xref: /netbsd-src/sys/nfs/nfs_subs.c (revision 7cc2f76925f078d01ddc9e640a98f4ccfc9f8c3b)
1 /*	$NetBSD: nfs_subs.c,v 1.89 2000/11/27 08:39:49 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
39  */
40 
41 /*
42  * Copyright 2000 Wasabi Systems, Inc.
43  * All rights reserved.
44  *
45  * Written by Frank van der Linden for Wasabi Systems, Inc.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *      This product includes software developed for the NetBSD Project by
58  *      Wasabi Systems, Inc.
59  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60  *    or promote products derived from this software without specific prior
61  *    written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
67  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73  * POSSIBILITY OF SUCH DAMAGE.
74  */
75 
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #include "opt_nfsserver.h"
79 #include "opt_iso.h"
80 #include "opt_inet.h"
81 
82 /*
83  * These functions support the macros and help fiddle mbuf chains for
84  * the nfs op functions. They do things like create the rpc header and
85  * copy data between mbuf chains and uio lists.
86  */
87 #include <sys/param.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 
101 #include <uvm/uvm_extern.h>
102 
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113 
114 #include <miscfs/specfs/specdev.h>
115 
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120 
121 /*
122  * Data items converted to xdr at startup, since they are constant
123  * This is kinda hokey, but may save a little time doing byte swaps
124  */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 	rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130 
131 /* And other global data */
132 static u_int32_t nfs_xid = 0;
133 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
134 		      NFCHR, NFNON };
135 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
136 		      NFFIFO, NFNON };
137 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
139 int nfs_ticks;
140 
141 /* NFS client/server stats. */
142 struct nfsstats nfsstats;
143 
144 /*
145  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
146  */
147 int nfsv3_procid[NFS_NPROCS] = {
148 	NFSPROC_NULL,
149 	NFSPROC_GETATTR,
150 	NFSPROC_SETATTR,
151 	NFSPROC_NOOP,
152 	NFSPROC_LOOKUP,
153 	NFSPROC_READLINK,
154 	NFSPROC_READ,
155 	NFSPROC_NOOP,
156 	NFSPROC_WRITE,
157 	NFSPROC_CREATE,
158 	NFSPROC_REMOVE,
159 	NFSPROC_RENAME,
160 	NFSPROC_LINK,
161 	NFSPROC_SYMLINK,
162 	NFSPROC_MKDIR,
163 	NFSPROC_RMDIR,
164 	NFSPROC_READDIR,
165 	NFSPROC_FSSTAT,
166 	NFSPROC_NOOP,
167 	NFSPROC_NOOP,
168 	NFSPROC_NOOP,
169 	NFSPROC_NOOP,
170 	NFSPROC_NOOP,
171 	NFSPROC_NOOP,
172 	NFSPROC_NOOP,
173 	NFSPROC_NOOP
174 };
175 
176 /*
177  * and the reverse mapping from generic to Version 2 procedure numbers
178  */
179 int nfsv2_procid[NFS_NPROCS] = {
180 	NFSV2PROC_NULL,
181 	NFSV2PROC_GETATTR,
182 	NFSV2PROC_SETATTR,
183 	NFSV2PROC_LOOKUP,
184 	NFSV2PROC_NOOP,
185 	NFSV2PROC_READLINK,
186 	NFSV2PROC_READ,
187 	NFSV2PROC_WRITE,
188 	NFSV2PROC_CREATE,
189 	NFSV2PROC_MKDIR,
190 	NFSV2PROC_SYMLINK,
191 	NFSV2PROC_CREATE,
192 	NFSV2PROC_REMOVE,
193 	NFSV2PROC_RMDIR,
194 	NFSV2PROC_RENAME,
195 	NFSV2PROC_LINK,
196 	NFSV2PROC_READDIR,
197 	NFSV2PROC_NOOP,
198 	NFSV2PROC_STATFS,
199 	NFSV2PROC_NOOP,
200 	NFSV2PROC_NOOP,
201 	NFSV2PROC_NOOP,
202 	NFSV2PROC_NOOP,
203 	NFSV2PROC_NOOP,
204 	NFSV2PROC_NOOP,
205 	NFSV2PROC_NOOP,
206 };
207 
208 /*
209  * Maps errno values to nfs error numbers.
210  * Use NFSERR_IO as the catch all for ones not specifically defined in
211  * RFC 1094.
212  */
213 static u_char nfsrv_v2errmap[ELAST] = {
214   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
215   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
216   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
217   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
218   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
219   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
220   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
221   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
222   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
223   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
226   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
227   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
228   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
229   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
230   NFSERR_IO,	NFSERR_IO,
231 };
232 
233 /*
234  * Maps errno values to nfs error numbers.
235  * Although it is not obvious whether or not NFS clients really care if
236  * a returned error value is in the specified list for the procedure, the
237  * safest thing to do is filter them appropriately. For Version 2, the
238  * X/Open XNFS document is the only specification that defines error values
239  * for each RPC (The RFC simply lists all possible error values for all RPCs),
240  * so I have decided to not do this for Version 2.
241  * The first entry is the default error return and the rest are the valid
242  * errors for that RPC in increasing numeric order.
243  */
244 static short nfsv3err_null[] = {
245 	0,
246 	0,
247 };
248 
249 static short nfsv3err_getattr[] = {
250 	NFSERR_IO,
251 	NFSERR_IO,
252 	NFSERR_STALE,
253 	NFSERR_BADHANDLE,
254 	NFSERR_SERVERFAULT,
255 	0,
256 };
257 
258 static short nfsv3err_setattr[] = {
259 	NFSERR_IO,
260 	NFSERR_PERM,
261 	NFSERR_IO,
262 	NFSERR_ACCES,
263 	NFSERR_INVAL,
264 	NFSERR_NOSPC,
265 	NFSERR_ROFS,
266 	NFSERR_DQUOT,
267 	NFSERR_STALE,
268 	NFSERR_BADHANDLE,
269 	NFSERR_NOT_SYNC,
270 	NFSERR_SERVERFAULT,
271 	0,
272 };
273 
274 static short nfsv3err_lookup[] = {
275 	NFSERR_IO,
276 	NFSERR_NOENT,
277 	NFSERR_IO,
278 	NFSERR_ACCES,
279 	NFSERR_NOTDIR,
280 	NFSERR_NAMETOL,
281 	NFSERR_STALE,
282 	NFSERR_BADHANDLE,
283 	NFSERR_SERVERFAULT,
284 	0,
285 };
286 
287 static short nfsv3err_access[] = {
288 	NFSERR_IO,
289 	NFSERR_IO,
290 	NFSERR_STALE,
291 	NFSERR_BADHANDLE,
292 	NFSERR_SERVERFAULT,
293 	0,
294 };
295 
296 static short nfsv3err_readlink[] = {
297 	NFSERR_IO,
298 	NFSERR_IO,
299 	NFSERR_ACCES,
300 	NFSERR_INVAL,
301 	NFSERR_STALE,
302 	NFSERR_BADHANDLE,
303 	NFSERR_NOTSUPP,
304 	NFSERR_SERVERFAULT,
305 	0,
306 };
307 
308 static short nfsv3err_read[] = {
309 	NFSERR_IO,
310 	NFSERR_IO,
311 	NFSERR_NXIO,
312 	NFSERR_ACCES,
313 	NFSERR_INVAL,
314 	NFSERR_STALE,
315 	NFSERR_BADHANDLE,
316 	NFSERR_SERVERFAULT,
317 	NFSERR_JUKEBOX,
318 	0,
319 };
320 
321 static short nfsv3err_write[] = {
322 	NFSERR_IO,
323 	NFSERR_IO,
324 	NFSERR_ACCES,
325 	NFSERR_INVAL,
326 	NFSERR_FBIG,
327 	NFSERR_NOSPC,
328 	NFSERR_ROFS,
329 	NFSERR_DQUOT,
330 	NFSERR_STALE,
331 	NFSERR_BADHANDLE,
332 	NFSERR_SERVERFAULT,
333 	NFSERR_JUKEBOX,
334 	0,
335 };
336 
337 static short nfsv3err_create[] = {
338 	NFSERR_IO,
339 	NFSERR_IO,
340 	NFSERR_ACCES,
341 	NFSERR_EXIST,
342 	NFSERR_NOTDIR,
343 	NFSERR_NOSPC,
344 	NFSERR_ROFS,
345 	NFSERR_NAMETOL,
346 	NFSERR_DQUOT,
347 	NFSERR_STALE,
348 	NFSERR_BADHANDLE,
349 	NFSERR_NOTSUPP,
350 	NFSERR_SERVERFAULT,
351 	0,
352 };
353 
354 static short nfsv3err_mkdir[] = {
355 	NFSERR_IO,
356 	NFSERR_IO,
357 	NFSERR_ACCES,
358 	NFSERR_EXIST,
359 	NFSERR_NOTDIR,
360 	NFSERR_NOSPC,
361 	NFSERR_ROFS,
362 	NFSERR_NAMETOL,
363 	NFSERR_DQUOT,
364 	NFSERR_STALE,
365 	NFSERR_BADHANDLE,
366 	NFSERR_NOTSUPP,
367 	NFSERR_SERVERFAULT,
368 	0,
369 };
370 
371 static short nfsv3err_symlink[] = {
372 	NFSERR_IO,
373 	NFSERR_IO,
