1 /* $NetBSD: nfs_subs.c,v 1.49 1997/10/19 01:46:32 fvdl Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 39 */ 40 41 42 /* 43 * These functions support the macros and help fiddle mbuf chains for 44 * the nfs op functions. They do things like create the rpc header and 45 * copy data between mbuf chains and uio lists. 46 */ 47 #include <sys/param.h> 48 #include <sys/proc.h> 49 #include <sys/systm.h> 50 #include <sys/kernel.h> 51 #include <sys/mount.h> 52 #include <sys/vnode.h> 53 #include <sys/namei.h> 54 #include <sys/mbuf.h> 55 #include <sys/socket.h> 56 #include <sys/stat.h> 57 #include <sys/malloc.h> 58 #include <sys/time.h> 59 #include <sys/dirent.h> 60 61 #include <vm/vm.h> 62 63 #include <nfs/rpcv2.h> 64 #include <nfs/nfsproto.h> 65 #include <nfs/nfsnode.h> 66 #include <nfs/nfs.h> 67 #include <nfs/xdr_subs.h> 68 #include <nfs/nfsm_subs.h> 69 #include <nfs/nfsmount.h> 70 #include <nfs/nqnfs.h> 71 #include <nfs/nfsrtt.h> 72 #include <nfs/nfs_var.h> 73 74 #include <miscfs/specfs/specdev.h> 75 76 #include <vm/vm.h> 77 78 #include <netinet/in.h> 79 #ifdef ISO 80 #include <netiso/iso.h> 81 #endif 82 83 /* 84 * Data items converted to xdr at startup, since they are constant 85 * This is kinda hokey, but may save a little time doing byte swaps 86 */ 87 u_int32_t nfs_xdrneg1; 88 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 89 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 90 rpc_auth_kerb; 91 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false; 92 93 /* And other global data */ 94 static u_int32_t nfs_xid = 0; 95 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, 96 NFCHR, NFNON }; 97 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, 98 NFFIFO, NFNON }; 99 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 100 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 101 int nfs_ticks; 102 extern struct nfs_public nfs_pub; 103 104 /* NFS client/server stats. */ 105 struct nfsstats nfsstats; 106 107 /* 108 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 109 */ 110 int nfsv3_procid[NFS_NPROCS] = { 111 NFSPROC_NULL, 112 NFSPROC_GETATTR, 113 NFSPROC_SETATTR, 114 NFSPROC_NOOP, 115 NFSPROC_LOOKUP, 116 NFSPROC_READLINK, 117 NFSPROC_READ, 118 NFSPROC_NOOP, 119 NFSPROC_WRITE, 120 NFSPROC_CREATE, 121 NFSPROC_REMOVE, 122 NFSPROC_RENAME, 123 NFSPROC_LINK, 124 NFSPROC_SYMLINK, 125 NFSPROC_MKDIR, 126 NFSPROC_RMDIR, 127 NFSPROC_READDIR, 128 NFSPROC_FSSTAT, 129 NFSPROC_NOOP, 130 NFSPROC_NOOP, 131 NFSPROC_NOOP, 132 NFSPROC_NOOP, 133 NFSPROC_NOOP, 134 NFSPROC_NOOP, 135 NFSPROC_NOOP, 136 NFSPROC_NOOP 137 }; 138 139 /* 140 * and the reverse mapping from generic to Version 2 procedure numbers 141 */ 142 int nfsv2_procid[NFS_NPROCS] = { 143 NFSV2PROC_NULL, 144 NFSV2PROC_GETATTR, 145 NFSV2PROC_SETATTR, 146 NFSV2PROC_LOOKUP, 147 NFSV2PROC_NOOP, 