xref: /netbsd-src/sys/nfs/nfs_subs.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: nfs_subs.c,v 1.212 2008/12/17 20:51:38 cegger Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
35  */
36 
37 /*
38  * Copyright 2000 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Frank van der Linden for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *      This product includes software developed for the NetBSD Project by
54  *      Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.212 2008/12/17 20:51:38 cegger Exp $");
74 
75 #ifdef _KERNEL_OPT
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #endif
79 
80 /*
81  * These functions support the macros and help fiddle mbuf chains for
82  * the nfs op functions. They do things like create the rpc header and
83  * copy data between mbuf chains and uio lists.
84  */
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/kmem.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/filedesc.h>
97 #include <sys/time.h>
98 #include <sys/dirent.h>
99 #include <sys/once.h>
100 #include <sys/kauth.h>
101 #include <sys/atomic.h>
102 
103 #include <uvm/uvm_extern.h>
104 
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114 
115 #include <miscfs/specfs/specdev.h>
116 
117 #include <netinet/in.h>
118 
119 static u_int32_t nfs_xid;
120 
121 /*
122  * Data items converted to xdr at startup, since they are constant
123  * This is kinda hokey, but may save a little time doing byte swaps
124  */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 	rpc_auth_kerb;
129 u_int32_t nfs_prog, nfs_true, nfs_false;
130 
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142 
143 /* NFS client/server stats. */
144 struct nfsstats nfsstats;
145 
146 /*
147  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
148  */
149 const int nfsv3_procid[NFS_NPROCS] = {
150 	NFSPROC_NULL,
151 	NFSPROC_GETATTR,
152 	NFSPROC_SETATTR,
153 	NFSPROC_NOOP,
154 	NFSPROC_LOOKUP,
155 	NFSPROC_READLINK,
156 	NFSPROC_READ,
157 	NFSPROC_NOOP,
158 	NFSPROC_WRITE,
159 	NFSPROC_CREATE,
160 	NFSPROC_REMOVE,
161 	NFSPROC_RENAME,
162 	NFSPROC_LINK,
163 	NFSPROC_SYMLINK,
164 	NFSPROC_MKDIR,
165 	NFSPROC_RMDIR,
166 	NFSPROC_READDIR,
167 	NFSPROC_FSSTAT,
168 	NFSPROC_NOOP,
169 	NFSPROC_NOOP,
170 	NFSPROC_NOOP,
171 	NFSPROC_NOOP,
172 	NFSPROC_NOOP
173 };
174 
175 /*
176  * and the reverse mapping from generic to Version 2 procedure numbers
177  */
178 const int nfsv2_procid[NFS_NPROCS] = {
179 	NFSV2PROC_NULL,
180 	NFSV2PROC_GETATTR,
181 	NFSV2PROC_SETATTR,
182 	NFSV2PROC_LOOKUP,
183 	NFSV2PROC_NOOP,
184 	NFSV2PROC_READLINK,
185 	NFSV2PROC_READ,
186 	NFSV2PROC_WRITE,
187 	NFSV2PROC_CREATE,
188 	NFSV2PROC_MKDIR,
189 	NFSV2PROC_SYMLINK,
190 	NFSV2PROC_CREATE,
191 	NFSV2PROC_REMOVE,
192 	NFSV2PROC_RMDIR,
193 	NFSV2PROC_RENAME,
194 	NFSV2PROC_LINK,
195 	NFSV2PROC_READDIR,
196 	NFSV2PROC_NOOP,
197 	NFSV2PROC_STATFS,
198 	NFSV2PROC_NOOP,
199 	NFSV2PROC_NOOP,
200 	NFSV2PROC_NOOP,
201 	NFSV2PROC_NOOP,
202 };
203 
204 /*
205  * Maps errno values to nfs error numbers.
206  * Use NFSERR_IO as the catch all for ones not specifically defined in
207  * RFC 1094.
208  */
209 static const u_char nfsrv_v2errmap[ELAST] = {
210   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
211   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
212   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
213   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
214   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
215   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
216   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
217   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
218   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
219   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
220   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
221   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
222   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
223   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
226   NFSERR_IO,	NFSERR_IO,
227 };
228 
229 /*
230  * Maps errno values to nfs error numbers.
231  * Although it is not obvious whether or not NFS clients really care if
232  * a returned error value is in the specified list for the procedure, the
233  * safest thing to do is filter them appropriately. For Version 2, the
234  * X/Open XNFS document is the only specification that defines error values
235  * for each RPC (The RFC simply lists all possible error values for all RPCs),
236  * so I have decided to not do this for Version 2.
237  * The first entry is the default error return and the rest are the valid
238  * errors for that RPC in increasing numeric order.
239  */
240 static const short nfsv3err_null[] = {
241 	0,
242 	0,
243 };
244 
245 static const short nfsv3err_getattr[] = {
246 	NFSERR_IO,
247 	NFSERR_IO,
248 	NFSERR_STALE,
249 	NFSERR_BADHANDLE,
250 	NFSERR_SERVERFAULT,
251 	0,
252 };
253 
254 static const short nfsv3err_setattr[] = {
255 	NFSERR_IO,
256 	NFSERR_PERM,
257 	NFSERR_IO,
258 	NFSERR_ACCES,
259 	NFSERR_INVAL,
260 	NFSERR_NOSPC,
261 	NFSERR_ROFS,
262 	NFSERR_DQUOT,
263 	NFSERR_STALE,
264 	NFSERR_BADHANDLE,
265 	NFSERR_NOT_SYNC,
266 	NFSERR_SERVERFAULT,
267 	0,
268 };
269 
270 static const short nfsv3err_lookup[] = {
271 	NFSERR_IO,
272 	NFSERR_NOENT,
273 	NFSERR_IO,
274 	NFSERR_ACCES,
275 	NFSERR_NOTDIR,
276 	NFSERR_NAMETOL,
277 	NFSERR_STALE,
278 	NFSERR_BADHANDLE,
279 	NFSERR_SERVERFAULT,
280 	0,
281 };
282 
283 static const short nfsv3err_access[] = {
284 	NFSERR_IO,
285 	NFSERR_IO,
286 	NFSERR_STALE,
287 	NFSERR_BADHANDLE,
288 	NFSERR_SERVERFAULT,
289 	0,
290 };
291 
292 static const short nfsv3err_readlink[] = {
293 	NFSERR_IO,
294 	NFSERR_IO,
295 	NFSERR_ACCES,
296 	NFSERR_INVAL,
297 	NFSERR_STALE,
298 	NFSERR_BADHANDLE,
299 	NFSERR_NOTSUPP,
300 	NFSERR_SERVERFAULT,
301 	0,
302 };
303 
304 static const short nfsv3err_read[] = {
305 	NFSERR_IO,
306 	NFSERR_IO,
307 	NFSERR_NXIO,
308 	NFSERR_ACCES,
309 	NFSERR_INVAL,
310 	NFSERR_STALE,
311 	NFSERR_BADHANDLE,
312 	NFSERR_SERVERFAULT,
313 	NFSERR_JUKEBOX,
314 	0,
315 };
316 
317 static const short nfsv3err_write[] = {
318 	NFSERR_IO,
319 	NFSERR_IO,
320 	NFSERR_ACCES,
321 	NFSERR_INVAL,
322 	NFSERR_FBIG,
323 	NFSERR_NOSPC,
324 	NFSERR_ROFS,
325 	NFSERR_DQUOT,
326 	NFSERR_STALE,
327 	NFSERR_BADHANDLE,
328 	NFSERR_SERVERFAULT,
329 	NFSERR_JUKEBOX,
330 	0,
331 };
332 
333 static const short nfsv3err_create[] = {
334 	NFSERR_IO,
335 	NFSERR_IO,
336 	NFSERR_ACCES,
337 	NFSERR_EXIST,
338 	NFSERR_NOTDIR,
339 	NFSERR_NOSPC,
340 	NFSERR_ROFS,
341 	NFSERR_NAMETOL,
342 	NFSERR_DQUOT,
343 	NFSERR_STALE,
344 	NFSERR_BADHANDLE,
345 	NFSERR_NOTSUPP,
346 	NFSERR_SERVERFAULT,
347 	0,
348 };
349 
350 static const short nfsv3err_mkdir[] = {
351 	NFSERR_IO,
352 	NFSERR_IO,
353 	NFSERR_ACCES,
354 	NFSERR_EXIST,
355 	NFSERR_NOTDIR,
356 	NFSERR_NOSPC,
357 	NFSERR_ROFS,
358 	NFSERR_NAMETOL,
359 	NFSERR_DQUOT,
360 	NFSERR_STALE,
361 	NFSERR_BADHANDLE,
362 	NFSERR_NOTSUPP,
363 	NFSERR_SERVERFAULT,
364 	0,
365 };
366 
367 static const short nfsv3err_symlink[] = {
368 	NFSERR_IO,
369 	NFSERR_IO,
370 	NFSERR_ACCES,
371 	NFSERR_EXIST,
372 	NFSERR_NOTDIR,
373 	NFSERR_NOSPC,
374 	NFSERR_ROFS,
375 	NFSERR_NAMETOL,
376 	NFSERR_DQUOT,
377 	NFSERR_STALE,
378 	NFSERR_BADHANDLE,