374 	NFSERR_ACCES,
375 	NFSERR_EXIST,
376 	NFSERR_NOTDIR,
377 	NFSERR_NOSPC,
378 	NFSERR_ROFS,
379 	NFSERR_NAMETOL,
380 	NFSERR_DQUOT,
381 	NFSERR_STALE,
382 	NFSERR_BADHANDLE,
383 	NFSERR_NOTSUPP,
384 	NFSERR_SERVERFAULT,
385 	0,
386 };
387 
388 static short nfsv3err_mknod[] = {
389 	NFSERR_IO,
390 	NFSERR_IO,
391 	NFSERR_ACCES,
392 	NFSERR_EXIST,
393 	NFSERR_NOTDIR,
394 	NFSERR_NOSPC,
395 	NFSERR_ROFS,
396 	NFSERR_NAMETOL,
397 	NFSERR_DQUOT,
398 	NFSERR_STALE,
399 	NFSERR_BADHANDLE,
400 	NFSERR_NOTSUPP,
401 	NFSERR_SERVERFAULT,
402 	NFSERR_BADTYPE,
403 	0,
404 };
405 
406 static short nfsv3err_remove[] = {
407 	NFSERR_IO,
408 	NFSERR_NOENT,
409 	NFSERR_IO,
410 	NFSERR_ACCES,
411 	NFSERR_NOTDIR,
412 	NFSERR_ROFS,
413 	NFSERR_NAMETOL,
414 	NFSERR_STALE,
415 	NFSERR_BADHANDLE,
416 	NFSERR_SERVERFAULT,
417 	0,
418 };
419 
420 static short nfsv3err_rmdir[] = {
421 	NFSERR_IO,
422 	NFSERR_NOENT,
423 	NFSERR_IO,
424 	NFSERR_ACCES,
425 	NFSERR_EXIST,
426 	NFSERR_NOTDIR,
427 	NFSERR_INVAL,
428 	NFSERR_ROFS,
429 	NFSERR_NAMETOL,
430 	NFSERR_NOTEMPTY,
431 	NFSERR_STALE,
432 	NFSERR_BADHANDLE,
433 	NFSERR_NOTSUPP,
434 	NFSERR_SERVERFAULT,
435 	0,
436 };
437 
438 static short nfsv3err_rename[] = {
439 	NFSERR_IO,
440 	NFSERR_NOENT,
441 	NFSERR_IO,
442 	NFSERR_ACCES,
443 	NFSERR_EXIST,
444 	NFSERR_XDEV,
445 	NFSERR_NOTDIR,
446 	NFSERR_ISDIR,
447 	NFSERR_INVAL,
448 	NFSERR_NOSPC,
449 	NFSERR_ROFS,
450 	NFSERR_MLINK,
451 	NFSERR_NAMETOL,
452 	NFSERR_NOTEMPTY,
453 	NFSERR_DQUOT,
454 	NFSERR_STALE,
455 	NFSERR_BADHANDLE,
456 	NFSERR_NOTSUPP,
457 	NFSERR_SERVERFAULT,
458 	0,
459 };
460 
461 static short nfsv3err_link[] = {
462 	NFSERR_IO,
463 	NFSERR_IO,
464 	NFSERR_ACCES,
465 	NFSERR_EXIST,
466 	NFSERR_XDEV,
467 	NFSERR_NOTDIR,
468 	NFSERR_INVAL,
469 	NFSERR_NOSPC,
470 	NFSERR_ROFS,
471 	NFSERR_MLINK,
472 	NFSERR_NAMETOL,
473 	NFSERR_DQUOT,
474 	NFSERR_STALE,
475 	NFSERR_BADHANDLE,
476 	NFSERR_NOTSUPP,
477 	NFSERR_SERVERFAULT,
478 	0,
479 };
480 
481 static short nfsv3err_readdir[] = {
482 	NFSERR_IO,
483 	NFSERR_IO,
484 	NFSERR_ACCES,
485 	NFSERR_NOTDIR,
486 	NFSERR_STALE,
487 	NFSERR_BADHANDLE,
488 	NFSERR_BAD_COOKIE,
489 	NFSERR_TOOSMALL,
490 	NFSERR_SERVERFAULT,
491 	0,
492 };
493 
494 static short nfsv3err_readdirplus[] = {
495 	NFSERR_IO,
496 	NFSERR_IO,
497 	NFSERR_ACCES,
498 	NFSERR_NOTDIR,
499 	NFSERR_STALE,
500 	NFSERR_BADHANDLE,
501 	NFSERR_BAD_COOKIE,
502 	NFSERR_NOTSUPP,
503 	NFSERR_TOOSMALL,
504 	NFSERR_SERVERFAULT,
505 	0,
506 };
507 
508 static short nfsv3err_fsstat[] = {
509 	NFSERR_IO,
510 	NFSERR_IO,
511 	NFSERR_STALE,
512 	NFSERR_BADHANDLE,
513 	NFSERR_SERVERFAULT,
514 	0,
515 };
516 
517 static short nfsv3err_fsinfo[] = {
518 	NFSERR_STALE,
519 	NFSERR_STALE,
520 	NFSERR_BADHANDLE,
521 	NFSERR_SERVERFAULT,
522 	0,
523 };
524 
525 static short nfsv3err_pathconf[] = {
526 	NFSERR_STALE,
527 	NFSERR_STALE,
528 	NFSERR_BADHANDLE,
529 	NFSERR_SERVERFAULT,
530 	0,
531 };
532 
533 static short nfsv3err_commit[] = {
534 	NFSERR_IO,
535 	NFSERR_IO,
536 	NFSERR_STALE,
537 	NFSERR_BADHANDLE,
538 	NFSERR_SERVERFAULT,
539 	0,
540 };
541 
542 static short *nfsrv_v3errmap[] = {
543 	nfsv3err_null,
544 	nfsv3err_getattr,
545 	nfsv3err_setattr,
546 	nfsv3err_lookup,
547 	nfsv3err_access,
548 	nfsv3err_readlink,
549 	nfsv3err_read,
550 	nfsv3err_write,
551 	nfsv3err_create,
552 	nfsv3err_mkdir,
553 	nfsv3err_symlink,
554 	nfsv3err_mknod,
555 	nfsv3err_remove,
556 	nfsv3err_rmdir,
557 	nfsv3err_rename,
558 	nfsv3err_link,
559 	nfsv3err_readdir,
560 	nfsv3err_readdirplus,
561 	nfsv3err_fsstat,
562 	nfsv3err_fsinfo,
563 	nfsv3err_pathconf,
564 	nfsv3err_commit,
565 };
566 
567 extern struct nfsrtt nfsrtt;
568 extern time_t nqnfsstarttime;
569 extern int nqsrv_clockskew;
570 extern int nqsrv_writeslack;
571 extern int nqsrv_maxlease;
572 extern int nqnfs_piggy[NFS_NPROCS];
573 extern struct nfsnodehashhead *nfsnodehashtbl;
574 extern u_long nfsnodehash;
575 
576 LIST_HEAD(nfsnodehashhead, nfsnode);
577 u_long nfsdirhashmask;
578 
579 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
580 
581 /*
582  * Create the header for an rpc request packet
583  * The hsiz is the size of the rest of the nfs request header.
584  * (just used to decide if a cluster is a good idea)
585  */
586 struct mbuf *
587 nfsm_reqh(vp, procid, hsiz, bposp)
588 	struct vnode *vp;
589 	u_long procid;
590 	int hsiz;
591 	caddr_t *bposp;
592 {
593 	struct mbuf *mb;
594 	caddr_t bpos;
595 	struct nfsmount *nmp;
596 #ifndef NFS_V2_ONLY
597 	u_int32_t *tl;
598 	struct mbuf *mb2;
599 	int nqflag;
600 #endif
601 
602 	MGET(mb, M_WAIT, MT_DATA);
603 	if (hsiz >= MINCLSIZE)
604 		MCLGET(mb, M_WAIT);
605 	mb->m_len = 0;
606 	bpos = mtod(mb, caddr_t);
607 
608 	/*
609 	 * For NQNFS, add lease request.
610 	 */
611 	if (vp) {
612 		nmp = VFSTONFS(vp->v_mount);
613 #ifndef NFS_V2_ONLY
614 		if (nmp->nm_flag & NFSMNT_NQNFS) {
615 			nqflag = NQNFS_NEEDLEASE(vp, procid);
616 			if (nqflag) {
617 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
618 				*tl++ = txdr_unsigned(nqflag);
619 				*tl = txdr_unsigned(nmp->nm_leaseterm);
620 			} else {
621 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
622 				*tl = 0;
623 			}
624 		}
625 #endif
626 	}
627 	/* Finally, return values */
628 	*bposp = bpos;
629 	return (mb);
630 }
631 
632 /*
633  * Build the RPC header and fill in the authorization info.
634  * The authorization string argument is only used when the credentials
635  * come from outside of the kernel.
636  * Returns the head of the mbuf list.
637  */
638 struct mbuf *
639 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
640 	verf_str, mrest, mrest_len, mbp, xidp)
641 	struct ucred *cr;
642 	int nmflag;
643 	int procid;
644 	int auth_type;
645 	int auth_len;
646 	char *auth_str;
647 	int verf_len;
648 	char *verf_str;
649 	struct mbuf *mrest;
650 	int mrest_len;
651 	struct mbuf **mbp;
652 	u_int32_t *xidp;
653 {
654 	struct mbuf *mb;
655 	u_int32_t *tl;
656 	caddr_t bpos;
657 	int i;
658 	struct mbuf *mreq, *mb2;
659 	int siz, grpsiz, authsiz;
660 	struct timeval tv;
661 	static u_int32_t base;
662 
663 	authsiz = nfsm_rndup(auth_len);
664 	MGETHDR(mb, M_WAIT, MT_DATA);
665 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
666 		MCLGET(mb, M_WAIT);
667 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
668 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
669 	} else {
670 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
671 	}
672 	mb->m_len = 0;
673 	mreq = mb;
674 	bpos = mtod(mb, caddr_t);
675 
676 	/*
677 	 * First the RPC header.
678 	 */
679 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
680 
681 	/*
682 	 * derive initial xid from system time
683 	 * XXX time is invalid if root not yet mounted
684 	 */
685 	if (!base && (rootvp)) {
686 		microtime(&tv);
687 		base = tv.tv_sec << 12;
688 		nfs_xid = base;
689 	}
690 	/*
691 	 * Skip zero xid if it should ever happen.
692 	 */
693 	if (++nfs_xid == 0)
694 		nfs_xid++;
695 
696 	*tl++ = *xidp = txdr_unsigned(nfs_xid);
697 	*tl++ = rpc_call;
698 	*tl++ = rpc_vers;
699 	if (nmflag & NFSMNT_NQNFS) {
700 		*tl++ = txdr_unsigned(NQNFS_PROG);
701 		*tl++ = txdr_unsigned(NQNFS_VER3);
702 	} else {
703 		*tl++ = txdr_unsigned(NFS_PROG);
704 		if (nmflag & NFSMNT_NFSV3)
705 			*tl++ = txdr_unsigned(NFS_VER3);
706 		else
707 			*tl++ = txdr_unsigned(NFS_VER2);
708 	}
709 	if (nmflag & NFSMNT_NFSV3)
710 		*tl++ = txdr_unsigned(procid);
711 	else
712 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
713 
714 	/*
715 	 * And then the authorization cred.
