1 /* $NetBSD: nfs_subs.c,v 1.241 2020/09/05 16:30:12 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 35 */ 36 37 /* 38 * Copyright 2000 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Frank van der Linden for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.241 2020/09/05 16:30:12 riastradh Exp $"); 74 75 #ifdef _KERNEL_OPT 76 #include "opt_nfs.h" 77 #endif 78 79 /* 80 * These functions support the macros and help fiddle mbuf chains for 81 * the nfs op functions. They do things like create the rpc header and 82 * copy data between mbuf chains and uio lists. 83 */ 84 #include <sys/param.h> 85 #include <sys/proc.h> 86 #include <sys/systm.h> 87 #include <sys/kernel.h> 88 #include <sys/kmem.h> 89 #include <sys/mount.h> 90 #include <sys/vnode.h> 91 #include <sys/namei.h> 92 #include <sys/mbuf.h> 93 #include <sys/socket.h> 94 #include <sys/stat.h> 95 #include <sys/filedesc.h> 96 #include <sys/time.h> 97 #include <sys/dirent.h> 98 #include <sys/once.h> 99 #include <sys/kauth.h> 100 #include <sys/atomic.h> 101 #include <sys/cprng.h> 102 103 #include <uvm/uvm_page.h> 104 #include <uvm/uvm_page_array.h> 105 106 #include <nfs/rpcv2.h> 107 #include <nfs/nfsproto.h> 108 #include <nfs/nfsnode.h> 109 #include <nfs/nfs.h> 110 #include <nfs/xdr_subs.h> 111 #include <nfs/nfsm_subs.h> 112 #include <nfs/nfsmount.h> 113 #include <nfs/nfsrtt.h> 114 #include <nfs/nfs_var.h> 115 116 #include <miscfs/specfs/specdev.h> 117 118 #include <netinet/in.h> 119 120 static u_int32_t nfs_xid; 121 122 int nuidhash_max = NFS_MAXUIDHASH; 123 /* 124 * Data items converted to xdr at startup, since they are constant 125 * This is kinda hokey, but may save a little time doing byte swaps 126 */ 127 u_int32_t nfs_xdrneg1; 128 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 129 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 130 rpc_auth_kerb; 131 u_int32_t nfs_prog, nfs_true, nfs_false; 132 133 /* And other global data */ 134 const nfstype nfsv2_type[9] = 135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 136 const nfstype nfsv3_type[9] = 137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 138 const enum vtype nv2tov_type[8] = 139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 140 const enum vtype nv3tov_type[8] = 141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 142 int nfs_ticks; 143 144 /* NFS client/server stats. */ 145 struct nfsstats nfsstats; 146 147 /* 148 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 149 */ 150 const int nfsv3_procid[NFS_NPROCS] = { 151 NFSPROC_NULL, 152 NFSPROC_GETATTR, 153 NFSPROC_SETATTR, 154 NFSPROC_NOOP, 155 NFSPROC_LOOKUP, 156 NFSPROC_READLINK, 157 NFSPROC_READ, 158 NFSPROC_NOOP, 159 NFSPROC_WRITE, 160 NFSPROC_CREATE, 161 NFSPROC_REMOVE, 162 NFSPROC_RENAME, 163 NFSPROC_LINK, 164 NFSPROC_SYMLINK, 165 NFSPROC_MKDIR, 166 NFSPROC_RMDIR, 167 NFSPROC_READDIR, 168 NFSPROC_FSSTAT, 169 NFSPROC_NOOP, 170 NFSPROC_NOOP, 171 NFSPROC_NOOP, 172 NFSPROC_NOOP, 173 NFSPROC_NOOP 174 }; 175 176 /* 177 * and the reverse mapping from generic to Version 2 procedure numbers 178 */ 179 const int nfsv2_procid[NFS_NPROCS] = { 180 NFSV2PROC_NULL, 181 NFSV2PROC_GETATTR, 182 NFSV2PROC_SETATTR, 183 NFSV2PROC_LOOKUP, 184 NFSV2PROC_NOOP, 185 NFSV2PROC_READLINK, 186 NFSV2PROC_READ, 187 NFSV2PROC_WRITE, 188 NFSV2PROC_CREATE, 189 NFSV2PROC_MKDIR, 190 NFSV2PROC_SYMLINK, 191 NFSV2PROC_CREATE, 192 NFSV2PROC_REMOVE, 193 NFSV2PROC_RMDIR, 194 NFSV2PROC_RENAME, 195 NFSV2PROC_LINK, 196 NFSV2PROC_READDIR, 197 NFSV2PROC_NOOP, 198 NFSV2PROC_STATFS, 199 NFSV2PROC_NOOP, 200 NFSV2PROC_NOOP, 201 NFSV2PROC_NOOP, 202 NFSV2PROC_NOOP, 203 }; 204 205 /* 206 * Maps errno values to nfs error numbers. 207 * Use NFSERR_IO as the catch all for ones not specifically defined in 208 * RFC 1094. 209 */ 210 static const u_char nfsrv_v2errmap[] = { 211 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 212 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 213 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 214 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 215 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 216 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 217 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 218 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 223 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 224 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 230 NFSERR_IO, NFSERR_IO, NFSERR_IO 231 }; 232 __CTASSERT(__arraycount(nfsrv_v2errmap) == ELAST); 233 234 /* 235 * Maps errno values to nfs error numbers. 236 * Although it is not obvious whether or not NFS clients really care if 237 * a returned error value is in the specified list for the procedure, the 238 * safest thing to do is filter them appropriately. For Version 2, the 239 * X/Open XNFS document is the only specification that defines error values 240 * for each RPC (The RFC simply lists all possible error values for all RPCs), 241 * so I have decided to not do this for Version 2. 242 * The first entry is the default error return and the rest are the valid 243 * errors for that RPC in increasing numeric order. 244 */ 245 static const short nfsv3err_null[] = { 246 0, 247 0, 248 }; 249 250 static const short nfsv3err_getattr[] = { 251 NFSERR_IO, 252 NFSERR_IO, 253 NFSERR_STALE, 254 NFSERR_BADHANDLE, 255 NFSERR_SERVERFAULT, 256 0, 257 }; 258 259 static const short nfsv3err_setattr[] = { 260 NFSERR_IO, 261 NFSERR_PERM, 262 NFSERR_IO, 263 NFSERR_ACCES, 264 NFSERR_INVAL, 265 NFSERR_NOSPC, 266 NFSERR_ROFS, 267 NFSERR_DQUOT, 268 NFSERR_STALE, 269 NFSERR_BADHANDLE, 270 NFSERR_NOT_SYNC, 271 NFSERR_SERVERFAULT, 272 0, 273 }; 274 275 static const short nfsv3err_lookup[] = { 276 NFSERR_IO, 277 NFSERR_NOENT, 278 NFSERR_IO, 279 NFSERR_ACCES, 280 NFSERR_NOTDIR, 281 NFSERR_NAMETOL, 282 NFSERR_STALE, 283 NFSERR_BADHANDLE, 284 NFSERR_SERVERFAULT, 285 0, 286 }; 287 288 static const short nfsv3err_access[] = { 289 NFSERR_IO, 290 NFSERR_IO, 291 NFSERR_STALE, 292 NFSERR_BADHANDLE, 293 NFSERR_SERVERFAULT, 294 0, 295 }; 296 297 static const short nfsv3err_readlink[] = { 298 NFSERR_IO, 299 NFSERR_IO, 300 NFSERR_ACCES, 301 NFSERR_INVAL, 302 NFSERR_STALE, 303 NFSERR_BADHANDLE, 304 NFSERR_NOTSUPP, 305 NFSERR_SERVERFAULT, 306 0, 307 }; 308 309 static const short nfsv3err_read[] = { 310 NFSERR_IO, 311 NFSERR_IO, 312 