379 	NFSERR_NOTSUPP,
380 	NFSERR_SERVERFAULT,
381 	0,
382 };
383 
384 static const short nfsv3err_mknod[] = {
385 	NFSERR_IO,
386 	NFSERR_IO,
387 	NFSERR_ACCES,
388 	NFSERR_EXIST,
389 	NFSERR_NOTDIR,
390 	NFSERR_NOSPC,
391 	NFSERR_ROFS,
392 	NFSERR_NAMETOL,
393 	NFSERR_DQUOT,
394 	NFSERR_STALE,
395 	NFSERR_BADHANDLE,
396 	NFSERR_NOTSUPP,
397 	NFSERR_SERVERFAULT,
398 	NFSERR_BADTYPE,
399 	0,
400 };
401 
402 static const short nfsv3err_remove[] = {
403 	NFSERR_IO,
404 	NFSERR_NOENT,
405 	NFSERR_IO,
406 	NFSERR_ACCES,
407 	NFSERR_NOTDIR,
408 	NFSERR_ROFS,
409 	NFSERR_NAMETOL,
410 	NFSERR_STALE,
411 	NFSERR_BADHANDLE,
412 	NFSERR_SERVERFAULT,
413 	0,
414 };
415 
416 static const short nfsv3err_rmdir[] = {
417 	NFSERR_IO,
418 	NFSERR_NOENT,
419 	NFSERR_IO,
420 	NFSERR_ACCES,
421 	NFSERR_EXIST,
422 	NFSERR_NOTDIR,
423 	NFSERR_INVAL,
424 	NFSERR_ROFS,
425 	NFSERR_NAMETOL,
426 	NFSERR_NOTEMPTY,
427 	NFSERR_STALE,
428 	NFSERR_BADHANDLE,
429 	NFSERR_NOTSUPP,
430 	NFSERR_SERVERFAULT,
431 	0,
432 };
433 
434 static const short nfsv3err_rename[] = {
435 	NFSERR_IO,
436 	NFSERR_NOENT,
437 	NFSERR_IO,
438 	NFSERR_ACCES,
439 	NFSERR_EXIST,
440 	NFSERR_XDEV,
441 	NFSERR_NOTDIR,
442 	NFSERR_ISDIR,
443 	NFSERR_INVAL,
444 	NFSERR_NOSPC,
445 	NFSERR_ROFS,
446 	NFSERR_MLINK,
447 	NFSERR_NAMETOL,
448 	NFSERR_NOTEMPTY,
449 	NFSERR_DQUOT,
450 	NFSERR_STALE,
451 	NFSERR_BADHANDLE,
452 	NFSERR_NOTSUPP,
453 	NFSERR_SERVERFAULT,
454 	0,
455 };
456 
457 static const short nfsv3err_link[] = {
458 	NFSERR_IO,
459 	NFSERR_IO,
460 	NFSERR_ACCES,
461 	NFSERR_EXIST,
462 	NFSERR_XDEV,
463 	NFSERR_NOTDIR,
464 	NFSERR_INVAL,
465 	NFSERR_NOSPC,
466 	NFSERR_ROFS,
467 	NFSERR_MLINK,
468 	NFSERR_NAMETOL,
469 	NFSERR_DQUOT,
470 	NFSERR_STALE,
471 	NFSERR_BADHANDLE,
472 	NFSERR_NOTSUPP,
473 	NFSERR_SERVERFAULT,
474 	0,
475 };
476 
477 static const short nfsv3err_readdir[] = {
478 	NFSERR_IO,
479 	NFSERR_IO,
480 	NFSERR_ACCES,
481 	NFSERR_NOTDIR,
482 	NFSERR_STALE,
483 	NFSERR_BADHANDLE,
484 	NFSERR_BAD_COOKIE,
485 	NFSERR_TOOSMALL,
486 	NFSERR_SERVERFAULT,
487 	0,
488 };
489 
490 static const short nfsv3err_readdirplus[] = {
491 	NFSERR_IO,
492 	NFSERR_IO,
493 	NFSERR_ACCES,
494 	NFSERR_NOTDIR,
495 	NFSERR_STALE,
496 	NFSERR_BADHANDLE,
497 	NFSERR_BAD_COOKIE,
498 	NFSERR_NOTSUPP,
499 	NFSERR_TOOSMALL,
500 	NFSERR_SERVERFAULT,
501 	0,
502 };
503 
504 static const short nfsv3err_fsstat[] = {
505 	NFSERR_IO,
506 	NFSERR_IO,
507 	NFSERR_STALE,
508 	NFSERR_BADHANDLE,
509 	NFSERR_SERVERFAULT,
510 	0,
511 };
512 
513 static const short nfsv3err_fsinfo[] = {
514 	NFSERR_STALE,
515 	NFSERR_STALE,
516 	NFSERR_BADHANDLE,
517 	NFSERR_SERVERFAULT,
518 	0,
519 };
520 
521 static const short nfsv3err_pathconf[] = {
522 	NFSERR_STALE,
523 	NFSERR_STALE,
524 	NFSERR_BADHANDLE,
525 	NFSERR_SERVERFAULT,
526 	0,
527 };
528 
529 static const short nfsv3err_commit[] = {
530 	NFSERR_IO,
531 	NFSERR_IO,
532 	NFSERR_STALE,
533 	NFSERR_BADHANDLE,
534 	NFSERR_SERVERFAULT,
535 	0,
536 };
537 
538 static const short * const nfsrv_v3errmap[] = {
539 	nfsv3err_null,
540 	nfsv3err_getattr,
541 	nfsv3err_setattr,
542 	nfsv3err_lookup,
543 	nfsv3err_access,
544 	nfsv3err_readlink,
545 	nfsv3err_read,
546 	nfsv3err_write,
547 	nfsv3err_create,
548 	nfsv3err_mkdir,
549 	nfsv3err_symlink,
550 	nfsv3err_mknod,
551 	nfsv3err_remove,
552 	nfsv3err_rmdir,
553 	nfsv3err_rename,
554 	nfsv3err_link,
555 	nfsv3err_readdir,
556 	nfsv3err_readdirplus,
557 	nfsv3err_fsstat,
558 	nfsv3err_fsinfo,
559 	nfsv3err_pathconf,
560 	nfsv3err_commit,
561 };
562 
563 extern struct nfsrtt nfsrtt;
564 
565 u_long nfsdirhashmask;
566 
567 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
568 
569 /*
570  * Create the header for an rpc request packet
571  * The hsiz is the size of the rest of the nfs request header.
572  * (just used to decide if a cluster is a good idea)
573  */
574 struct mbuf *
575 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
576 {
577 	struct mbuf *mb;
578 	char *bpos;
579 
580 	mb = m_get(M_WAIT, MT_DATA);
581 	MCLAIM(mb, &nfs_mowner);
582 	if (hsiz >= MINCLSIZE)
583 		m_clget(mb, M_WAIT);
584 	mb->m_len = 0;
585 	bpos = mtod(mb, void *);
586 
587 	/* Finally, return values */
588 	*bposp = bpos;
589 	return (mb);
590 }
591 
592 /*
593  * Build the RPC header and fill in the authorization info.
594  * The authorization string argument is only used when the credentials
595  * come from outside of the kernel.
596  * Returns the head of the mbuf list.
597  */
598 struct mbuf *
599 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
600 	verf_str, mrest, mrest_len, mbp, xidp)
601 	kauth_cred_t cr;
602 	int nmflag;
603 	int procid;
604 	int auth_type;
605 	int auth_len;
606 	char *auth_str;
607 	int verf_len;
608 	char *verf_str;
609 	struct mbuf *mrest;
610 	int mrest_len;
611 	struct mbuf **mbp;
612 	u_int32_t *xidp;
613 {
614 	struct mbuf *mb;
615 	u_int32_t *tl;
616 	char *bpos;
617 	int i;
618 	struct mbuf *mreq;
619 	int siz, grpsiz, authsiz;
620 
621 	authsiz = nfsm_rndup(auth_len);
622 	mb = m_gethdr(M_WAIT, MT_DATA);
623 	MCLAIM(mb, &nfs_mowner);
624 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
625 		m_clget(mb, M_WAIT);
626 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
627 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
628 	} else {
629 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
630 	}
631 	mb->m_len = 0;
632 	mreq = mb;
633 	bpos = mtod(mb, void *);
634 
635 	/*
636 	 * First the RPC header.
637 	 */
638 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
639 
640 	*tl++ = *xidp = nfs_getxid();
641 	*tl++ = rpc_call;
642 	*tl++ = rpc_vers;
643 	*tl++ = txdr_unsigned(NFS_PROG);
644 	if (nmflag & NFSMNT_NFSV3)
645 		*tl++ = txdr_unsigned(NFS_VER3);
646 	else
647 		*tl++ = txdr_unsigned(NFS_VER2);
648 	if (nmflag & NFSMNT_NFSV3)
649 		*tl++ = txdr_unsigned(procid);
650 	else
651 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
652 
653 	/*
654 	 * And then the authorization cred.
655 	 */
656 	*tl++ = txdr_unsigned(auth_type);
657 	*tl = txdr_unsigned(authsiz);
658 	switch (auth_type) {
659 	case RPCAUTH_UNIX:
660 		nfsm_build(tl, u_int32_t *, auth_len);
661 		*tl++ = 0;		/* stamp ?? */
662 		*tl++ = 0;		/* NULL hostname */
663 		*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
664 		*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
665 		grpsiz = (auth_len >> 2) - 5;
666 		*tl++ = txdr_unsigned(grpsiz);
667 		for (i = 0; i < grpsiz; i++)
668 			*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
669 		break;
670 	case RPCAUTH_KERB4:
671 		siz = auth_len;
672 		while (siz > 0) {
673 			if (M_TRAILINGSPACE(mb) == 0) {
674 				struct mbuf *mb2;
675 				mb2 = m_get(M_WAIT, MT_DATA);
676 				MCLAIM(mb2, &nfs_mowner);
677 				if (siz >= MINCLSIZE)
678 					m_clget(mb2, M_WAIT);
679 				mb->m_next = mb2;
680 				mb = mb2;
681 				mb->m_len = 0;
682 				bpos = mtod(mb, void *);
683 			}
684 			i = min(siz, M_TRAILINGSPACE(mb));
685 			memcpy(bpos, auth_str, i);
686 			mb->m_len += i;
687 			auth_str += i;
688 			bpos += i;
689 			siz -= i;
690 		}
691 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
692 			for (i = 0; i < siz; i++)
693 				*bpos++ = '\0';
694 			mb->m_len += siz;
695 		}
696 		break;
697 	};
698 
699 	/*
700 	 * And the verifier...