716 	 */
717 	*tl++ = txdr_unsigned(auth_type);
718 	*tl = txdr_unsigned(authsiz);
719 	switch (auth_type) {
720 	case RPCAUTH_UNIX:
721 		nfsm_build(tl, u_int32_t *, auth_len);
722 		*tl++ = 0;		/* stamp ?? */
723 		*tl++ = 0;		/* NULL hostname */
724 		*tl++ = txdr_unsigned(cr->cr_uid);
725 		*tl++ = txdr_unsigned(cr->cr_gid);
726 		grpsiz = (auth_len >> 2) - 5;
727 		*tl++ = txdr_unsigned(grpsiz);
728 		for (i = 0; i < grpsiz; i++)
729 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
730 		break;
731 	case RPCAUTH_KERB4:
732 		siz = auth_len;
733 		while (siz > 0) {
734 			if (M_TRAILINGSPACE(mb) == 0) {
735 				MGET(mb2, M_WAIT, MT_DATA);
736 				if (siz >= MINCLSIZE)
737 					MCLGET(mb2, M_WAIT);
738 				mb->m_next = mb2;
739 				mb = mb2;
740 				mb->m_len = 0;
741 				bpos = mtod(mb, caddr_t);
742 			}
743 			i = min(siz, M_TRAILINGSPACE(mb));
744 			memcpy(bpos, auth_str, i);
745 			mb->m_len += i;
746 			auth_str += i;
747 			bpos += i;
748 			siz -= i;
749 		}
750 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
751 			for (i = 0; i < siz; i++)
752 				*bpos++ = '\0';
753 			mb->m_len += siz;
754 		}
755 		break;
756 	};
757 
758 	/*
759 	 * And the verifier...
760 	 */
761 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
762 	if (verf_str) {
763 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
764 		*tl = txdr_unsigned(verf_len);
765 		siz = verf_len;
766 		while (siz > 0) {
767 			if (M_TRAILINGSPACE(mb) == 0) {
768 				MGET(mb2, M_WAIT, MT_DATA);
769 				if (siz >= MINCLSIZE)
770 					MCLGET(mb2, M_WAIT);
771 				mb->m_next = mb2;
772 				mb = mb2;
773 				mb->m_len = 0;
774 				bpos = mtod(mb, caddr_t);
775 			}
776 			i = min(siz, M_TRAILINGSPACE(mb));
777 			memcpy(bpos, verf_str, i);
778 			mb->m_len += i;
779 			verf_str += i;
780 			bpos += i;
781 			siz -= i;
782 		}
783 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
784 			for (i = 0; i < siz; i++)
785 				*bpos++ = '\0';
786 			mb->m_len += siz;
787 		}
788 	} else {
789 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
790 		*tl = 0;
791 	}
792 	mb->m_next = mrest;
793 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
794 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
795 	*mbp = mb;
796 	return (mreq);
797 }
798 
799 /*
800  * copies mbuf chain to the uio scatter/gather list
801  */
802 int
803 nfsm_mbuftouio(mrep, uiop, siz, dpos)
804 	struct mbuf **mrep;
805 	struct uio *uiop;
806 	int siz;
807 	caddr_t *dpos;
808 {
809 	char *mbufcp, *uiocp;
810 	int xfer, left, len;
811 	struct mbuf *mp;
812 	long uiosiz, rem;
813 	int error = 0;
814 
815 	mp = *mrep;
816 	mbufcp = *dpos;
817 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
818 	rem = nfsm_rndup(siz)-siz;
819 	while (siz > 0) {
820 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
821 			return (EFBIG);
822 		left = uiop->uio_iov->iov_len;
823 		uiocp = uiop->uio_iov->iov_base;
824 		if (left > siz)
825 			left = siz;
826 		uiosiz = left;
827 		while (left > 0) {
828 			while (len == 0) {
829 				mp = mp->m_next;
830 				if (mp == NULL)
831 					return (EBADRPC);
832 				mbufcp = mtod(mp, caddr_t);
833 				len = mp->m_len;
834 			}
835 			xfer = (left > len) ? len : left;
836 #ifdef notdef
837 			/* Not Yet.. */
838 			if (uiop->uio_iov->iov_op != NULL)
839 				(*(uiop->uio_iov->iov_op))
840 				(mbufcp, uiocp, xfer);
841 			else
842 #endif
843 			if (uiop->uio_segflg == UIO_SYSSPACE)
844 				memcpy(uiocp, mbufcp, xfer);
845 			else
846 				copyout(mbufcp, uiocp, xfer);
847 			left -= xfer;
848 			len -= xfer;
849 			mbufcp += xfer;
850 			uiocp += xfer;
851 			uiop->uio_offset += xfer;
852 			uiop->uio_resid -= xfer;
853 		}
854 		if (uiop->uio_iov->iov_len <= siz) {
855 			uiop->uio_iovcnt--;
856 			uiop->uio_iov++;
857 		} else {
858 			(caddr_t)uiop->uio_iov->iov_base += uiosiz;
859 			uiop->uio_iov->iov_len -= uiosiz;
860 		}
861 		siz -= uiosiz;
862 	}
863 	*dpos = mbufcp;
864 	*mrep = mp;
865 	if (rem > 0) {
866 		if (len < rem)
867 			error = nfs_adv(mrep, dpos, rem, len);
868 		else
869 			*dpos += rem;
870 	}
871 	return (error);
872 }
873 
874 /*
875  * copies a uio scatter/gather list to an mbuf chain.
876  * NOTE: can ony handle iovcnt == 1
877  */
878 int
879 nfsm_uiotombuf(uiop, mq, siz, bpos)
880 	struct uio *uiop;
881 	struct mbuf **mq;
882 	int siz;
883 	caddr_t *bpos;
884 {
885 	char *uiocp;
886 	struct mbuf *mp, *mp2;
887 	int xfer, left, mlen;
888 	int uiosiz, clflg, rem;
889 	char *cp;
890 
891 #ifdef DIAGNOSTIC
892 	if (uiop->uio_iovcnt != 1)
893 		panic("nfsm_uiotombuf: iovcnt != 1");
894 #endif
895 
896 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
897 		clflg = 1;
898 	else
899 		clflg = 0;
900 	rem = nfsm_rndup(siz)-siz;
901 	mp = mp2 = *mq;
902 	while (siz > 0) {
903 		left = uiop->uio_iov->iov_len;
904 		uiocp = uiop->uio_iov->iov_base;
905 		if (left > siz)
906 			left = siz;
907 		uiosiz = left;
908 		while (left > 0) {
909 			mlen = M_TRAILINGSPACE(mp);
910 			if (mlen == 0) {
911 				MGET(mp, M_WAIT, MT_DATA);
912 				if (clflg)
913 					MCLGET(mp, M_WAIT);
914 				mp->m_len = 0;
915 				mp2->m_next = mp;
916 				mp2 = mp;
917 				mlen = M_TRAILINGSPACE(mp);
918 			}
919 			xfer = (left > mlen) ? mlen : left;
920 #ifdef notdef
921 			/* Not Yet.. */
922 			if (uiop->uio_iov->iov_op != NULL)
923 				(*(uiop->uio_iov->iov_op))
924 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
925 			else
926 #endif
927 			if (uiop->uio_segflg == UIO_SYSSPACE)
928 				memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
929 			else
930 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
931 			mp->m_len += xfer;
932 			left -= xfer;
933 			uiocp += xfer;
934 			uiop->uio_offset += xfer;
935 			uiop->uio_resid -= xfer;
936 		}
937 		(caddr_t)uiop->uio_iov->iov_base += uiosiz;
938 		uiop->uio_iov->iov_len -= uiosiz;
939 		siz -= uiosiz;
940 	}
941 	if (rem > 0) {
942 		if (rem > M_TRAILINGSPACE(mp)) {
943 			MGET(mp, M_WAIT, MT_DATA);
944 			mp->m_len = 0;
945 			mp2->m_next = mp;
946 		}
947 		cp = mtod(mp, caddr_t)+mp->m_len;
948 		for (left = 0; left < rem; left++)
949 			*cp++ = '\0';
950 		mp->m_len += rem;
951 		*bpos = cp;
952 	} else
953 		*bpos = mtod(mp, caddr_t)+mp->m_len;
954 	*mq = mp;
955 	return (0);
956 }
957 
958 /*
959  * Get at least "siz" bytes of correctly aligned data.
960  * When called the mbuf pointers are not necessarily correct,
961  * dsosp points to what ought to be in m_data and left contains
962  * what ought to be in m_len.
963  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
964  * cases. (The macros use the vars. dpos and dpos2)
965  */
966 int
967 nfsm_disct(mdp, dposp, siz, left, cp2)
968 	struct mbuf **mdp;
969 	caddr_t *dposp;
970 	int siz;
971 	int left;
972 	caddr_t *cp2;
973 {
974 	struct mbuf *m1, *m2;
975 	struct mbuf *havebuf = NULL;
976 	caddr_t src = *dposp;
977 	caddr_t dst;
978 	int len;
979 
980 #ifdef DEBUG
981 	if (left < 0)
982 		panic("nfsm_disct: left < 0");
983 #endif
984 	m1 = *mdp;
985 	/*
986 	 * Skip through the mbuf chain looking for an mbuf with
987 	 * some data. If the first mbuf found has enough data
988 	 * and it is correctly aligned return it.
989 	 */
990 	while (left == 0) {
991 		havebuf = m1;
992 		*mdp = m1 = m1->m_next;
993 		if (m1 == NULL)
994 			return (EBADRPC);
995 		src = mtod(m1, caddr_t);
996 		left = m1->m_len;
997 		/*
998 		 * If we start a new mbuf and it is big enough
999 		 * and correctly aligned just return it, don't
1000 		 * do any pull up.
1001 		 */
1002 		if (left >= siz && nfsm_aligned(src)) {
1003 			*cp2 = src;
1004 			*dposp = src + siz;
1005 			return (0);
1006 		}
1007 	}
1008 	if (m1->m_flags & M_EXT) {
1009 		if (havebuf) {
1010 			/* If the first mbuf with data has external data
1011 			 * and there is a previous empty mbuf use it
1012 			 * to move the data into.
1013 			 */
1014 			m2 = m1;
1015 			*mdp = m1 = havebuf;
1016 			if (m1->m_flags & M_EXT) {
1017 				MEXTREMOVE(m1);
1018 			}
1019 		} else {
1020 			/*
1021 			 * If the first mbuf has a external data
1022 			 * and there is no previous empty mbuf
1023 			 * allocate a new mbuf and move the external
1024 			 * data to the new mbuf. Also make the first
1025 			 * mbuf look empty.