NFSERR_NXIO, 313 NFSERR_ACCES, 314 NFSERR_INVAL, 315 NFSERR_STALE, 316 NFSERR_BADHANDLE, 317 NFSERR_SERVERFAULT, 318 NFSERR_JUKEBOX, 319 0, 320 }; 321 322 static const short nfsv3err_write[] = { 323 NFSERR_IO, 324 NFSERR_IO, 325 NFSERR_ACCES, 326 NFSERR_INVAL, 327 NFSERR_FBIG, 328 NFSERR_NOSPC, 329 NFSERR_ROFS, 330 NFSERR_DQUOT, 331 NFSERR_STALE, 332 NFSERR_BADHANDLE, 333 NFSERR_SERVERFAULT, 334 NFSERR_JUKEBOX, 335 0, 336 }; 337 338 static const short nfsv3err_create[] = { 339 NFSERR_IO, 340 NFSERR_IO, 341 NFSERR_ACCES, 342 NFSERR_EXIST, 343 NFSERR_NOTDIR, 344 NFSERR_NOSPC, 345 NFSERR_ROFS, 346 NFSERR_NAMETOL, 347 NFSERR_DQUOT, 348 NFSERR_STALE, 349 NFSERR_BADHANDLE, 350 NFSERR_NOTSUPP, 351 NFSERR_SERVERFAULT, 352 0, 353 }; 354 355 static const short nfsv3err_mkdir[] = { 356 NFSERR_IO, 357 NFSERR_IO, 358 NFSERR_ACCES, 359 NFSERR_EXIST, 360 NFSERR_NOTDIR, 361 NFSERR_NOSPC, 362 NFSERR_ROFS, 363 NFSERR_NAMETOL, 364 NFSERR_DQUOT, 365 NFSERR_STALE, 366 NFSERR_BADHANDLE, 367 NFSERR_NOTSUPP, 368 NFSERR_SERVERFAULT, 369 0, 370 }; 371 372 static const short nfsv3err_symlink[] = { 373 NFSERR_IO, 374 NFSERR_IO, 375 NFSERR_ACCES, 376 NFSERR_EXIST, 377 NFSERR_NOTDIR, 378 NFSERR_NOSPC, 379 NFSERR_ROFS, 380 NFSERR_NAMETOL, 381 NFSERR_DQUOT, 382 NFSERR_STALE, 383 NFSERR_BADHANDLE, 384 NFSERR_NOTSUPP, 385 NFSERR_SERVERFAULT, 386 0, 387 }; 388 389 static const short nfsv3err_mknod[] = { 390 NFSERR_IO, 391 NFSERR_IO, 392 NFSERR_ACCES, 393 NFSERR_EXIST, 394 NFSERR_NOTDIR, 395 NFSERR_NOSPC, 396 NFSERR_ROFS, 397 NFSERR_NAMETOL, 398 NFSERR_DQUOT, 399 NFSERR_STALE, 400 NFSERR_BADHANDLE, 401 NFSERR_NOTSUPP, 402 NFSERR_SERVERFAULT, 403 NFSERR_BADTYPE, 404 0, 405 }; 406 407 static const short nfsv3err_remove[] = { 408 NFSERR_IO, 409 NFSERR_NOENT, 410 NFSERR_IO, 411 NFSERR_ACCES, 412 NFSERR_NOTDIR, 413 NFSERR_ROFS, 414 NFSERR_NAMETOL, 415 NFSERR_STALE, 416 NFSERR_BADHANDLE, 417 NFSERR_SERVERFAULT, 418 0, 419 }; 420 421 static const short nfsv3err_rmdir[] = { 422 NFSERR_IO, 423 NFSERR_NOENT, 424 NFSERR_IO, 425 NFSERR_ACCES, 426 NFSERR_EXIST, 427 NFSERR_NOTDIR, 428 NFSERR_INVAL, 429 NFSERR_ROFS, 430 NFSERR_NAMETOL, 431 NFSERR_NOTEMPTY, 432 NFSERR_STALE, 433 NFSERR_BADHANDLE, 434 NFSERR_NOTSUPP, 435 NFSERR_SERVERFAULT, 436 0, 437 }; 438 439 static const short nfsv3err_rename[] = { 440 NFSERR_IO, 441 NFSERR_NOENT, 442 NFSERR_IO, 443 NFSERR_ACCES, 444 NFSERR_EXIST, 445 NFSERR_XDEV, 446 NFSERR_NOTDIR, 447 NFSERR_ISDIR, 448 NFSERR_INVAL, 449 NFSERR_NOSPC, 450 NFSERR_ROFS, 451 NFSERR_MLINK, 452 NFSERR_NAMETOL, 453 NFSERR_NOTEMPTY, 454 NFSERR_DQUOT, 455 NFSERR_STALE, 456 NFSERR_BADHANDLE, 457 NFSERR_NOTSUPP, 458 NFSERR_SERVERFAULT, 459 0, 460 }; 461 462 static const short nfsv3err_link[] = { 463 NFSERR_IO, 464 NFSERR_IO, 465 NFSERR_ACCES, 466 NFSERR_EXIST, 467 NFSERR_XDEV, 468 NFSERR_NOTDIR, 469 NFSERR_INVAL, 470 NFSERR_NOSPC, 471 NFSERR_ROFS, 472 NFSERR_MLINK, 473 NFSERR_NAMETOL, 474 NFSERR_DQUOT, 475 NFSERR_STALE, 476 NFSERR_BADHANDLE, 477 NFSERR_NOTSUPP, 478 NFSERR_SERVERFAULT, 479 0, 480 }; 481 482 static const short nfsv3err_readdir[] = { 483 NFSERR_IO, 484 NFSERR_IO, 485 NFSERR_ACCES, 486 NFSERR_NOTDIR, 487 NFSERR_STALE, 488 NFSERR_BADHANDLE, 489 NFSERR_BAD_COOKIE, 490 NFSERR_TOOSMALL, 491 NFSERR_SERVERFAULT, 492 0, 493 }; 494 495 static const short nfsv3err_readdirplus[] = { 496 NFSERR_IO, 497 NFSERR_IO, 498 NFSERR_ACCES, 499 NFSERR_NOTDIR, 500 NFSERR_STALE, 501 NFSERR_BADHANDLE, 502 NFSERR_BAD_COOKIE, 503 NFSERR_NOTSUPP, 504 NFSERR_TOOSMALL, 505 NFSERR_SERVERFAULT, 506 0, 507 }; 508 509 static const short nfsv3err_fsstat[] = { 510 NFSERR_IO, 511 NFSERR_IO, 512 NFSERR_STALE, 513 NFSERR_BADHANDLE, 514 NFSERR_SERVERFAULT, 515 0, 516 }; 517 518 static const short nfsv3err_fsinfo[] = { 519 NFSERR_STALE, 520 NFSERR_STALE, 521 NFSERR_BADHANDLE, 522 NFSERR_SERVERFAULT, 523 0, 524 }; 525 526 static const short nfsv3err_pathconf[] = { 527 NFSERR_STALE, 528 NFSERR_STALE, 529 NFSERR_BADHANDLE, 530 NFSERR_SERVERFAULT, 531 0, 532 }; 533 534 static const short nfsv3err_commit[] = { 535 NFSERR_IO, 536 NFSERR_IO, 537 NFSERR_STALE, 538 NFSERR_BADHANDLE, 539 NFSERR_SERVERFAULT, 540 0, 541 }; 542 543 static const short * const nfsrv_v3errmap[] = { 544 nfsv3err_null, 545 nfsv3err_getattr, 546 nfsv3err_setattr, 547 nfsv3err_lookup, 548 nfsv3err_access, 549 nfsv3err_readlink, 550 nfsv3err_read, 551 nfsv3err_write, 552 nfsv3err_create, 553 nfsv3err_mkdir, 554 nfsv3err_symlink, 555 nfsv3err_mknod, 556 nfsv3err_remove, 557 nfsv3err_rmdir, 558 nfsv3err_rename, 559 nfsv3err_link, 560 nfsv3err_readdir, 561 nfsv3err_readdirplus, 562 nfsv3err_fsstat, 563 nfsv3err_fsinfo, 564 nfsv3err_pathconf, 565 nfsv3err_commit, 566 }; 567 568 extern struct nfsrtt nfsrtt; 569 570 u_long nfsdirhashmask; 571 572 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *); 573 574 /* 575 * Create the header for an rpc request packet 576 * The hsiz is the size of the rest of the nfs request header. 577 * (just used to decide if a cluster is a good idea) 578 */ 579 struct mbuf * 580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp) 581 { 582 struct mbuf *mb; 583 char *bpos; 584 585 mb = m_get(M_WAIT, MT_DATA); 586 MCLAIM(mb, &nfs_mowner); 587 if (hsiz >= MINCLSIZE) 588 m_clget(mb, M_WAIT); 589 mb->m_len = 0; 590 bpos = mtod(mb, void *); 591 592 /* Finally, return values */ 593 *bposp = bpos; 594 return (mb); 595 } 596 597 /* 598 * Build the RPC header and fill in the authorization info. 599 * The authorization string argument is only used when the credentials 600 * come from outside of the kernel. 601 * Returns the head of the mbuf list. 602 */ 603 struct mbuf * 604 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid, 605 int auth_type, int auth_len, char *auth_str, int verf_len, 606 char *verf_str, struct mbuf *mrest, int mrest_len, 607 struct mbuf **mbp, uint32_t *xidp) 608 { 609 struct mbuf *mb; 610 u_int32_t *tl; 611 char *bpos; 612 int i; 613 struct mbuf *mreq; 614 int siz, grpsiz, authsiz; 615 616 authsiz = nfsm_rndup(auth_len); 617 mb = m_gethdr(M_WAIT, MT_DATA); 618 MCLAIM(mb, &nfs_mowner); 619 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 620 m_clget(mb, M_WAIT); 621 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 622 m_align(mb, authsiz + 10 * NFSX_UNSIGNED); 623 } else { 624 m_align(mb, 8 * NFSX_UNSIGNED); 625 } 626 mb->m_len = 0; 627 mreq = mb; 628 bpos = mtod(mb, void *); 629 630 /* 631 * First the RPC header. 