off;
1835 	hi = lo + len;
1836 
1837 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
1838 		np->n_pushedlo = lo;
1839 		np->n_pushedhi = hi;
1840 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
1841 	} else {
1842 		if (hi > np->n_pushedhi)
1843 			np->n_pushedhi = hi;
1844 		if (lo < np->n_pushedlo)
1845 			np->n_pushedlo = lo;
1846 	}
1847 #ifdef NFS_DEBUG_COMMIT
1848 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
1849 	    (unsigned)np->n_pushedhi);
1850 #endif
1851 }
1852 
1853 void
1854 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
1855 {
1856 	struct nfsnode *np = VTONFS(vp);
1857 	off_t lo, hi;
1858 
1859 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
1860 		return;
1861 
1862 	lo = off;
1863 	hi = lo + len;
1864 
1865 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
1866 		return;
1867 	if (lo <= np->n_pushedlo)
1868 		np->n_pushedlo = hi;
1869 	else if (hi >= np->n_pushedhi)
1870 		np->n_pushedhi = lo;
1871 	else {
1872 		/*
1873 		 * XXX There's only one range. If the deleted range
1874 		 * is in the middle, pick the largest of the
1875 		 * contiguous ranges that it leaves.
1876 		 */
1877 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
1878 			np->n_pushedhi = lo;
1879 		else
1880 			np->n_pushedlo = hi;
1881 	}
1882 #ifdef NFS_DEBUG_COMMIT
1883 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
1884 	    (unsigned)np->n_pushedhi);
1885 #endif
1886 }
1887 
1888 void
1889 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
1890 {
1891 	struct nfsnode *np = VTONFS(vp);
1892 	off_t lo, hi;
1893 
1894 	lo = off;
1895 	hi = lo + len;
1896 
1897 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
1898 		np->n_pushlo = lo;
1899 		np->n_pushhi = hi;
1900 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
1901 	} else {
1902 		if (lo < np->n_pushlo)
1903 			np->n_pushlo = lo;
1904 		if (hi > np->n_pushhi)
1905 			np->n_pushhi = hi;
1906 	}
1907 #ifdef NFS_DEBUG_COMMIT
1908 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
1909 	    (unsigned)np->n_pushhi);
1910 #endif
1911 }
1912 
1913 void
1914 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
1915 {
1916 	struct nfsnode *np = VTONFS(vp);
1917 	off_t lo, hi;
1918 
1919 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
1920 		return;
1921 
1922 	lo = off;
1923 	hi = lo + len;
1924 
1925 	if (lo > np->n_pushhi || hi < np->n_pushlo)
1926 		return;
1927 
1928 	if (lo <= np->n_pushlo)
1929 		np->n_pushlo = hi;
1930 	else if (hi >= np->n_pushhi)
1931 		np->n_pushhi = lo;
1932 	else {
1933 		/*
1934 		 * XXX There's only one range. If the deleted range
1935 		 * is in the middle, pick the largest of the
1936 		 * contiguous ranges that it leaves.
1937 		 */
1938 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
1939 			np->n_pushhi = lo;
1940 		else
1941 			np->n_pushlo = hi;
1942 	}
1943 #ifdef NFS_DEBUG_COMMIT
1944 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
1945 	    (unsigned)np->n_pushhi);
1946 #endif
1947 }
1948 
1949 /*
1950  * Map errnos to NFS error numbers. For Version 3 also filter out error
1951  * numbers not specified for the associated procedure.
1952  */
1953 int
1954 nfsrv_errmap(struct nfsrv_descript *nd, int err)
1955 {
1956 	const short *defaulterrp, *errp;
1957 
1958 	if (nd->nd_flag & ND_NFSV3) {
1959 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
1960 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
1961 		while (*++errp) {
1962 			if (*errp == err)
1963 				return (err);
1964 			else if (*errp > err)
1965 				break;
1966 		}
1967 		return ((int)*defaulterrp);
1968 	    } else
1969 		return (err & 0xffff);
1970 	}
1971 	if (err <= ELAST)
1972 		return ((int)nfsrv_v2errmap[err - 1]);
1973 	return (NFSERR_IO);
1974 }
1975 
1976 u_int32_t
1977 nfs_getxid(void)
1978 {
1979 	u_int32_t newxid;
1980 
1981 	/* get next xid.  skip 0 */
1982 	do {
1983 		newxid = atomic_inc_32_nv(&nfs_xid);
1984 	} while (__predict_false(newxid == 0));
1985 
1986 	return txdr_unsigned(newxid);
1987 }
1988 
1989 /*
1990  * assign a new xid for existing request.
1991  * used for NFSERR_JUKEBOX handling.
1992  */
1993 void
1994 nfs_renewxid(struct nfsreq *req)
1995 {
1996 	u_int32_t xid;
1997 	int off;
1998 
1999 	xid = nfs_getxid();
2000 	if (req->r_nmp->nm_sotype == SOCK_STREAM)
2001 		off = sizeof(u_int32_t); /* RPC record mark */
2002 	else
2003 		off = 0;
2004 
2005 	m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2006 	req->r_xid = xid;
2007 }
2008