701 	 */
702 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
703 	if (verf_str) {
704 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
705 		*tl = txdr_unsigned(verf_len);
706 		siz = verf_len;
707 		while (siz > 0) {
708 			if (M_TRAILINGSPACE(mb) == 0) {
709 				struct mbuf *mb2;
710 				mb2 = m_get(M_WAIT, MT_DATA);
711 				MCLAIM(mb2, &nfs_mowner);
712 				if (siz >= MINCLSIZE)
713 					m_clget(mb2, M_WAIT);
714 				mb->m_next = mb2;
715 				mb = mb2;
716 				mb->m_len = 0;
717 				bpos = mtod(mb, void *);
718 			}
719 			i = min(siz, M_TRAILINGSPACE(mb));
720 			memcpy(bpos, verf_str, i);
721 			mb->m_len += i;
722 			verf_str += i;
723 			bpos += i;
724 			siz -= i;
725 		}
726 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
727 			for (i = 0; i < siz; i++)
728 				*bpos++ = '\0';
729 			mb->m_len += siz;
730 		}
731 	} else {
732 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
733 		*tl = 0;
734 	}
735 	mb->m_next = mrest;
736 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
737 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
738 	*mbp = mb;
739 	return (mreq);
740 }
741 
742 /*
743  * copies mbuf chain to the uio scatter/gather list
744  */
745 int
746 nfsm_mbuftouio(mrep, uiop, siz, dpos)
747 	struct mbuf **mrep;
748 	struct uio *uiop;
749 	int siz;
750 	char **dpos;
751 {
752 	char *mbufcp, *uiocp;
753 	int xfer, left, len;
754 	struct mbuf *mp;
755 	long uiosiz, rem;
756 	int error = 0;
757 
758 	mp = *mrep;
759 	mbufcp = *dpos;
760 	len = mtod(mp, char *) + mp->m_len - mbufcp;
761 	rem = nfsm_rndup(siz)-siz;
762 	while (siz > 0) {
763 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
764 			return (EFBIG);
765 		left = uiop->uio_iov->iov_len;
766 		uiocp = uiop->uio_iov->iov_base;
767 		if (left > siz)
768 			left = siz;
769 		uiosiz = left;
770 		while (left > 0) {
771 			while (len == 0) {
772 				mp = mp->m_next;
773 				if (mp == NULL)
774 					return (EBADRPC);
775 				mbufcp = mtod(mp, void *);
776 				len = mp->m_len;
777 			}
778 			xfer = (left > len) ? len : left;
779 			error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
780 			    uiocp, xfer);
781 			if (error) {
782 				return error;
783 			}
784 			left -= xfer;
785 			len -= xfer;
786 			mbufcp += xfer;
787 			uiocp += xfer;
788 			uiop->uio_offset += xfer;
789 			uiop->uio_resid -= xfer;
790 		}
791 		if (uiop->uio_iov->iov_len <= siz) {
792 			uiop->uio_iovcnt--;
793 			uiop->uio_iov++;
794 		} else {
795 			uiop->uio_iov->iov_base =
796 			    (char *)uiop->uio_iov->iov_base + uiosiz;
797 			uiop->uio_iov->iov_len -= uiosiz;
798 		}
799 		siz -= uiosiz;
800 	}
801 	*dpos = mbufcp;
802 	*mrep = mp;
803 	if (rem > 0) {
804 		if (len < rem)
805 			error = nfs_adv(mrep, dpos, rem, len);
806 		else
807 			*dpos += rem;
808 	}
809 	return (error);
810 }
811 
812 /*
813  * copies a uio scatter/gather list to an mbuf chain.
814  * NOTE: can ony handle iovcnt == 1
815  */
816 int
817 nfsm_uiotombuf(uiop, mq, siz, bpos)
818 	struct uio *uiop;
819 	struct mbuf **mq;
820 	int siz;
821 	char **bpos;
822 {
823 	char *uiocp;
824 	struct mbuf *mp, *mp2;
825 	int xfer, left, mlen;
826 	int uiosiz, clflg, rem;
827 	char *cp;
828 	int error;
829 
830 #ifdef DIAGNOSTIC
831 	if (uiop->uio_iovcnt != 1)
832 		panic("nfsm_uiotombuf: iovcnt != 1");
833 #endif
834 
835 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
836 		clflg = 1;
837 	else
838 		clflg = 0;
839 	rem = nfsm_rndup(siz)-siz;
840 	mp = mp2 = *mq;
841 	while (siz > 0) {
842 		left = uiop->uio_iov->iov_len;
843 		uiocp = uiop->uio_iov->iov_base;
844 		if (left > siz)
845 			left = siz;
846 		uiosiz = left;
847 		while (left > 0) {
848 			mlen = M_TRAILINGSPACE(mp);
849 			if (mlen == 0) {
850 				mp = m_get(M_WAIT, MT_DATA);
851 				MCLAIM(mp, &nfs_mowner);
852 				if (clflg)
853 					m_clget(mp, M_WAIT);
854 				mp->m_len = 0;
855 				mp2->m_next = mp;
856 				mp2 = mp;
857 				mlen = M_TRAILINGSPACE(mp);
858 			}
859 			xfer = (left > mlen) ? mlen : left;
860 			cp = mtod(mp, char *) + mp->m_len;
861 			error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
862 			    xfer);
863 			if (error) {
864 				/* XXX */
865 			}
866 			mp->m_len += xfer;
867 			left -= xfer;
868 			uiocp += xfer;
869 			uiop->uio_offset += xfer;
870 			uiop->uio_resid -= xfer;
871 		}
872 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
873 		    uiosiz;
874 		uiop->uio_iov->iov_len -= uiosiz;
875 		siz -= uiosiz;
876 	}
877 	if (rem > 0) {
878 		if (rem > M_TRAILINGSPACE(mp)) {
879 			mp = m_get(M_WAIT, MT_DATA);
880 			MCLAIM(mp, &nfs_mowner);
881 			mp->m_len = 0;
882 			mp2->m_next = mp;
883 		}
884 		cp = mtod(mp, char *) + mp->m_len;
885 		for (left = 0; left < rem; left++)
886 			*cp++ = '\0';
887 		mp->m_len += rem;
888 		*bpos = cp;
889 	} else
890 		*bpos = mtod(mp, char *) + mp->m_len;
891 	*mq = mp;
892 	return (0);
893 }
894 
895 /*
896  * Get at least "siz" bytes of correctly aligned data.
897  * When called the mbuf pointers are not necessarily correct,
898  * dsosp points to what ought to be in m_data and left contains
899  * what ought to be in m_len.
900  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
901  * cases. (The macros use the vars. dpos and dpos2)
902  */
903 int
904 nfsm_disct(mdp, dposp, siz, left, cp2)
905 	struct mbuf **mdp;
906 	char **dposp;
907 	int siz;
908 	int left;
909 	char **cp2;
910 {
911 	struct mbuf *m1, *m2;
912 	struct mbuf *havebuf = NULL;
913 	char *src = *dposp;
914 	char *dst;
915 	int len;
916 
917 #ifdef DEBUG
918 	if (left < 0)
919 		panic("nfsm_disct: left < 0");
920 #endif
921 	m1 = *mdp;
922 	/*
923 	 * Skip through the mbuf chain looking for an mbuf with
924 	 * some data. If the first mbuf found has enough data
925 	 * and it is correctly aligned return it.
926 	 */
927 	while (left == 0) {
928 		havebuf = m1;
929 		*mdp = m1 = m1->m_next;
930 		if (m1 == NULL)
931 			return (EBADRPC);
932 		src = mtod(m1, void *);
933 		left = m1->m_len;
934 		/*
935 		 * If we start a new mbuf and it is big enough
936 		 * and correctly aligned just return it, don't
937 		 * do any pull up.
938 		 */
939 		if (left >= siz && nfsm_aligned(src)) {
940 			*cp2 = src;
941 			*dposp = src + siz;
942 			return (0);
943 		}
944 	}
945 	if ((m1->m_flags & M_EXT) != 0) {
946 		if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
947 		    nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
948 			/*
949 			 * If the first mbuf with data has external data
950 			 * and there is a previous mbuf with some trailing
951 			 * space, use it to move the data into.
952 			 */
953 			m2 = m1;
954 			*mdp = m1 = havebuf;
955 			*cp2 = mtod(m1, char *) + m1->m_len;
956 		} else if (havebuf) {
957 			/*
958 			 * If the first mbuf has a external data
959 			 * and there is no previous empty mbuf
960 			 * allocate a new mbuf and move the external
961 			 * data to the new mbuf. Also make the first
962 			 * mbuf look empty.
963 			 */
964 			m2 = m1;
965 			*mdp = m1 = m_get(M_WAIT, MT_DATA);
966 			MCLAIM(m1, m2->m_owner);
967 			if ((m2->m_flags & M_PKTHDR) != 0) {
968 				/* XXX MOVE */
969 				M_COPY_PKTHDR(m1, m2);
970 				m_tag_delete_chain(m2, NULL);
971 				m2->m_flags &= ~M_PKTHDR;
972 			}
973 			if (havebuf) {
974 				havebuf->m_next = m1;
975 			}
976 			m1->m_next = m2;
977 			MRESETDATA(m1);
978 			m1->m_len = 0;
979 			m2->m_data = src;
980 			m2->m_len = left;
981 			*cp2 = mtod(m1, char *);
982 		} else {
983 			struct mbuf **nextp = &m1->m_next;
984 
985 			m1->m_len -= left;
986 			do {
987 				m2 = m_get(M_WAIT, MT_DATA);
988 				MCLAIM(m2, m1->m_owner);
989 				if (left >= MINCLSIZE) {
990 					MCLGET(m2, M_WAIT);
991 				}
992 				m2->m_next = *nextp;
993 				*nextp = m2;
994 				nextp = &m2->m_next;
995 				len = (m2->m_flags & M_EXT) != 0 ?
996 				    MCLBYTES : MLEN;
997 				if (len > left) {
998 					len = left;
999 				}
1000 				memcpy(mtod(m2, char *), src, len);
1001 				m2->m_len = len;
1002 				src += len;
1003 				left -= len;
1004 			} while (left > 0);
1005 			*mdp = m1 = m1->m_next;
1006 			m2 = m1->m_next;
1007 			*cp2 = mtod(m1, char *);
1008 		}
1009 	} else {
1010 		/*
1011 		 * If the first mbuf has no external data
1012 		 * move the data to the front of the mbuf.
