1 /* $NetBSD: nfs_subs.c,v 1.151 2005/08/19 12:47:23 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 35 */ 36 37 /* 38 * Copyright 2000 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Frank van der Linden for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.151 2005/08/19 12:47:23 yamt Exp $"); 74 75 #include "fs_nfs.h" 76 #include "opt_nfs.h" 77 #include "opt_nfsserver.h" 78 #include "opt_iso.h" 79 #include "opt_inet.h" 80 81 /* 82 * These functions support the macros and help fiddle mbuf chains for 83 * the nfs op functions. They do things like create the rpc header and 84 * copy data between mbuf chains and uio lists. 85 */ 86 #include <sys/param.h> 87 #include <sys/proc.h> 88 #include <sys/systm.h> 89 #include <sys/kernel.h> 90 #include <sys/mount.h> 91 #include <sys/vnode.h> 92 #include <sys/namei.h> 93 #include <sys/mbuf.h> 94 #include <sys/socket.h> 95 #include <sys/stat.h> 96 #include <sys/malloc.h> 97 #include <sys/filedesc.h> 98 #include <sys/time.h> 99 #include <sys/dirent.h> 100 101 #include <uvm/uvm_extern.h> 102 103 #include <nfs/rpcv2.h> 104 #include <nfs/nfsproto.h> 105 #include <nfs/nfsnode.h> 106 #include <nfs/nfs.h> 107 #include <nfs/xdr_subs.h> 108 #include <nfs/nfsm_subs.h> 109 #include <nfs/nfsmount.h> 110 #include <nfs/nqnfs.h> 111 #include <nfs/nfsrtt.h> 112 #include <nfs/nfs_var.h> 113 114 #include <miscfs/specfs/specdev.h> 115 116 #include <netinet/in.h> 117 #ifdef ISO 118 #include <netiso/iso.h> 119 #endif 120 121 /* 122 * Data items converted to xdr at startup, since they are constant 123 * This is kinda hokey, but may save a little time doing byte swaps 124 */ 125 u_int32_t nfs_xdrneg1; 126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 128 rpc_auth_kerb; 129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false; 130 131 /* And other global data */ 132 const nfstype nfsv2_type[9] = 133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 134 const nfstype nfsv3_type[9] = 135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 136 const enum vtype nv2tov_type[8] = 137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 138 const enum vtype nv3tov_type[8] = 139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 140 int nfs_ticks; 141 int nfs_commitsize; 142 143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies"); 144 145 /* NFS client/server stats. */ 146 struct nfsstats nfsstats; 147 148 /* 149 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 150 */ 151 const int nfsv3_procid[NFS_NPROCS] = { 152 NFSPROC_NULL, 153 NFSPROC_GETATTR, 154 NFSPROC_SETATTR, 155 NFSPROC_NOOP, 156 NFSPROC_LOOKUP, 157 NFSPROC_READLINK, 158 NFSPROC_READ, 159 NFSPROC_NOOP, 160 NFSPROC_WRITE, 161 NFSPROC_CREATE, 162 NFSPROC_REMOVE, 163 NFSPROC_RENAME, 164 NFSPROC_LINK, 165 NFSPROC_SYMLINK, 166 NFSPROC_MKDIR, 167 NFSPROC_RMDIR, 168 NFSPROC_READDIR, 169 NFSPROC_FSSTAT, 170 NFSPROC_NOOP, 171 NFSPROC_NOOP, 172 NFSPROC_NOOP, 173 NFSPROC_NOOP, 174 NFSPROC_NOOP, 175 NFSPROC_NOOP, 176 NFSPROC_NOOP, 177 NFSPROC_NOOP 178 }; 179 180 /* 181 * and the reverse mapping from generic to Version 2 procedure numbers 182 */ 183 const int nfsv2_procid[NFS_NPROCS] = { 184 NFSV2PROC_NULL, 185 NFSV2PROC_GETATTR, 186 NFSV2PROC_SETATTR, 187 NFSV2PROC_LOOKUP, 188 NFSV2PROC_NOOP, 189 NFSV2PROC_READLINK, 190 NFSV2PROC_READ, 191 NFSV2PROC_WRITE, 192 NFSV2PROC_CREATE, 193 NFSV2PROC_MKDIR, 194 NFSV2PROC_SYMLINK, 195 NFSV2PROC_CREATE, 196 NFSV2PROC_REMOVE, 197 NFSV2PROC_RMDIR, 198 NFSV2PROC_RENAME, 199 NFSV2PROC_LINK, 200 NFSV2PROC_READDIR, 201 NFSV2PROC_NOOP, 202 NFSV2PROC_STATFS, 203 NFSV2PROC_NOOP, 204 NFSV2PROC_NOOP, 205 NFSV2PROC_NOOP, 206 NFSV2PROC_NOOP, 207 NFSV2PROC_NOOP, 208 NFSV2PROC_NOOP, 209 NFSV2PROC_NOOP, 210 }; 211 212 /* 213 * Maps errno values to nfs error numbers. 214 * Use NFSERR_IO as the catch all for ones not specifically defined in 215 * RFC 1094. 216 */ 217 static const u_char nfsrv_v2errmap[ELAST] = { 218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 234 NFSERR_IO, NFSERR_IO, 235 }; 236 237 /* 238 * Maps errno values to nfs error numbers. 239 * Although it is not obvious whether or not NFS clients really care if 240 * a returned error value is in the specified list for the procedure, the 241 * safest thing to do is filter them appropriately. For Version 2, the 242 * X/Open XNFS document is the only specification that defines error values 243 * for each RPC (The RFC simply lists all possible error values for all RPCs), 244 * so I have decided to not do this for Version 2. 245 * The first entry is the default error return and the rest are the valid 246 * errors for that RPC in increasing numeric order. 247 */ 248 static const short nfsv3err_null[] = { 249 0, 250 0, 251 }; 252 253 static const short nfsv3err_getattr[] = { 254 NFSERR_IO, 255 NFSERR_IO, 256 NFSERR_STALE, 257 NFSERR_BADHANDLE, 258 NFSERR_SERVERFAULT, 259 0, 260 }; 261 262 static const short nfsv3err_setattr[] = { 263 NFSERR_IO, 264 NFSERR_PERM, 265 NFSERR_IO, 266 NFSERR_ACCES, 267 NFSERR_INVAL, 268 NFSERR_NOSPC, 269 NFSERR_ROFS, 270 NFSERR_DQUOT, 271 NFSERR_STALE, 272 NFSERR_BADHANDLE, 273 NFSERR_NOT_SYNC, 274 NFSERR_SERVERFAULT, 275 0, 276 }; 277 278 static const short nfsv3err_lookup[] = { 279 NFSERR_IO, 280 NFSERR_NOENT, 281 NFSERR_IO, 282 NFSERR_ACCES, 283 NFSERR_NOTDIR, 284 NFSERR_NAMETOL, 285 NFSERR_STALE, 286 NFSERR_BADHANDLE, 287 NFSERR_SERVERFAULT, 288 0, 289 }; 290 291 static const short nfsv3err_access[] = { 292 NFSERR_IO, 293 NFSERR_IO, 294 NFSERR_STALE, 295 NFSERR_BADHANDLE, 296 NFSERR_SERVERFAULT, 297 0, 298 }; 299 300 static const short nfsv3err_readlink[] = { 301 NFSERR_IO, 302 NFSERR_IO, 303 NFSERR_ACCES, 304 NFSERR_INVAL, 305 NFSERR_STALE, 306 NFSERR_BADHANDLE, 307 NFSERR_NOTSUPP, 308 NFSERR_SERVERFAULT, 309 0, 310 }; 311 312 static const short nfsv3err_read[] = { 313 NFSERR_IO, 314 NFSERR_IO, 315 NFSERR_NXIO, 316 NFSERR_ACCES, 317 NFSERR_INVAL, 318 NFSERR_STALE, 319 NFSERR_BADHANDLE, 320 NFSERR_SERVERFAULT, 321 NFSERR_JUKEBOX, 322 0, 323 }; 324 325 static const short nfsv3err_write[] = { 326 NFSERR_IO, 327 NFSERR_IO, 328 NFSERR_ACCES, 329 NFSERR_INVAL, 330 NFSERR_FBIG, 331 NFSERR_NOSPC, 332 NFSERR_ROFS, 333 NFSERR_DQUOT, 334 NFSERR_STALE, 335 NFSERR_BADHANDLE, 336 NFSERR_SERVERFAULT, 337 NFSERR_JUKEBOX, 338 0, 339 }; 340 341 static const short nfsv3err_create[] = { 342 NFSERR_IO, 343 NFSERR_IO, 344 NFSERR_ACCES, 345 NFSERR_EXIST, 346 NFSERR_NOTDIR, 347 NFSERR_NOSPC, 348 NFSERR_ROFS, 349 NFSERR_NAMETOL, 350 NFSERR_DQUOT, 351 NFSERR_STALE, 352 NFSERR_BADHANDLE, 353 NFSERR_NOTSUPP, 354 NFSERR_SERVERFAULT, 355 0, 356 }; 357 358 static const short nfsv3err_mkdir[] = { 359 NFSERR_IO, 360 NFSERR_IO, 361 NFSERR_ACCES, 362 NFSERR_EXIST, 363 NFSERR_NOTDIR, 364 NFSERR_NOSPC, 365 NFSERR_ROFS, 366 NFSERR_NAMETOL, 367 NFSERR_DQUOT, 368 NFSERR_STALE, 369 NFSERR_BADHANDLE, 370 NFSERR_NOTSUPP, 371 NFSERR_SERVERFAULT, 372 0, 373 }; 374 375 static const short nfsv3err_symlink[] = { 376 NFSERR_IO, 377 NFSERR_IO, 378 NFSERR_ACCES, 379 NFSERR_EXIST, 380 NFSERR_NOTDIR, 381 NFSERR_NOSPC, 382 NFSERR_ROFS, 383 NFSERR_NAMETOL, 384 NFSERR_DQUOT, 385 NFSERR_STALE, 386 NFSERR_BADHANDLE, 387 NFSERR_NOTSUPP, 388 NFSERR_SERVERFAULT, 389 0, 390 }; 391 392 static const short nfsv3err_mknod[] = { 393 NFSERR_IO, 394 NFSERR_IO, 395 NFSERR_ACCES, 396 NFSERR_EXIST, 397 NFSERR_NOTDIR, 398 NFSERR_NOSPC, 399 NFSERR_ROFS, 400 NFSERR_NAMETOL, 401 NFSERR_DQUOT, 402 NFSERR_STALE, 403 NFSERR_BADHANDLE, 404 NFSERR_NOTSUPP, 405 NFSERR_SERVERFAULT, 406 NFSERR_BADTYPE, 407 0, 408 }; 409 410 static const short nfsv3err_remove[] = { 411 NFSERR_IO, 412 NFSERR_NOENT, 413 NFSERR_IO, 414 NFSERR_ACCES, 415 NFSERR_NOTDIR, 416 NFSERR_ROFS, 417 NFSERR_NAMETOL, 418 NFSERR_STALE, 419 NFSERR_BADHANDLE, 420 NFSERR_SERVERFAULT, 421 0, 422 }; 423 424 static const short nfsv3err_rmdir[] = { 425 NFSERR_IO, 426 NFSERR_NOENT, 427 NFSERR_IO, 428 NFSERR_ACCES, 429 NFSERR_EXIST, 430 NFSERR_NOTDIR, 431 NFSERR_INVAL, 432 NFSERR_ROFS, 433 NFSERR_NAMETOL, 434 NFSERR_NOTEMPTY, 435 NFSERR_STALE, 436 NFSERR_BADHANDLE, 437 NFSERR_NOTSUPP, 438 NFSERR_SERVERFAULT, 439 0, 440 }; 441 442 static const short nfsv3err_rename[] = { 443 NFSERR_IO, 444 NFSERR_NOENT, 445 NFSERR_IO, 446 NFSERR_ACCES, 447 NFSERR_EXIST, 448 NFSERR_XDEV, 449 NFSERR_NOTDIR, 450 NFSERR_ISDIR, 451 NFSERR_INVAL, 452 NFSERR_NOSPC, 453 NFSERR_ROFS, 454 NFSERR_MLINK, 455 NFSERR_NAMETOL, 456 NFSERR_NOTEMPTY, 457 NFSERR_DQUOT, 458 NFSERR_STALE, 459 NFSERR_BADHANDLE, 460 NFSERR_NOTSUPP, 461 NFSERR_SERVERFAULT, 462 0, 463 }; 464 465 static const short nfsv3err_link[] = { 466 NFSERR_IO, 467 NFSERR_IO, 468 NFSERR_ACCES, 469 NFSERR_EXIST, 470 NFSERR_XDEV, 471 NFSERR_NOTDIR, 472 NFSERR_INVAL, 473 NFSERR_NOSPC, 474 NFSERR_ROFS, 475 NFSERR_MLINK, 476 NFSERR_NAMETOL, 477 NFSERR_DQUOT, 478 NFSERR_STALE, 479 NFSERR_BADHANDLE, 480 NFSERR_NOTSUPP, 481 NFSERR_SERVERFAULT, 482 0, 483 }; 484 485 static const short nfsv3err_readdir[] = { 486 NFSERR_IO, 487 NFSERR_IO, 488 NFSERR_ACCES, 489 NFSERR_NOTDIR, 490 NFSERR_STALE, 491 NFSERR_BADHANDLE, 492 NFSERR_BAD_COOKIE, 493 NFSERR_TOOSMALL, 494 NFSERR_SERVERFAULT, 495 0, 496 }; 497 498 static const short nfsv3err_readdirplus[] = { 499 NFSERR_IO, 500 NFSERR_IO, 501 NFSERR_ACCES, 502 NFSERR_NOTDIR, 503 NFSERR_STALE, 504 NFSERR_BADHANDLE, 505 NFSERR_BAD_COOKIE, 506 NFSERR_NOTSUPP, 507 NFSERR_TOOSMALL, 508 NFSERR_SERVERFAULT, 509 0, 510 }; 511 