148 NFSV2PROC_READLINK, 149 NFSV2PROC_READ, 150 NFSV2PROC_WRITE, 151 NFSV2PROC_CREATE, 152 NFSV2PROC_MKDIR, 153 NFSV2PROC_SYMLINK, 154 NFSV2PROC_CREATE, 155 NFSV2PROC_REMOVE, 156 NFSV2PROC_RMDIR, 157 NFSV2PROC_RENAME, 158 NFSV2PROC_LINK, 159 NFSV2PROC_READDIR, 160 NFSV2PROC_NOOP, 161 NFSV2PROC_STATFS, 162 NFSV2PROC_NOOP, 163 NFSV2PROC_NOOP, 164 NFSV2PROC_NOOP, 165 NFSV2PROC_NOOP, 166 NFSV2PROC_NOOP, 167 NFSV2PROC_NOOP, 168 NFSV2PROC_NOOP, 169 }; 170 171 /* 172 * Maps errno values to nfs error numbers. 173 * Use NFSERR_IO as the catch all for ones not specifically defined in 174 * RFC 1094. 175 */ 176 static u_char nfsrv_v2errmap[ELAST] = { 177 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 178 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 179 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 180 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 181 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 182 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 183 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 184 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 185 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 186 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 187 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 188 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 189 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 190 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 191 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 192 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 193 NFSERR_IO, 194 }; 195 196 /* 197 * Maps errno values to nfs error numbers. 198 * Although it is not obvious whether or not NFS clients really care if 199 * a returned error value is in the specified list for the procedure, the 200 * safest thing to do is filter them appropriately. For Version 2, the 201 * X/Open XNFS document is the only specification that defines error values 202 * for each RPC (The RFC simply lists all possible error values for all RPCs), 203 * so I have decided to not do this for Version 2. 204 * The first entry is the default error return and the rest are the valid 205 * errors for that RPC in increasing numeric order. 206 */ 207 static short nfsv3err_null[] = { 208 0, 209 0, 210 }; 211 212 static short nfsv3err_getattr[] = { 213 NFSERR_IO, 214 NFSERR_IO, 215 NFSERR_STALE, 216 NFSERR_BADHANDLE, 217 NFSERR_SERVERFAULT, 218 0, 219 }; 220 221 static short nfsv3err_setattr[] = { 222 NFSERR_IO, 223 NFSERR_PERM, 224 NFSERR_IO, 225 NFSERR_ACCES, 226 NFSERR_INVAL, 227 NFSERR_NOSPC, 228 NFSERR_ROFS, 229 NFSERR_DQUOT, 230 NFSERR_STALE, 231 NFSERR_BADHANDLE, 232 NFSERR_NOT_SYNC, 233 NFSERR_SERVERFAULT, 234 0, 235 }; 236 237 static short nfsv3err_lookup[] = { 238 NFSERR_IO, 239 NFSERR_NOENT, 