632 */ 633 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 634 635 *tl++ = *xidp = nfs_getxid(); 636 *tl++ = rpc_call; 637 *tl++ = rpc_vers; 638 *tl++ = txdr_unsigned(NFS_PROG); 639 if (nmflag & NFSMNT_NFSV3) 640 *tl++ = txdr_unsigned(NFS_VER3); 641 else 642 *tl++ = txdr_unsigned(NFS_VER2); 643 if (nmflag & NFSMNT_NFSV3) 644 *tl++ = txdr_unsigned(procid); 645 else 646 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 647 648 /* 649 * And then the authorization cred. 650 */ 651 *tl++ = txdr_unsigned(auth_type); 652 *tl = txdr_unsigned(authsiz); 653 switch (auth_type) { 654 case RPCAUTH_UNIX: 655 nfsm_build(tl, u_int32_t *, auth_len); 656 *tl++ = 0; /* stamp ?? */ 657 *tl++ = 0; /* NULL hostname */ 658 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr)); 659 *tl++ = txdr_unsigned(kauth_cred_getegid(cr)); 660 grpsiz = (auth_len >> 2) - 5; 661 *tl++ = txdr_unsigned(grpsiz); 662 for (i = 0; i < grpsiz; i++) 663 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */ 664 break; 665 case RPCAUTH_KERB4: 666 siz = auth_len; 667 while (siz > 0) { 668 if (M_TRAILINGSPACE(mb) == 0) { 669 struct mbuf *mb2; 670 mb2 = m_get(M_WAIT, MT_DATA); 671 MCLAIM(mb2, &nfs_mowner); 672 if (siz >= MINCLSIZE) 673 m_clget(mb2, M_WAIT); 674 mb->m_next = mb2; 675 mb = mb2; 676 mb->m_len = 0; 677 bpos = mtod(mb, void *); 678 } 679 i = uimin(siz, M_TRAILINGSPACE(mb)); 680 memcpy(bpos, auth_str, i); 681 mb->m_len += i; 682 auth_str += i; 683 bpos += i; 684 siz -= i; 685 } 686 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 687 for (i = 0; i < siz; i++) 688 *bpos++ = '\0'; 689 mb->m_len += siz; 690 } 691 break; 692 }; 693 694 /* 695 * And the verifier... 696 */ 697 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 698 if (verf_str) { 699 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 700 *tl = txdr_unsigned(verf_len); 701 siz = verf_len; 702 while (siz > 0) { 703 if (M_TRAILINGSPACE(mb) == 0) { 704 struct mbuf *mb2; 705 mb2 = m_get(M_WAIT, MT_DATA); 706 MCLAIM(mb2, &nfs_mowner); 707 if (siz >= MINCLSIZE) 708 m_clget(mb2, M_WAIT); 709 mb->m_next = mb2; 710 mb = mb2; 711 mb->m_len = 0; 712 bpos = mtod(mb, void *); 713 } 714 i = uimin(siz, M_TRAILINGSPACE(mb)); 715 memcpy(bpos, verf_str, i); 716 mb->m_len += i; 717 verf_str += i; 718 bpos += i; 719 siz -= i; 720 } 721 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 722 for (i = 0; i < siz; i++) 723 *bpos++ = '\0'; 724 mb->m_len += siz; 725 } 726 } else { 727 *tl++ = txdr_unsigned(RPCAUTH_NULL); 728 *tl = 0; 729 } 730 mb->m_next = mrest; 731 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 732 m_reset_rcvif(mreq); 733 *mbp = mb; 734 return (mreq); 735 } 736 737 /* 738 * copies mbuf chain to the uio scatter/gather list 739 */ 740 int 741 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos) 742 { 743 char *mbufcp, *uiocp; 744 int xfer, left, len; 745 struct mbuf *mp; 746 long uiosiz, rem; 747 int error = 0; 748 749 mp = *mrep; 750 mbufcp = *dpos; 751 len = mtod(mp, char *) + mp->m_len - mbufcp; 752 rem = nfsm_rndup(siz)-siz; 753 while (siz > 0) { 754 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 755 return (EFBIG); 756 left = uiop->uio_iov->iov_len; 757 uiocp = uiop->uio_iov->iov_base; 758 if (left > siz) 759 left = siz; 760 uiosiz = left; 761 while (left > 0) { 762 while (len == 0) { 763 mp = mp->m_next; 764 if (mp == NULL) 765 return (EBADRPC); 766 mbufcp = mtod(mp, void *); 767 len = mp->m_len; 768 } 769 xfer = (left > len) ? len : left; 770 error = copyout_vmspace(uiop->uio_vmspace, mbufcp, 771 uiocp, xfer); 772 if (error) { 773 return error; 774 } 775 left -= xfer; 776 len -= xfer; 777 mbufcp += xfer; 778 uiocp += xfer; 779 uiop->uio_offset += xfer; 780 uiop->uio_resid -= xfer; 781 } 782 if (uiop->uio_iov->iov_len <= siz) { 783 uiop->uio_iovcnt--; 784 uiop->uio_iov++; 785 } else { 786 uiop->uio_iov->iov_base = 787 (char *)uiop->uio_iov->iov_base + uiosiz; 788 uiop->uio_iov->iov_len -= uiosiz; 789 } 790 siz -= uiosiz; 791 } 792 *dpos = mbufcp; 793 *mrep = mp; 794 if (rem > 0) { 795 if (len < rem) 796 error = nfs_adv(mrep, dpos, rem, len); 797 else 798 *dpos += rem; 799 } 800 return (error); 801 } 802 803 /* 804 * copies a uio scatter/gather list to an mbuf chain. 805 * NOTE: can ony handle iovcnt == 1 806 */ 807 int 808 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos) 809 { 810 char *uiocp; 811 struct mbuf *mp, *mp2; 812 int xfer, left, mlen; 813 int uiosiz, clflg, rem; 814 char *cp; 815 int error; 816 817 #ifdef DIAGNOSTIC 818 if (uiop->uio_iovcnt != 1) 819 panic("nfsm_uiotombuf: iovcnt != 1"); 820 #endif 821 822 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 823 clflg = 1; 824 else 825 clflg = 0; 826 rem = nfsm_rndup(siz)-siz; 827 mp = mp2 = *mq; 828 while (siz > 0) { 829 left = uiop->uio_iov->iov_len; 830 uiocp = uiop->uio_iov->iov_base; 831 if (left > siz) 832 left = siz; 833 uiosiz = left; 834 while (left > 0) { 835 mlen = M_TRAILINGSPACE(mp); 836 if (mlen == 0) { 837 mp = m_get(M_WAIT, MT_DATA); 838 MCLAIM(mp, &nfs_mowner); 839 if (clflg) 840 m_clget(mp, M_WAIT); 841 mp->m_len = 0; 842 mp2->m_next = mp; 843 mp2 = mp; 844 mlen = M_TRAILINGSPACE(mp); 845 } 846 xfer = (left > mlen) ? mlen : left; 847 cp = mtod(mp, char *) + mp->m_len; 848 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp, 849 xfer); 850 if (error) { 851 /* XXX */ 852 } 853 mp->m_len += xfer; 854 left -= xfer; 855 uiocp += xfer; 856 uiop->uio_offset += xfer; 857 uiop->uio_resid -= xfer; 858 } 859 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + 860 uiosiz; 861 uiop->uio_iov->iov_len -= uiosiz; 862 siz -= uiosiz; 863 } 864 if (rem > 0) { 865 if (rem > M_TRAILINGSPACE(mp)) { 866 mp = m_get(M_WAIT, MT_DATA); 867 MCLAIM(mp, &nfs_mowner); 868 mp->m_len = 0; 869 mp2->m_next = mp; 870 } 871 cp = mtod(mp, char *) + mp->m_len; 872 for (left = 0; left < rem; left++) 873 *cp++ = '\0'; 874 mp->m_len += rem; 875 *bpos = cp; 876 } else 877 *bpos = mtod(mp, char *) + mp->m_len; 878 *mq = mp; 879 return (0); 880 } 881 882 /* 883 * Get at least "siz" bytes of correctly aligned data. 884 * When called the mbuf pointers are not necessarily correct, 885 * dsosp points to what ought to be in m_data and left contains 886 * what ought to be in m_len. 887 