512 static const short nfsv3err_fsstat[] = { 513 NFSERR_IO, 514 NFSERR_IO, 515 NFSERR_STALE, 516 NFSERR_BADHANDLE, 517 NFSERR_SERVERFAULT, 518 0, 519 }; 520 521 static const short nfsv3err_fsinfo[] = { 522 NFSERR_STALE, 523 NFSERR_STALE, 524 NFSERR_BADHANDLE, 525 NFSERR_SERVERFAULT, 526 0, 527 }; 528 529 static const short nfsv3err_pathconf[] = { 530 NFSERR_STALE, 531 NFSERR_STALE, 532 NFSERR_BADHANDLE, 533 NFSERR_SERVERFAULT, 534 0, 535 }; 536 537 static const short nfsv3err_commit[] = { 538 NFSERR_IO, 539 NFSERR_IO, 540 NFSERR_STALE, 541 NFSERR_BADHANDLE, 542 NFSERR_SERVERFAULT, 543 0, 544 }; 545 546 static const short * const nfsrv_v3errmap[] = { 547 nfsv3err_null, 548 nfsv3err_getattr, 549 nfsv3err_setattr, 550 nfsv3err_lookup, 551 nfsv3err_access, 552 nfsv3err_readlink, 553 nfsv3err_read, 554 nfsv3err_write, 555 nfsv3err_create, 556 nfsv3err_mkdir, 557 nfsv3err_symlink, 558 nfsv3err_mknod, 559 nfsv3err_remove, 560 nfsv3err_rmdir, 561 nfsv3err_rename, 562 nfsv3err_link, 563 nfsv3err_readdir, 564 nfsv3err_readdirplus, 565 nfsv3err_fsstat, 566 nfsv3err_fsinfo, 567 nfsv3err_pathconf, 568 nfsv3err_commit, 569 }; 570 571 extern struct nfsrtt nfsrtt; 572 extern time_t nqnfsstarttime; 573 extern int nqsrv_clockskew; 574 extern int nqsrv_writeslack; 575 extern int nqsrv_maxlease; 576 extern const int nqnfs_piggy[NFS_NPROCS]; 577 extern struct nfsnodehashhead *nfsnodehashtbl; 578 extern u_long nfsnodehash; 579 580 u_long nfsdirhashmask; 581 582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *)); 583 584 /* 585 * Create the header for an rpc request packet 586 * The hsiz is the size of the rest of the nfs request header. 587 * (just used to decide if a cluster is a good idea) 588 */ 589 struct mbuf * 590 nfsm_reqh(np, procid, hsiz, bposp) 591 struct nfsnode *np; 592 u_long procid; 593 int hsiz; 594 caddr_t *bposp; 595 { 596 struct mbuf *mb; 597 caddr_t bpos; 598 #ifndef NFS_V2_ONLY 599 struct nfsmount *nmp; 600 u_int32_t *tl; 601 int nqflag; 602 #endif 603 604 mb = m_get(M_WAIT, MT_DATA); 605 MCLAIM(mb, &nfs_mowner); 606 if (hsiz >= MINCLSIZE) 607 m_clget(mb, M_WAIT); 608 mb->m_len = 0; 609 bpos = mtod(mb, caddr_t); 610 611 #ifndef NFS_V2_ONLY 612 /* 613 * For NQNFS, add lease request. 614 */ 615 if (np) { 616 nmp = VFSTONFS(np->n_vnode->v_mount); 617 if (nmp->nm_flag & NFSMNT_NQNFS) { 618 nqflag = NQNFS_NEEDLEASE(np, procid); 619 if (nqflag) { 620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED); 621 *tl++ = txdr_unsigned(nqflag); 622 *tl = txdr_unsigned(nmp->nm_leaseterm); 623 } else { 624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 625 *tl = 0; 626 } 627 } 628 } 629 #endif 630 /* Finally, return values */ 631 *bposp = bpos; 632 return (mb); 633 } 634 635 /* 636 * Build the RPC header and fill in the authorization info. 637 * The authorization string argument is only used when the credentials 638 * come from outside of the kernel. 639 * Returns the head of the mbuf list. 640 */ 641 struct mbuf * 642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len, 643 verf_str, mrest, mrest_len, mbp, xidp) 644 struct ucred *cr; 645 int nmflag; 646 int procid; 647 int auth_type; 648 int auth_len; 649 char *auth_str; 650 int verf_len; 651 char *verf_str; 652 struct mbuf *mrest; 653 int mrest_len; 654 struct mbuf **mbp; 655 u_int32_t *xidp; 656 { 657 struct mbuf *mb; 658 u_int32_t *tl; 659 caddr_t bpos; 660 int i; 661 struct mbuf *mreq; 662 int siz, grpsiz, authsiz; 663 664 authsiz = nfsm_rndup(auth_len); 665 mb = m_gethdr(M_WAIT, MT_DATA); 666 MCLAIM(mb, &nfs_mowner); 667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 668 m_clget(mb, M_WAIT); 669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 671 } else { 672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 673 } 674 mb->m_len = 0; 675 mreq = mb; 676 bpos = mtod(mb, caddr_t); 677 678 /* 679 * First the RPC header. 680 */ 681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 682 683 *tl++ = *xidp = nfs_getxid(); 684 *tl++ = rpc_call; 685 *tl++ = rpc_vers; 686 if (nmflag & NFSMNT_NQNFS) { 687 *tl++ = txdr_unsigned(NQNFS_PROG); 688 *tl++ = txdr_unsigned(NQNFS_VER3); 689 } else { 690 *tl++ = txdr_unsigned(NFS_PROG); 691 if (nmflag & NFSMNT_NFSV3) 692 *tl++ = txdr_unsigned(NFS_VER3); 693 else 694 *tl++ = txdr_unsigned(NFS_VER2); 695 } 696 if (nmflag & NFSMNT_NFSV3) 697 *tl++ = txdr_unsigned(procid); 698 else 699 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 700 701 /* 702 * And then the authorization cred. 703 */ 704 *tl++ = txdr_unsigned(auth_type); 705 *tl = txdr_unsigned(authsiz); 706 switch (auth_type) { 707 case RPCAUTH_UNIX: 708 nfsm_build(tl, u_int32_t *, auth_len); 709 *tl++ = 0; /* stamp ?? */ 710 *tl++ = 0; /* NULL hostname */ 711 *tl++ = txdr_unsigned(cr->cr_uid); 712 *tl++ = txdr_unsigned(cr->cr_gid); 713 grpsiz = (auth_len >> 2) - 5; 714 *tl++ = txdr_unsigned(grpsiz); 715 for (i = 0; i < grpsiz; i++) 716 *tl++ = txdr_unsigned(cr->cr_groups[i]); 717 break; 718 case RPCAUTH_KERB4: 719 siz = auth_len; 720 while (siz > 0) { 721 if (M_TRAILINGSPACE(mb) == 0) { 722 struct mbuf *mb2; 723 mb2 = m_get(M_WAIT, MT_DATA); 724 MCLAIM(mb2, &nfs_mowner); 725 if (siz >= MINCLSIZE) 726 m_clget(mb2, M_WAIT); 727 mb->m_next = mb2; 728 mb = mb2; 729 mb->m_len = 0; 730 bpos = mtod(mb, caddr_t); 731 } 732 i = min(siz, M_TRAILINGSPACE(mb)); 733 memcpy(bpos, auth_str, i); 734 mb->m_len += i; 735 auth_str += i; 736 bpos += i; 737 siz -= i; 738 } 739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 740 for (i = 0; i < siz; i++) 741 *bpos++ = '\0'; 742 mb->m_len += siz; 743 } 744 break; 745 }; 746 747 /* 748 * And the verifier... 749 */ 750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 751 if (verf_str) { 752 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 753 *tl = txdr_unsigned(verf_len); 754 siz = verf_len; 755 while (siz > 0) { 756 if (M_TRAILINGSPACE(mb) == 0) { 757 struct mbuf *mb2; 758 mb2 = m_get(M_WAIT, MT_DATA); 759 MCLAIM(mb2, &nfs_mowner); 760 if (siz >= MINCLSIZE) 761 m_clget(mb2, M_WAIT); 762 mb->m_next = mb2; 763 mb = mb2; 764 mb->m_len = 0; 765 bpos = mtod(mb, caddr_t); 766 } 767 i = min(siz, M_TRAILINGSPACE(mb)); 768 memcpy(bpos, verf_str, i); 769 mb->m_len += i; 770 verf_str += i; 771 bpos += i; 772 siz -= i; 773 } 774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 775 for (i = 0; i < siz; i++) 776 *bpos++ = '\0'; 777 mb->m_len += siz; 778 } 779 } else { 780 *tl++ = txdr_unsigned(RPCAUTH_NULL); 781 *tl = 0; 782 } 783 mb->m_next = mrest; 784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 785 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 786 *mbp = mb; 787 return (mreq); 788 } 789 790 /* 791 * copies mbuf chain to the uio scatter/gather list 792 */ 793 int 794 nfsm_mbuftouio(mrep, uiop, siz, dpos) 795 struct mbuf **mrep; 796 struct uio *uiop; 797 int siz; 798 caddr_t *dpos; 799 { 800 char *mbufcp, *uiocp; 801 int xfer, left, len; 802 struct mbuf *mp; 803 long uiosiz, rem; 804 int error = 0; 805 806 mp = *mrep; 807 mbufcp = *dpos; 808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp; 809 rem = nfsm_rndup(siz)-siz; 810 while (siz > 0) { 811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 812 return (EFBIG); 813 left = uiop->uio_iov->iov_len; 814 uiocp = uiop->uio_iov->iov_base; 815 if (left > siz) 816 left = siz; 817 uiosiz = left; 818 while (left > 0) { 819 while (len == 0) { 820 mp = mp->m_next; 821 if (mp == NULL) 822 return (EBADRPC); 823 mbufcp = mtod(mp, caddr_t); 824 len = mp->m_len; 825 } 826 xfer = (left > len) ? len : left; 827 #ifdef notdef 828 /* Not Yet.. */ 829 if (uiop->uio_iov->iov_op != NULL) 830 (*(uiop->uio_iov->iov_op)) 831 (mbufcp, uiocp, xfer); 832 else 833 #endif 834 if (uiop->uio_segflg == UIO_SYSSPACE) 835 memcpy(uiocp, mbufcp, xfer); 836 else 837 if ((error = copyout_proc(uiop->uio_procp, 838 mbufcp, uiocp, xfer)) != 0) 839 return error; 840 left -= xfer; 841 len -= xfer; 842 mbufcp += xfer; 843 uiocp += xfer; 844 uiop->uio_offset += xfer; 845 uiop->uio_resid -= xfer; 846 } 847 if (uiop->uio_iov->iov_len <= siz) { 848 uiop->uio_iovcnt--; 849 uiop->uio_iov++; 850 } else { 851 uiop->uio_iov->iov_base = 852 (caddr_t)uiop->uio_iov->iov_base + uiosiz; 853 uiop->uio_iov->iov_len -= uiosiz; 854 } 855 siz -= uiosiz; 856 } 857 *dpos = mbufcp; 858 *mrep = mp; 859 if (rem > 0) { 860 if (len < rem) 861 error = nfs_adv(mrep, dpos, rem, len); 862 else 863 *dpos += rem; 864 } 865 return (error); 866 } 867 868 /* 869 * copies a uio scatter/gather list to an mbuf chain. 