1026 			 */
1027 			m2 = m_get(M_WAIT, MT_DATA);
1028 			m2->m_ext = m1->m_ext;
1029 			m2->m_data = src;
1030 			m2->m_len = left;
1031 			MCLADDREFERENCE(m1, m2);
1032 			MEXTREMOVE(m1);
1033 			m2->m_next = m1->m_next;
1034 			m1->m_next = m2;
1035 		}
1036 		m1->m_len = 0;
1037 		dst = m1->m_dat;
1038 	} else {
1039 		/*
1040 		 * If the first mbuf has no external data
1041 		 * move the data to the front of the mbuf.
1042 		 */
1043 		if ((dst = m1->m_dat) != src)
1044 			memmove(dst, src, left);
1045 		dst += left;
1046 		m1->m_len = left;
1047 		m2 = m1->m_next;
1048 	}
1049 	m1->m_flags &= ~M_PKTHDR;
1050 	*cp2 = m1->m_data = m1->m_dat;   /* data is at beginning of buffer */
1051 	*dposp = mtod(m1, caddr_t) + siz;
1052 	/*
1053 	 * Loop through mbufs pulling data up into first mbuf until
1054 	 * the first mbuf is full or there is no more data to
1055 	 * pullup.
1056 	 */
1057 	while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1058 		if ((len = min(len, m2->m_len)) != 0)
1059 			memcpy(dst, m2->m_data, len);
1060 		m1->m_len += len;
1061 		dst += len;
1062 		m2->m_data += len;
1063 		m2->m_len -= len;
1064 		m2 = m2->m_next;
1065 	}
1066 	if (m1->m_len < siz)
1067 		return (EBADRPC);
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Advance the position in the mbuf chain.
1073  */
1074 int
1075 nfs_adv(mdp, dposp, offs, left)
1076 	struct mbuf **mdp;
1077 	caddr_t *dposp;
1078 	int offs;
1079 	int left;
1080 {
1081 	struct mbuf *m;
1082 	int s;
1083 
1084 	m = *mdp;
1085 	s = left;
1086 	while (s < offs) {
1087 		offs -= s;
1088 		m = m->m_next;
1089 		if (m == NULL)
1090 			return (EBADRPC);
1091 		s = m->m_len;
1092 	}
1093 	*mdp = m;
1094 	*dposp = mtod(m, caddr_t)+offs;
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Copy a string into mbufs for the hard cases...
1100  */
1101 int
1102 nfsm_strtmbuf(mb, bpos, cp, siz)
1103 	struct mbuf **mb;
1104 	char **bpos;
1105 	const char *cp;
1106 	long siz;
1107 {
1108 	struct mbuf *m1 = NULL, *m2;
1109 	long left, xfer, len, tlen;
1110 	u_int32_t *tl;
1111 	int putsize;
1112 
1113 	putsize = 1;
1114 	m2 = *mb;
1115 	left = M_TRAILINGSPACE(m2);
1116 	if (left > 0) {
1117 		tl = ((u_int32_t *)(*bpos));
1118 		*tl++ = txdr_unsigned(siz);
1119 		putsize = 0;
1120 		left -= NFSX_UNSIGNED;
1121 		m2->m_len += NFSX_UNSIGNED;
1122 		if (left > 0) {
1123 			memcpy((caddr_t) tl, cp, left);
1124 			siz -= left;
1125 			cp += left;
1126 			m2->m_len += left;
1127 			left = 0;
1128 		}
1129 	}
1130 	/* Loop around adding mbufs */
1131 	while (siz > 0) {
1132 		MGET(m1, M_WAIT, MT_DATA);
1133 		if (siz > MLEN)
1134 			MCLGET(m1, M_WAIT);
1135 		m1->m_len = NFSMSIZ(m1);
1136 		m2->m_next = m1;
1137 		m2 = m1;
1138 		tl = mtod(m1, u_int32_t *);
1139 		tlen = 0;
1140 		if (putsize) {
1141 			*tl++ = txdr_unsigned(siz);
1142 			m1->m_len -= NFSX_UNSIGNED;
1143 			tlen = NFSX_UNSIGNED;
1144 			putsize = 0;
1145 		}
1146 		if (siz < m1->m_len) {
1147 			len = nfsm_rndup(siz);
1148 			xfer = siz;
1149 			if (xfer < len)
1150 				*(tl+(xfer>>2)) = 0;
1151 		} else {
1152 			xfer = len = m1->m_len;
1153 		}
1154 		memcpy((caddr_t) tl, cp, xfer);
1155 		m1->m_len = len+tlen;
1156 		siz -= xfer;
1157 		cp += xfer;
1158 	}
1159 	*mb = m1;
1160 	*bpos = mtod(m1, caddr_t)+m1->m_len;
1161 	return (0);
1162 }
1163 
1164 /*
1165  * Directory caching routines. They work as follows:
1166  * - a cache is maintained per VDIR nfsnode.
1167  * - for each offset cookie that is exported to userspace, and can
1168  *   thus be thrown back at us as an offset to VOP_READDIR, store
1169  *   information in the cache.
1170  * - cached are:
1171  *   - cookie itself
1172  *   - blocknumber (essentially just a search key in the buffer cache)
1173  *   - entry number in block.
1174  *   - offset cookie of block in which this entry is stored
1175  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1176  * - entries are looked up in a hash table
1177  * - also maintained is an LRU list of entries, used to determine
1178  *   which ones to delete if the cache grows too large.
1179  * - if 32 <-> 64 translation mode is requested for a filesystem,
1180  *   the cache also functions as a translation table
1181  * - in the translation case, invalidating the cache does not mean
1182  *   flushing it, but just marking entries as invalid, except for
1183  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
1184  *   still be able to use the cache as a translation table.
1185  * - 32 bit cookies are uniquely created by combining the hash table
1186  *   entry value, and one generation count per hash table entry,
1187  *   incremented each time an entry is appended to the chain.
1188  * - the cache is invalidated each time a direcory is modified
1189  * - sanity checks are also done; if an entry in a block turns
1190  *   out not to have a matching cookie, the cache is invalidated
1191  *   and a new block starting from the wanted offset is fetched from
1192  *   the server.
1193  * - directory entries as read from the server are extended to contain
1194  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
1195  *   the cache and exporting them to userspace through the cookie
1196  *   argument to VOP_READDIR.
1197  */
1198 
1199 u_long
1200 nfs_dirhash(off)
1201 	off_t off;
1202 {
1203 	int i;
1204 	char *cp = (char *)&off;
1205 	u_long sum = 0L;
1206 
1207 	for (i = 0 ; i < sizeof (off); i++)
1208 		sum += *cp++;
1209 
1210 	return sum;
1211 }
1212 
1213 void
1214 nfs_initdircache(vp)
1215 	struct vnode *vp;
1216 {
1217 	struct nfsnode *np = VTONFS(vp);
1218 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1219 
1220 	np->n_dircachesize = 0;
1221 	np->n_dblkno = 1;
1222 	np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1223 	    M_WAITOK, &nfsdirhashmask);
1224 	TAILQ_INIT(&np->n_dirchain);
1225 	if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1226 		MALLOC(np->n_dirgens, unsigned *,
1227 		    NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1228 		    M_WAITOK);
1229 		memset((caddr_t)np->n_dirgens, 0,
1230 		    NFS_DIRHASHSIZ * sizeof (unsigned));
1231 	}
1232 }
1233 
1234 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1235 
1236 struct nfsdircache *
1237 nfs_searchdircache(vp, off, do32, hashent)
1238 	struct vnode *vp;
1239 	off_t off;
1240 	int do32;
1241 	int *hashent;
1242 {
1243 	struct nfsdirhashhead *ndhp;
1244 	struct nfsdircache *ndp = NULL;
1245 	struct nfsnode *np = VTONFS(vp);
1246 	unsigned ent;
1247 
1248 	/*
1249 	 * Zero is always a valid cookie.
1250 	 */
1251 	if (off == 0)
1252 		return &dzero;
1253 
1254 	/*
1255 	 * We use a 32bit cookie as search key, directly reconstruct
1256 	 * the hashentry. Else use the hashfunction.
1257 	 */
1258 	if (do32) {
1259 		ent = (u_int32_t)off >> 24;
1260 		if (ent >= NFS_DIRHASHSIZ)
1261 			return NULL;
1262 		ndhp = &np->n_dircache[ent];
1263 	} else {
1264 		ndhp = NFSDIRHASH(np, off);
1265 	}
1266 
1267 	if (hashent)
1268 		*hashent = (int)(ndhp - np->n_dircache);
1269 	if (do32) {
1270 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1271 			if (ndp->dc_cookie32 == (u_int32_t)off) {
1272 				/*
1273 				 * An invalidated entry will become the
1274 				 * start of a new block fetched from
1275 				 * the server.
1276 				 */
1277 				if (ndp->dc_blkno == -1) {
1278 					ndp->dc_blkcookie = ndp->dc_cookie;
1279 					ndp->dc_blkno = np->n_dblkno++;
1280 					ndp->dc_entry = 0;
1281 				}
1282 				break;
1283 			}
1284 		}
1285 	} else {
1286 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1287 			if (ndp->dc_cookie == off)
1288 				break;
1289 	}
1290 	return ndp;
1291 }
1292 
1293 
1294 struct nfsdircache *
1295 nfs_enterdircache(vp, off, blkoff, en, blkno)
1296 	struct vnode *vp;
1297 	off_t off, blkoff;
1298 	daddr_t blkno;
1299 	int en;
1300 {
1301 	struct nfsnode *np = VTONFS(vp);
1302 	struct nfsdirhashhead *ndhp;
1303 	struct nfsdircache *ndp = NULL, *first;
1304 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1305 	int hashent, gen, overwrite;
1306 
1307 	if (!np->n_dircache)
1308 		/*
1309 		 * XXX would like to do this in nfs_nget but vtype
1310 		 * isn't known at that time.
1311 		 */
1312 		nfs_initdircache(vp);
1313 
1314 	/*
1315 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
1316 	 * cookie 0 for the '.' entry, making this necessary. This
1317 	 * isn't so bad, as 0 is a special case anyway.
1318 	 */
1319 	if (off == 0)
1320 		return &dzero;
1321 
1322 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
1323 
1324 	if (ndp && ndp->dc_blkno != -1) {
1325 		/*
1326 		 * Overwriting an old entry. Check if it's the same.
1327 		 * If so, just return. If not, remove the old entry.