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 888 * cases. (The macros use the vars. dpos and dpos2) 889 */ 890 int 891 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2) 892 { 893 struct mbuf *m1, *m2; 894 struct mbuf *havebuf = NULL; 895 char *src = *dposp; 896 char *dst; 897 int len; 898 899 #ifdef DEBUG 900 if (left < 0) 901 panic("nfsm_disct: left < 0"); 902 #endif 903 m1 = *mdp; 904 /* 905 * Skip through the mbuf chain looking for an mbuf with 906 * some data. If the first mbuf found has enough data 907 * and it is correctly aligned return it. 908 */ 909 while (left == 0) { 910 havebuf = m1; 911 *mdp = m1 = m1->m_next; 912 if (m1 == NULL) 913 return (EBADRPC); 914 src = mtod(m1, void *); 915 left = m1->m_len; 916 /* 917 * If we start a new mbuf and it is big enough 918 * and correctly aligned just return it, don't 919 * do any pull up. 920 */ 921 if (left >= siz && nfsm_aligned(src)) { 922 *cp2 = src; 923 *dposp = src + siz; 924 return (0); 925 } 926 } 927 if ((m1->m_flags & M_EXT) != 0) { 928 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz && 929 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) { 930 /* 931 * If the first mbuf with data has external data 932 * and there is a previous mbuf with some trailing 933 * space, use it to move the data into. 934 */ 935 m2 = m1; 936 *mdp = m1 = havebuf; 937 *cp2 = mtod(m1, char *) + m1->m_len; 938 } else if (havebuf) { 939 /* 940 * If the first mbuf has a external data 941 * and there is no previous empty mbuf 942 * allocate a new mbuf and move the external 943 * data to the new mbuf. Also make the first 944 * mbuf look empty. 945 */ 946 m2 = m1; 947 *mdp = m1 = m_get(M_WAIT, MT_DATA); 948 MCLAIM(m1, m2->m_owner); 949 if ((m2->m_flags & M_PKTHDR) != 0) { 950 m_move_pkthdr(m1, m2); 951 } 952 if (havebuf) { 953 havebuf->m_next = m1; 954 } 955 m1->m_next = m2; 956 MRESETDATA(m1); 957 m1->m_len = 0; 958 m2->m_data = src; 959 m2->m_len = left; 960 *cp2 = mtod(m1, char *); 961 } else { 962 struct mbuf **nextp = &m1->m_next; 963 964 m1->m_len -= left; 965 do { 966 m2 = m_get(M_WAIT, MT_DATA); 967 MCLAIM(m2, m1->m_owner); 968 if (left >= MINCLSIZE) { 969 MCLGET(m2, M_WAIT); 970 } 971 m2->m_next = *nextp; 972 *nextp = m2; 973 nextp = &m2->m_next; 974 len = (m2->m_flags & M_EXT) != 0 ? 975 MCLBYTES : MLEN; 976 if (len > left) { 977 len = left; 978 } 979 memcpy(mtod(m2, char *), src, len); 980 m2->m_len = len; 981 src += len; 982 left -= len; 983 } while (left > 0); 984 *mdp = m1 = m1->m_next; 985 m2 = m1->m_next; 986 *cp2 = mtod(m1, char *); 987 } 988 } else { 989 /* 990 * If the first mbuf has no external data 991 * move the data to the front of the mbuf. 992 */ 993 MRESETDATA(m1); 994 dst = mtod(m1, char *); 995 if (dst != src) { 996 memmove(dst, src, left); 997 } 998 m1->m_len = left; 999 m2 = m1->m_next; 1000 *cp2 = m1->m_data; 1001 } 1002 *dposp = *cp2 + siz; 1003 /* 1004 * Loop through mbufs pulling data up into first mbuf until 1005 * the first mbuf is full or there is no more data to 1006 * pullup. 1007 */ 1008 dst = mtod(m1, char *) + m1->m_len; 1009 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) { 1010 if ((len = uimin(len, m2->m_len)) != 0) { 1011 memcpy(dst, mtod(m2, char *), len); 1012 } 1013 m1->m_len += len; 1014 dst += len; 1015 m2->m_data += len; 1016 m2->m_len -= len; 1017 m2 = m2->m_next; 1018 } 1019 if (m1->m_len < siz) 1020 return (EBADRPC); 1021 return (0); 1022 } 1023 1024 /* 1025 * Advance the position in the mbuf chain. 1026 */ 1027 int 1028 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left) 1029 { 1030 struct mbuf *m; 1031 int s; 1032 1033 m = *mdp; 1034 s = left; 1035 while (s < offs) { 1036 offs -= s; 1037 m = m->m_next; 1038 if (m == NULL) 1039 return (EBADRPC); 1040 s = m->m_len; 1041 } 1042 *mdp = m; 1043 *dposp = mtod(m, char *) + offs; 1044 return (0); 1045 } 1046 1047 /* 1048 * Copy a string into mbufs for the hard cases... 1049 */ 1050 int 1051 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz) 1052 { 1053 struct mbuf *m1 = NULL, *m2; 1054 long left, xfer, len, tlen; 1055 u_int32_t *tl; 1056 int putsize; 1057 1058 putsize = 1; 1059 m2 = *mb; 1060 left = M_TRAILINGSPACE(m2); 1061 if (left > 0) { 1062 tl = ((u_int32_t *)(*bpos)); 1063 *tl++ = txdr_unsigned(siz); 1064 putsize = 0; 1065 left -= NFSX_UNSIGNED; 1066 m2->m_len += NFSX_UNSIGNED; 1067 if (left > 0) { 1068 memcpy((void *) tl, cp, left); 1069 siz -= left; 1070 cp += left; 1071 m2->m_len += left; 1072 left = 0; 1073 } 1074 } 1075 /* Loop around adding mbufs */ 1076 while (siz > 0) { 1077 m1 = m_get(M_WAIT, MT_DATA); 1078 MCLAIM(m1, &nfs_mowner); 1079 if (siz > MLEN) 1080 m_clget(m1, M_WAIT); 1081 m1->m_len = NFSMSIZ(m1); 1082 m2->m_next = m1; 1083 m2 = m1; 1084 tl = mtod(m1, u_int32_t *); 1085 tlen = 0; 1086 if (putsize) { 1087 *tl++ = txdr_unsigned(siz); 1088 m1->m_len -= NFSX_UNSIGNED; 1089 tlen = NFSX_UNSIGNED; 1090 putsize = 0; 1091 } 1092 if (siz < m1->m_len) { 1093 len = nfsm_rndup(siz); 1094 xfer = siz; 1095 if (xfer < len) 1096 *(tl+(xfer>>2)) = 0; 1097 } else { 1098 xfer = len = m1->m_len; 1099 } 1100 memcpy((void *) tl, cp, xfer); 1101 m1->m_len = len+tlen; 1102 siz -= xfer; 1103 cp += xfer; 1104 } 1105 *mb = m1; 1106 *bpos = mtod(m1, char *) + m1->m_len; 1107 return (0); 1108 } 1109 1110 /* 1111 * Directory caching routines. They work as follows: 1112 * - a cache is maintained per VDIR nfsnode. 1113 * - for each offset cookie that is exported to userspace, and can 1114 * thus be thrown back at us as an offset to VOP_READDIR, store 1115 * information in the cache. 1116 * - cached are: 1117 * - cookie itself 1118 * - blocknumber (essentially just a search key in the buffer cache) 1119 * - entry number in block. 1120 * - offset cookie of block in which this entry is stored 1121 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1122 * - entries are looked up in a hash table 1123 * - also maintained is an LRU list of entries, used to determine 1124 * which ones to delete if the cache grows too large. 1125 * - if 32 <-> 64 translation mode is requested for a filesystem, 1126 * the cache also functions as a translation table 1127 * - in the translation case, invalidating the cache does not mean 1128 * flushing it, but just marking entries as invalid, except for 1129 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1130 * still be able to use the cache as a translation table. 