870 * NOTE: can ony handle iovcnt == 1 871 */ 872 int 873 nfsm_uiotombuf(uiop, mq, siz, bpos) 874 struct uio *uiop; 875 struct mbuf **mq; 876 int siz; 877 caddr_t *bpos; 878 { 879 char *uiocp; 880 struct mbuf *mp, *mp2; 881 int xfer, left, mlen; 882 int uiosiz, clflg, rem; 883 char *cp; 884 885 #ifdef DIAGNOSTIC 886 if (uiop->uio_iovcnt != 1) 887 panic("nfsm_uiotombuf: iovcnt != 1"); 888 #endif 889 890 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 891 clflg = 1; 892 else 893 clflg = 0; 894 rem = nfsm_rndup(siz)-siz; 895 mp = mp2 = *mq; 896 while (siz > 0) { 897 left = uiop->uio_iov->iov_len; 898 uiocp = uiop->uio_iov->iov_base; 899 if (left > siz) 900 left = siz; 901 uiosiz = left; 902 while (left > 0) { 903 mlen = M_TRAILINGSPACE(mp); 904 if (mlen == 0) { 905 mp = m_get(M_WAIT, MT_DATA); 906 MCLAIM(mp, &nfs_mowner); 907 if (clflg) 908 m_clget(mp, M_WAIT); 909 mp->m_len = 0; 910 mp2->m_next = mp; 911 mp2 = mp; 912 mlen = M_TRAILINGSPACE(mp); 913 } 914 xfer = (left > mlen) ? mlen : left; 915 cp = mtod(mp, caddr_t) + mp->m_len; 916 #ifdef notdef 917 /* Not Yet.. */ 918 if (uiop->uio_iov->iov_op != NULL) 919 (*(uiop->uio_iov->iov_op))(uiocp, cp, xfer); 920 else 921 #endif 922 if (uiop->uio_segflg == UIO_SYSSPACE) 923 (void)memcpy(cp, uiocp, xfer); 924 else 925 /*XXX: Check error */ 926 (void)copyin_proc(uiop->uio_procp, uiocp, 927 cp, xfer); 928 mp->m_len += xfer; 929 left -= xfer; 930 uiocp += xfer; 931 uiop->uio_offset += xfer; 932 uiop->uio_resid -= xfer; 933 } 934 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base + 935 uiosiz; 936 uiop->uio_iov->iov_len -= uiosiz; 937 siz -= uiosiz; 938 } 939 if (rem > 0) { 940 if (rem > M_TRAILINGSPACE(mp)) { 941 mp = m_get(M_WAIT, MT_DATA); 942 MCLAIM(mp, &nfs_mowner); 943 mp->m_len = 0; 944 mp2->m_next = mp; 945 } 946 cp = mtod(mp, caddr_t) + mp->m_len; 947 for (left = 0; left < rem; left++) 948 *cp++ = '\0'; 949 mp->m_len += rem; 950 *bpos = cp; 951 } else 952 *bpos = mtod(mp, caddr_t)+mp->m_len; 953 *mq = mp; 954 return (0); 955 } 956 957 /* 958 * Get at least "siz" bytes of correctly aligned data. 959 * When called the mbuf pointers are not necessarily correct, 960 * dsosp points to what ought to be in m_data and left contains 961 * what ought to be in m_len. 962 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 963 * cases. (The macros use the vars. dpos and dpos2) 964 */ 965 int 966 nfsm_disct(mdp, dposp, siz, left, cp2) 967 struct mbuf **mdp; 968 caddr_t *dposp; 969 int siz; 970 int left; 971 caddr_t *cp2; 972 { 973 struct mbuf *m1, *m2; 974 struct mbuf *havebuf = NULL; 975 caddr_t src = *dposp; 976 caddr_t dst; 977 int len; 978 979 #ifdef DEBUG 980 if (left < 0) 981 panic("nfsm_disct: left < 0"); 982 #endif 983 m1 = *mdp; 984 /* 985 * Skip through the mbuf chain looking for an mbuf with 986 * some data. If the first mbuf found has enough data 987 * and it is correctly aligned return it. 988 */ 989 while (left == 0) { 990 havebuf = m1; 991 *mdp = m1 = m1->m_next; 992 if (m1 == NULL) 993 return (EBADRPC); 994 src = mtod(m1, caddr_t); 995 left = m1->m_len; 996 /* 997 * If we start a new mbuf and it is big enough 998 * and correctly aligned just return it, don't 999 * do any pull up. 1000 */ 1001 if (left >= siz && nfsm_aligned(src)) { 1002 *cp2 = src; 1003 *dposp = src + siz; 1004 return (0); 1005 } 1006 } 1007 if (m1->m_flags & M_EXT) { 1008 if (havebuf) { 1009 /* If the first mbuf with data has external data 1010 * and there is a previous empty mbuf use it 1011 * to move the data into. 1012 */ 1013 m2 = m1; 1014 *mdp = m1 = havebuf; 1015 if (m1->m_flags & M_EXT) { 1016 MEXTREMOVE(m1); 1017 } 1018 } else { 1019 /* 1020 * If the first mbuf has a external data 1021 * and there is no previous empty mbuf 1022 * allocate a new mbuf and move the external 1023 * data to the new mbuf. Also make the first 1024 * mbuf look empty. 1025 */ 1026 m2 = m_get(M_WAIT, MT_DATA); 1027 m2->m_ext = m1->m_ext; 1028 m2->m_data = src; 1029 m2->m_len = left; 1030 MCLADDREFERENCE(m1, m2); 1031 MEXTREMOVE(m1); 1032 m2->m_next = m1->m_next; 1033 m1->m_next = m2; 1034 } 1035 m1->m_len = 0; 1036 if (m1->m_flags & M_PKTHDR) 1037 dst = m1->m_pktdat; 1038 else 1039 dst = m1->m_dat; 1040 m1->m_data = dst; 1041 } else { 1042 /* 1043 * If the first mbuf has no external data 1044 * move the data to the front of the mbuf. 1045 */ 1046 if (m1->m_flags & M_PKTHDR) 1047 dst = m1->m_pktdat; 1048 else 1049 dst = m1->m_dat; 1050 m1->m_data = dst; 1051 if (dst != src) 1052 memmove(dst, src, left); 1053 dst += left; 1054 m1->m_len = left; 1055 m2 = m1->m_next; 1056 } 1057 *cp2 = m1->m_data; 1058 *dposp = mtod(m1, caddr_t) + siz; 1059 /* 1060 * Loop through mbufs pulling data up into first mbuf until 1061 * the first mbuf is full or there is no more data to 1062 * pullup. 1063 */ 1064 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) { 1065 if ((len = min(len, m2->m_len)) != 0) 1066 memcpy(dst, m2->m_data, len); 1067 m1->m_len += len; 1068 dst += len; 1069 m2->m_data += len; 1070 m2->m_len -= len; 1071 m2 = m2->m_next; 1072 } 1073 if (m1->m_len < siz) 1074 return (EBADRPC); 1075 return (0); 1076 } 1077 1078 /* 1079 * Advance the position in the mbuf chain. 1080 */ 1081 int 1082 nfs_adv(mdp, dposp, offs, left) 1083 struct mbuf **mdp; 1084 caddr_t *dposp; 1085 int offs; 1086 int left; 1087 { 1088 struct mbuf *m; 1089 int s; 1090 1091 m = *mdp; 1092 s = left; 1093 while (s < offs) { 1094 offs -= s; 1095 m = m->m_next; 1096 if (m == NULL) 1097 return (EBADRPC); 1098 s = m->m_len; 1099 } 1100 *mdp = m; 1101 *dposp = mtod(m, caddr_t)+offs; 1102 return (0); 1103 } 1104 1105 /* 1106 * Copy a string into mbufs for the hard cases... 1107 */ 1108 int 1109 nfsm_strtmbuf(mb, bpos, cp, siz) 1110 struct mbuf **mb; 1111 char **bpos; 1112 const char *cp; 1113 long siz; 1114 { 1115 struct mbuf *m1 = NULL, *m2; 1116 long left, xfer, len, tlen; 1117 u_int32_t *tl; 1118 int putsize; 1119 1120 putsize = 1; 1121 m2 = *mb; 1122 left = M_TRAILINGSPACE(m2); 1123 if (left > 0) { 1124 tl = ((u_int32_t *)(*bpos)); 1125 *tl++ = txdr_unsigned(siz); 1126 putsize = 0; 1127 left -= NFSX_UNSIGNED; 1128 m2->m_len += NFSX_UNSIGNED; 1129 if (left > 0) { 1130 memcpy((caddr_t) tl, cp, left); 1131 siz -= left; 1132 cp += left; 1133 m2->m_len += left; 1134 left = 0; 1135 } 1136 } 1137 /* Loop around adding mbufs */ 1138 while (siz > 0) { 1139 m1 = m_get(M_WAIT, MT_DATA); 1140 MCLAIM(m1, &nfs_mowner); 1141 if (siz > MLEN) 1142 m_clget(m1, M_WAIT); 1143 m1->m_len = NFSMSIZ(m1); 1144 m2->m_next = m1; 1145 m2 = m1; 1146 tl = mtod(m1, u_int32_t *); 1147 tlen = 0; 1148 if (putsize) { 1149 *tl++ = txdr_unsigned(siz); 1150 m1->m_len -= NFSX_UNSIGNED; 1151 tlen = NFSX_UNSIGNED; 1152 putsize = 0; 1153 } 1154 if (siz < m1->m_len) { 1155 len = nfsm_rndup(siz); 1156 xfer = siz; 1157 if (xfer < len) 1158 *(tl+(xfer>>2)) = 0; 1159 } else { 1160 xfer = len = m1->m_len; 1161 } 1162 memcpy((caddr_t) tl, cp, xfer); 1163 m1->m_len = len+tlen; 1164 siz -= xfer; 1165 cp += xfer; 1166 } 1167 *mb = m1; 1168 *bpos = mtod(m1, caddr_t)+m1->m_len; 1169 return (0); 1170 } 1171 1172 /* 1173 * Directory caching routines. They work as follows: 1174 * - a cache is maintained per VDIR nfsnode. 1175 * - for each offset cookie that is exported to userspace, and can 1176 * thus be thrown back at us as an offset to VOP_READDIR, store 1177 * information in the cache. 1178 * - cached are: 1179 * - cookie itself 1180 * - blocknumber (essentially just a search key in the buffer cache) 1181 * - entry number in block. 1182 * - offset cookie of block in which this entry is stored 1183 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1184 * - entries are looked up in a hash table 1185 * - also maintained is an LRU list of entries, used to determine 1186 * which ones to delete if the cache grows too large. 1187 * - if 32 <-> 64 translation mode is requested for a filesystem, 1188 * the cache also functions as a translation table 1189 * - in the translation case, invalidating the cache does not mean 1190 * flushing it, but just marking entries as invalid, except for 1191 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1192 * still be able to use the cache as a translation table. 1193 * - 32 bit cookies are uniquely created by combining the hash table 1194 * entry value, and one generation count per hash table entry, 1195 * incremented each time an entry is appended to the chain. 1196 * - the cache is invalidated each time a direcory is modified 1197 * - sanity checks are also done; if an entry in a block turns 1198 * out not to have a matching cookie, the cache is invalidated 1199 * and a new block starting from the wanted offset is fetched from 1200 * the server. 1201 * - directory entries as read from the server are extended to contain 1202 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1203 * the cache and exporting them to userspace through the cookie 1204 * argument to VOP_READDIR. 