1328 		 */
1329 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1330 			return ndp;
1331 		TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1332 		LIST_REMOVE(ndp, dc_hash);
1333 		FREE(ndp, M_NFSDIROFF);
1334 		ndp = 0;
1335 	}
1336 
1337 	ndhp = &np->n_dircache[hashent];
1338 
1339 	if (!ndp) {
1340 		MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1341 		    M_WAITOK);
1342 		overwrite = 0;
1343 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1344 			/*
1345 			 * We're allocating a new entry, so bump the
1346 			 * generation number.
1347 			 */
1348 			gen = ++np->n_dirgens[hashent];
1349 			if (gen == 0) {
1350 				np->n_dirgens[hashent]++;
1351 				gen++;
1352 			}
1353 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1354 		}
1355 	} else
1356 		overwrite = 1;
1357 
1358 	/*
1359 	 * If the entry number is 0, we are at the start of a new block, so
1360 	 * allocate a new blocknumber.
1361 	 */
1362 	if (en == 0)
1363 		ndp->dc_blkno = np->n_dblkno++;
1364 	else
1365 		ndp->dc_blkno = blkno;
1366 
1367 	ndp->dc_cookie = off;
1368 	ndp->dc_blkcookie = blkoff;
1369 	ndp->dc_entry = en;
1370 
1371 	if (overwrite)
1372 		return ndp;
1373 
1374 	/*
1375 	 * If the maximum directory cookie cache size has been reached
1376 	 * for this node, take one off the front. The idea is that
1377 	 * directories are typically read front-to-back once, so that
1378 	 * the oldest entries can be thrown away without much performance
1379 	 * loss.
1380 	 */
1381 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1382 		first = np->n_dirchain.tqh_first;
1383 		TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1384 		LIST_REMOVE(first, dc_hash);
1385 		FREE(first, M_NFSDIROFF);
1386 	} else
1387 		np->n_dircachesize++;
1388 
1389 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1390 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1391 	return ndp;
1392 }
1393 
1394 void
1395 nfs_invaldircache(vp, forcefree)
1396 	struct vnode *vp;
1397 	int forcefree;
1398 {
1399 	struct nfsnode *np = VTONFS(vp);
1400 	struct nfsdircache *ndp = NULL;
1401 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1402 
1403 #ifdef DIAGNOSTIC
1404 	if (vp->v_type != VDIR)
1405 		panic("nfs: invaldircache: not dir");
1406 #endif
1407 
1408 	if (!np->n_dircache)
1409 		return;
1410 
1411 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1412 		while ((ndp = np->n_dirchain.tqh_first)) {
1413 			TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1414 			LIST_REMOVE(ndp, dc_hash);
1415 			FREE(ndp, M_NFSDIROFF);
1416 		}
1417 		np->n_dircachesize = 0;
1418 		if (forcefree && np->n_dirgens) {
1419 			FREE(np->n_dirgens, M_NFSDIROFF);
1420 		}
1421 	} else {
1422 		for (ndp = np->n_dirchain.tqh_first; ndp;
1423 		    ndp = ndp->dc_chain.tqe_next)
1424 			ndp->dc_blkno = -1;
1425 	}
1426 
1427 	np->n_dblkno = 1;
1428 }
1429 
1430 /*
1431  * Called once before VFS init to initialize shared and
1432  * server-specific data structures.
1433  */
1434 void
1435 nfs_init()
1436 {
1437 	nfsrtt.pos = 0;
1438 	rpc_vers = txdr_unsigned(RPC_VER2);
1439 	rpc_call = txdr_unsigned(RPC_CALL);
1440 	rpc_reply = txdr_unsigned(RPC_REPLY);
1441 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1442 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1443 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1444 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1445 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1446 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1447 	nfs_prog = txdr_unsigned(NFS_PROG);
1448 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1449 	nfs_true = txdr_unsigned(TRUE);
1450 	nfs_false = txdr_unsigned(FALSE);
1451 	nfs_xdrneg1 = txdr_unsigned(-1);
1452 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1453 	if (nfs_ticks < 1)
1454 		nfs_ticks = 1;
1455 #ifdef NFSSERVER
1456 	nfsrv_init(0);			/* Init server data structures */
1457 	nfsrv_initcache();		/* Init the server request cache */
1458 #endif /* NFSSERVER */
1459 
1460 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1461 	/*
1462 	 * Initialize the nqnfs data structures.
1463 	 */
1464 	if (nqnfsstarttime == 0) {
1465 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1466 			+ nqsrv_clockskew + nqsrv_writeslack;
1467 		NQLOADNOVRAM(nqnfsstarttime);
1468 		CIRCLEQ_INIT(&nqtimerhead);
1469 		nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1470 		    M_WAITOK, &nqfhhash);
1471 	}
1472 #endif
1473 
1474 	/*
1475 	 * Initialize reply list and start timer
1476 	 */
1477 	TAILQ_INIT(&nfs_reqq);
1478 	nfs_timer(NULL);
1479 }
1480 
1481 #ifdef NFS
1482 /*
1483  * Called once at VFS init to initialize client-specific data structures.
1484  */
1485 void
1486 nfs_vfs_init()
1487 {
1488 	int i;
1489 
1490 	/* Ensure async daemons disabled */
1491 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1492 		nfs_iodwant[i] = (struct proc *)0;
1493 		nfs_iodmount[i] = (struct nfsmount *)0;
1494 	}
1495 	nfs_nhinit();			/* Init the nfsnode table */
1496 }
1497 
1498 void
1499 nfs_vfs_done()
1500 {
1501 	nfs_nhdone();
1502 }
1503 
1504 /*
1505  * Attribute cache routines.
1506  * nfs_loadattrcache() - loads or updates the cache contents from attributes
1507  *	that are on the mbuf list
1508  * nfs_getattrcache() - returns valid attributes if found in cache, returns
1509  *	error otherwise
1510  */
1511 
1512 /*
1513  * Load the attribute cache (that lives in the nfsnode entry) with
1514  * the values on the mbuf list and
1515  * Iff vap not NULL
1516  *    copy the attributes to *vaper
1517  */
1518 int
1519 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1520 	struct vnode **vpp;
1521 	struct mbuf **mdp;
1522 	caddr_t *dposp;
1523 	struct vattr *vaper;
1524 {
1525 	int32_t t1;
1526 	caddr_t cp2;
1527 	int error = 0;
1528 	struct mbuf *md;
1529 	int v3 = NFS_ISV3(*vpp);
1530 
1531 	md = *mdp;
1532 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1533 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1534 	if (error)
1535 		return (error);
1536 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1537 }
1538 
1539 int
1540 nfs_loadattrcache(vpp, fp, vaper)
1541 	struct vnode **vpp;
1542 	struct nfs_fattr *fp;
1543 	struct vattr *vaper;
1544 {
1545 	struct vnode *vp = *vpp;
1546 	struct vattr *vap;
1547 	int v3 = NFS_ISV3(vp);
1548 	enum vtype vtyp;
1549 	u_short vmode;
1550 	struct timespec mtime;
1551 	struct vnode *nvp;
1552 	int32_t rdev;
1553 	struct nfsnode *np;
1554 	extern int (**spec_nfsv2nodeop_p) __P((void *));
1555 
1556 	if (v3) {
1557 		vtyp = nfsv3tov_type(fp->fa_type);
1558 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1559 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1560 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1561 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1562 	} else {
1563 		vtyp = nfsv2tov_type(fp->fa_type);
1564 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1565 		if (vtyp == VNON || vtyp == VREG)
1566 			vtyp = IFTOVT(vmode);
1567 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1568 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1569 
1570 		/*
1571 		 * Really ugly NFSv2 kludge.
1572 		 */
1573 		if (vtyp == VCHR && rdev == 0xffffffff)
1574 			vtyp = VFIFO;
1575 	}
1576 
1577 	/*
1578 	 * If v_type == VNON it is a new node, so fill in the v_type,
1579 	 * n_mtime fields. Check to see if it represents a special
1580 	 * device, and if so, check for a possible alias. Once the
1581 	 * correct vnode has been obtained, fill in the rest of the
1582 	 * information.
1583 	 */
1584 	np = VTONFS(vp);
1585 	if (vp->v_type == VNON) {
1586 		vp->v_type = vtyp;
1587 		if (vp->v_type == VFIFO) {
1588 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
1589 			vp->v_op = fifo_nfsv2nodeop_p;
1590 		}
1591 		if (vp->v_type == VCHR || vp->v_type == VBLK) {
1592 			vp->v_op = spec_nfsv2nodeop_p;
1593 			nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1594 			if (nvp) {
1595 				/*
1596 				 * Discard unneeded vnode, but save its nfsnode.
1597 				 * Since the nfsnode does not have a lock, its
1598 				 * vnode lock has to be carried over.
1599 				 */
1600 				nvp->v_data = vp->v_data;
1601 				vp->v_data = NULL;
1602 				vp->v_op = spec_vnodeop_p;
1603 				vput(vp);
1604 				vgone(vp);
1605 				/*
1606 				 * XXX When nfs starts locking, we need to
1607 				 * lock the new node here.
1608 				 */
1609 				/*
1610 				 * Reinitialize aliased node.