1013 		 */
1014 		MRESETDATA(m1);
1015 		dst = mtod(m1, char *);
1016 		if (dst != src) {
1017 			memmove(dst, src, left);
1018 		}
1019 		m1->m_len = left;
1020 		m2 = m1->m_next;
1021 		*cp2 = m1->m_data;
1022 	}
1023 	*dposp = *cp2 + siz;
1024 	/*
1025 	 * Loop through mbufs pulling data up into first mbuf until
1026 	 * the first mbuf is full or there is no more data to
1027 	 * pullup.
1028 	 */
1029 	dst = mtod(m1, char *) + m1->m_len;
1030 	while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1031 		if ((len = min(len, m2->m_len)) != 0) {
1032 			memcpy(dst, mtod(m2, char *), len);
1033 		}
1034 		m1->m_len += len;
1035 		dst += len;
1036 		m2->m_data += len;
1037 		m2->m_len -= len;
1038 		m2 = m2->m_next;
1039 	}
1040 	if (m1->m_len < siz)
1041 		return (EBADRPC);
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Advance the position in the mbuf chain.
1047  */
1048 int
1049 nfs_adv(mdp, dposp, offs, left)
1050 	struct mbuf **mdp;
1051 	char **dposp;
1052 	int offs;
1053 	int left;
1054 {
1055 	struct mbuf *m;
1056 	int s;
1057 
1058 	m = *mdp;
1059 	s = left;
1060 	while (s < offs) {
1061 		offs -= s;
1062 		m = m->m_next;
1063 		if (m == NULL)
1064 			return (EBADRPC);
1065 		s = m->m_len;
1066 	}
1067 	*mdp = m;
1068 	*dposp = mtod(m, char *) + offs;
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Copy a string into mbufs for the hard cases...
1074  */
1075 int
1076 nfsm_strtmbuf(mb, bpos, cp, siz)
1077 	struct mbuf **mb;
1078 	char **bpos;
1079 	const char *cp;
1080 	long siz;
1081 {
1082 	struct mbuf *m1 = NULL, *m2;
1083 	long left, xfer, len, tlen;
1084 	u_int32_t *tl;
1085 	int putsize;
1086 
1087 	putsize = 1;
1088 	m2 = *mb;
1089 	left = M_TRAILINGSPACE(m2);
1090 	if (left > 0) {
1091 		tl = ((u_int32_t *)(*bpos));
1092 		*tl++ = txdr_unsigned(siz);
1093 		putsize = 0;
1094 		left -= NFSX_UNSIGNED;
1095 		m2->m_len += NFSX_UNSIGNED;
1096 		if (left > 0) {
1097 			memcpy((void *) tl, cp, left);
1098 			siz -= left;
1099 			cp += left;
1100 			m2->m_len += left;
1101 			left = 0;
1102 		}
1103 	}
1104 	/* Loop around adding mbufs */
1105 	while (siz > 0) {
1106 		m1 = m_get(M_WAIT, MT_DATA);
1107 		MCLAIM(m1, &nfs_mowner);
1108 		if (siz > MLEN)
1109 			m_clget(m1, M_WAIT);
1110 		m1->m_len = NFSMSIZ(m1);
1111 		m2->m_next = m1;
1112 		m2 = m1;
1113 		tl = mtod(m1, u_int32_t *);
1114 		tlen = 0;
1115 		if (putsize) {
1116 			*tl++ = txdr_unsigned(siz);
1117 			m1->m_len -= NFSX_UNSIGNED;
1118 			tlen = NFSX_UNSIGNED;
1119 			putsize = 0;
1120 		}
1121 		if (siz < m1->m_len) {
1122 			len = nfsm_rndup(siz);
1123 			xfer = siz;
1124 			if (xfer < len)
1125 				*(tl+(xfer>>2)) = 0;
1126 		} else {
1127 			xfer = len = m1->m_len;
1128 		}
1129 		memcpy((void *) tl, cp, xfer);
1130 		m1->m_len = len+tlen;
1131 		siz -= xfer;
1132 		cp += xfer;
1133 	}
1134 	*mb = m1;
1135 	*bpos = mtod(m1, char *) + m1->m_len;
1136 	return (0);
1137 }
1138 
1139 /*
1140  * Directory caching routines. They work as follows:
1141  * - a cache is maintained per VDIR nfsnode.
1142  * - for each offset cookie that is exported to userspace, and can
1143  *   thus be thrown back at us as an offset to VOP_READDIR, store
1144  *   information in the cache.
1145  * - cached are:
1146  *   - cookie itself
1147  *   - blocknumber (essentially just a search key in the buffer cache)
1148  *   - entry number in block.
1149  *   - offset cookie of block in which this entry is stored
1150  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1151  * - entries are looked up in a hash table
1152  * - also maintained is an LRU list of entries, used to determine
1153  *   which ones to delete if the cache grows too large.
1154  * - if 32 <-> 64 translation mode is requested for a filesystem,
1155  *   the cache also functions as a translation table
1156  * - in the translation case, invalidating the cache does not mean
1157  *   flushing it, but just marking entries as invalid, except for
1158  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
1159  *   still be able to use the cache as a translation table.
1160  * - 32 bit cookies are uniquely created by combining the hash table
1161  *   entry value, and one generation count per hash table entry,
1162  *   incremented each time an entry is appended to the chain.
1163  * - the cache is invalidated each time a direcory is modified
1164  * - sanity checks are also done; if an entry in a block turns
1165  *   out not to have a matching cookie, the cache is invalidated
1166  *   and a new block starting from the wanted offset is fetched from
1167  *   the server.
1168  * - directory entries as read from the server are extended to contain
1169  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
1170  *   the cache and exporting them to userspace through the cookie
1171  *   argument to VOP_READDIR.
1172  */
1173 
1174 u_long
1175 nfs_dirhash(off)
1176 	off_t off;
1177 {
1178 	int i;
1179 	char *cp = (char *)&off;
1180 	u_long sum = 0L;
1181 
1182 	for (i = 0 ; i < sizeof (off); i++)
1183 		sum += *cp++;
1184 
1185 	return sum;
1186 }
1187 
1188 #define	_NFSDC_MTX(np)		(&NFSTOV(np)->v_interlock)
1189 #define	NFSDC_LOCK(np)		mutex_enter(_NFSDC_MTX(np))
1190 #define	NFSDC_UNLOCK(np)	mutex_exit(_NFSDC_MTX(np))
1191 #define	NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1192 
1193 void
1194 nfs_initdircache(vp)
1195 	struct vnode *vp;
1196 {
1197 	struct nfsnode *np = VTONFS(vp);
1198 	struct nfsdirhashhead *dircache;
1199 
1200 	dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1201 	    &nfsdirhashmask);
1202 
1203 	NFSDC_LOCK(np);
1204 	if (np->n_dircache == NULL) {
1205 		np->n_dircachesize = 0;
1206 		np->n_dircache = dircache;
1207 		dircache = NULL;
1208 		TAILQ_INIT(&np->n_dirchain);
1209 	}
1210 	NFSDC_UNLOCK(np);
1211 	if (dircache)
1212 		hashdone(dircache, HASH_LIST, nfsdirhashmask);
1213 }
1214 
1215 void
1216 nfs_initdirxlatecookie(vp)
1217 	struct vnode *vp;
1218 {
1219 	struct nfsnode *np = VTONFS(vp);
1220 	unsigned *dirgens;
1221 
1222 	KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1223 
1224 	dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1225 	NFSDC_LOCK(np);
1226 	if (np->n_dirgens == NULL) {
1227 		np->n_dirgens = dirgens;
1228 		dirgens = NULL;
1229 	}
1230 	NFSDC_UNLOCK(np);
1231 	if (dirgens)
1232 		kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1233 }
1234 
1235 static const struct nfsdircache dzero;
1236 
1237 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1238 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1239     struct nfsdircache *));
1240 
1241 static void
1242 nfs_unlinkdircache(np, ndp)
1243 	struct nfsnode *np;
1244 	struct nfsdircache *ndp;
1245 {
1246 
1247 	NFSDC_ASSERT_LOCKED(np);
1248 	KASSERT(ndp != &dzero);
1249 
1250 	if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1251 		return;
1252 
1253 	TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1254 	LIST_REMOVE(ndp, dc_hash);
1255 	LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1256 
1257 	nfs_putdircache_unlocked(np, ndp);
1258 }
1259 
1260 void
1261 nfs_putdircache(np, ndp)
1262 	struct nfsnode *np;
1263 	struct nfsdircache *ndp;
1264 {
1265 	int ref;
1266 
1267 	if (ndp == &dzero)
1268 		return;
1269 
1270 	KASSERT(ndp->dc_refcnt > 0);
1271 	NFSDC_LOCK(np);
1272 	ref = --ndp->dc_refcnt;
1273 	NFSDC_UNLOCK(np);
1274 
1275 	if (ref == 0)
1276 		kmem_free(ndp, sizeof(*ndp));
1277 }
1278 
1279 static void
1280 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1281 {
1282 	int ref;
1283 
1284 	NFSDC_ASSERT_LOCKED(np);
1285 
1286 	if (ndp == &dzero)
1287 		return;
1288 
1289 	KASSERT(ndp->dc_refcnt > 0);
1290 	ref = --ndp->dc_refcnt;
1291 	if (ref == 0)
1292 		kmem_free(ndp, sizeof(*ndp));
1293 }
1294 
1295 struct nfsdircache *
1296 nfs_searchdircache(vp, off, do32, hashent)
1297 	struct vnode *vp;
1298 	off_t off;
1299 	int do32;
1300 	int *hashent;
1301 {
1302 	struct nfsdirhashhead *ndhp;
1303 	struct nfsdircache *ndp = NULL;
1304 	struct nfsnode *np = VTONFS(vp);
1305 	unsigned ent;
1306 
1307 	/*
1308 	 * Zero is always a valid cookie.