1205 */ 1206 1207 u_long 1208 nfs_dirhash(off) 1209 off_t off; 1210 { 1211 int i; 1212 char *cp = (char *)&off; 1213 u_long sum = 0L; 1214 1215 for (i = 0 ; i < sizeof (off); i++) 1216 sum += *cp++; 1217 1218 return sum; 1219 } 1220 1221 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock) 1222 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np)) 1223 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np)) 1224 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np))) 1225 1226 void 1227 nfs_initdircache(vp) 1228 struct vnode *vp; 1229 { 1230 struct nfsnode *np = VTONFS(vp); 1231 struct nfsdirhashhead *dircache; 1232 1233 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF, 1234 M_WAITOK, &nfsdirhashmask); 1235 1236 NFSDC_LOCK(np); 1237 if (np->n_dircache == NULL) { 1238 np->n_dircachesize = 0; 1239 np->n_dircache = dircache; 1240 dircache = NULL; 1241 TAILQ_INIT(&np->n_dirchain); 1242 } 1243 NFSDC_UNLOCK(np); 1244 if (dircache) 1245 hashdone(dircache, M_NFSDIROFF); 1246 } 1247 1248 void 1249 nfs_initdirxlatecookie(vp) 1250 struct vnode *vp; 1251 { 1252 struct nfsnode *np = VTONFS(vp); 1253 unsigned *dirgens; 1254 1255 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1256 1257 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, 1258 M_WAITOK|M_ZERO); 1259 NFSDC_LOCK(np); 1260 if (np->n_dirgens == NULL) { 1261 np->n_dirgens = dirgens; 1262 dirgens = NULL; 1263 } 1264 NFSDC_UNLOCK(np); 1265 if (dirgens) 1266 free(dirgens, M_NFSDIROFF); 1267 } 1268 1269 static const struct nfsdircache dzero; 1270 1271 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *)); 1272 static void nfs_putdircache_unlocked __P((struct nfsnode *, 1273 struct nfsdircache *)); 1274 1275 static void 1276 nfs_unlinkdircache(np, ndp) 1277 struct nfsnode *np; 1278 struct nfsdircache *ndp; 1279 { 1280 1281 NFSDC_ASSERT_LOCKED(np); 1282 KASSERT(ndp != &dzero); 1283 1284 if (LIST_NEXT(ndp, dc_hash) == (void *)-1) 1285 return; 1286 1287 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1288 LIST_REMOVE(ndp, dc_hash); 1289 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */ 1290 1291 nfs_putdircache_unlocked(np, ndp); 1292 } 1293 1294 void 1295 nfs_putdircache(np, ndp) 1296 struct nfsnode *np; 1297 struct nfsdircache *ndp; 1298 { 1299 int ref; 1300 1301 if (ndp == &dzero) 1302 return; 1303 1304 KASSERT(ndp->dc_refcnt > 0); 1305 NFSDC_LOCK(np); 1306 ref = --ndp->dc_refcnt; 1307 NFSDC_UNLOCK(np); 1308 1309 if (ref == 0) 1310 free(ndp, M_NFSDIROFF); 1311 } 1312 1313 static void 1314 nfs_putdircache_unlocked(np, ndp) 1315 struct nfsnode *np; 1316 struct nfsdircache *ndp; 1317 { 1318 int ref; 1319 1320 NFSDC_ASSERT_LOCKED(np); 1321 1322 if (ndp == &dzero) 1323 return; 1324 1325 KASSERT(ndp->dc_refcnt > 0); 1326 ref = --ndp->dc_refcnt; 1327 if (ref == 0) 1328 free(ndp, M_NFSDIROFF); 1329 } 1330 1331 struct nfsdircache * 1332 nfs_searchdircache(vp, off, do32, hashent) 1333 struct vnode *vp; 1334 off_t off; 1335 int do32; 1336 int *hashent; 1337 { 1338 struct nfsdirhashhead *ndhp; 1339 struct nfsdircache *ndp = NULL; 1340 struct nfsnode *np = VTONFS(vp); 1341 unsigned ent; 1342 1343 /* 1344 * Zero is always a valid cookie. 1345 */ 1346 if (off == 0) 1347 /* XXXUNCONST */ 1348 return (struct nfsdircache *)__UNCONST(&dzero); 1349 1350 if (!np->n_dircache) 1351 return NULL; 1352 1353 /* 1354 * We use a 32bit cookie as search key, directly reconstruct 1355 * the hashentry. Else use the hashfunction. 1356 */ 1357 if (do32) { 1358 ent = (u_int32_t)off >> 24; 1359 if (ent >= NFS_DIRHASHSIZ) 1360 return NULL; 1361 ndhp = &np->n_dircache[ent]; 1362 } else { 1363 ndhp = NFSDIRHASH(np, off); 1364 } 1365 1366 if (hashent) 1367 *hashent = (int)(ndhp - np->n_dircache); 1368 1369 NFSDC_LOCK(np); 1370 if (do32) { 1371 LIST_FOREACH(ndp, ndhp, dc_hash) { 1372 if (ndp->dc_cookie32 == (u_int32_t)off) { 1373 /* 1374 * An invalidated entry will become the 1375 * start of a new block fetched from 1376 * the server. 1377 */ 1378 if (ndp->dc_flags & NFSDC_INVALID) { 1379 ndp->dc_blkcookie = ndp->dc_cookie; 1380 ndp->dc_entry = 0; 1381 ndp->dc_flags &= ~NFSDC_INVALID; 1382 } 1383 break; 1384 } 1385 } 1386 } else { 1387 LIST_FOREACH(ndp, ndhp, dc_hash) { 1388 if (ndp->dc_cookie == off) 1389 break; 1390 } 1391 } 1392 if (ndp != NULL) 1393 ndp->dc_refcnt++; 1394 NFSDC_UNLOCK(np); 1395 return ndp; 1396 } 1397 1398 1399 struct nfsdircache * 1400 nfs_enterdircache(vp, off, blkoff, en, blkno) 1401 struct vnode *vp; 1402 off_t off, blkoff; 1403 int en; 1404 daddr_t blkno; 1405 { 1406 struct nfsnode *np = VTONFS(vp); 1407 struct nfsdirhashhead *ndhp; 1408 struct nfsdircache *ndp = NULL; 1409 struct nfsdircache *newndp = NULL; 1410 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1411 int hashent, gen, overwrite; 1412 1413 /* 1414 * XXX refuse entries for offset 0. amd(8) erroneously sets 1415 * cookie 0 for the '.' entry, making this necessary. This 1416 * isn't so bad, as 0 is a special case anyway. 1417 */ 1418 if (off == 0) 1419 /* XXXUNCONST */ 1420 return (struct nfsdircache *)__UNCONST(&dzero); 1421 1422 if (!np->n_dircache) 1423 /* 1424 * XXX would like to do this in nfs_nget but vtype 1425 * isn't known at that time. 1426 */ 1427 nfs_initdircache(vp); 1428 1429 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens) 1430 nfs_initdirxlatecookie(vp); 1431 1432 retry: 1433 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1434 1435 NFSDC_LOCK(np); 1436 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) { 1437 /* 1438 * Overwriting an old entry. Check if it's the same. 1439 * If so, just return. If not, remove the old entry. 1440 */ 1441 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1442 goto done; 1443 nfs_unlinkdircache(np, ndp); 1444 nfs_putdircache_unlocked(np, ndp); 1445 ndp = NULL; 1446 } 1447 1448 ndhp = &np->n_dircache[hashent]; 1449 1450 if (!ndp) { 1451 if (newndp == NULL) { 1452 NFSDC_UNLOCK(np); 1453 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK); 1454 newndp->dc_refcnt = 1; 1455 LIST_NEXT(newndp, dc_hash) = (void *)-1; 1456 goto retry; 1457 } 1458 ndp = newndp; 1459 newndp = NULL; 1460 overwrite = 0; 1461 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1462 /* 1463 * We're allocating a new entry, so bump the 1464 * generation number. 1465 */ 1466 gen = ++np->n_dirgens[hashent]; 1467 if (gen == 0) { 1468 np->n_dirgens[hashent]++; 1469 gen++; 1470 } 1471 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1472 } 1473 } else 1474 overwrite = 1; 1475 1476 ndp->dc_cookie = off; 1477 ndp->dc_blkcookie = blkoff; 1478 ndp->dc_entry = en; 1479 ndp->dc_flags = 0; 1480 1481 if (overwrite) 1482 goto done; 1483 1484 /* 1485 * If the maximum directory cookie cache size has been reached 1486 * for this node, take one off the front. The idea is that 1487 * directories are typically read front-to-back once, so that 1488 * the oldest entries can be thrown away without much performance 1489 * loss. 1490 */ 1491 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1492 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain)); 1493 } else 1494 np->n_dircachesize++; 1495 1496 KASSERT(ndp->dc_refcnt == 1); 1497 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1498 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1499 ndp->dc_refcnt++; 1500 done: 1501 KASSERT(ndp->dc_refcnt > 0); 1502 NFSDC_UNLOCK(np); 1503 if (newndp) 1504 nfs_putdircache(np, newndp); 1505 return ndp; 1506 } 1507 1508 void 1509 nfs_invaldircache(vp, flags) 1510 struct vnode *vp; 1511 int flags; 1512 { 1513 struct nfsnode *np = VTONFS(vp); 1514 struct nfsdircache *ndp = NULL; 1515 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1516 const boolean_t forcefree = flags & NFS_INVALDIRCACHE_FORCE; 1517 1518 #ifdef DIAGNOSTIC 1519 if (vp->v_type != VDIR) 1520 panic("nfs: invaldircache: not dir"); 1521 #endif 1522 1523 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0) 1524 np->n_flag &= ~NEOFVALID; 1525 1526 if (!np->n_dircache) 1527 return; 1528 1529 NFSDC_LOCK(np); 1530 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1531 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) { 1532 KASSERT(!forcefree || ndp->dc_refcnt == 1); 1533 nfs_unlinkdircache(np, ndp); 1534 } 1535 np->n_dircachesize = 0; 1536 if (forcefree && np->n_dirgens) { 1537 FREE(np->n_dirgens, M_NFSDIROFF); 1538 np->n_dirgens = NULL; 1539 } 1540 } else { 1541 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) 1542 ndp->dc_flags |= NFSDC_INVALID; 1543 } 1544 1545 NFSDC_UNLOCK(np); 1546 } 1547 1548 /* 1549 * Called once before VFS init to initialize shared and 1550 * server-specific data structures. 1551 */ 1552 void 1553 nfs_init() 1554 { 1555 nfsrtt.pos = 0; 1556 rpc_vers = txdr_unsigned(RPC_VER2); 1557 rpc_call = txdr_unsigned(RPC_CALL); 1558 rpc_reply = txdr_unsigned(RPC_REPLY); 1559 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1560 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1561 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1562 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1563 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1564 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1565 nfs_prog = txdr_unsigned(NFS_PROG); 1566 nqnfs_prog = txdr_unsigned(NQNFS_PROG); 1567 nfs_true = txdr_unsigned(TRUE); 1568 nfs_false = txdr_unsigned(FALSE); 1569 nfs_xdrneg1 = txdr_unsigned(-1); 1570 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1571 if (nfs_ticks < 1) 1572 nfs_ticks = 1; 1573 #ifdef NFSSERVER 1574 nfsrv_init(0); /* Init server data structures */ 1575 nfsrv_initcache(); /* Init the server request cache */ 1576 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 1577 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr); 1578 #endif /* NFSSERVER */ 1579 1580 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY) 1581 /* 1582 * Initialize the nqnfs data structures. 1583 */ 1584 if (nqnfsstarttime == 0) { 1585 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease 1586 + nqsrv_clockskew + nqsrv_writeslack; 1587 NQLOADNOVRAM(nqnfsstarttime); 1588 CIRCLEQ_INIT(&nqtimerhead); 1589 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE, 1590 M_WAITOK, &nqfhhash); 1591 } 1592 #endif 1593 1594 exithook_establish(nfs_exit, NULL); 1595 1596 /* 1597 * Initialize reply list and start timer 1598 */ 1599 TAILQ_INIT(&nfs_reqq); 1600 nfs_timer(NULL); 1601 MOWNER_ATTACH(&nfs_mowner); 1602 1603 #ifdef NFS 1604 /* Initialize the kqueue structures */ 1605 nfs_kqinit(); 1606 /* Initialize the iod structures */ 1607 nfs_iodinit(); 1608 #endif 1609 } 1610 1611 #ifdef NFS 1612 /* 1613 * Called once at VFS init to initialize client-specific data structures. 