1131 * - 32 bit cookies are uniquely created by combining the hash table 1132 * entry value, and one generation count per hash table entry, 1133 * incremented each time an entry is appended to the chain. 1134 * - the cache is invalidated each time a direcory is modified 1135 * - sanity checks are also done; if an entry in a block turns 1136 * out not to have a matching cookie, the cache is invalidated 1137 * and a new block starting from the wanted offset is fetched from 1138 * the server. 1139 * - directory entries as read from the server are extended to contain 1140 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1141 * the cache and exporting them to userspace through the cookie 1142 * argument to VOP_READDIR. 1143 */ 1144 1145 u_long 1146 nfs_dirhash(off_t off) 1147 { 1148 int i; 1149 char *cp = (char *)&off; 1150 u_long sum = 0L; 1151 1152 for (i = 0 ; i < sizeof (off); i++) 1153 sum += *cp++; 1154 1155 return sum; 1156 } 1157 1158 #define _NFSDC_MTX(np) (NFSTOV(np)->v_interlock) 1159 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np)) 1160 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np)) 1161 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np))) 1162 1163 void 1164 nfs_initdircache(struct vnode *vp) 1165 { 1166 struct nfsnode *np = VTONFS(vp); 1167 struct nfsdirhashhead *dircache; 1168 1169 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true, 1170 &nfsdirhashmask); 1171 1172 NFSDC_LOCK(np); 1173 if (np->n_dircache == NULL) { 1174 np->n_dircachesize = 0; 1175 np->n_dircache = dircache; 1176 dircache = NULL; 1177 TAILQ_INIT(&np->n_dirchain); 1178 } 1179 NFSDC_UNLOCK(np); 1180 if (dircache) 1181 hashdone(dircache, HASH_LIST, nfsdirhashmask); 1182 } 1183 1184 void 1185 nfs_initdirxlatecookie(struct vnode *vp) 1186 { 1187 struct nfsnode *np = VTONFS(vp); 1188 unsigned *dirgens; 1189 1190 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1191 1192 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP); 1193 NFSDC_LOCK(np); 1194 if (np->n_dirgens == NULL) { 1195 np->n_dirgens = dirgens; 1196 dirgens = NULL; 1197 } 1198 NFSDC_UNLOCK(np); 1199 if (dirgens) 1200 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned)); 1201 } 1202 1203 static const struct nfsdircache dzero; 1204 1205 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *); 1206 static void nfs_putdircache_unlocked(struct nfsnode *, 1207 struct nfsdircache *); 1208 1209 static void 1210 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp) 1211 { 1212 1213 NFSDC_ASSERT_LOCKED(np); 1214 KASSERT(ndp != &dzero); 1215 1216 if (LIST_NEXT(ndp, dc_hash) == (void *)-1) 1217 return; 1218 1219 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1220 LIST_REMOVE(ndp, dc_hash); 1221 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */ 1222 1223 nfs_putdircache_unlocked(np, ndp); 1224 } 1225 1226 void 1227 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp) 1228 { 1229 int ref; 1230 1231 if (ndp == &dzero) 1232 return; 1233 1234 KASSERT(ndp->dc_refcnt > 0); 1235 NFSDC_LOCK(np); 1236 ref = --ndp->dc_refcnt; 1237 NFSDC_UNLOCK(np); 1238 1239 if (ref == 0) 1240 kmem_free(ndp, sizeof(*ndp)); 1241 } 1242 1243 static void 1244 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp) 1245 { 1246 int ref; 1247 1248 NFSDC_ASSERT_LOCKED(np); 1249 1250 if (ndp == &dzero) 1251 return; 1252 1253 KASSERT(ndp->dc_refcnt > 0); 1254 ref = --ndp->dc_refcnt; 1255 if (ref == 0) 1256 kmem_free(ndp, sizeof(*ndp)); 1257 } 1258 1259 struct nfsdircache * 1260 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent) 1261 { 1262 struct nfsdirhashhead *ndhp; 1263 struct nfsdircache *ndp = NULL; 1264 struct nfsnode *np = VTONFS(vp); 1265 unsigned ent; 1266 1267 /* 1268 * Zero is always a valid cookie. 1269 */ 1270 if (off == 0) 1271 /* XXXUNCONST */ 1272 return (struct nfsdircache *)__UNCONST(&dzero); 1273 1274 if (!np->n_dircache) 1275 return NULL; 1276 1277 /* 1278 * We use a 32bit cookie as search key, directly reconstruct 1279 * the hashentry. Else use the hashfunction. 1280 */ 1281 if (do32) { 1282 ent = (u_int32_t)off >> 24; 1283 if (ent >= NFS_DIRHASHSIZ) 1284 return NULL; 1285 ndhp = &np->n_dircache[ent]; 1286 } else { 1287 ndhp = NFSDIRHASH(np, off); 1288 } 1289 1290 if (hashent) 1291 *hashent = (int)(ndhp - np->n_dircache); 1292 1293 NFSDC_LOCK(np); 1294 if (do32) { 1295 LIST_FOREACH(ndp, ndhp, dc_hash) { 1296 if (ndp->dc_cookie32 == (u_int32_t)off) { 1297 /* 1298 * An invalidated entry will become the 1299 * start of a new block fetched from 1300 * the server. 1301 */ 1302 if (ndp->dc_flags & NFSDC_INVALID) { 1303 ndp->dc_blkcookie = ndp->dc_cookie; 1304 ndp->dc_entry = 0; 1305 ndp->dc_flags &= ~NFSDC_INVALID; 1306 } 1307 break; 1308 } 1309 } 1310 } else { 1311 LIST_FOREACH(ndp, ndhp, dc_hash) { 1312 if (ndp->dc_cookie == off) 1313 break; 1314 } 1315 } 1316 if (ndp != NULL) 1317 ndp->dc_refcnt++; 1318 NFSDC_UNLOCK(np); 1319 return ndp; 1320 } 1321 1322 1323 struct nfsdircache * 1324 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en, 1325 daddr_t blkno) 1326 { 1327 struct nfsnode *np = VTONFS(vp); 1328 struct nfsdirhashhead *ndhp; 1329 struct nfsdircache *ndp = NULL; 1330 struct nfsdircache *newndp = NULL; 1331 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1332 int hashent = 0, gen, overwrite; /* XXX: GCC */ 1333 1334 /* 1335 * XXX refuse entries for offset 0. amd(8) erroneously sets 1336 * cookie 0 for the '.' entry, making this necessary. This 1337 * isn't so bad, as 0 is a special case anyway. 1338 */ 1339 if (off == 0) 1340 /* XXXUNCONST */ 1341 return (struct nfsdircache *)__UNCONST(&dzero); 1342 1343 if (!np->n_dircache) 1344 /* 1345 * XXX would like to do this in nfs_nget but vtype 1346 * isn't known at that time. 1347 */ 1348 nfs_initdircache(vp); 1349 1350 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens) 1351 nfs_initdirxlatecookie(vp); 1352 1353 retry: 1354 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1355 1356 NFSDC_LOCK(np); 1357 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) { 1358 /* 1359 * Overwriting an old entry. Check if it's the same. 1360 * If so, just return. If not, remove the old entry. 