240 NFSERR_IO, 241 NFSERR_ACCES, 242 NFSERR_NOTDIR, 243 NFSERR_NAMETOL, 244 NFSERR_STALE, 245 NFSERR_BADHANDLE, 246 NFSERR_SERVERFAULT, 247 0, 248 }; 249 250 static short nfsv3err_access[] = { 251 NFSERR_IO, 252 NFSERR_IO, 253 NFSERR_STALE, 254 NFSERR_BADHANDLE, 255 NFSERR_SERVERFAULT, 256 0, 257 }; 258 259 static short nfsv3err_readlink[] = { 260 NFSERR_IO, 261 NFSERR_IO, 262 NFSERR_ACCES, 263 NFSERR_INVAL, 264 NFSERR_STALE, 265 NFSERR_BADHANDLE, 266 NFSERR_NOTSUPP, 267 NFSERR_SERVERFAULT, 268 0, 269 }; 270 271 static short nfsv3err_read[] = { 272 NFSERR_IO, 273 NFSERR_IO, 274 NFSERR_NXIO, 275 NFSERR_ACCES, 276 NFSERR_INVAL, 277 NFSERR_STALE, 278 NFSERR_BADHANDLE, 279 NFSERR_SERVERFAULT, 280 0, 281 }; 282 283 static short nfsv3err_write[] = { 284 NFSERR_IO, 285 NFSERR_IO, 286 NFSERR_ACCES, 287 NFSERR_INVAL, 288 NFSERR_FBIG, 289 NFSERR_NOSPC, 290 NFSERR_ROFS, 291 NFSERR_DQUOT, 292 NFSERR_STALE, 293 NFSERR_BADHANDLE, 294 NFSERR_SERVERFAULT, 295 0, 296 }; 297 298 static short nfsv3err_create[] = { 299 NFSERR_IO, 300 NFSERR_IO, 301 NFSERR_ACCES, 302 NFSERR_EXIST, 303 NFSERR_NOTDIR, 304 NFSERR_NOSPC, 305 NFSERR_ROFS, 306 NFSERR_NAMETOL, 307 NFSERR_DQUOT, 308 NFSERR_STALE, 309 NFSERR_BADHANDLE, 310 NFSERR_NOTSUPP, 311 NFSERR_SERVERFAULT, 312 0, 313 }; 314 315 static short nfsv3err_mkdir[] = { 316 NFSERR_IO, 317 NFSERR_IO, 318 NFSERR_ACCES, 319 NFSERR_EXIST, 320 NFSERR_NOTDIR, 321 NFSERR_NOSPC, 322 NFSERR_ROFS, 323 NFSERR_NAMETOL, 324 NFSERR_DQUOT, 325 NFSERR_STALE, 326 NFSERR_BADHANDLE, 327 NFSERR_NOTSUPP, 328 NFSERR_SERVERFAULT, 329 0, 330 }; 331 332 static short nfsv3err_symlink[] = { 333 NFSERR_IO, 334 NFSERR_IO, 335 NFSERR_ACCES, 336 NFSERR_EXIST, 337 NFSERR_NOTDIR, 338 NFSERR_NOSPC, 339 NFSERR_ROFS, 340 NFSERR_NAMETOL, 341 NFSERR_DQUOT, 342 NFSERR_STALE, 343 NFSERR_BADHANDLE, 344 NFSERR_NOTSUPP, 345 NFSERR_SERVERFAULT, 346 0, 347 }; 348 349 static short nfsv3err_mknod[] = { 350 NFSERR_IO, 351 NFSERR_IO, 352 NFSERR_ACCES, 353 NFSERR_EXIST, 354 NFSERR_NOTDIR, 355 NFSERR_NOSPC, 356 NFSERR_ROFS, 357 NFSERR_NAMETOL, 358 NFSERR_DQUOT, 359 NFSERR_STALE, 360 NFSERR_BADHANDLE, 361 NFSERR_NOTSUPP, 362 NFSERR_SERVERFAULT, 363 NFSERR_BADTYPE, 364 0, 365 }; 366 367 static short nfsv3err_remove[] = { 368 NFSERR_IO, 369 NFSERR_NOENT, 370 NFSERR_IO, 371 NFSERR_ACCES, 372 NFSERR_NOTDIR, 373 NFSERR_ROFS, 374 NFSERR_NAMETOL, 375 NFSERR_STALE, 376 NFSERR_BADHANDLE, 377 NFSERR_SERVERFAULT, 378 0, 379 }; 380 381 static short nfsv3err_rmdir[] = { 382 NFSERR_IO, 383 NFSERR_NOENT, 384 NFSERR_IO, 385 NFSERR_ACCES, 386 NFSERR_EXIST, 387 NFSERR_NOTDIR, 388 NFSERR_INVAL, 389 NFSERR_ROFS, 390 NFSERR_NAMETOL, 391 NFSERR_NOTEMPTY, 392 NFSERR_STALE, 393 NFSERR_BADHANDLE, 394 NFSERR_NOTSUPP, 395 NFSERR_SERVERFAULT, 396 0, 397 }; 398 399 static short nfsv3err_rename[] = { 400 NFSERR_IO, 