1614 */ 1615 void 1616 nfs_vfs_init() 1617 { 1618 nfs_nhinit(); /* Init the nfsnode table */ 1619 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4); 1620 } 1621 1622 void 1623 nfs_vfs_reinit() 1624 { 1625 nfs_nhreinit(); 1626 } 1627 1628 void 1629 nfs_vfs_done() 1630 { 1631 nfs_nhdone(); 1632 } 1633 1634 /* 1635 * Attribute cache routines. 1636 * nfs_loadattrcache() - loads or updates the cache contents from attributes 1637 * that are on the mbuf list 1638 * nfs_getattrcache() - returns valid attributes if found in cache, returns 1639 * error otherwise 1640 */ 1641 1642 /* 1643 * Load the attribute cache (that lives in the nfsnode entry) with 1644 * the values on the mbuf list and 1645 * Iff vap not NULL 1646 * copy the attributes to *vaper 1647 */ 1648 int 1649 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags) 1650 struct vnode **vpp; 1651 struct mbuf **mdp; 1652 caddr_t *dposp; 1653 struct vattr *vaper; 1654 int flags; 1655 { 1656 int32_t t1; 1657 caddr_t cp2; 1658 int error = 0; 1659 struct mbuf *md; 1660 int v3 = NFS_ISV3(*vpp); 1661 1662 md = *mdp; 1663 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp; 1664 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2); 1665 if (error) 1666 return (error); 1667 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags); 1668 } 1669 1670 int 1671 nfs_loadattrcache(vpp, fp, vaper, flags) 1672 struct vnode **vpp; 1673 struct nfs_fattr *fp; 1674 struct vattr *vaper; 1675 int flags; 1676 { 1677 struct vnode *vp = *vpp; 1678 struct vattr *vap; 1679 int v3 = NFS_ISV3(vp); 1680 enum vtype vtyp; 1681 u_short vmode; 1682 struct timespec mtime; 1683 struct timespec ctime; 1684 struct vnode *nvp; 1685 int32_t rdev; 1686 struct nfsnode *np; 1687 extern int (**spec_nfsv2nodeop_p) __P((void *)); 1688 uid_t uid; 1689 gid_t gid; 1690 1691 if (v3) { 1692 vtyp = nfsv3tov_type(fp->fa_type); 1693 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1694 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1), 1695 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2)); 1696 fxdr_nfsv3time(&fp->fa3_mtime, &mtime); 1697 fxdr_nfsv3time(&fp->fa3_ctime, &ctime); 1698 } else { 1699 vtyp = nfsv2tov_type(fp->fa_type); 1700 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1701 if (vtyp == VNON || vtyp == VREG) 1702 vtyp = IFTOVT(vmode); 1703 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); 1704 fxdr_nfsv2time(&fp->fa2_mtime, &mtime); 1705 ctime.tv_sec = fxdr_unsigned(u_int32_t, 1706 fp->fa2_ctime.nfsv2_sec); 1707 ctime.tv_nsec = 0; 1708 1709 /* 1710 * Really ugly NFSv2 kludge. 1711 */ 1712 if (vtyp == VCHR && rdev == 0xffffffff) 1713 vtyp = VFIFO; 1714 } 1715 1716 vmode &= ALLPERMS; 1717 1718 /* 1719 * If v_type == VNON it is a new node, so fill in the v_type, 1720 * n_mtime fields. Check to see if it represents a special 1721 * device, and if so, check for a possible alias. Once the 1722 * correct vnode has been obtained, fill in the rest of the 1723 * information. 1724 */ 1725 np = VTONFS(vp); 1726 if (vp->v_type == VNON) { 1727 vp->v_type = vtyp; 1728 if (vp->v_type == VFIFO) { 1729 extern int (**fifo_nfsv2nodeop_p) __P((void *)); 1730 vp->v_op = fifo_nfsv2nodeop_p; 1731 } else if (vp->v_type == VREG) { 1732 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0); 1733 } else if (vp->v_type == VCHR || vp->v_type == VBLK) { 1734 vp->v_op = spec_nfsv2nodeop_p; 1735 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount); 1736 if (nvp) { 1737 /* 1738 * Discard unneeded vnode, but save its nfsnode. 1739 * Since the nfsnode does not have a lock, its 1740 * vnode lock has to be carried over. 1741 */ 1742 /* 1743 * XXX is the old node sure to be locked here? 1744 */ 1745 KASSERT(lockstatus(&vp->v_lock) == 1746 LK_EXCLUSIVE); 1747 nvp->v_data = vp->v_data; 1748 vp->v_data = NULL; 1749 VOP_UNLOCK(vp, 0); 1750 vp->v_op = spec_vnodeop_p; 1751 vrele(vp); 1752 vgone(vp); 1753 lockmgr(&nvp->v_lock, LK_EXCLUSIVE, 1754 &nvp->v_interlock); 1755 /* 1756 * Reinitialize aliased node. 1757 */ 1758 np->n_vnode = nvp; 1759 *vpp = vp = nvp; 1760 } 1761 } 1762 np->n_mtime = mtime; 1763 } 1764 uid = fxdr_unsigned(uid_t, fp->fa_uid); 1765 gid = fxdr_unsigned(gid_t, fp->fa_gid); 1766 vap = np->n_vattr; 1767 1768 /* 1769 * Invalidate access cache if uid, gid, mode or ctime changed. 1770 */ 1771 if (np->n_accstamp != -1 && 1772 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode 1773 || timespeccmp(&ctime, &vap->va_ctime, !=))) 1774 np->n_accstamp = -1; 1775 1776 vap->va_type = vtyp; 1777 vap->va_mode = vmode; 1778 vap->va_rdev = (dev_t)rdev; 1779 vap->va_mtime = mtime; 1780 vap->va_ctime = ctime; 1781 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 1782 switch (vtyp) { 1783 case VDIR: 1784 vap->va_blocksize = NFS_DIRFRAGSIZ; 1785 break; 1786 case VBLK: 1787 vap->va_blocksize = BLKDEV_IOSIZE; 1788 break; 1789 case VCHR: 1790 vap->va_blocksize = MAXBSIZE; 1791 break; 1792 default: 1793 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize : 1794 fxdr_unsigned(int32_t, fp->fa2_blocksize); 1795 break; 1796 } 1797 if (v3) { 1798 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1799 vap->va_uid = uid; 1800 vap->va_gid = gid; 1801 vap->va_size = fxdr_hyper(&fp->fa3_size); 1802 vap->va_bytes = fxdr_hyper(&fp->fa3_used); 1803 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid); 1804 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); 1805 vap->va_flags = 0; 1806 vap->va_filerev = 0; 1807 } else { 1808 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1809 vap->va_uid = uid; 1810 vap->va_gid = gid; 1811 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); 1812 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks) 1813 * NFS_FABLKSIZE; 1814 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); 1815 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); 1816 vap->va_flags = 0; 1817 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec); 1818 vap->va_filerev = 0; 1819 } 1820 if (vap->va_size != np->n_size) { 1821 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) { 1822 vap->va_size = np->n_size; 1823 } else { 1824 np->n_size = vap->va_size; 1825 if (vap->va_type == VREG) { 1826 /* 1827 * we can't free pages if NAC_NOTRUNC because 1828 * the pages can be owned by ourselves. 1829 */ 1830 if (flags & NAC_NOTRUNC) { 1831 np->n_flag |= NTRUNCDELAYED; 1832 } else { 1833 simple_lock(&vp->v_interlock); 1834 (void)VOP_PUTPAGES(vp, 0, 1835 0, PGO_SYNCIO | PGO_CLEANIT | 1836 PGO_FREE | PGO_ALLPAGES); 1837 uvm_vnp_setsize(vp, np->n_size); 1838 } 1839 } 1840 } 1841 } 1842 np->n_attrstamp = mono_time.tv_sec; 1843 if (vaper != NULL) { 1844 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap)); 1845 if (np->n_flag & NCHG) { 1846 if (np->n_flag & NACC) 1847 vaper->va_atime = np->n_atim; 1848 if (np->n_flag & NUPD) 1849 vaper->va_mtime = np->n_mtim; 1850 } 1851 } 1852 return (0); 1853 } 1854 1855 /* 1856 * Check the time stamp 1857 * If the cache is valid, copy contents to *vap and return 0 1858 * otherwise return an error 1859 */ 1860 int 1861 nfs_getattrcache(vp, vaper) 1862 struct vnode *vp; 1863 struct vattr *vaper; 1864 { 1865 struct nfsnode *np = VTONFS(vp); 1866 struct vattr *vap; 1867 1868 if (np->n_attrstamp == 0 || 1869 (mono_time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) { 1870 nfsstats.attrcache_misses++; 1871 return (ENOENT); 1872 } 1873 nfsstats.attrcache_hits++; 1874 vap = np->n_vattr; 1875 if (vap->va_size != np->n_size) { 1876 if (vap->va_type == VREG) { 1877 if (np->n_flag & NMODIFIED) { 1878 if (vap->va_size < np->n_size) 1879 vap->va_size = np->n_size; 1880 else 1881 np->n_size = vap->va_size; 1882 } else 1883 np->n_size = vap->va_size; 1884 uvm_vnp_setsize(vp, np->n_size); 1885 } else 1886 np->n_size = vap->va_size; 1887 } 1888 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr)); 1889 if (np->n_flag & NCHG) { 1890 if (np->n_flag & NACC) 1891 vaper->va_atime = np->n_atim; 1892 if (np->n_flag & NUPD) 1893 vaper->va_mtime = np->n_mtim; 1894 } 1895 return (0); 1896 } 1897 1898 void 1899 nfs_delayedtruncate(vp) 1900 struct vnode *vp; 1901 { 1902 struct nfsnode *np = VTONFS(vp); 1903 1904 if (np->n_flag & NTRUNCDELAYED) { 1905 np->n_flag &= ~NTRUNCDELAYED; 1906 simple_lock(&vp->v_interlock); 1907 (void)VOP_PUTPAGES(vp, 0, 1908 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES); 1909 uvm_vnp_setsize(vp, np->n_size); 1910 } 1911 } 1912 1913 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */ 1914 #define NFS_WCCKLUDGE(nmp, now) \ 1915 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \ 1916 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0) 1917 1918 /* 1919 * nfs_check_wccdata: check inaccurate wcc_data 1920 * 1921 * => return non-zero if we shouldn't trust the wcc_data. 1922 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed". 1923 */ 1924 1925 int 1926 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime, 1927 struct timespec *mtime, boolean_t docheck) 1928 { 1929 int error = 0; 1930 1931 #if !defined(NFS_V2_ONLY) 1932 1933 if (docheck) { 1934 struct vnode *vp = NFSTOV(np); 1935 struct nfsmount *nmp; 1936 long now = mono_time.tv_sec; 1937 #if defined(DEBUG) 1938 const char *reason = NULL; /* XXX: gcc */ 1939 #endif 1940 1941 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) { 1942 #if defined(DEBUG) 1943 reason = "mtime"; 1944 #endif 1945 error = EINVAL; 1946 } 1947 1948 if (vp->v_type == VDIR && 1949 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) { 1950 #if defined(DEBUG) 1951 reason = "ctime"; 1952 #endif 1953 error = EINVAL; 1954 } 1955 1956 nmp = VFSTONFS(vp->v_mount); 1957 if (error) { 1958 1959 /* 1960 * despite of the fact that we've updated the file, 1961 * timestamps of the file were not updated as we 1962 * expected. 