1309 	 */
1310 	if (off == 0)
1311 		/* XXXUNCONST */
1312 		return (struct nfsdircache *)__UNCONST(&dzero);
1313 
1314 	if (!np->n_dircache)
1315 		return NULL;
1316 
1317 	/*
1318 	 * We use a 32bit cookie as search key, directly reconstruct
1319 	 * the hashentry. Else use the hashfunction.
1320 	 */
1321 	if (do32) {
1322 		ent = (u_int32_t)off >> 24;
1323 		if (ent >= NFS_DIRHASHSIZ)
1324 			return NULL;
1325 		ndhp = &np->n_dircache[ent];
1326 	} else {
1327 		ndhp = NFSDIRHASH(np, off);
1328 	}
1329 
1330 	if (hashent)
1331 		*hashent = (int)(ndhp - np->n_dircache);
1332 
1333 	NFSDC_LOCK(np);
1334 	if (do32) {
1335 		LIST_FOREACH(ndp, ndhp, dc_hash) {
1336 			if (ndp->dc_cookie32 == (u_int32_t)off) {
1337 				/*
1338 				 * An invalidated entry will become the
1339 				 * start of a new block fetched from
1340 				 * the server.
1341 				 */
1342 				if (ndp->dc_flags & NFSDC_INVALID) {
1343 					ndp->dc_blkcookie = ndp->dc_cookie;
1344 					ndp->dc_entry = 0;
1345 					ndp->dc_flags &= ~NFSDC_INVALID;
1346 				}
1347 				break;
1348 			}
1349 		}
1350 	} else {
1351 		LIST_FOREACH(ndp, ndhp, dc_hash) {
1352 			if (ndp->dc_cookie == off)
1353 				break;
1354 		}
1355 	}
1356 	if (ndp != NULL)
1357 		ndp->dc_refcnt++;
1358 	NFSDC_UNLOCK(np);
1359 	return ndp;
1360 }
1361 
1362 
1363 struct nfsdircache *
1364 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1365     daddr_t blkno)
1366 {
1367 	struct nfsnode *np = VTONFS(vp);
1368 	struct nfsdirhashhead *ndhp;
1369 	struct nfsdircache *ndp = NULL;
1370 	struct nfsdircache *newndp = NULL;
1371 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1372 	int hashent = 0, gen, overwrite;	/* XXX: GCC */
1373 
1374 	/*
1375 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
1376 	 * cookie 0 for the '.' entry, making this necessary. This
1377 	 * isn't so bad, as 0 is a special case anyway.
1378 	 */
1379 	if (off == 0)
1380 		/* XXXUNCONST */
1381 		return (struct nfsdircache *)__UNCONST(&dzero);
1382 
1383 	if (!np->n_dircache)
1384 		/*
1385 		 * XXX would like to do this in nfs_nget but vtype
1386 		 * isn't known at that time.
1387 		 */
1388 		nfs_initdircache(vp);
1389 
1390 	if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1391 		nfs_initdirxlatecookie(vp);
1392 
1393 retry:
1394 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
1395 
1396 	NFSDC_LOCK(np);
1397 	if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1398 		/*
1399 		 * Overwriting an old entry. Check if it's the same.
1400 		 * If so, just return. If not, remove the old entry.
1401 		 */
1402 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1403 			goto done;
1404 		nfs_unlinkdircache(np, ndp);
1405 		nfs_putdircache_unlocked(np, ndp);
1406 		ndp = NULL;
1407 	}
1408 
1409 	ndhp = &np->n_dircache[hashent];
1410 
1411 	if (!ndp) {
1412 		if (newndp == NULL) {
1413 			NFSDC_UNLOCK(np);
1414 			newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1415 			newndp->dc_refcnt = 1;
1416 			LIST_NEXT(newndp, dc_hash) = (void *)-1;
1417 			goto retry;
1418 		}
1419 		ndp = newndp;
1420 		newndp = NULL;
1421 		overwrite = 0;
1422 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1423 			/*
1424 			 * We're allocating a new entry, so bump the
1425 			 * generation number.
1426 			 */
1427 			KASSERT(np->n_dirgens);
1428 			gen = ++np->n_dirgens[hashent];
1429 			if (gen == 0) {
1430 				np->n_dirgens[hashent]++;
1431 				gen++;
1432 			}
1433 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1434 		}
1435 	} else
1436 		overwrite = 1;
1437 
1438 	ndp->dc_cookie = off;
1439 	ndp->dc_blkcookie = blkoff;
1440 	ndp->dc_entry = en;
1441 	ndp->dc_flags = 0;
1442 
1443 	if (overwrite)
1444 		goto done;
1445 
1446 	/*
1447 	 * If the maximum directory cookie cache size has been reached
1448 	 * for this node, take one off the front. The idea is that
1449 	 * directories are typically read front-to-back once, so that
1450 	 * the oldest entries can be thrown away without much performance
1451 	 * loss.
1452 	 */
1453 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1454 		nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1455 	} else
1456 		np->n_dircachesize++;
1457 
1458 	KASSERT(ndp->dc_refcnt == 1);
1459 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1460 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1461 	ndp->dc_refcnt++;
1462 done:
1463 	KASSERT(ndp->dc_refcnt > 0);
1464 	NFSDC_UNLOCK(np);
1465 	if (newndp)
1466 		nfs_putdircache(np, newndp);
1467 	return ndp;
1468 }
1469 
1470 void
1471 nfs_invaldircache(vp, flags)
1472 	struct vnode *vp;
1473 	int flags;
1474 {
1475 	struct nfsnode *np = VTONFS(vp);
1476 	struct nfsdircache *ndp = NULL;
1477 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1478 	const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1479 
1480 #ifdef DIAGNOSTIC
1481 	if (vp->v_type != VDIR)
1482 		panic("nfs: invaldircache: not dir");
1483 #endif
1484 
1485 	if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1486 		np->n_flag &= ~NEOFVALID;
1487 
1488 	if (!np->n_dircache)
1489 		return;
1490 
1491 	NFSDC_LOCK(np);
1492 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1493 		while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1494 			KASSERT(!forcefree || ndp->dc_refcnt == 1);
1495 			nfs_unlinkdircache(np, ndp);
1496 		}
1497 		np->n_dircachesize = 0;
1498 		if (forcefree && np->n_dirgens) {
1499 			kmem_free(np->n_dirgens,
1500 			    NFS_DIRHASHSIZ * sizeof(unsigned));
1501 			np->n_dirgens = NULL;
1502 		}
1503 	} else {
1504 		TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1505 			ndp->dc_flags |= NFSDC_INVALID;
1506 	}
1507 
1508 	NFSDC_UNLOCK(np);
1509 }
1510 
1511 /*
1512  * Called once before VFS init to initialize shared and
1513  * server-specific data structures.
1514  */
1515 static int
1516 nfs_init0(void)
1517 {
1518 
1519 	nfsrtt.pos = 0;
1520 	rpc_vers = txdr_unsigned(RPC_VER2);
1521 	rpc_call = txdr_unsigned(RPC_CALL);
1522 	rpc_reply = txdr_unsigned(RPC_REPLY);
1523 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1524 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1525 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1526 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1527 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1528 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1529 	nfs_prog = txdr_unsigned(NFS_PROG);
1530 	nfs_true = txdr_unsigned(true);
1531 	nfs_false = txdr_unsigned(false);
1532 	nfs_xdrneg1 = txdr_unsigned(-1);
1533 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1534 	if (nfs_ticks < 1)
1535 		nfs_ticks = 1;
1536 	nfs_xid = arc4random();
1537 	nfsdreq_init();
1538 
1539 	/*
1540 	 * Initialize reply list and start timer
1541 	 */
1542 	TAILQ_INIT(&nfs_reqq);
1543 	nfs_timer_init();
1544 	MOWNER_ATTACH(&nfs_mowner);
1545 
1546 #ifdef NFS
1547 	/* Initialize the kqueue structures */
1548 	nfs_kqinit();
1549 	/* Initialize the iod structures */
1550 	nfs_iodinit();
1551 #endif
1552 
1553 	return 0;
1554 }
1555 
1556 /*
1557  * This is disgusting, but it must support both modular and monolothic
1558  * configurations.  For monolithic builds NFSSERVER may not imply NFS.
1559  *
1560  * Yuck.
1561  */
1562 void
1563 nfs_init(void)
1564 {
1565 	static ONCE_DECL(nfs_init_once);
1566 
1567 	RUN_ONCE(&nfs_init_once, nfs_init0);
1568 }
1569 
1570 void
1571 nfs_fini(void)
1572 {
1573 
1574 #ifdef NFS
1575 	nfs_kqfini();
1576 	nfs_iodfini();
1577 #endif
1578 	nfsdreq_fini();
1579 	nfs_timer_fini();
1580 	MOWNER_DETACH(&nfs_mowner);
1581 }
1582 
1583 #ifdef NFS
1584 /*
1585  * Called once at VFS init to initialize client-specific data structures.
1586  */
1587 void
1588 nfs_vfs_init()
1589 {
1590 
1591 	/* Initialize NFS server / client shared data. */
1592 	nfs_init();
1593 	nfs_node_init();
1594 
1595 	nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1596 }
1597 
1598 void
1599 nfs_vfs_done()
1600 {
1601 
1602 	nfs_node_done();
1603 }
1604 
1605 /*
1606  * Attribute cache routines.