1361 */ 1362 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1363 goto done; 1364 nfs_unlinkdircache(np, ndp); 1365 nfs_putdircache_unlocked(np, ndp); 1366 ndp = NULL; 1367 } 1368 1369 ndhp = &np->n_dircache[hashent]; 1370 1371 if (!ndp) { 1372 if (newndp == NULL) { 1373 NFSDC_UNLOCK(np); 1374 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP); 1375 newndp->dc_refcnt = 1; 1376 LIST_NEXT(newndp, dc_hash) = (void *)-1; 1377 goto retry; 1378 } 1379 ndp = newndp; 1380 newndp = NULL; 1381 overwrite = 0; 1382 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1383 /* 1384 * We're allocating a new entry, so bump the 1385 * generation number. 1386 */ 1387 KASSERT(np->n_dirgens); 1388 gen = ++np->n_dirgens[hashent]; 1389 if (gen == 0) { 1390 np->n_dirgens[hashent]++; 1391 gen++; 1392 } 1393 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1394 } 1395 } else 1396 overwrite = 1; 1397 1398 ndp->dc_cookie = off; 1399 ndp->dc_blkcookie = blkoff; 1400 ndp->dc_entry = en; 1401 ndp->dc_flags = 0; 1402 1403 if (overwrite) 1404 goto done; 1405 1406 /* 1407 * If the maximum directory cookie cache size has been reached 1408 * for this node, take one off the front. The idea is that 1409 * directories are typically read front-to-back once, so that 1410 * the oldest entries can be thrown away without much performance 1411 * loss. 1412 */ 1413 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1414 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain)); 1415 } else 1416 np->n_dircachesize++; 1417 1418 KASSERT(ndp->dc_refcnt == 1); 1419 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1420 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1421 ndp->dc_refcnt++; 1422 done: 1423 KASSERT(ndp->dc_refcnt > 0); 1424 NFSDC_UNLOCK(np); 1425 if (newndp) 1426 nfs_putdircache(np, newndp); 1427 return ndp; 1428 } 1429 1430 void 1431 nfs_invaldircache(struct vnode *vp, int flags) 1432 { 1433 struct nfsnode *np = VTONFS(vp); 1434 struct nfsdircache *ndp = NULL; 1435 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1436 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE; 1437 1438 #ifdef DIAGNOSTIC 1439 if (vp->v_type != VDIR) 1440 panic("nfs: invaldircache: not dir"); 1441 #endif 1442 1443 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0) 1444 np->n_flag &= ~NEOFVALID; 1445 1446 if (!np->n_dircache) 1447 return; 1448 1449 NFSDC_LOCK(np); 1450 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1451 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) { 1452 KASSERT(!forcefree || ndp->dc_refcnt == 1); 1453 nfs_unlinkdircache(np, ndp); 1454 } 1455 np->n_dircachesize = 0; 1456 if (forcefree && np->n_dirgens) { 1457 kmem_free(np->n_dirgens, 1458 NFS_DIRHASHSIZ * sizeof(unsigned)); 1459 np->n_dirgens = NULL; 1460 } 1461 } else { 1462 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) 1463 ndp->dc_flags |= NFSDC_INVALID; 1464 } 1465 1466 NFSDC_UNLOCK(np); 1467 } 1468 1469 /* 1470 * Called once before VFS init to initialize shared and 1471 * server-specific data structures. 1472 */ 1473 static int 1474 nfs_init0(void) 1475 { 1476 1477 nfsrtt.pos = 0; 1478 rpc_vers = txdr_unsigned(RPC_VER2); 1479 rpc_call = txdr_unsigned(RPC_CALL); 1480 rpc_reply = txdr_unsigned(RPC_REPLY); 1481 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1482 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1483 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1484 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1485 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1486 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1487 nfs_prog = txdr_unsigned(NFS_PROG); 1488 nfs_true = txdr_unsigned(true); 1489 nfs_false = txdr_unsigned(false); 1490 nfs_xdrneg1 = txdr_unsigned(-1); 1491 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1492 if (nfs_ticks < 1) 1493 nfs_ticks = 1; 1494 nfsdreq_init(); 1495 1496 /* 1497 * Initialize reply list and start timer 1498 */ 1499 TAILQ_INIT(&nfs_reqq); 1500 mutex_init(&nfs_reqq_lock, MUTEX_DEFAULT, IPL_NONE); 1501 nfs_timer_init(); 1502 MOWNER_ATTACH(&nfs_mowner); 1503 1504 return 0; 1505 } 1506 1507 static volatile uint32_t nfs_mutex; 1508 static uint32_t nfs_refcount; 1509 1510 #define nfs_p() while (atomic_cas_32(&nfs_mutex, 0, 1) == 0) continue; 1511 #define nfs_v() while (atomic_cas_32(&nfs_mutex, 1, 0) == 1) continue; 1512 1513 /* 1514 * This is disgusting, but it must support both modular and monolothic 1515 * configurations, plus the code is shared between server and client. 1516 * For monolithic builds NFSSERVER may not imply NFS. Unfortunately we 1517 * can't use regular mutexes here that would require static initialization 1518 * and we can get initialized from multiple places, so we improvise. 1519 * 1520 * Yuck. 1521 */ 1522 void 1523 nfs_init(void) 1524 { 1525 1526 nfs_p(); 1527 if (nfs_refcount++ == 0) 1528 nfs_init0(); 1529 nfs_v(); 1530 } 1531 1532 void 1533 nfs_fini(void) 1534 { 1535 1536 nfs_p(); 1537 if (--nfs_refcount == 0) { 1538 MOWNER_DETACH(&nfs_mowner); 1539 nfs_timer_fini(); 1540 mutex_destroy(&nfs_reqq_lock); 1541 nfsdreq_fini(); 1542 } 1543 nfs_v(); 1544 } 1545 1546 /* 1547 * A fiddled version of m_adj() that ensures null fill to a 32-bit 1548 * boundary and only trims off the back end 1549 * 1550 * 1. trim off 'len' bytes as m_adj(mp, -len). 1551 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain. 1552 */ 1553 void 1554 nfs_zeropad(struct mbuf *mp, int len, int nul) 1555 { 1556 struct mbuf *m; 1557 int count; 1558 1559 /* 1560 * Trim from tail. Scan the mbuf chain, 1561 * calculating its length and finding the last mbuf. 1562 * If the adjustment only affects this mbuf, then just 1563 * adjust and return. Otherwise, rescan and truncate 1564 * after the remaining size. 1565 */ 1566 count = 0; 1567 m = mp; 1568 for (;;) { 1569 count += m->m_len; 1570 if (m->m_next == NULL) 1571 break; 1572 m = m->m_next; 1573 } 1574 1575 KDASSERT(count >= len); 1576 1577 if (m->m_len >= len) { 1578 m->m_len -= len; 1579 } else { 1580 count -= len; 1581 /* 1582 * Correct length for chain is "count". 1583 * Find the mbuf with last data, adjust its length, 1584 * and toss data from remaining mbufs on chain. 1585 */ 1586 for (m = mp; m; m = m->m_next) { 1587 if (m->m_len >= count) { 1588 m->m_len = count; 1589 break; 1590 } 1591 count -= m->m_len; 1592 } 1593 KASSERT(m && m->m_next); 1594 m_freem(m->m_next); 1595 m->m_next = NULL; 1596 } 1597 1598 KDASSERT(m->m_next == NULL); 1599 1600 /* 1601 * zero-padding. 