1611 				 */
1612 				np->n_vnode = nvp;
1613 				*vpp = vp = nvp;
1614 			}
1615 		}
1616 		np->n_mtime = mtime.tv_sec;
1617 	}
1618 	vap = np->n_vattr;
1619 	vap->va_type = vtyp;
1620 	vap->va_mode = vmode & ALLPERMS;
1621 	vap->va_rdev = (dev_t)rdev;
1622 	vap->va_mtime = mtime;
1623 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1624 	switch (vtyp) {
1625 	case VDIR:
1626 		vap->va_blocksize = NFS_DIRFRAGSIZ;
1627 		break;
1628 	case VBLK:
1629 		vap->va_blocksize = BLKDEV_IOSIZE;
1630 		break;
1631 	case VCHR:
1632 		vap->va_blocksize = MAXBSIZE;
1633 		break;
1634 	default:
1635 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1636 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
1637 		break;
1638 	}
1639 	if (v3) {
1640 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1641 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1642 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1643 		vap->va_size = fxdr_hyper(&fp->fa3_size);
1644 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1645 		vap->va_fileid = fxdr_unsigned(int32_t,
1646 		    fp->fa3_fileid.nfsuquad[1]);
1647 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1648 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1649 		vap->va_flags = 0;
1650 		vap->va_filerev = 0;
1651 	} else {
1652 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1653 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1654 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1655 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1656 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1657 		    * NFS_FABLKSIZE;
1658 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1659 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1660 		vap->va_flags = 0;
1661 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1662 		    fp->fa2_ctime.nfsv2_sec);
1663 		vap->va_ctime.tv_nsec = 0;
1664 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1665 		vap->va_filerev = 0;
1666 	}
1667 	if (vap->va_size != np->n_size) {
1668 		if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1669 			vap->va_size = np->n_size;
1670 		} else {
1671 			np->n_size = vap->va_size;
1672 			if (vap->va_type == VREG) {
1673 				uvm_vnp_setsize(vp, np->n_size);
1674 			}
1675 		}
1676 	}
1677 	np->n_attrstamp = time.tv_sec;
1678 	if (vaper != NULL) {
1679 		memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1680 		if (np->n_flag & NCHG) {
1681 			if (np->n_flag & NACC)
1682 				vaper->va_atime = np->n_atim;
1683 			if (np->n_flag & NUPD)
1684 				vaper->va_mtime = np->n_mtim;
1685 		}
1686 	}
1687 	return (0);
1688 }
1689 
1690 /*
1691  * Check the time stamp
1692  * If the cache is valid, copy contents to *vap and return 0
1693  * otherwise return an error
1694  */
1695 int
1696 nfs_getattrcache(vp, vaper)
1697 	struct vnode *vp;
1698 	struct vattr *vaper;
1699 {
1700 	struct nfsnode *np = VTONFS(vp);
1701 	struct vattr *vap;
1702 
1703 	if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1704 		nfsstats.attrcache_misses++;
1705 		return (ENOENT);
1706 	}
1707 	nfsstats.attrcache_hits++;
1708 	vap = np->n_vattr;
1709 	if (vap->va_size != np->n_size) {
1710 		if (vap->va_type == VREG) {
1711 			if (np->n_flag & NMODIFIED) {
1712 				if (vap->va_size < np->n_size)
1713 					vap->va_size = np->n_size;
1714 				else
1715 					np->n_size = vap->va_size;
1716 			} else
1717 				np->n_size = vap->va_size;
1718 			uvm_vnp_setsize(vp, np->n_size);
1719 		} else
1720 			np->n_size = vap->va_size;
1721 	}
1722 	memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1723 	if (np->n_flag & NCHG) {
1724 		if (np->n_flag & NACC)
1725 			vaper->va_atime = np->n_atim;
1726 		if (np->n_flag & NUPD)
1727 			vaper->va_mtime = np->n_mtim;
1728 	}
1729 	return (0);
1730 }
1731 
1732 /*
1733  * Heuristic to see if the server XDR encodes directory cookies or not.
1734  * it is not supposed to, but a lot of servers may do this. Also, since
1735  * most/all servers will implement V2 as well, it is expected that they
1736  * may return just 32 bits worth of cookie information, so we need to
1737  * find out in which 32 bits this information is available. We do this
1738  * to avoid trouble with emulated binaries that can't handle 64 bit
1739  * directory offsets.
1740  */
1741 
1742 void
1743 nfs_cookieheuristic(vp, flagp, p, cred)
1744 	struct vnode *vp;
1745 	int *flagp;
1746 	struct proc *p;
1747 	struct ucred *cred;
1748 {
1749 	struct uio auio;
1750 	struct iovec aiov;
1751 	caddr_t buf, cp;
1752 	struct dirent *dp;
1753 	off_t *cookies = NULL, *cop;
1754 	int error, eof, nc, len;
1755 
1756 	MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1757 
1758 	aiov.iov_base = buf;
1759 	aiov.iov_len = NFS_DIRFRAGSIZ;
1760 	auio.uio_iov = &aiov;
1761 	auio.uio_iovcnt = 1;
1762 	auio.uio_rw = UIO_READ;
1763 	auio.uio_segflg = UIO_SYSSPACE;
1764 	auio.uio_procp = p;
1765 	auio.uio_resid = NFS_DIRFRAGSIZ;
1766 	auio.uio_offset = 0;
1767 
1768 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1769 
1770 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
1771 	if (error || len == 0) {
1772 		FREE(buf, M_TEMP);
1773 		if (cookies)
1774 			free(cookies, M_TEMP);
1775 		return;
1776 	}
1777 
1778 	/*
1779 	 * Find the first valid entry and look at its offset cookie.
1780 	 */
1781 
1782 	cp = buf;
1783 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
1784 		dp = (struct dirent *)cp;
1785 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1786 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1787 				*flagp |= NFSMNT_SWAPCOOKIE;
1788 				nfs_invaldircache(vp, 0);
1789 				nfs_vinvalbuf(vp, 0, cred, p, 1);
1790 			}
1791 			break;
1792 		}
1793 		cop++;
1794 		cp += dp->d_reclen;
1795 	}
1796 
1797 	FREE(buf, M_TEMP);
1798 	free(cookies, M_TEMP);
1799 }
1800 #endif /* NFS */
1801 
1802 /*
1803  * Set up nameidata for a lookup() call and do it.
1804  *
1805  * If pubflag is set, this call is done for a lookup operation on the
1806  * public filehandle. In that case we allow crossing mountpoints and
1807  * absolute pathnames. However, the caller is expected to check that
1808  * the lookup result is within the public fs, and deny access if
1809  * it is not.
1810  */
1811 int
1812 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1813 	struct nameidata *ndp;
1814 	fhandle_t *fhp;
1815 	int len;
1816 	struct nfssvc_sock *slp;
1817 	struct mbuf *nam;
1818 	struct mbuf **mdp;
1819 	caddr_t *dposp;
1820 	struct vnode **retdirp;
1821 	struct proc *p;
1822 	int kerbflag, pubflag;
1823 {
1824 	int i, rem;
1825 	struct mbuf *md;
1826 	char *fromcp, *tocp, *cp;
1827 	struct iovec aiov;
1828 	struct uio auio;
1829 	struct vnode *dp;
1830 	int error, rdonly, linklen;
1831 	struct componentname *cnp = &ndp->ni_cnd;
1832 
1833 	*retdirp = (struct vnode *)0;
1834 
1835 	if ((len + 1) > MAXPATHLEN)
1836 		return (ENAMETOOLONG);
1837 	cnp->cn_pnbuf = PNBUF_GET();
1838 
1839 	/*
1840 	 * Copy the name from the mbuf list to ndp->ni_pnbuf
1841 	 * and set the various ndp fields appropriately.
1842 	 */
1843 	fromcp = *dposp;
1844 	tocp = cnp->cn_pnbuf;
1845 	md = *mdp;
1846 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
1847 	for (i = 0; i < len; i++) {
1848 		while (rem == 0) {
1849 			md = md->m_next;
1850 			if (md == NULL) {
1851 				error = EBADRPC;
1852 				goto out;
1853 			}
1854 			fromcp = mtod(md, caddr_t);
1855 			rem = md->m_len;
1856 		}
1857 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1858 			error = EACCES;
1859 			goto out;
1860 		}
1861 		*tocp++ = *fromcp++;
1862 		rem--;
1863 	}
1864 	*tocp = '\0';
1865 	*mdp = md;
1866 	*dposp = fromcp;
1867 	len = nfsm_rndup(len)-len;
1868 	if (len > 0) {
1869 		if (rem >= len)
1870 			*dposp += len;
1871 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1872 			goto out;
1873 	}
1874 
1875 	/*
1876 	 * Extract and set starting directory.
1877 	 */
1878 	error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1879 	    nam, &rdonly, kerbflag, pubflag);
1880 	if (error)
1881 		goto out;
1882 	if (dp->v_type != VDIR) {
1883 		vrele(dp);
1884 		error = ENOTDIR;
1885 		goto out;
1886 	}
1887 
1888 	if (rdonly)
1889 		cnp->cn_flags |= RDONLY;
1890 
1891 	*retdirp = dp;
1892 
1893 	if (pubflag) {
1894 		/*
1895 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1896 		 * and the 'native path' indicator.
1897 		 */
1898 		cp = PNBUF_GET();
1899 		fromcp = cnp->cn_pnbuf;
1900 		tocp = cp;
1901 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1902 			switch ((unsigned char)*fromcp) {
1903 			case WEBNFS_NATIVE_CHAR:
1904 				/*
1905 				 * 'Native' path for us is the same
1906 				 * as a path according to the NFS spec,
1907 				 * just skip the escape char.
1908 				 */
1909 				fromcp++;
1910 				break;
1911 			/*
1912 			 * More may be added in the future, range 0x80-0xff
1913 			 */
1914 			default:
1915 				error = EIO;
1916 				FREE(cp, M_NAMEI);
1917 				goto out;
1918 			}
1919 		}
1920 		/*
1921 		 * Translate the '%' escapes, URL-style.