1963 * it means that the server has incompatible 1964 * semantics of timestamps or (more likely) 1965 * the server time is not precise enough to 1966 * track each modifications. 1967 * in that case, we disable wcc processing. 1968 * 1969 * yes, strictly speaking, we should disable all 1970 * caching. it's a compromise. 1971 */ 1972 1973 simple_lock(&nmp->nm_slock); 1974 #if defined(DEBUG) 1975 if (!NFS_WCCKLUDGE(nmp, now)) { 1976 printf("%s: inaccurate wcc data (%s) detected," 1977 " disabling wcc\n", 1978 vp->v_mount->mnt_stat.f_mntfromname, 1979 reason); 1980 } 1981 #endif 1982 nmp->nm_iflag |= NFSMNT_WCCKLUDGE; 1983 nmp->nm_wcckludgetime = now; 1984 simple_unlock(&nmp->nm_slock); 1985 } else if (NFS_WCCKLUDGE(nmp, now)) { 1986 error = EPERM; /* XXX */ 1987 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) { 1988 simple_lock(&nmp->nm_slock); 1989 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) { 1990 #if defined(DEBUG) 1991 printf("%s: re-enabling wcc\n", 1992 vp->v_mount->mnt_stat.f_mntfromname); 1993 #endif 1994 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE; 1995 } 1996 simple_unlock(&nmp->nm_slock); 1997 } 1998 } 1999 2000 #endif /* !defined(NFS_V2_ONLY) */ 2001 2002 return error; 2003 } 2004 2005 /* 2006 * Heuristic to see if the server XDR encodes directory cookies or not. 2007 * it is not supposed to, but a lot of servers may do this. Also, since 2008 * most/all servers will implement V2 as well, it is expected that they 2009 * may return just 32 bits worth of cookie information, so we need to 2010 * find out in which 32 bits this information is available. We do this 2011 * to avoid trouble with emulated binaries that can't handle 64 bit 2012 * directory offsets. 2013 */ 2014 2015 void 2016 nfs_cookieheuristic(vp, flagp, p, cred) 2017 struct vnode *vp; 2018 int *flagp; 2019 struct proc *p; 2020 struct ucred *cred; 2021 { 2022 struct uio auio; 2023 struct iovec aiov; 2024 caddr_t tbuf, cp; 2025 struct dirent *dp; 2026 off_t *cookies = NULL, *cop; 2027 int error, eof, nc, len; 2028 2029 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK); 2030 2031 aiov.iov_base = tbuf; 2032 aiov.iov_len = NFS_DIRFRAGSIZ; 2033 auio.uio_iov = &aiov; 2034 auio.uio_iovcnt = 1; 2035 auio.uio_rw = UIO_READ; 2036 auio.uio_segflg = UIO_SYSSPACE; 2037 auio.uio_procp = NULL; 2038 auio.uio_resid = NFS_DIRFRAGSIZ; 2039 auio.uio_offset = 0; 2040 2041 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc); 2042 2043 len = NFS_DIRFRAGSIZ - auio.uio_resid; 2044 if (error || len == 0) { 2045 FREE(tbuf, M_TEMP); 2046 if (cookies) 2047 free(cookies, M_TEMP); 2048 return; 2049 } 2050 2051 /* 2052 * Find the first valid entry and look at its offset cookie. 2053 */ 2054 2055 cp = tbuf; 2056 for (cop = cookies; len > 0; len -= dp->d_reclen) { 2057 dp = (struct dirent *)cp; 2058 if (dp->d_fileno != 0 && len >= dp->d_reclen) { 2059 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) { 2060 *flagp |= NFSMNT_SWAPCOOKIE; 2061 nfs_invaldircache(vp, 0); 2062 nfs_vinvalbuf(vp, 0, cred, p, 1); 2063 } 2064 break; 2065 } 2066 cop++; 2067 cp += dp->d_reclen; 2068 } 2069 2070 FREE(tbuf, M_TEMP); 2071 free(cookies, M_TEMP); 2072 } 2073 #endif /* NFS */ 2074 2075 /* 2076 * Set up nameidata for a lookup() call and do it. 2077 * 2078 * If pubflag is set, this call is done for a lookup operation on the 2079 * public filehandle. In that case we allow crossing mountpoints and 2080 * absolute pathnames. However, the caller is expected to check that 2081 * the lookup result is within the public fs, and deny access if 2082 * it is not. 2083 */ 2084 int 2085 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag) 2086 struct nameidata *ndp; 2087 fhandle_t *fhp; 2088 uint32_t len; 2089 struct nfssvc_sock *slp; 2090 struct mbuf *nam; 2091 struct mbuf **mdp; 2092 caddr_t *dposp; 2093 struct vnode **retdirp; 2094 struct proc *p; 2095 int kerbflag, pubflag; 2096 { 2097 int i, rem; 2098 struct mbuf *md; 2099 char *fromcp, *tocp, *cp; 2100 struct iovec aiov; 2101 struct uio auio; 2102 struct vnode *dp; 2103 int error, rdonly, linklen; 2104 struct componentname *cnp = &ndp->ni_cnd; 2105 2106 *retdirp = (struct vnode *)0; 2107 2108 if ((len + 1) > MAXPATHLEN) 2109 return (ENAMETOOLONG); 2110 if (len == 0) 2111 return (EACCES); 2112 cnp->cn_pnbuf = PNBUF_GET(); 2113 2114 /* 2115 * Copy the name from the mbuf list to ndp->ni_pnbuf 2116 * and set the various ndp fields appropriately. 2117 */ 2118 fromcp = *dposp; 2119 tocp = cnp->cn_pnbuf; 2120 md = *mdp; 2121 rem = mtod(md, caddr_t) + md->m_len - fromcp; 2122 for (i = 0; i < len; i++) { 2123 while (rem == 0) { 2124 md = md->m_next; 2125 if (md == NULL) { 2126 error = EBADRPC; 2127 goto out; 2128 } 2129 fromcp = mtod(md, caddr_t); 2130 rem = md->m_len; 2131 } 2132 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) { 2133 error = EACCES; 2134 goto out; 2135 } 2136 *tocp++ = *fromcp++; 2137 rem--; 2138 } 2139 *tocp = '\0'; 2140 *mdp = md; 2141 *dposp = fromcp; 2142 len = nfsm_rndup(len)-len; 2143 if (len > 0) { 2144 if (rem >= len) 2145 *dposp += len; 2146 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0) 2147 goto out; 2148 } 2149 2150 /* 2151 * Extract and set starting directory. 2152 */ 2153 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp, 2154 nam, &rdonly, kerbflag, pubflag); 2155 if (error) 2156 goto out; 2157 if (dp->v_type != VDIR) { 2158 vrele(dp); 2159 error = ENOTDIR; 2160 goto out; 2161 } 2162 2163 if (rdonly) 2164 cnp->cn_flags |= RDONLY; 2165 2166 *retdirp = dp; 2167 2168 if (pubflag) { 2169 /* 2170 * Oh joy. For WebNFS, handle those pesky '%' escapes, 2171 * and the 'native path' indicator. 2172 */ 2173 cp = PNBUF_GET(); 2174 fromcp = cnp->cn_pnbuf; 2175 tocp = cp; 2176 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) { 2177 switch ((unsigned char)*fromcp) { 2178 case WEBNFS_NATIVE_CHAR: 2179 /* 2180 * 'Native' path for us is the same 2181 * as a path according to the NFS spec, 2182 * just skip the escape char. 2183 */ 2184 fromcp++; 2185 break; 2186 /* 2187 * More may be added in the future, range 0x80-0xff 2188 */ 2189 default: 2190 error = EIO; 2191 PNBUF_PUT(cp); 2192 goto out; 2193 } 2194 } 2195 /* 2196 * Translate the '%' escapes, URL-style. 2197 */ 2198 while (*fromcp != '\0') { 2199 if (*fromcp == WEBNFS_ESC_CHAR) { 2200 if (fromcp[1] != '\0' && fromcp[2] != '\0') { 2201 fromcp++; 2202 *tocp++ = HEXSTRTOI(fromcp); 2203 fromcp += 2; 2204 continue; 2205 } else { 2206 error = ENOENT; 2207 PNBUF_PUT(cp); 2208 goto out; 2209 } 2210 } else 2211 *tocp++ = *fromcp++; 2212 } 2213 *tocp = '\0'; 2214 PNBUF_PUT(cnp->cn_pnbuf); 2215 cnp->cn_pnbuf = cp; 2216 } 2217 2218 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1; 2219 ndp->ni_segflg = UIO_SYSSPACE; 2220 ndp->ni_rootdir = rootvnode; 2221 2222 if (pubflag) { 2223 ndp->ni_loopcnt = 0; 2224 if (cnp->cn_pnbuf[0] == '/') 2225 dp = rootvnode; 2226 } else { 2227 cnp->cn_flags |= NOCROSSMOUNT; 2228 } 2229 2230 cnp->cn_proc = p; 2231 VREF(dp); 2232 2233 for (;;) { 2234 cnp->cn_nameptr = cnp->cn_pnbuf; 2235 ndp->ni_startdir = dp; 2236 /* 2237 * And call lookup() to do the real work 2238 */ 2239 error = lookup(ndp); 2240 if (error) { 2241 PNBUF_PUT(cnp->cn_pnbuf); 2242 return (error); 2243 } 2244 /* 2245 * Check for encountering a symbolic link 2246 */ 2247 if ((cnp->cn_flags & ISSYMLINK) == 0) { 2248 if (cnp->cn_flags & (SAVENAME | SAVESTART)) 2249 cnp->cn_flags |= HASBUF; 2250 else 2251 PNBUF_PUT(cnp->cn_pnbuf); 2252 return (0); 2253 } else { 2254 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN)) 2255 VOP_UNLOCK(ndp->ni_dvp, 0); 2256 if (!pubflag) { 2257 error = EINVAL; 2258 break; 2259 } 2260 2261 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) { 2262 error = ELOOP; 2263 break; 2264 } 2265 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) { 2266 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred, 2267 cnp->cn_proc); 2268 if (error != 0) 2269 break; 2270 } 2271 if (ndp->ni_pathlen > 1) 2272 cp = PNBUF_GET(); 2273 else 2274 cp = cnp->cn_pnbuf; 2275 aiov.iov_base = cp; 2276 aiov.iov_len = MAXPATHLEN; 2277 auio.uio_iov = &aiov; 2278 auio.uio_iovcnt = 1; 2279 auio.uio_offset = 0; 2280 auio.uio_rw = UIO_READ; 2281 auio.uio_segflg = UIO_SYSSPACE; 2282 auio.uio_procp = NULL; 2283 auio.uio_resid = MAXPATHLEN; 2284 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred); 2285 if (error) { 2286 badlink: 2287 if (ndp->ni_pathlen > 1) 2288 PNBUF_PUT(cp); 2289 break; 2290 } 2291 linklen = MAXPATHLEN - auio.uio_resid; 2292 if (linklen == 0) { 2293 error = ENOENT; 2294 goto badlink; 2295 } 2296 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) { 2297 error = ENAMETOOLONG; 2298 goto badlink; 2299 } 2300 if (ndp->ni_pathlen > 1) { 2301 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen); 2302 PNBUF_PUT(cnp->cn_pnbuf); 2303 cnp->cn_pnbuf = cp; 2304 } else 2305 cnp->cn_pnbuf[linklen] = '\0'; 2306 ndp->ni_pathlen += linklen; 2307 vput(ndp->ni_vp); 2308 dp = ndp->ni_dvp; 2309 /* 2310 * Check if root directory should replace current directory. 