401 NFSERR_NOENT, 402 NFSERR_IO, 403 NFSERR_ACCES, 404 NFSERR_EXIST, 405 NFSERR_XDEV, 406 NFSERR_NOTDIR, 407 NFSERR_ISDIR, 408 NFSERR_INVAL, 409 NFSERR_NOSPC, 410 NFSERR_ROFS, 411 NFSERR_MLINK, 412 NFSERR_NAMETOL, 413 NFSERR_NOTEMPTY, 414 NFSERR_DQUOT, 415 NFSERR_STALE, 416 NFSERR_BADHANDLE, 417 NFSERR_NOTSUPP, 418 NFSERR_SERVERFAULT, 419 0, 420 }; 421 422 static short nfsv3err_link[] = { 423 NFSERR_IO, 424 NFSERR_IO, 425 NFSERR_ACCES, 426 NFSERR_EXIST, 427 NFSERR_XDEV, 428 NFSERR_NOTDIR, 429 NFSERR_INVAL, 430 NFSERR_NOSPC, 431 NFSERR_ROFS, 432 NFSERR_MLINK, 433 NFSERR_NAMETOL, 434 NFSERR_DQUOT, 435 NFSERR_STALE, 436 NFSERR_BADHANDLE, 437 NFSERR_NOTSUPP, 438 NFSERR_SERVERFAULT, 439 0, 440 }; 441 442 static short nfsv3err_readdir[] = { 443 NFSERR_IO, 444 NFSERR_IO, 445 NFSERR_ACCES, 446 NFSERR_NOTDIR, 447 NFSERR_STALE, 448 NFSERR_BADHANDLE, 449 NFSERR_BAD_COOKIE, 450 NFSERR_TOOSMALL, 451 NFSERR_SERVERFAULT, 452 0, 453 }; 454 455 static short nfsv3err_readdirplus[] = { 456 NFSERR_IO, 457 NFSERR_IO, 458 NFSERR_ACCES, 459 NFSERR_NOTDIR, 460 NFSERR_STALE, 461 NFSERR_BADHANDLE, 462 NFSERR_BAD_COOKIE, 463 NFSERR_NOTSUPP, 464 NFSERR_TOOSMALL, 465 NFSERR_SERVERFAULT, 466 0, 467 }; 468 469 static short nfsv3err_fsstat[] = { 470 NFSERR_IO, 471 NFSERR_IO, 472 NFSERR_STALE, 473 NFSERR_BADHANDLE, 474 NFSERR_SERVERFAULT, 475 0, 476 }; 477 478 static short nfsv3err_fsinfo[] = { 479 NFSERR_STALE, 480 NFSERR_STALE, 481 NFSERR_BADHANDLE, 482 NFSERR_SERVERFAULT, 483 0, 484 }; 485 486 static short nfsv3err_pathconf[] = { 487 NFSERR_STALE, 488 NFSERR_STALE, 489 NFSERR_BADHANDLE, 490 NFSERR_SERVERFAULT, 491 0, 492 }; 493 494 static short nfsv3err_commit[] = { 495 NFSERR_IO, 496 NFSERR_IO, 497 NFSERR_STALE, 498 NFSERR_BADHANDLE, 499 NFSERR_SERVERFAULT, 500 0, 501 }; 502 503 static short *nfsrv_v3errmap[] = { 504 nfsv3err_null, 505 nfsv3err_getattr, 506 nfsv3err_setattr, 507 nfsv3err_lookup, 508 nfsv3err_access, 509 nfsv3err_readlink, 510 nfsv3err_read, 511 nfsv3err_write, 512 nfsv3err_create, 513 nfsv3err_mkdir, 514 nfsv3err_symlink, 515 nfsv3err_mknod, 516 nfsv3err_remove, 517 nfsv3err_rmdir, 518 nfsv3err_rename, 519 nfsv3err_link, 520 nfsv3err_readdir, 521 nfsv3err_readdirplus, 522 nfsv3err_fsstat, 523 nfsv3err_fsinfo, 524 nfsv3err_pathconf, 525 nfsv3err_commit, 526 }; 527 528 extern struct nfsrtt nfsrtt; 529 extern time_t nqnfsstarttime; 530 extern int nqsrv_clockskew; 531 extern int nqsrv_writeslack; 532 extern int nqsrv_maxlease; 533 extern int nqnfs_piggy[NFS_NPROCS]; 534 extern nfstype nfsv2_type[9]; 535 extern nfstype nfsv3_type[9]; 536 extern struct nfsnodehashhead *nfsnodehashtbl; 537 extern u_long nfsnodehash; 538 539 LIST_HEAD(nfsnodehashhead, nfsnode); 540 u_long nfsdirhashmask; 541 542 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *)); 543 544 /* 545 * Create the header for an rpc request packet 546 * The hsiz is the size of the rest of the nfs request header. 