1922 		 */
1923 		while (*fromcp != '\0') {
1924 			if (*fromcp == WEBNFS_ESC_CHAR) {
1925 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1926 					fromcp++;
1927 					*tocp++ = HEXSTRTOI(fromcp);
1928 					fromcp += 2;
1929 					continue;
1930 				} else {
1931 					error = ENOENT;
1932 					FREE(cp, M_NAMEI);
1933 					goto out;
1934 				}
1935 			} else
1936 				*tocp++ = *fromcp++;
1937 		}
1938 		*tocp = '\0';
1939 		PNBUF_PUT(cnp->cn_pnbuf);
1940 		cnp->cn_pnbuf = cp;
1941 	}
1942 
1943 	ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1944 	ndp->ni_segflg = UIO_SYSSPACE;
1945 
1946 	if (pubflag) {
1947 		ndp->ni_rootdir = rootvnode;
1948 		ndp->ni_loopcnt = 0;
1949 		if (cnp->cn_pnbuf[0] == '/')
1950 			dp = rootvnode;
1951 	} else {
1952 		cnp->cn_flags |= NOCROSSMOUNT;
1953 	}
1954 
1955 	cnp->cn_proc = p;
1956 	VREF(dp);
1957 
1958     for (;;) {
1959 	cnp->cn_nameptr = cnp->cn_pnbuf;
1960 	ndp->ni_startdir = dp;
1961 	/*
1962 	 * And call lookup() to do the real work
1963 	 */
1964 	error = lookup(ndp);
1965 	if (error)
1966 		break;
1967 	/*
1968 	 * Check for encountering a symbolic link
1969 	 */
1970 	if ((cnp->cn_flags & ISSYMLINK) == 0) {
1971 		if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1972 			cnp->cn_flags |= HASBUF;
1973 			return (0);
1974 		}
1975 		break;
1976 	} else {
1977 		if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1978 			VOP_UNLOCK(ndp->ni_dvp, 0);
1979 		if (!pubflag) {
1980 			vrele(ndp->ni_dvp);
1981 			vput(ndp->ni_vp);
1982 			ndp->ni_vp = NULL;
1983 			error = EINVAL;
1984 			break;
1985 		}
1986 
1987 		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1988 			error = ELOOP;
1989 			break;
1990 		}
1991 		if (ndp->ni_pathlen > 1)
1992 			cp = PNBUF_GET();
1993 		else
1994 			cp = cnp->cn_pnbuf;
1995 		aiov.iov_base = cp;
1996 		aiov.iov_len = MAXPATHLEN;
1997 		auio.uio_iov = &aiov;
1998 		auio.uio_iovcnt = 1;
1999 		auio.uio_offset = 0;
2000 		auio.uio_rw = UIO_READ;
2001 		auio.uio_segflg = UIO_SYSSPACE;
2002 		auio.uio_procp = (struct proc *)0;
2003 		auio.uio_resid = MAXPATHLEN;
2004 		error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2005 		if (error) {
2006 		badlink:
2007 			if (ndp->ni_pathlen > 1)
2008 				PNBUF_PUT(cp);
2009 			break;
2010 		}
2011 		linklen = MAXPATHLEN - auio.uio_resid;
2012 		if (linklen == 0) {
2013 			error = ENOENT;
2014 			goto badlink;
2015 		}
2016 		if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2017 			error = ENAMETOOLONG;
2018 			goto badlink;
2019 		}
2020 		if (ndp->ni_pathlen > 1) {
2021 			memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2022 			PNBUF_PUT(cnp->cn_pnbuf);
2023 			cnp->cn_pnbuf = cp;
2024 		} else
2025 			cnp->cn_pnbuf[linklen] = '\0';
2026 		ndp->ni_pathlen += linklen;
2027 		vput(ndp->ni_vp);
2028 		dp = ndp->ni_dvp;
2029 		/*
2030 		 * Check if root directory should replace current directory.
2031 		 */
2032 		if (cnp->cn_pnbuf[0] == '/') {
2033 			vrele(dp);
2034 			dp = ndp->ni_rootdir;
2035 			VREF(dp);
2036 		}
2037 	}
2038    }
2039 out:
2040 	PNBUF_PUT(cnp->cn_pnbuf);
2041 	return (error);
2042 }
2043 
2044 /*
2045  * A fiddled version of m_adj() that ensures null fill to a long
2046  * boundary and only trims off the back end
2047  */
2048 void
2049 nfsm_adj(mp, len, nul)
2050 	struct mbuf *mp;
2051 	int len;
2052 	int nul;
2053 {
2054 	struct mbuf *m;
2055 	int count, i;
2056 	char *cp;
2057 
2058 	/*
2059 	 * Trim from tail.  Scan the mbuf chain,
2060 	 * calculating its length and finding the last mbuf.
2061 	 * If the adjustment only affects this mbuf, then just
2062 	 * adjust and return.  Otherwise, rescan and truncate
2063 	 * after the remaining size.
2064 	 */
2065 	count = 0;
2066 	m = mp;
2067 	for (;;) {
2068 		count += m->m_len;
2069 		if (m->m_next == (struct mbuf *)0)
2070 			break;
2071 		m = m->m_next;
2072 	}
2073 	if (m->m_len > len) {
2074 		m->m_len -= len;
2075 		if (nul > 0) {
2076 			cp = mtod(m, caddr_t)+m->m_len-nul;
2077 			for (i = 0; i < nul; i++)
2078 				*cp++ = '\0';
2079 		}
2080 		return;
2081 	}
2082 	count -= len;
2083 	if (count < 0)
2084 		count = 0;
2085 	/*
2086 	 * Correct length for chain is "count".
2087 	 * Find the mbuf with last data, adjust its length,
2088 	 * and toss data from remaining mbufs on chain.
2089 	 */
2090 	for (m = mp; m; m = m->m_next) {
2091 		if (m->m_len >= count) {
2092 			m->m_len = count;
2093 			if (nul > 0) {
2094 				cp = mtod(m, caddr_t)+m->m_len-nul;
2095 				for (i = 0; i < nul; i++)
2096 					*cp++ = '\0';
2097 			}
2098 			break;
2099 		}
2100 		count -= m->m_len;
2101 	}
2102 	for (m = m->m_next;m;m = m->m_next)
2103 		m->m_len = 0;
2104 }
2105 
2106 /*
2107  * Make these functions instead of macros, so that the kernel text size
2108  * doesn't get too big...
2109  */
2110 void
2111 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2112 	struct nfsrv_descript *nfsd;
2113 	int before_ret;
2114 	struct vattr *before_vap;
2115 	int after_ret;
2116 	struct vattr *after_vap;
2117 	struct mbuf **mbp;
2118 	char **bposp;
2119 {
2120 	struct mbuf *mb = *mbp, *mb2;
2121 	char *bpos = *bposp;
2122 	u_int32_t *tl;
2123 
2124 	if (before_ret) {
2125 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2126 		*tl = nfs_false;
2127 	} else {
2128 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2129 		*tl++ = nfs_true;
2130 		txdr_hyper(before_vap->va_size, tl);
2131 		tl += 2;
2132 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
2133 		tl += 2;
2134 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
2135 	}
2136 	*bposp = bpos;
2137 	*mbp = mb;
2138 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2139 }
2140 
2141 void
2142 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2143 	struct nfsrv_descript *nfsd;
2144 	int after_ret;
2145 	struct vattr *after_vap;
2146 	struct mbuf **mbp;
2147 	char **bposp;
2148 {
2149 	struct mbuf *mb = *mbp, *mb2;
2150 	char *bpos = *bposp;
2151 	u_int32_t *tl;
2152 	struct nfs_fattr *fp;
2153 
2154 	if (after_ret) {
2155 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2156 		*tl = nfs_false;
2157 	} else {
2158 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2159 		*tl++ = nfs_true;
2160 		fp = (struct nfs_fattr *)tl;
2161 		nfsm_srvfattr(nfsd, after_vap, fp);
2162 	}
2163 	*mbp = mb;
2164 	*bposp = bpos;
2165 }
2166 
2167 void
2168 nfsm_srvfattr(nfsd, vap, fp)
2169 	struct nfsrv_descript *nfsd;
2170 	struct vattr *vap;
2171 	struct nfs_fattr *fp;
2172 {
2173 
2174 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2175 	fp->fa_uid = txdr_unsigned(vap->va_uid);
2176 	fp->fa_gid = txdr_unsigned(vap->va_gid);
2177 	if (nfsd->nd_flag & ND_NFSV3) {
2178 		fp->fa_type = vtonfsv3_type(vap->va_type);
2179 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2180 		txdr_hyper(vap->va_size, &fp->fa3_size);
2181 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
2182 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2183 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2184 		fp->fa3_fsid.nfsuquad[0] = 0;
2185 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2186 		fp->fa3_fileid.nfsuquad[0] = 0;
2187 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2188 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2189 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2190 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2191 	} else {
2192 		fp->fa_type = vtonfsv2_type(vap->va_type);
2193 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2194 		fp->fa2_size = txdr_unsigned(vap->va_size);
2195 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2196 		if (vap->va_type == VFIFO)
2197 			fp->fa2_rdev = 0xffffffff;
2198 		else
2199 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2200 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2201 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2202 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2203 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2204 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2205 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2206 	}
2207 }
2208 
2209 /*
2210  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2211  * 	- look up fsid in mount list (if not found ret error)
2212  *	- get vp and export rights by calling VFS_FHTOVP()
2213  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2214  *	- if not lockflag unlock it with VOP_UNLOCK()
2215  */
2216 int
2217 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2218 	fhandle_t *fhp;
2219 	int lockflag;
2220 	struct vnode **vpp;
2221 	struct ucred *cred;
2222 	struct nfssvc_sock *slp;
2223 	struct mbuf *nam;
2224 	int *rdonlyp;
2225 	int kerbflag;
2226 {
2227 	struct mount *mp;
2228 	int i;
2229 	struct ucred *credanon;
2230 	int error, exflags;
2231 	struct sockaddr_in *saddr;
2232 
2233 	*vpp = (struct vnode *)0;
2234 
2235 	if (nfs_ispublicfh(fhp)) {
2236 		if (!pubflag || !nfs_pub.np_valid)
2237 			return (ESTALE);
2238 		fhp = &nfs_pub.np_handle;
2239 	}
2240 
2241 	mp = vfs_getvfs(&fhp->fh_fsid);
2242 	if (!mp)
2243 		return (ESTALE);
2244 	error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2245 	if (error)
2246 		return (error);
2247 	error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2248 	if (error)
2249 		return (error);
2250 
2251 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2252 		saddr = mtod(nam, struct sockaddr_in *);
2253 		if ((saddr->sin_family == AF_INET) &&
2254 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2255 			vput(*vpp);
2256 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2257 		}
2258 #ifdef INET6
2259 		if ((saddr->sin_family == AF_INET6) &&
2260 		    ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2261 			vput(*vpp);
2262 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2263 		}
2264 #endif
2265 	}
2266 	/*
2267 	 * Check/setup credentials.
2268 	 */
2269 	if (exflags & MNT_EXKERB) {
2270 		if (!kerbflag) {
2271 			vput(*vpp);
2272 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2273 		}
2274 	} else if (kerbflag) {
2275 		vput(*vpp);
2276 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2277 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2278 		cred->cr_uid = credanon->cr_uid;
2279 		cred->cr_gid = credanon->cr_gid;
2280 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2281 			cred->cr_groups[i] = credanon->cr_groups[i];
2282 		cred->cr_ngroups = i;
2283 	}
2284 	if (exflags & MNT_EXRDONLY)
2285 		*rdonlyp = 1;
2286 	else
2287 		*rdonlyp = 0;
2288 	if (!lockflag)
2289 		VOP_UNLOCK(*vpp, 0);
2290 	return (0);
2291 }
2292 
2293 /*
2294  * WebNFS: check if a filehandle is a public filehandle. For v3, this
2295  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2296  * transformed this to all zeroes in both cases, so check for it.