2311 */ 2312 if (cnp->cn_pnbuf[0] == '/') { 2313 vrele(dp); 2314 dp = ndp->ni_rootdir; 2315 VREF(dp); 2316 } 2317 } 2318 } 2319 vrele(ndp->ni_dvp); 2320 vput(ndp->ni_vp); 2321 ndp->ni_vp = NULL; 2322 out: 2323 PNBUF_PUT(cnp->cn_pnbuf); 2324 return (error); 2325 } 2326 2327 /* 2328 * A fiddled version of m_adj() that ensures null fill to a 32-bit 2329 * boundary and only trims off the back end 2330 * 2331 * 1. trim off 'len' bytes as m_adj(mp, -len). 2332 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain. 2333 */ 2334 void 2335 nfs_zeropad(mp, len, nul) 2336 struct mbuf *mp; 2337 int len; 2338 int nul; 2339 { 2340 struct mbuf *m; 2341 int count; 2342 2343 /* 2344 * Trim from tail. Scan the mbuf chain, 2345 * calculating its length and finding the last mbuf. 2346 * If the adjustment only affects this mbuf, then just 2347 * adjust and return. Otherwise, rescan and truncate 2348 * after the remaining size. 2349 */ 2350 count = 0; 2351 m = mp; 2352 for (;;) { 2353 count += m->m_len; 2354 if (m->m_next == NULL) 2355 break; 2356 m = m->m_next; 2357 } 2358 2359 KDASSERT(count >= len); 2360 2361 if (m->m_len >= len) { 2362 m->m_len -= len; 2363 } else { 2364 count -= len; 2365 /* 2366 * Correct length for chain is "count". 2367 * Find the mbuf with last data, adjust its length, 2368 * and toss data from remaining mbufs on chain. 2369 */ 2370 for (m = mp; m; m = m->m_next) { 2371 if (m->m_len >= count) { 2372 m->m_len = count; 2373 break; 2374 } 2375 count -= m->m_len; 2376 } 2377 m_freem(m->m_next); 2378 m->m_next = NULL; 2379 } 2380 2381 KDASSERT(m->m_next == NULL); 2382 2383 /* 2384 * zero-padding. 2385 */ 2386 if (nul > 0) { 2387 char *cp; 2388 int i; 2389 2390 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) { 2391 struct mbuf *n; 2392 2393 KDASSERT(MLEN >= nul); 2394 n = m_get(M_WAIT, MT_DATA); 2395 MCLAIM(n, &nfs_mowner); 2396 n->m_len = nul; 2397 n->m_next = NULL; 2398 m->m_next = n; 2399 cp = mtod(n, caddr_t); 2400 } else { 2401 cp = mtod(m, caddr_t) + m->m_len; 2402 m->m_len += nul; 2403 } 2404 for (i = 0; i < nul; i++) 2405 *cp++ = '\0'; 2406 } 2407 return; 2408 } 2409 2410 /* 2411 * Make these functions instead of macros, so that the kernel text size 2412 * doesn't get too big... 2413 */ 2414 void 2415 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp) 2416 struct nfsrv_descript *nfsd; 2417 int before_ret; 2418 struct vattr *before_vap; 2419 int after_ret; 2420 struct vattr *after_vap; 2421 struct mbuf **mbp; 2422 char **bposp; 2423 { 2424 struct mbuf *mb = *mbp; 2425 char *bpos = *bposp; 2426 u_int32_t *tl; 2427 2428 if (before_ret) { 2429 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2430 *tl = nfs_false; 2431 } else { 2432 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 2433 *tl++ = nfs_true; 2434 txdr_hyper(before_vap->va_size, tl); 2435 tl += 2; 2436 txdr_nfsv3time(&(before_vap->va_mtime), tl); 2437 tl += 2; 2438 txdr_nfsv3time(&(before_vap->va_ctime), tl); 2439 } 2440 *bposp = bpos; 2441 *mbp = mb; 2442 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 2443 } 2444 2445 void 2446 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp) 2447 struct nfsrv_descript *nfsd; 2448 int after_ret; 2449 struct vattr *after_vap; 2450 struct mbuf **mbp; 2451 char **bposp; 2452 { 2453 struct mbuf *mb = *mbp; 2454 char *bpos = *bposp; 2455 u_int32_t *tl; 2456 struct nfs_fattr *fp; 2457 2458 if (after_ret) { 2459 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2460 *tl = nfs_false; 2461 } else { 2462 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 2463 *tl++ = nfs_true; 2464 fp = (struct nfs_fattr *)tl; 2465 nfsm_srvfattr(nfsd, after_vap, fp); 2466 } 2467 *mbp = mb; 2468 *bposp = bpos; 2469 } 2470 2471 void 2472 nfsm_srvfattr(nfsd, vap, fp) 2473 struct nfsrv_descript *nfsd; 2474 struct vattr *vap; 2475 struct nfs_fattr *fp; 2476 { 2477 2478 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 2479 fp->fa_uid = txdr_unsigned(vap->va_uid); 2480 fp->fa_gid = txdr_unsigned(vap->va_gid); 2481 if (nfsd->nd_flag & ND_NFSV3) { 2482 fp->fa_type = vtonfsv3_type(vap->va_type); 2483 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 2484 txdr_hyper(vap->va_size, &fp->fa3_size); 2485 txdr_hyper(vap->va_bytes, &fp->fa3_used); 2486 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 2487 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 2488 fp->fa3_fsid.nfsuquad[0] = 0; 2489 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 2490 txdr_hyper(vap->va_fileid, &fp->fa3_fileid); 2491 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 2492 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 2493 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 2494 } else { 2495 fp->fa_type = vtonfsv2_type(vap->va_type); 2496 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 2497 fp->fa2_size = txdr_unsigned(vap->va_size); 2498 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 2499 if (vap->va_type == VFIFO) 2500 fp->fa2_rdev = 0xffffffff; 2501 else 2502 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 2503 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 2504 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 2505 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 2506 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 2507 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 2508 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 2509 } 2510 } 2511 2512 /* 2513 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) 2514 * - look up fsid in mount list (if not found ret error) 2515 * - get vp and export rights by calling VFS_FHTOVP() 2516 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon 2517 * - if not lockflag unlock it with VOP_UNLOCK() 2518 */ 2519 int 2520 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag) 2521 fhandle_t *fhp; 2522 int lockflag; 2523 struct vnode **vpp; 2524 struct ucred *cred; 2525 struct nfssvc_sock *slp; 2526 struct mbuf *nam; 2527 int *rdonlyp; 2528 int kerbflag; 2529 { 2530 struct mount *mp; 2531 int i; 2532 struct ucred *credanon; 2533 int error, exflags; 2534 struct sockaddr_in *saddr; 2535 2536 *vpp = (struct vnode *)0; 2537 2538 if (nfs_ispublicfh(fhp)) { 2539 if (!pubflag || !nfs_pub.np_valid) 2540 return (ESTALE); 2541 fhp = &nfs_pub.np_handle; 2542 } 2543 2544 mp = vfs_getvfs(&fhp->fh_fsid); 2545 if (!mp) 2546 return (ESTALE); 2547 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon); 2548 if (error) 2549 return (error); 2550 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp); 2551 if (error) 2552 return (error); 2553 2554 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) { 2555 saddr = mtod(nam, struct sockaddr_in *); 2556 if ((saddr->sin_family == AF_INET) && 2557 ntohs(saddr->sin_port) >= IPPORT_RESERVED) { 2558 vput(*vpp); 2559 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2560 } 2561 #ifdef INET6 2562 if ((saddr->sin_family == AF_INET6) && 2563 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) { 2564 vput(*vpp); 2565 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2566 } 2567 #endif 2568 } 2569 /* 2570 * Check/setup credentials. 2571 */ 2572 if (exflags & MNT_EXKERB) { 2573 if (!kerbflag) { 2574 vput(*vpp); 2575 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2576 } 2577 } else if (kerbflag) { 2578 vput(*vpp); 2579 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2580 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { 2581 cred->cr_uid = credanon->cr_uid; 2582 cred->cr_gid = credanon->cr_gid; 2583 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++) 2584 cred->cr_groups[i] = credanon->cr_groups[i]; 2585 cred->cr_ngroups = i; 2586 } 2587 if (exflags & MNT_EXRDONLY) 2588 *rdonlyp = 1; 2589 else 2590 *rdonlyp = 0; 2591 if (!lockflag) 2592 VOP_UNLOCK(*vpp, 0); 2593 return (0); 2594 } 2595 2596 /* 2597 * WebNFS: check if a filehandle is a public filehandle. For v3, this 2598 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has 2599 * transformed this to all zeroes in both cases, so check for it. 2600 */ 2601 int 2602 nfs_ispublicfh(fhp) 2603 fhandle_t *fhp; 2604 { 2605 char *cp = (char *)fhp; 2606 int i; 2607 2608 for (i = 0; i < NFSX_V3FH; i++) 2609 if (*cp++ != 0) 2610 return (FALSE); 2611 return (TRUE); 2612 } 2613 2614 /* 2615 * This function compares two net addresses by family and returns TRUE 2616 * if they are the same host. 2617 * If there is any doubt, return FALSE. 2618 * The AF_INET family is handled as a special case so that address mbufs 2619 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 2620 */ 2621 int 2622 netaddr_match(family, haddr, nam) 2623 int family; 2624 union nethostaddr *haddr; 2625 struct mbuf *nam; 2626 { 2627 struct sockaddr_in *inetaddr; 2628 2629 switch (family) { 2630 case AF_INET: 2631 inetaddr = mtod(nam, struct sockaddr_in *); 2632 if (inetaddr->sin_family == AF_INET && 2633 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 2634 return (1); 2635 break; 2636 #ifdef INET6 2637 case AF_INET6: 2638 { 2639 struct sockaddr_in6 *sin6_1, *sin6_2; 2640 2641 sin6_1 = mtod(nam, struct sockaddr_in6 *); 2642 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 2643 if (sin6_1->sin6_family == AF_INET6 && 2644 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 2645 return 1; 2646 } 2647 #endif 2648 #ifdef ISO 2649 case AF_ISO: 2650 { 2651 struct sockaddr_iso *isoaddr1, *isoaddr2; 2652 2653 isoaddr1 = mtod(nam, struct sockaddr_iso *); 2654 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); 2655 if (isoaddr1->siso_family == AF_ISO && 2656 isoaddr1->siso_nlen > 0 && 2657 isoaddr1->siso_nlen == isoaddr2->siso_nlen && 2658 SAME_ISOADDR(isoaddr1, isoaddr2)) 2659 return (1); 2660 break; 2661 } 2662 #endif /* ISO */ 2663 default: 2664 break; 2665 }; 2666 return (0); 2667 } 2668 2669 /* 2670 * The write verifier has changed (probably due to a server reboot), so all 2671 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 2672 * as dirty or are being written out just now, all this takes is clearing 2673 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 2674 * the mount point. 