1607  * nfs_loadattrcache() - loads or updates the cache contents from attributes
1608  *	that are on the mbuf list
1609  * nfs_getattrcache() - returns valid attributes if found in cache, returns
1610  *	error otherwise
1611  */
1612 
1613 /*
1614  * Load the attribute cache (that lives in the nfsnode entry) with
1615  * the values on the mbuf list and
1616  * Iff vap not NULL
1617  *    copy the attributes to *vaper
1618  */
1619 int
1620 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1621 	struct vnode **vpp;
1622 	struct mbuf **mdp;
1623 	char **dposp;
1624 	struct vattr *vaper;
1625 	int flags;
1626 {
1627 	int32_t t1;
1628 	char *cp2;
1629 	int error = 0;
1630 	struct mbuf *md;
1631 	int v3 = NFS_ISV3(*vpp);
1632 
1633 	md = *mdp;
1634 	t1 = (mtod(md, char *) + md->m_len) - *dposp;
1635 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1636 	if (error)
1637 		return (error);
1638 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1639 }
1640 
1641 int
1642 nfs_loadattrcache(vpp, fp, vaper, flags)
1643 	struct vnode **vpp;
1644 	struct nfs_fattr *fp;
1645 	struct vattr *vaper;
1646 	int flags;
1647 {
1648 	struct vnode *vp = *vpp;
1649 	struct vattr *vap;
1650 	int v3 = NFS_ISV3(vp);
1651 	enum vtype vtyp;
1652 	u_short vmode;
1653 	struct timespec mtime;
1654 	struct timespec ctime;
1655 	int32_t rdev;
1656 	struct nfsnode *np;
1657 	extern int (**spec_nfsv2nodeop_p) __P((void *));
1658 	uid_t uid;
1659 	gid_t gid;
1660 
1661 	if (v3) {
1662 		vtyp = nfsv3tov_type(fp->fa_type);
1663 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1664 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1665 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1666 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1667 		fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1668 	} else {
1669 		vtyp = nfsv2tov_type(fp->fa_type);
1670 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1671 		if (vtyp == VNON || vtyp == VREG)
1672 			vtyp = IFTOVT(vmode);
1673 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1674 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1675 		ctime.tv_sec = fxdr_unsigned(u_int32_t,
1676 		    fp->fa2_ctime.nfsv2_sec);
1677 		ctime.tv_nsec = 0;
1678 
1679 		/*
1680 		 * Really ugly NFSv2 kludge.
1681 		 */
1682 		if (vtyp == VCHR && rdev == 0xffffffff)
1683 			vtyp = VFIFO;
1684 	}
1685 
1686 	vmode &= ALLPERMS;
1687 
1688 	/*
1689 	 * If v_type == VNON it is a new node, so fill in the v_type,
1690 	 * n_mtime fields. Check to see if it represents a special
1691 	 * device, and if so, check for a possible alias. Once the
1692 	 * correct vnode has been obtained, fill in the rest of the
1693 	 * information.
1694 	 */
1695 	np = VTONFS(vp);
1696 	if (vp->v_type == VNON) {
1697 		vp->v_type = vtyp;
1698 		if (vp->v_type == VFIFO) {
1699 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
1700 			vp->v_op = fifo_nfsv2nodeop_p;
1701 		} else if (vp->v_type == VREG) {
1702 			mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1703 		} else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1704 			vp->v_op = spec_nfsv2nodeop_p;
1705 			spec_node_init(vp, (dev_t)rdev);
1706 		}
1707 		np->n_mtime = mtime;
1708 	}
1709 	uid = fxdr_unsigned(uid_t, fp->fa_uid);
1710 	gid = fxdr_unsigned(gid_t, fp->fa_gid);
1711 	vap = np->n_vattr;
1712 
1713 	/*
1714 	 * Invalidate access cache if uid, gid, mode or ctime changed.
1715 	 */
1716 	if (np->n_accstamp != -1 &&
1717 	    (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1718 	    || timespeccmp(&ctime, &vap->va_ctime, !=)))
1719 		np->n_accstamp = -1;
1720 
1721 	vap->va_type = vtyp;
1722 	vap->va_mode = vmode;
1723 	vap->va_rdev = (dev_t)rdev;
1724 	vap->va_mtime = mtime;
1725 	vap->va_ctime = ctime;
1726 	vap->va_birthtime.tv_sec = VNOVAL;
1727 	vap->va_birthtime.tv_nsec = VNOVAL;
1728 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1729 	switch (vtyp) {
1730 	case VDIR:
1731 		vap->va_blocksize = NFS_DIRFRAGSIZ;
1732 		break;
1733 	case VBLK:
1734 		vap->va_blocksize = BLKDEV_IOSIZE;
1735 		break;
1736 	case VCHR:
1737 		vap->va_blocksize = MAXBSIZE;
1738 		break;
1739 	default:
1740 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1741 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
1742 		break;
1743 	}
1744 	if (v3) {
1745 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1746 		vap->va_uid = uid;
1747 		vap->va_gid = gid;
1748 		vap->va_size = fxdr_hyper(&fp->fa3_size);
1749 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1750 		vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1751 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1752 		vap->va_flags = 0;
1753 		vap->va_filerev = 0;
1754 	} else {
1755 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1756 		vap->va_uid = uid;
1757 		vap->va_gid = gid;
1758 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1759 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1760 		    * NFS_FABLKSIZE;
1761 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1762 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1763 		vap->va_flags = 0;
1764 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1765 		vap->va_filerev = 0;
1766 	}
1767 	if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1768 		return EFBIG;
1769 	}
1770 	if (vap->va_size != np->n_size) {
1771 		if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1772 			vap->va_size = np->n_size;
1773 		} else {
1774 			np->n_size = vap->va_size;
1775 			if (vap->va_type == VREG) {
1776 				/*
1777 				 * we can't free pages if NAC_NOTRUNC because
1778 				 * the pages can be owned by ourselves.
1779 				 */
1780 				if (flags & NAC_NOTRUNC) {
1781 					np->n_flag |= NTRUNCDELAYED;
1782 				} else {
1783 					genfs_node_wrlock(vp);
1784 					mutex_enter(&vp->v_interlock);
1785 					(void)VOP_PUTPAGES(vp, 0,
1786 					    0, PGO_SYNCIO | PGO_CLEANIT |
1787 					    PGO_FREE | PGO_ALLPAGES);
1788 					uvm_vnp_setsize(vp, np->n_size);
1789 					genfs_node_unlock(vp);
1790 				}
1791 			}
1792 		}
1793 	}
1794 	np->n_attrstamp = time_second;
1795 	if (vaper != NULL) {
1796 		memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1797 		if (np->n_flag & NCHG) {
1798 			if (np->n_flag & NACC)
1799 				vaper->va_atime = np->n_atim;
1800 			if (np->n_flag & NUPD)
1801 				vaper->va_mtime = np->n_mtim;
1802 		}
1803 	}
1804 	return (0);
1805 }
1806 
1807 /*
1808  * Check the time stamp
1809  * If the cache is valid, copy contents to *vap and return 0
1810  * otherwise return an error
1811  */
1812 int
1813 nfs_getattrcache(vp, vaper)
1814 	struct vnode *vp;
1815 	struct vattr *vaper;
1816 {
1817 	struct nfsnode *np = VTONFS(vp);
1818 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1819 	struct vattr *vap;
1820 
1821 	if (np->n_attrstamp == 0 ||
1822 	    (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1823 		nfsstats.attrcache_misses++;
1824 		return (ENOENT);
1825 	}
1826 	nfsstats.attrcache_hits++;
1827 	vap = np->n_vattr;
1828 	if (vap->va_size != np->n_size) {
1829 		if (vap->va_type == VREG) {
1830 			if ((np->n_flag & NMODIFIED) != 0 &&
1831 			    vap->va_size < np->n_size) {
1832 				vap->va_size = np->n_size;
1833 			} else {
1834 				np->n_size = vap->va_size;
1835 			}
1836 			genfs_node_wrlock(vp);
1837 			uvm_vnp_setsize(vp, np->n_size);
1838 			genfs_node_unlock(vp);
1839 		} else
1840 			np->n_size = vap->va_size;
1841 	}
1842 	memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1843 	if (np->n_flag & NCHG) {
1844 		if (np->n_flag & NACC)
1845 			vaper->va_atime = np->n_atim;
1846 		if (np->n_flag & NUPD)
1847 			vaper->va_mtime = np->n_mtim;
1848 	}
1849 	return (0);
1850 }
1851 
1852 void
1853 nfs_delayedtruncate(vp)
1854 	struct vnode *vp;
1855 {
1856 	struct nfsnode *np = VTONFS(vp);
1857 
1858 	if (np->n_flag & NTRUNCDELAYED) {
1859 		np->n_flag &= ~NTRUNCDELAYED;
1860 		genfs_node_wrlock(vp);
1861 		mutex_enter(&vp->v_interlock);
1862 		(void)VOP_PUTPAGES(vp, 0,
1863 		    0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1864 		uvm_vnp_setsize(vp, np->n_size);
1865 		genfs_node_unlock(vp);
1866 	}
1867 }
1868 
1869 #define	NFS_WCCKLUDGE_TIMEOUT	(24 * 60 * 60)	/* 1 day */
1870 #define	NFS_WCCKLUDGE(nmp, now) \
1871 	(((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1872 	((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1873 
1874 /*
1875  * nfs_check_wccdata: check inaccurate wcc_data
1876  *
1877  * => return non-zero if we shouldn't trust the wcc_data.
1878  * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1879  */
1880 
1881 int
1882 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1883     struct timespec *mtime, bool docheck)
1884 {
1885 	int error = 0;
1886 
1887 #if !defined(NFS_V2_ONLY)
1888 
1889 	if (docheck) {
1890 		struct vnode *vp = NFSTOV(np);
1891 		struct nfsmount *nmp;
1892 		long now = time_second;
1893 		const struct timespec *omtime = &np->n_vattr->va_mtime;
1894 		const struct timespec *octime = &np->n_vattr->va_ctime;
1895 		const char *reason = NULL; /* XXX: gcc */
1896 
1897 		if (timespeccmp(omtime, mtime, <=)) {
1898 			reason = "mtime";
1899 			error = EINVAL;
1900 		}
1901 
1902 		if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1903 			reason = "ctime";
1904 			error = EINVAL;
1905 		}
1906 
1907 		nmp = VFSTONFS(vp->v_mount);
1908 		if (error) {
1909 
1910 			/*
1911 			 * despite of the fact that we've updated the file,
1912 			 * timestamps of the file were not updated as we
1913 			 * expected.
1914 			 * it means that the server has incompatible
1915 			 * semantics of timestamps or (more likely)
1916 			 * the server time is not precise enough to
1917 			 * track each modifications.