1602 */ 1603 if (nul > 0) { 1604 char *cp; 1605 int i; 1606 1607 if (M_READONLY(m) || M_TRAILINGSPACE(m) < nul) { 1608 struct mbuf *n; 1609 1610 KDASSERT(MLEN >= nul); 1611 n = m_get(M_WAIT, MT_DATA); 1612 MCLAIM(n, &nfs_mowner); 1613 n->m_len = nul; 1614 n->m_next = NULL; 1615 m->m_next = n; 1616 cp = mtod(n, void *); 1617 } else { 1618 cp = mtod(m, char *) + m->m_len; 1619 m->m_len += nul; 1620 } 1621 for (i = 0; i < nul; i++) 1622 *cp++ = '\0'; 1623 } 1624 return; 1625 } 1626 1627 /* 1628 * Make these functions instead of macros, so that the kernel text size 1629 * doesn't get too big... 1630 */ 1631 void 1632 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp) 1633 { 1634 struct mbuf *mb = *mbp; 1635 char *bpos = *bposp; 1636 u_int32_t *tl; 1637 1638 if (before_ret) { 1639 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1640 *tl = nfs_false; 1641 } else { 1642 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 1643 *tl++ = nfs_true; 1644 txdr_hyper(before_vap->va_size, tl); 1645 tl += 2; 1646 txdr_nfsv3time(&(before_vap->va_mtime), tl); 1647 tl += 2; 1648 txdr_nfsv3time(&(before_vap->va_ctime), tl); 1649 } 1650 *bposp = bpos; 1651 *mbp = mb; 1652 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 1653 } 1654 1655 void 1656 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp) 1657 { 1658 struct mbuf *mb = *mbp; 1659 char *bpos = *bposp; 1660 u_int32_t *tl; 1661 struct nfs_fattr *fp; 1662 1663 if (after_ret) { 1664 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1665 *tl = nfs_false; 1666 } else { 1667 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 1668 *tl++ = nfs_true; 1669 fp = (struct nfs_fattr *)tl; 1670 nfsm_srvfattr(nfsd, after_vap, fp); 1671 } 1672 *mbp = mb; 1673 *bposp = bpos; 1674 } 1675 1676 void 1677 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp) 1678 { 1679 1680 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 1681 fp->fa_uid = txdr_unsigned(vap->va_uid); 1682 fp->fa_gid = txdr_unsigned(vap->va_gid); 1683 if (nfsd->nd_flag & ND_NFSV3) { 1684 fp->fa_type = vtonfsv3_type(vap->va_type); 1685 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 1686 txdr_hyper(vap->va_size, &fp->fa3_size); 1687 txdr_hyper(vap->va_bytes, &fp->fa3_used); 1688 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 1689 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 1690 fp->fa3_fsid.nfsuquad[0] = 0; 1691 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 1692 txdr_hyper(vap->va_fileid, &fp->fa3_fileid); 1693 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 1694 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 1695 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 1696 } else { 1697 fp->fa_type = vtonfsv2_type(vap->va_type); 1698 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 1699 fp->fa2_size = txdr_unsigned(NFS_V2CLAMP32(vap->va_size)); 1700 fp->fa2_blocksize = txdr_unsigned(NFS_V2CLAMP16(vap->va_blocksize)); 1701 if (vap->va_type == VFIFO) 1702 fp->fa2_rdev = 0xffffffff; 1703 else 1704 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 1705 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 1706 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 1707 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 1708 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 1709 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 1710 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 1711 } 1712 } 1713 1714 /* 1715 * This function compares two net addresses by family and returns true 1716 * if they are the same host. 1717 * If there is any doubt, return false. 1718 * The AF_INET family is handled as a special case so that address mbufs 1719 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 1720 */ 1721 int 1722 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam) 1723 { 1724 struct sockaddr_in *inetaddr; 1725 1726 switch (family) { 1727 case AF_INET: 1728 inetaddr = mtod(nam, struct sockaddr_in *); 1729 if (inetaddr->sin_family == AF_INET && 1730 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 1731 return (1); 1732 break; 1733 case AF_INET6: 1734 { 1735 struct sockaddr_in6 *sin6_1, *sin6_2; 1736 1737 sin6_1 = mtod(nam, struct sockaddr_in6 *); 1738 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 1739 if (sin6_1->sin6_family == AF_INET6 && 1740 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 1741 return 1; 1742 } 1743 default: 1744 break; 1745 }; 1746 return (0); 1747 } 1748 1749 struct nfs_clearcommit_ctx { 1750 struct mount *mp; 1751 }; 1752 1753 static bool 1754 nfs_clearcommit_selector(void *cl, struct vnode *vp) 1755 { 1756 struct nfs_clearcommit_ctx *c = cl; 1757 struct nfsnode *np; 1758 1759 KASSERT(mutex_owned(vp->v_interlock)); 1760 1761 /* XXXAD mountpoint check looks like nonsense to me */ 1762 np = VTONFS(vp); 1763 if (vp->v_type != VREG || vp->v_mount != c->mp || np == NULL) 1764 return false; 1765 return false; 1766 } 1767 1768 /* 1769 * The write verifier has changed (probably due to a server reboot), so all 1770 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 1771 * as dirty or are being written out just now, all this takes is clearing 1772 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 1773 * the mount point. 1774 */ 1775 void 1776 nfs_clearcommit(struct mount *mp) 1777 { 1778 struct vnode *vp; 1779 struct vnode_iterator *marker; 1780 struct nfsmount *nmp = VFSTONFS(mp); 1781 struct nfs_clearcommit_ctx ctx; 1782 struct nfsnode *np; 1783 struct vm_page *pg; 1784 struct uvm_page_array a; 1785 voff_t off; 1786 1787 rw_enter(&nmp->nm_writeverflock, RW_WRITER); 1788 vfs_vnode_iterator_init(mp, &marker); 1789 ctx.mp = mp; 1790 for (;;) { 1791 vp = vfs_vnode_iterator_next(marker, nfs_clearcommit_selector, 1792 &ctx); 1793 if (vp == NULL) 1794 break; 1795 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER); 1796 np = VTONFS(vp); 1797 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 1798 np->n_pushedhi = 0; 1799 np->n_commitflags &= 1800 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 1801 uvm_page_array_init(&a, &vp->v_uobj, 0); 1802 off = 0; 1803 while ((pg = uvm_page_array_fill_and_peek(&a, off, 0)) != 1804 NULL) { 1805 pg->flags &= ~PG_NEEDCOMMIT; 1806 uvm_page_array_advance(&a); 1807 off = pg->offset + PAGE_SIZE; 1808 } 1809 uvm_page_array_fini(&a); 1810 rw_exit(vp->v_uobj.vmobjlock); 1811 vrele(vp); 1812 } 1813 KASSERT(vp == NULL); 1814 vfs_vnode_iterator_destroy(marker); 1815 mutex_enter(&nmp->nm_lock); 1816 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 1817 mutex_exit(&nmp->nm_lock); 1818 rw_exit(&nmp->nm_writeverflock); 1819 } 1820 1821 void 1822 nfs_merge_commit_ranges(struct vnode *vp) 1823 { 1824 struct nfsnode *np = VTONFS(vp); 1825 1826 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 1827 1828 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 1829 np->n_pushedlo = np->n_pushlo; 1830 np->n_pushedhi = np->n_pushhi; 1831 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 1832 } else { 1833 if (np->n_pushlo < np->n_pushedlo) 1834 np->n_pushedlo = np->n_pushlo; 1835 if (np->n_pushhi > np->n_pushedhi) 1836 np->n_pushedhi = np->n_pushhi; 1837 } 1838 1839 np->n_pushlo = np->n_pushhi = 0; 1840 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 1841 1842 #ifdef NFS_DEBUG_COMMIT 1843 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 1844 (unsigned)np->n_pushedhi); 1845 #endif 1846 } 1847 1848 int 1849 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len) 1850 { 1851 struct nfsnode *np = VTONFS(vp); 1852 off_t lo, hi; 1853 1854 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 1855 return 0; 1856 lo = off; 1857 hi = lo + len; 1858 1859 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 1860 } 1861 1862 int 1863 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len) 1864 { 1865 struct nfsnode *np = VTONFS(vp); 1866 off_t lo, hi; 1867 1868 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 1869 return 0; 1870 lo = off; 1871 hi = lo + len; 1872 1873 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 1874 } 1875 1876 void 1877 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len) 1878 { 1879 struct nfsnode *np = VTONFS(vp); 1880 off_t lo, hi; 1881 1882 lo = off; 1883 hi = lo + len; 1884 1885 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 1886 np->n_pushedlo = lo; 1887 np->n_pushedhi = hi; 1888 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 1889 } else { 1890 if (hi > np->n_pushedhi) 1891 np->n_pushedhi = hi; 1892 if (lo < np->n_pushedlo) 1893 np->n_pushedlo = lo; 1894 } 1895 #ifdef NFS_DEBUG_COMMIT 1896 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 1897 (unsigned)np->n_pushedhi); 1898 #endif 1899 } 1900 1901 void 1902 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len) 1903 { 1904 struct nfsnode *np = VTONFS(vp); 1905 off_t lo, hi; 1906 1907 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 1908 return; 1909 1910 lo = off; 1911 hi = lo + len; 1912 1913 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 1914 return; 1915 if (lo <= np->n_pushedlo) 1916 np->n_pushedlo = hi; 1917 else if (hi >= np->n_pushedhi) 1918 np->n_pushedhi = lo; 1919 else { 1920 /* 1921 * XXX There's only one range. If the deleted range 1922 * is in the middle, pick the largest of the 1923 * contiguous ranges that it leaves. 1924 */ 1925 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 1926 np->n_pushedhi = lo; 1927 else 1928 np->n_pushedlo = hi; 1929 } 1930 #ifdef NFS_DEBUG_COMMIT 1931 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 1932 (unsigned)np->n_pushedhi); 1933 #endif 1934 } 1935 1936 void 1937 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len) 1938 { 1939 struct nfsnode *np = VTONFS(vp); 1940 off_t lo, hi; 1941 1942 lo = off; 1943 hi = lo + len; 1944 1945 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 1946 np->n_pushlo = lo; 1947 np->n_pushhi = hi; 1948 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 1949 } else { 1950 if (lo < np->n_pushlo) 1951 np->n_pushlo = lo; 1952 if (hi > np->n_pushhi) 1953 np->n_pushhi = hi; 1954 } 1955 #ifdef NFS_DEBUG_COMMIT 1956 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 1957 (unsigned)np->n_pushhi); 1958 #endif 1959 } 1960 1961 void 1962 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len) 1963 { 1964 struct nfsnode *np = VTONFS(vp); 1965 off_t lo, hi; 1966 1967 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 1968 return; 1969 1970 lo = off; 1971 hi = lo + len; 1972 1973 if (lo > np->n_pushhi || hi < np->n_pushlo) 1974 return; 1975 1976 if (lo <= np->n_pushlo) 1977 np->n_pushlo = hi; 1978 else if (hi >= np->n_pushhi) 1979 np->n_pushhi = lo; 1980 else { 1981 /* 1982 * XXX There's only one range. If the deleted range 1983 * is in the middle, pick the largest of the 1984 * contiguous ranges that it leaves. 1985 */ 1986 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 1987 np->n_pushhi = lo; 1988 else 1989 np->n_pushlo = hi; 1990 } 1991 #ifdef NFS_DEBUG_COMMIT 1992 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 1993 (unsigned)np->n_pushhi); 1994 #endif 1995 } 1996 1997 /* 1998 * Map errnos to NFS error numbers. For Version 3 also filter out error 1999 * numbers not specified for the associated procedure. 2000 */ 2001 int 2002 nfsrv_errmap(struct nfsrv_descript *nd, int err) 2003 { 2004 const short *defaulterrp, *errp; 2005 2006 if (nd->nd_flag & ND_NFSV3) { 2007 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2008 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2009 while (*++errp) { 2010 if (*errp == err) 2011 return (err); 2012 else if (*errp > err) 2013 break; 2014 } 2015 return ((int)*defaulterrp); 2016 } else 2017 return (err & 0xffff); 2018 } 2019 if (err <= ELAST) 2020 return ((int)nfsrv_v2errmap[err - 1]); 2021 return (NFSERR_IO); 2022 } 2023 2024 u_int32_t 2025 nfs_getxid(void) 2026 { 2027 u_int32_t newxid; 2028 2029 if (__predict_false(nfs_xid == 0)) { 2030 nfs_xid = cprng_fast32(); 2031 } 2032 2033 /* get next xid. skip 0 */ 2034 do { 2035 newxid = atomic_inc_32_nv(&nfs_xid); 2036 } while (__predict_false(newxid == 0)); 2037 2038 return txdr_unsigned(newxid); 2039 } 2040 2041 /* 2042 * assign a new xid for existing request. 2043 * used for NFSERR_JUKEBOX handling. 2044 */ 2045 void 2046 nfs_renewxid(struct nfsreq *req) 2047 { 2048 u_int32_t xid; 2049 int off; 2050 2051 xid = nfs_getxid(); 2052 if (req->r_nmp->nm_sotype == SOCK_STREAM) 2053 off = sizeof(u_int32_t); /* RPC record mark */ 2054 else 2055 off = 0; 2056 2057 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid); 2058 req->r_xid = xid; 2059 } 2060