2675 */ 2676 void 2677 nfs_clearcommit(mp) 2678 struct mount *mp; 2679 { 2680 struct vnode *vp; 2681 struct nfsnode *np; 2682 struct vm_page *pg; 2683 struct nfsmount *nmp = VFSTONFS(mp); 2684 2685 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL); 2686 2687 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 2688 KASSERT(vp->v_mount == mp); 2689 if (vp->v_type != VREG) 2690 continue; 2691 np = VTONFS(vp); 2692 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 2693 np->n_pushedhi = 0; 2694 np->n_commitflags &= 2695 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 2696 simple_lock(&vp->v_uobj.vmobjlock); 2697 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) { 2698 pg->flags &= ~PG_NEEDCOMMIT; 2699 } 2700 simple_unlock(&vp->v_uobj.vmobjlock); 2701 } 2702 simple_lock(&nmp->nm_slock); 2703 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 2704 simple_unlock(&nmp->nm_slock); 2705 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 2706 } 2707 2708 void 2709 nfs_merge_commit_ranges(vp) 2710 struct vnode *vp; 2711 { 2712 struct nfsnode *np = VTONFS(vp); 2713 2714 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 2715 2716 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2717 np->n_pushedlo = np->n_pushlo; 2718 np->n_pushedhi = np->n_pushhi; 2719 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2720 } else { 2721 if (np->n_pushlo < np->n_pushedlo) 2722 np->n_pushedlo = np->n_pushlo; 2723 if (np->n_pushhi > np->n_pushedhi) 2724 np->n_pushedhi = np->n_pushhi; 2725 } 2726 2727 np->n_pushlo = np->n_pushhi = 0; 2728 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 2729 2730 #ifdef NFS_DEBUG_COMMIT 2731 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2732 (unsigned)np->n_pushedhi); 2733 #endif 2734 } 2735 2736 int 2737 nfs_in_committed_range(vp, off, len) 2738 struct vnode *vp; 2739 off_t off, len; 2740 { 2741 struct nfsnode *np = VTONFS(vp); 2742 off_t lo, hi; 2743 2744 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2745 return 0; 2746 lo = off; 2747 hi = lo + len; 2748 2749 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 2750 } 2751 2752 int 2753 nfs_in_tobecommitted_range(vp, off, len) 2754 struct vnode *vp; 2755 off_t off, len; 2756 { 2757 struct nfsnode *np = VTONFS(vp); 2758 off_t lo, hi; 2759 2760 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2761 return 0; 2762 lo = off; 2763 hi = lo + len; 2764 2765 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 2766 } 2767 2768 void 2769 nfs_add_committed_range(vp, off, len) 2770 struct vnode *vp; 2771 off_t off, len; 2772 { 2773 struct nfsnode *np = VTONFS(vp); 2774 off_t lo, hi; 2775 2776 lo = off; 2777 hi = lo + len; 2778 2779 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2780 np->n_pushedlo = lo; 2781 np->n_pushedhi = hi; 2782 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2783 } else { 2784 if (hi > np->n_pushedhi) 2785 np->n_pushedhi = hi; 2786 if (lo < np->n_pushedlo) 2787 np->n_pushedlo = lo; 2788 } 2789 #ifdef NFS_DEBUG_COMMIT 2790 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2791 (unsigned)np->n_pushedhi); 2792 #endif 2793 } 2794 2795 void 2796 nfs_del_committed_range(vp, off, len) 2797 struct vnode *vp; 2798 off_t off, len; 2799 { 2800 struct nfsnode *np = VTONFS(vp); 2801 off_t lo, hi; 2802 2803 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2804 return; 2805 2806 lo = off; 2807 hi = lo + len; 2808 2809 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 2810 return; 2811 if (lo <= np->n_pushedlo) 2812 np->n_pushedlo = hi; 2813 else if (hi >= np->n_pushedhi) 2814 np->n_pushedhi = lo; 2815 else { 2816 /* 2817 * XXX There's only one range. If the deleted range 2818 * is in the middle, pick the largest of the 2819 * contiguous ranges that it leaves. 2820 */ 2821 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 2822 np->n_pushedhi = lo; 2823 else 2824 np->n_pushedlo = hi; 2825 } 2826 #ifdef NFS_DEBUG_COMMIT 2827 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2828 (unsigned)np->n_pushedhi); 2829 #endif 2830 } 2831 2832 void 2833 nfs_add_tobecommitted_range(vp, off, len) 2834 struct vnode *vp; 2835 off_t off, len; 2836 { 2837 struct nfsnode *np = VTONFS(vp); 2838 off_t lo, hi; 2839 2840 lo = off; 2841 hi = lo + len; 2842 2843 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 2844 np->n_pushlo = lo; 2845 np->n_pushhi = hi; 2846 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 2847 } else { 2848 if (lo < np->n_pushlo) 2849 np->n_pushlo = lo; 2850 if (hi > np->n_pushhi) 2851 np->n_pushhi = hi; 2852 } 2853 #ifdef NFS_DEBUG_COMMIT 2854 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2855 (unsigned)np->n_pushhi); 2856 #endif 2857 } 2858 2859 void 2860 nfs_del_tobecommitted_range(vp, off, len) 2861 struct vnode *vp; 2862 off_t off, len; 2863 { 2864 struct nfsnode *np = VTONFS(vp); 2865 off_t lo, hi; 2866 2867 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2868 return; 2869 2870 lo = off; 2871 hi = lo + len; 2872 2873 if (lo > np->n_pushhi || hi < np->n_pushlo) 2874 return; 2875 2876 if (lo <= np->n_pushlo) 2877 np->n_pushlo = hi; 2878 else if (hi >= np->n_pushhi) 2879 np->n_pushhi = lo; 2880 else { 2881 /* 2882 * XXX There's only one range. If the deleted range 2883 * is in the middle, pick the largest of the 2884 * contiguous ranges that it leaves. 2885 */ 2886 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 2887 np->n_pushhi = lo; 2888 else 2889 np->n_pushlo = hi; 2890 } 2891 #ifdef NFS_DEBUG_COMMIT 2892 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2893 (unsigned)np->n_pushhi); 2894 #endif 2895 } 2896 2897 /* 2898 * Map errnos to NFS error numbers. For Version 3 also filter out error 2899 * numbers not specified for the associated procedure. 2900 */ 2901 int 2902 nfsrv_errmap(nd, err) 2903 struct nfsrv_descript *nd; 2904 int err; 2905 { 2906 const short *defaulterrp, *errp; 2907 2908 if (nd->nd_flag & ND_NFSV3) { 2909 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2910 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2911 while (*++errp) { 2912 if (*errp == err) 2913 return (err); 2914 else if (*errp > err) 2915 break; 2916 } 2917 return ((int)*defaulterrp); 2918 } else 2919 return (err & 0xffff); 2920 } 2921 if (err <= ELAST) 2922 return ((int)nfsrv_v2errmap[err - 1]); 2923 return (NFSERR_IO); 2924 } 2925 2926 /* 2927 * Sort the group list in increasing numerical order. 2928 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort 2929 * that used to be here.) 2930 */ 2931 void 2932 nfsrvw_sort(list, num) 2933 gid_t *list; 2934 int num; 2935 { 2936 int i, j; 2937 gid_t v; 2938 2939 /* Insertion sort. */ 2940 for (i = 1; i < num; i++) { 2941 v = list[i]; 2942 /* find correct slot for value v, moving others up */ 2943 for (j = i; --j >= 0 && v < list[j];) 2944 list[j + 1] = list[j]; 2945 list[j + 1] = v; 2946 } 2947 } 2948 2949 /* 2950 * copy credentials making sure that the result can be compared with memcmp(). 2951 */ 2952 void 2953 nfsrv_setcred(incred, outcred) 2954 struct ucred *incred, *outcred; 2955 { 2956 int i; 2957 2958 memset((caddr_t)outcred, 0, sizeof (struct ucred)); 2959 outcred->cr_ref = 1; 2960 outcred->cr_uid = incred->cr_uid; 2961 outcred->cr_gid = incred->cr_gid; 2962 outcred->cr_ngroups = incred->cr_ngroups; 2963 for (i = 0; i < incred->cr_ngroups; i++) 2964 outcred->cr_groups[i] = incred->cr_groups[i]; 2965 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups); 2966 } 2967 2968 u_int32_t 2969 nfs_getxid() 2970 { 2971 static u_int32_t base; 2972 static u_int32_t nfs_xid = 0; 2973 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER; 2974 u_int32_t newxid; 2975 2976 simple_lock(&nfs_xidlock); 2977 /* 2978 * derive initial xid from system time 2979 * XXX time is invalid if root not yet mounted 2980 */ 2981 if (__predict_false(!base && (rootvp))) { 2982 struct timeval tv; 2983 2984 microtime(&tv); 2985 base = tv.tv_sec << 12; 2986 nfs_xid = base; 2987 } 2988 2989 /* 2990 * Skip zero xid if it should ever happen. 2991 */ 2992 if (__predict_false(++nfs_xid == 0)) 2993 nfs_xid++; 2994 newxid = nfs_xid; 2995 simple_unlock(&nfs_xidlock); 2996 2997 return txdr_unsigned(newxid); 2998 } 2999 3000 /* 3001 * assign a new xid for existing request. 3002 * used for NFSERR_JUKEBOX handling. 3003 */ 3004 void 3005 nfs_renewxid(struct nfsreq *req) 3006 { 3007 u_int32_t xid; 3008 int off; 3009 3010 xid = nfs_getxid(); 3011 if (req->r_nmp->nm_sotype == SOCK_STREAM) 3012 off = sizeof(u_int32_t); /* RPC record mark */ 3013 else 3014 off = 0; 3015 3016 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid); 3017 req->r_xid = xid; 3018 } 3019