547 * (just used to decide if a cluster is a good idea) 548 */ 549 struct mbuf * 550 nfsm_reqh(vp, procid, hsiz, bposp) 551 struct vnode *vp; 552 u_long procid; 553 int hsiz; 554 caddr_t *bposp; 555 { 556 register struct mbuf *mb; 557 register u_int32_t *tl; 558 register caddr_t bpos; 559 struct mbuf *mb2; 560 struct nfsmount *nmp; 561 int nqflag; 562 563 MGET(mb, M_WAIT, MT_DATA); 564 if (hsiz >= MINCLSIZE) 565 MCLGET(mb, M_WAIT); 566 mb->m_len = 0; 567 bpos = mtod(mb, caddr_t); 568 569 /* 570 * For NQNFS, add lease request. 571 */ 572 if (vp) { 573 nmp = VFSTONFS(vp->v_mount); 574 if (nmp->nm_flag & NFSMNT_NQNFS) { 575 nqflag = NQNFS_NEEDLEASE(vp, procid); 576 if (nqflag) { 577 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED); 578 *tl++ = txdr_unsigned(nqflag); 579 *tl = txdr_unsigned(nmp->nm_leaseterm); 580 } else { 581 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 582 *tl = 0; 583 } 584 } 585 } 586 /* Finally, return values */ 587 *bposp = bpos; 588 return (mb); 589 } 590 591 /* 592 * Build the RPC header and fill in the authorization info. 593 * The authorization string argument is only used when the credentials 594 * come from outside of the kernel. 595 * Returns the head of the mbuf list. 596 */ 597 struct mbuf * 598 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len, 599 verf_str, mrest, mrest_len, mbp, xidp) 600 register struct ucred *cr; 601 int nmflag; 602 int procid; 603 int auth_type; 604 int auth_len; 605 char *auth_str; 606 int verf_len; 607 char *verf_str; 608 struct mbuf *mrest; 609 int mrest_len; 610 struct mbuf **mbp; 611 u_int32_t *xidp; 612 { 613 register struct mbuf *mb; 614 register u_int32_t *tl; 615 register caddr_t bpos; 616 register int i; 617 struct mbuf *mreq, *mb2; 618 int siz, grpsiz, authsiz; 619 struct timeval tv; 620 static u_int32_t base; 621 622 authsiz = nfsm_rndup(auth_len); 623 MGETHDR(mb, M_WAIT, MT_DATA); 624 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 625 MCLGET(mb, M_WAIT); 626 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 627 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 628 } else { 629 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 630 } 631 mb->m_len = 0; 632 mreq = mb; 633 bpos = mtod(mb, caddr_t); 634 635 /* 636 * First the RPC header. 637 */ 638 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 639 640 /* 641 * derive initial xid from system time 642 * XXX time is invalid if root not yet mounted 643 */ 644 if (!base && (rootvp)) { 645 microtime(&tv); 646 base = tv.tv_sec << 12; 647 nfs_xid = base; 648 } 649 /* 650 * Skip zero xid if it should ever happen. 