1918 			 * in that case, we disable wcc processing.
1919 			 *
1920 			 * yes, strictly speaking, we should disable all
1921 			 * caching.  it's a compromise.
1922 			 */
1923 
1924 			mutex_enter(&nmp->nm_lock);
1925 			if (!NFS_WCCKLUDGE(nmp, now)) {
1926 				printf("%s: inaccurate wcc data (%s) detected,"
1927 				    " disabling wcc"
1928 				    " (ctime %u.%09u %u.%09u,"
1929 				    " mtime %u.%09u %u.%09u)\n",
1930 				    vp->v_mount->mnt_stat.f_mntfromname,
1931 				    reason,
1932 				    (unsigned int)octime->tv_sec,
1933 				    (unsigned int)octime->tv_nsec,
1934 				    (unsigned int)ctime->tv_sec,
1935 				    (unsigned int)ctime->tv_nsec,
1936 				    (unsigned int)omtime->tv_sec,
1937 				    (unsigned int)omtime->tv_nsec,
1938 				    (unsigned int)mtime->tv_sec,
1939 				    (unsigned int)mtime->tv_nsec);
1940 			}
1941 			nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1942 			nmp->nm_wcckludgetime = now;
1943 			mutex_exit(&nmp->nm_lock);
1944 		} else if (NFS_WCCKLUDGE(nmp, now)) {
1945 			error = EPERM; /* XXX */
1946 		} else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1947 			mutex_enter(&nmp->nm_lock);
1948 			if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1949 				printf("%s: re-enabling wcc\n",
1950 				    vp->v_mount->mnt_stat.f_mntfromname);
1951 				nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1952 			}
1953 			mutex_exit(&nmp->nm_lock);
1954 		}
1955 	}
1956 
1957 #endif /* !defined(NFS_V2_ONLY) */
1958 
1959 	return error;
1960 }
1961 
1962 /*
1963  * Heuristic to see if the server XDR encodes directory cookies or not.
1964  * it is not supposed to, but a lot of servers may do this. Also, since
1965  * most/all servers will implement V2 as well, it is expected that they
1966  * may return just 32 bits worth of cookie information, so we need to
1967  * find out in which 32 bits this information is available. We do this
1968  * to avoid trouble with emulated binaries that can't handle 64 bit
1969  * directory offsets.
1970  */
1971 
1972 void
1973 nfs_cookieheuristic(vp, flagp, l, cred)
1974 	struct vnode *vp;
1975 	int *flagp;
1976 	struct lwp *l;
1977 	kauth_cred_t cred;
1978 {
1979 	struct uio auio;
1980 	struct iovec aiov;
1981 	char *tbuf, *cp;
1982 	struct dirent *dp;
1983 	off_t *cookies = NULL, *cop;
1984 	int error, eof, nc, len;
1985 
1986 	tbuf = malloc(NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1987 
1988 	aiov.iov_base = tbuf;
1989 	aiov.iov_len = NFS_DIRFRAGSIZ;
1990 	auio.uio_iov = &aiov;
1991 	auio.uio_iovcnt = 1;
1992 	auio.uio_rw = UIO_READ;
1993 	auio.uio_resid = NFS_DIRFRAGSIZ;
1994 	auio.uio_offset = 0;
1995 	UIO_SETUP_SYSSPACE(&auio);
1996 
1997 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1998 
1999 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
2000 	if (error || len == 0) {
2001 		free(tbuf, M_TEMP);
2002 		if (cookies)
2003 			free(cookies, M_TEMP);
2004 		return;
2005 	}
2006 
2007 	/*
2008 	 * Find the first valid entry and look at its offset cookie.
2009 	 */
2010 
2011 	cp = tbuf;
2012 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
2013 		dp = (struct dirent *)cp;
2014 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2015 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2016 				*flagp |= NFSMNT_SWAPCOOKIE;
2017 				nfs_invaldircache(vp, 0);
2018 				nfs_vinvalbuf(vp, 0, cred, l, 1);
2019 			}
2020 			break;
2021 		}
2022 		cop++;
2023 		cp += dp->d_reclen;
2024 	}
2025 
2026 	free(tbuf, M_TEMP);
2027 	free(cookies, M_TEMP);
2028 }
2029 #endif /* NFS */
2030 
2031 /*
2032  * A fiddled version of m_adj() that ensures null fill to a 32-bit
2033  * boundary and only trims off the back end
2034  *
2035  * 1. trim off 'len' bytes as m_adj(mp, -len).
2036  * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2037  */
2038 void
2039 nfs_zeropad(mp, len, nul)
2040 	struct mbuf *mp;
2041 	int len;
2042 	int nul;
2043 {
2044 	struct mbuf *m;
2045 	int count;
2046 
2047 	/*
2048 	 * Trim from tail.  Scan the mbuf chain,
2049 	 * calculating its length and finding the last mbuf.
2050 	 * If the adjustment only affects this mbuf, then just
2051 	 * adjust and return.  Otherwise, rescan and truncate
2052 	 * after the remaining size.
2053 	 */
2054 	count = 0;
2055 	m = mp;
2056 	for (;;) {
2057 		count += m->m_len;
2058 		if (m->m_next == NULL)
2059 			break;
2060 		m = m->m_next;
2061 	}
2062 
2063 	KDASSERT(count >= len);
2064 
2065 	if (m->m_len >= len) {
2066 		m->m_len -= len;
2067 	} else {
2068 		count -= len;
2069 		/*
2070 		 * Correct length for chain is "count".
2071 		 * Find the mbuf with last data, adjust its length,
2072 		 * and toss data from remaining mbufs on chain.
2073 		 */
2074 		for (m = mp; m; m = m->m_next) {
2075 			if (m->m_len >= count) {
2076 				m->m_len = count;
2077 				break;
2078 			}
2079 			count -= m->m_len;
2080 		}
2081 		KASSERT(m && m->m_next);
2082 		m_freem(m->m_next);
2083 		m->m_next = NULL;
2084 	}
2085 
2086 	KDASSERT(m->m_next == NULL);
2087 
2088 	/*
2089 	 * zero-padding.
2090 	 */
2091 	if (nul > 0) {
2092 		char *cp;
2093 		int i;
2094 
2095 		if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2096 			struct mbuf *n;
2097 
2098 			KDASSERT(MLEN >= nul);
2099 			n = m_get(M_WAIT, MT_DATA);
2100 			MCLAIM(n, &nfs_mowner);
2101 			n->m_len = nul;
2102 			n->m_next = NULL;
2103 			m->m_next = n;
2104 			cp = mtod(n, void *);
2105 		} else {
2106 			cp = mtod(m, char *) + m->m_len;
2107 			m->m_len += nul;
2108 		}
2109 		for (i = 0; i < nul; i++)
2110 			*cp++ = '\0';
2111 	}
2112 	return;
2113 }
2114 
2115 /*
2116  * Make these functions instead of macros, so that the kernel text size
2117  * doesn't get too big...
2118  */
2119 void
2120 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2121 	struct nfsrv_descript *nfsd;
2122 	int before_ret;
2123 	struct vattr *before_vap;
2124 	int after_ret;
2125 	struct vattr *after_vap;
2126 	struct mbuf **mbp;
2127 	char **bposp;
2128 {
2129 	struct mbuf *mb = *mbp;
2130 	char *bpos = *bposp;
2131 	u_int32_t *tl;
2132 
2133 	if (before_ret) {
2134 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2135 		*tl = nfs_false;
2136 	} else {
2137 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2138 		*tl++ = nfs_true;
2139 		txdr_hyper(before_vap->va_size, tl);
2140 		tl += 2;
2141 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
2142 		tl += 2;
2143 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
2144 	}
2145 	*bposp = bpos;
2146 	*mbp = mb;
2147 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2148 }
2149 
2150 void
2151 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2152 	struct nfsrv_descript *nfsd;
2153 	int after_ret;
2154 	struct vattr *after_vap;
2155 	struct mbuf **mbp;
2156 	char **bposp;
2157 {
2158 	struct mbuf *mb = *mbp;
2159 	char *bpos = *bposp;
2160 	u_int32_t *tl;
2161 	struct nfs_fattr *fp;
2162 
2163 	if (after_ret) {
2164 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2165 		*tl = nfs_false;
2166 	} else {
2167 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2168 		*tl++ = nfs_true;
2169 		fp = (struct nfs_fattr *)tl;
2170 		nfsm_srvfattr(nfsd, after_vap, fp);
2171 	}
2172 	*mbp = mb;
2173 	*bposp = bpos;
2174 }
2175 
2176 void
2177 nfsm_srvfattr(nfsd, vap, fp)
2178 	struct nfsrv_descript *nfsd;
2179 	struct vattr *vap;
2180 	struct nfs_fattr *fp;
2181 {
2182 
2183 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2184 	fp->fa_uid = txdr_unsigned(vap->va_uid);
2185 	fp->fa_gid = txdr_unsigned(vap->va_gid);
2186 	if (nfsd->nd_flag & ND_NFSV3) {
2187 		fp->fa_type = vtonfsv3_type(vap->va_type);
2188 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2189 		txdr_hyper(vap->va_size, &fp->fa3_size);
2190 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
2191 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2192 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2193 		fp->fa3_fsid.nfsuquad[0] = 0;
2194 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2195 		txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2196 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2197 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2198 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2199 	} else {
2200 		fp->fa_type = vtonfsv2_type(vap->va_type);
2201 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2202 		fp->fa2_size = txdr_unsigned(vap->va_size);
2203 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2204 		if (vap->va_type == VFIFO)
2205 			fp->fa2_rdev = 0xffffffff;
2206 		else
2207 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2208 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2209 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2210 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2211 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2212 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2213 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2214 	}
2215 }
2216 
2217 /*
2218  * This function compares two net addresses by family and returns true
2219  * if they are the same host.
2220  * If there is any doubt, return false.