2297  */
2298 int
2299 nfs_ispublicfh(fhp)
2300 	fhandle_t *fhp;
2301 {
2302 	char *cp = (char *)fhp;
2303 	int i;
2304 
2305 	for (i = 0; i < NFSX_V3FH; i++)
2306 		if (*cp++ != 0)
2307 			return (FALSE);
2308 	return (TRUE);
2309 }
2310 
2311 /*
2312  * This function compares two net addresses by family and returns TRUE
2313  * if they are the same host.
2314  * If there is any doubt, return FALSE.
2315  * The AF_INET family is handled as a special case so that address mbufs
2316  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2317  */
2318 int
2319 netaddr_match(family, haddr, nam)
2320 	int family;
2321 	union nethostaddr *haddr;
2322 	struct mbuf *nam;
2323 {
2324 	struct sockaddr_in *inetaddr;
2325 
2326 	switch (family) {
2327 	case AF_INET:
2328 		inetaddr = mtod(nam, struct sockaddr_in *);
2329 		if (inetaddr->sin_family == AF_INET &&
2330 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2331 			return (1);
2332 		break;
2333 #ifdef INET6
2334 	case AF_INET6:
2335 	    {
2336 		struct sockaddr_in6 *sin6_1, *sin6_2;
2337 
2338 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
2339 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2340 		if (sin6_1->sin6_family == AF_INET6 &&
2341 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2342 			return 1;
2343 	    }
2344 #endif
2345 #ifdef ISO
2346 	case AF_ISO:
2347 	    {
2348 		struct sockaddr_iso *isoaddr1, *isoaddr2;
2349 
2350 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
2351 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2352 		if (isoaddr1->siso_family == AF_ISO &&
2353 		    isoaddr1->siso_nlen > 0 &&
2354 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2355 		    SAME_ISOADDR(isoaddr1, isoaddr2))
2356 			return (1);
2357 		break;
2358 	    }
2359 #endif	/* ISO */
2360 	default:
2361 		break;
2362 	};
2363 	return (0);
2364 }
2365 
2366 /*
2367  * The write verifier has changed (probably due to a server reboot), so all
2368  * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2369  * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2370  * flag. Once done the new write verifier can be set for the mount point.
2371  */
2372 void
2373 nfs_clearcommit(mp)
2374 	struct mount *mp;
2375 {
2376 	struct vnode *vp;
2377 	struct nfsnode *np;
2378 	struct vm_page *pg;
2379 	int s;
2380 
2381 	s = splbio();
2382 	LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2383 		KASSERT(vp->v_mount == mp);
2384 		if (vp->v_type == VNON)
2385 			continue;
2386 		np = VTONFS(vp);
2387 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2388 		    np->n_pushedhi = 0;
2389 		np->n_commitflags &=
2390 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2391 		simple_lock(&vp->v_uvm.u_obj.vmobjlock);
2392 		TAILQ_FOREACH(pg, &vp->v_uvm.u_obj.memq, listq) {
2393 			pg->flags &= ~PG_NEEDCOMMIT;
2394 		}
2395 		simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
2396 	}
2397 	splx(s);
2398 }
2399 
2400 void
2401 nfs_merge_commit_ranges(vp)
2402 	struct vnode *vp;
2403 {
2404 	struct nfsnode *np = VTONFS(vp);
2405 
2406 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2407 		np->n_pushedlo = np->n_pushlo;
2408 		np->n_pushedhi = np->n_pushhi;
2409 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2410 	} else {
2411 		if (np->n_pushlo < np->n_pushedlo)
2412 			np->n_pushedlo = np->n_pushlo;
2413 		if (np->n_pushhi > np->n_pushedhi)
2414 			np->n_pushedhi = np->n_pushhi;
2415 	}
2416 
2417 	np->n_pushlo = np->n_pushhi = 0;
2418 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2419 
2420 #ifdef fvdl_debug
2421 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2422 	    (unsigned)np->n_pushedhi);
2423 #endif
2424 }
2425 
2426 int
2427 nfs_in_committed_range(vp, off, len)
2428 	struct vnode *vp;
2429 	off_t off, len;
2430 {
2431 	struct nfsnode *np = VTONFS(vp);
2432 	off_t lo, hi;
2433 
2434 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2435 		return 0;
2436 	lo = off;
2437 	hi = lo + len;
2438 
2439 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2440 }
2441 
2442 int
2443 nfs_in_tobecommitted_range(vp, off, len)
2444 	struct vnode *vp;
2445 	off_t off, len;
2446 {
2447 	struct nfsnode *np = VTONFS(vp);
2448 	off_t lo, hi;
2449 
2450 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2451 		return 0;
2452 	lo = off;
2453 	hi = lo + len;
2454 
2455 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2456 }
2457 
2458 void
2459 nfs_add_committed_range(vp, off, len)
2460 	struct vnode *vp;
2461 	off_t off, len;
2462 {
2463 	struct nfsnode *np = VTONFS(vp);
2464 	off_t lo, hi;
2465 
2466 	lo = off;
2467 	hi = lo + len;
2468 
2469 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2470 		np->n_pushedlo = lo;
2471 		np->n_pushedhi = hi;
2472 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2473 	} else {
2474 		if (hi > np->n_pushedhi)
2475 			np->n_pushedhi = hi;
2476 		if (lo < np->n_pushedlo)
2477 			np->n_pushedlo = lo;
2478 	}
2479 #ifdef fvdl_debug
2480 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2481 	    (unsigned)np->n_pushedhi);
2482 #endif
2483 }
2484 
2485 void
2486 nfs_del_committed_range(vp, off, len)
2487 	struct vnode *vp;
2488 	off_t off, len;
2489 {
2490 	struct nfsnode *np = VTONFS(vp);
2491 	off_t lo, hi;
2492 
2493 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2494 		return;
2495 
2496 	lo = off;
2497 	hi = lo + len;
2498 
2499 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2500 		return;
2501 	if (lo <= np->n_pushedlo)
2502 		np->n_pushedlo = hi;
2503 	else if (hi >= np->n_pushedhi)
2504 		np->n_pushedhi = lo;
2505 	else {
2506 		/*
2507 		 * XXX There's only one range. If the deleted range
2508 		 * is in the middle, pick the largest of the
2509 		 * contiguous ranges that it leaves.
2510 		 */
2511 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2512 			np->n_pushedhi = lo;
2513 		else
2514 			np->n_pushedlo = hi;
2515 	}
2516 #ifdef fvdl_debug
2517 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2518 	    (unsigned)np->n_pushedhi);
2519 #endif
2520 }
2521 
2522 void
2523 nfs_add_tobecommitted_range(vp, off, len)
2524 	struct vnode *vp;
2525 	off_t off, len;
2526 {
2527 	struct nfsnode *np = VTONFS(vp);
2528 	off_t lo, hi;
2529 
2530 	lo = off;
2531 	hi = lo + len;
2532 
2533 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2534 		np->n_pushlo = lo;
2535 		np->n_pushhi = hi;
2536 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2537 	} else {
2538 		if (lo < np->n_pushlo)
2539 			np->n_pushlo = lo;
2540 		if (hi > np->n_pushhi)
2541 			np->n_pushhi = hi;
2542 	}
2543 #ifdef fvdl_debug
2544 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2545 	    (unsigned)np->n_pushhi);
2546 #endif
2547 }
2548 
2549 void
2550 nfs_del_tobecommitted_range(vp, off, len)
2551 	struct vnode *vp;
2552 	off_t off, len;
2553 {
2554 	struct nfsnode *np = VTONFS(vp);
2555 	off_t lo, hi;
2556 
2557 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2558 		return;
2559 
2560 	lo = off;
2561 	hi = lo + len;
2562 
2563 	if (lo > np->n_pushhi || hi < np->n_pushlo)
2564 		return;
2565 
2566 	if (lo <= np->n_pushlo)
2567 		np->n_pushlo = hi;
2568 	else if (hi >= np->n_pushhi)
2569 		np->n_pushhi = lo;
2570 	else {
2571 		/*
2572 		 * XXX There's only one range. If the deleted range
2573 		 * is in the middle, pick the largest of the
2574 		 * contiguous ranges that it leaves.
2575 		 */
2576 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2577 			np->n_pushhi = lo;
2578 		else
2579 			np->n_pushlo = hi;
2580 	}
2581 #ifdef fvdl_debug
2582 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2583 	    (unsigned)np->n_pushhi);
2584 #endif
2585 }
2586 
2587 /*
2588  * Map errnos to NFS error numbers. For Version 3 also filter out error
2589  * numbers not specified for the associated procedure.
2590  */
2591 int
2592 nfsrv_errmap(nd, err)
2593 	struct nfsrv_descript *nd;
2594 	int err;
2595 {
2596 	short *defaulterrp, *errp;
2597 
2598 	if (nd->nd_flag & ND_NFSV3) {
2599 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
2600 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2601 		while (*++errp) {
2602 			if (*errp == err)
2603 				return (err);
2604 			else if (*errp > err)
2605 				break;
2606 		}
2607 		return ((int)*defaulterrp);
2608 	    } else
2609 		return (err & 0xffff);
2610 	}
2611 	if (err <= ELAST)
2612 		return ((int)nfsrv_v2errmap[err - 1]);
2613 	return (NFSERR_IO);
2614 }
2615 
2616 /*
2617  * Sort the group list in increasing numerical order.
2618  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2619  *  that used to be here.)
2620  */
2621 void
2622 nfsrvw_sort(list, num)
2623         gid_t *list;
2624         int num;
2625 {
2626 	int i, j;
2627 	gid_t v;
2628 
2629 	/* Insertion sort. */
2630 	for (i = 1; i < num; i++) {
2631 		v = list[i];
2632 		/* find correct slot for value v, moving others up */
2633 		for (j = i; --j >= 0 && v < list[j];)
2634 			list[j + 1] = list[j];
2635 		list[j + 1] = v;
2636 	}
2637 }
2638 
2639 /*
2640  * copy credentials making sure that the result can be compared with memcmp().
2641  */
2642 void
2643 nfsrv_setcred(incred, outcred)
2644 	struct ucred *incred, *outcred;
2645 {
2646 	int i;
2647 
2648 	memset((caddr_t)outcred, 0, sizeof (struct ucred));
2649 	outcred->cr_ref = 1;
2650 	outcred->cr_uid = incred->cr_uid;
2651 	outcred->cr_gid = incred->cr_gid;
2652 	outcred->cr_ngroups = incred->cr_ngroups;
2653 	for (i = 0; i < incred->cr_ngroups; i++)
2654 		outcred->cr_groups[i] = incred->cr_groups[i];
2655 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2656 }
2657