2221  * The AF_INET family is handled as a special case so that address mbufs
2222  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2223  */
2224 int
2225 netaddr_match(family, haddr, nam)
2226 	int family;
2227 	union nethostaddr *haddr;
2228 	struct mbuf *nam;
2229 {
2230 	struct sockaddr_in *inetaddr;
2231 
2232 	switch (family) {
2233 	case AF_INET:
2234 		inetaddr = mtod(nam, struct sockaddr_in *);
2235 		if (inetaddr->sin_family == AF_INET &&
2236 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2237 			return (1);
2238 		break;
2239 	case AF_INET6:
2240 	    {
2241 		struct sockaddr_in6 *sin6_1, *sin6_2;
2242 
2243 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
2244 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2245 		if (sin6_1->sin6_family == AF_INET6 &&
2246 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2247 			return 1;
2248 	    }
2249 	default:
2250 		break;
2251 	};
2252 	return (0);
2253 }
2254 
2255 /*
2256  * The write verifier has changed (probably due to a server reboot), so all
2257  * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2258  * as dirty or are being written out just now, all this takes is clearing
2259  * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2260  * the mount point.
2261  */
2262 void
2263 nfs_clearcommit(mp)
2264 	struct mount *mp;
2265 {
2266 	struct vnode *vp;
2267 	struct nfsnode *np;
2268 	struct vm_page *pg;
2269 	struct nfsmount *nmp = VFSTONFS(mp);
2270 
2271 	rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2272 	mutex_enter(&mntvnode_lock);
2273 	TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2274 		KASSERT(vp->v_mount == mp);
2275 		if (vp->v_type != VREG)
2276 			continue;
2277 		np = VTONFS(vp);
2278 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2279 		    np->n_pushedhi = 0;
2280 		np->n_commitflags &=
2281 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2282 		mutex_enter(&vp->v_uobj.vmobjlock);
2283 		TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
2284 			pg->flags &= ~PG_NEEDCOMMIT;
2285 		}
2286 		mutex_exit(&vp->v_uobj.vmobjlock);
2287 	}
2288 	mutex_exit(&mntvnode_lock);
2289 	mutex_enter(&nmp->nm_lock);
2290 	nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2291 	mutex_exit(&nmp->nm_lock);
2292 	rw_exit(&nmp->nm_writeverflock);
2293 }
2294 
2295 void
2296 nfs_merge_commit_ranges(vp)
2297 	struct vnode *vp;
2298 {
2299 	struct nfsnode *np = VTONFS(vp);
2300 
2301 	KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2302 
2303 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2304 		np->n_pushedlo = np->n_pushlo;
2305 		np->n_pushedhi = np->n_pushhi;
2306 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2307 	} else {
2308 		if (np->n_pushlo < np->n_pushedlo)
2309 			np->n_pushedlo = np->n_pushlo;
2310 		if (np->n_pushhi > np->n_pushedhi)
2311 			np->n_pushedhi = np->n_pushhi;
2312 	}
2313 
2314 	np->n_pushlo = np->n_pushhi = 0;
2315 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2316 
2317 #ifdef NFS_DEBUG_COMMIT
2318 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2319 	    (unsigned)np->n_pushedhi);
2320 #endif
2321 }
2322 
2323 int
2324 nfs_in_committed_range(vp, off, len)
2325 	struct vnode *vp;
2326 	off_t off, len;
2327 {
2328 	struct nfsnode *np = VTONFS(vp);
2329 	off_t lo, hi;
2330 
2331 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2332 		return 0;
2333 	lo = off;
2334 	hi = lo + len;
2335 
2336 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2337 }
2338 
2339 int
2340 nfs_in_tobecommitted_range(vp, off, len)
2341 	struct vnode *vp;
2342 	off_t off, len;
2343 {
2344 	struct nfsnode *np = VTONFS(vp);
2345 	off_t lo, hi;
2346 
2347 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2348 		return 0;
2349 	lo = off;
2350 	hi = lo + len;
2351 
2352 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2353 }
2354 
2355 void
2356 nfs_add_committed_range(vp, off, len)
2357 	struct vnode *vp;
2358 	off_t off, len;
2359 {
2360 	struct nfsnode *np = VTONFS(vp);
2361 	off_t lo, hi;
2362 
2363 	lo = off;
2364 	hi = lo + len;
2365 
2366 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2367 		np->n_pushedlo = lo;
2368 		np->n_pushedhi = hi;
2369 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2370 	} else {
2371 		if (hi > np->n_pushedhi)
2372 			np->n_pushedhi = hi;
2373 		if (lo < np->n_pushedlo)
2374 			np->n_pushedlo = lo;
2375 	}
2376 #ifdef NFS_DEBUG_COMMIT
2377 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2378 	    (unsigned)np->n_pushedhi);
2379 #endif
2380 }
2381 
2382 void
2383 nfs_del_committed_range(vp, off, len)
2384 	struct vnode *vp;
2385 	off_t off, len;
2386 {
2387 	struct nfsnode *np = VTONFS(vp);
2388 	off_t lo, hi;
2389 
2390 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2391 		return;
2392 
2393 	lo = off;
2394 	hi = lo + len;
2395 
2396 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2397 		return;
2398 	if (lo <= np->n_pushedlo)
2399 		np->n_pushedlo = hi;
2400 	else if (hi >= np->n_pushedhi)
2401 		np->n_pushedhi = lo;
2402 	else {
2403 		/*
2404 		 * XXX There's only one range. If the deleted range
2405 		 * is in the middle, pick the largest of the
2406 		 * contiguous ranges that it leaves.
2407 		 */
2408 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2409 			np->n_pushedhi = lo;
2410 		else
2411 			np->n_pushedlo = hi;
2412 	}
2413 #ifdef NFS_DEBUG_COMMIT
2414 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2415 	    (unsigned)np->n_pushedhi);
2416 #endif
2417 }
2418 
2419 void
2420 nfs_add_tobecommitted_range(vp, off, len)
2421 	struct vnode *vp;
2422 	off_t off, len;
2423 {
2424 	struct nfsnode *np = VTONFS(vp);
2425 	off_t lo, hi;
2426 
2427 	lo = off;
2428 	hi = lo + len;
2429 
2430 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2431 		np->n_pushlo = lo;
2432 		np->n_pushhi = hi;
2433 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2434 	} else {
2435 		if (lo < np->n_pushlo)
2436 			np->n_pushlo = lo;
2437 		if (hi > np->n_pushhi)
2438 			np->n_pushhi = hi;
2439 	}
2440 #ifdef NFS_DEBUG_COMMIT
2441 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2442 	    (unsigned)np->n_pushhi);
2443 #endif
2444 }
2445 
2446 void
2447 nfs_del_tobecommitted_range(vp, off, len)
2448 	struct vnode *vp;
2449 	off_t off, len;
2450 {
2451 	struct nfsnode *np = VTONFS(vp);
2452 	off_t lo, hi;
2453 
2454 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2455 		return;
2456 
2457 	lo = off;
2458 	hi = lo + len;
2459 
2460 	if (lo > np->n_pushhi || hi < np->n_pushlo)
2461 		return;
2462 
2463 	if (lo <= np->n_pushlo)
2464 		np->n_pushlo = hi;
2465 	else if (hi >= np->n_pushhi)
2466 		np->n_pushhi = lo;
2467 	else {
2468 		/*
2469 		 * XXX There's only one range. If the deleted range
2470 		 * is in the middle, pick the largest of the
2471 		 * contiguous ranges that it leaves.
2472 		 */
2473 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2474 			np->n_pushhi = lo;
2475 		else
2476 			np->n_pushlo = hi;
2477 	}
2478 #ifdef NFS_DEBUG_COMMIT
2479 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2480 	    (unsigned)np->n_pushhi);
2481 #endif
2482 }
2483 
2484 /*
2485  * Map errnos to NFS error numbers. For Version 3 also filter out error
2486  * numbers not specified for the associated procedure.
2487  */
2488 int
2489 nfsrv_errmap(nd, err)
2490 	struct nfsrv_descript *nd;
2491 	int err;
2492 {
2493 	const short *defaulterrp, *errp;
2494 
2495 	if (nd->nd_flag & ND_NFSV3) {
2496 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
2497 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2498 		while (*++errp) {
2499 			if (*errp == err)
2500 				return (err);
2501 			else if (*errp > err)
2502 				break;
2503 		}
2504 		return ((int)*defaulterrp);
2505 	    } else
2506 		return (err & 0xffff);
2507 	}
2508 	if (err <= ELAST)
2509 		return ((int)nfsrv_v2errmap[err - 1]);
2510 	return (NFSERR_IO);
2511 }
2512 
2513 u_int32_t
2514 nfs_getxid()
2515 {
2516 	u_int32_t newxid;
2517 
2518 	/* get next xid.  skip 0 */
2519 	do {
2520 		newxid = atomic_inc_32_nv(&nfs_xid);
2521 	} while (__predict_false(newxid == 0));
2522 
2523 	return txdr_unsigned(newxid);
2524 }
2525 
2526 /*
2527  * assign a new xid for existing request.
2528  * used for NFSERR_JUKEBOX handling.
2529  */
2530 void
2531 nfs_renewxid(struct nfsreq *req)
2532 {
2533 	u_int32_t xid;
2534 	int off;
2535 
2536 	xid = nfs_getxid();
2537 	if (req->r_nmp->nm_sotype == SOCK_STREAM)
2538 		off = sizeof(u_int32_t); /* RPC record mark */
2539 	else
2540 		off = 0;
2541 
2542 	m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2543 	req->r_xid = xid;
2544 }
2545 
2546 #if defined(NFS)
2547 /*
2548  * Set the attribute timeout based on how recently the file has been modified.
2549  */
2550 
2551 time_t
2552 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
2553 {
2554 	time_t timeo;
2555 
2556 	if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
2557 		return 0;
2558 
2559 	if (((np)->n_flag & NMODIFIED) != 0)
2560 		return NFS_MINATTRTIMO;
2561 
2562 	timeo = (time_second - np->n_mtime.tv_sec) / 10;
2563 	timeo = max(timeo, NFS_MINATTRTIMO);
2564 	timeo = min(timeo, NFS_MAXATTRTIMO);
2565 	return timeo;
2566 }
2567 #endif /* defined(NFS) */
2568