651 */ 652 if (++nfs_xid == 0) 653 nfs_xid++; 654 655 *tl++ = *xidp = txdr_unsigned(nfs_xid); 656 *tl++ = rpc_call; 657 *tl++ = rpc_vers; 658 if (nmflag & NFSMNT_NQNFS) { 659 *tl++ = txdr_unsigned(NQNFS_PROG); 660 *tl++ = txdr_unsigned(NQNFS_VER3); 661 } else { 662 *tl++ = txdr_unsigned(NFS_PROG); 663 if (nmflag & NFSMNT_NFSV3) 664 *tl++ = txdr_unsigned(NFS_VER3); 665 else 666 *tl++ = txdr_unsigned(NFS_VER2); 667 } 668 if (nmflag & NFSMNT_NFSV3) 669 *tl++ = txdr_unsigned(procid); 670 else 671 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 672 673 /* 674 * And then the authorization cred. 675 */ 676 *tl++ = txdr_unsigned(auth_type); 677 *tl = txdr_unsigned(authsiz); 678 switch (auth_type) { 679 case RPCAUTH_UNIX: 680 nfsm_build(tl, u_int32_t *, auth_len); 681 *tl++ = 0; /* stamp ?? */ 682 *tl++ = 0; /* NULL hostname */ 683 *tl++ = txdr_unsigned(cr->cr_uid); 684 *tl++ = txdr_unsigned(cr->cr_gid); 685 grpsiz = (auth_len >> 2) - 5; 686 *tl++ = txdr_unsigned(grpsiz); 687 for (i = 0; i < grpsiz; i++) 688 *tl++ = txdr_unsigned(cr->cr_groups[i]); 689 break; 690 case RPCAUTH_KERB4: 691 siz = auth_len; 692 while (siz > 0) { 693 if (M_TRAILINGSPACE(mb) == 0) { 694 MGET(mb2, M_WAIT, MT_DATA); 695 if (siz >= MINCLSIZE) 696 MCLGET(mb2, M_WAIT); 697 mb->m_next = mb2; 698 mb = mb2; 699 mb->m_len = 0; 700 bpos = mtod(mb, caddr_t); 701 } 702 i = min(siz, M_TRAILINGSPACE(mb)); 703 bcopy(auth_str, bpos, i); 704 mb->m_len += i; 705 auth_str += i; 706 bpos += i; 707 siz -= i; 708 } 709 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 710 for (i = 0; i < siz; i++) 711 *bpos++ = '\0'; 712 mb->m_len += siz; 713 } 714 break; 715 }; 716 717 /* 718 * And the verifier... 719 */ 720 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 721 if (verf_str) { 722 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 723 *tl = txdr_unsigned(verf_len); 724 siz = verf_len; 725 while (siz > 0) { 726 if (M_TRAILINGSPACE(mb) == 0) { 727 MGET(mb2, M_WAIT, MT_DATA); 728 if (siz >= MINCLSIZE) 729 MCLGET(mb2, M_WAIT); 730 mb->m_next = mb2; 731 mb = mb2; 732 mb->m_len = 0; 733 bpos = mtod(mb, caddr_t); 734 } 735 i = min(siz, M_TRAILINGSPACE(mb)); 736 bcopy(verf_str, bpos, i); 737 mb->m_len += i; 738 verf_str += i; 739 bpos += i; 740 siz -= i; 741 } 742 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 743 for (i = 0; i < siz; i++) 744 *bpos++ = '\0'; 745 mb->m_len += siz; 746 } 747 } else { 748 *tl++ = txdr_unsigned(RPCAUTH_NULL); 749 *tl = 0; 750 } 751 mb->m_next = mrest; 752 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 753 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 754 *mbp = mb; 755 return (mreq); 756 } 757 758 /* 759 * copies mbuf chain to the uio scatter/gather list 760 */ 761 int 762 nfsm_mbuftouio(mrep, uiop, siz, dpos) 763 struct mbuf **mrep; 764 register struct uio *uiop; 765 int siz; 766 caddr_t *dpos; 767 { 768 register char *mbufcp, *uiocp; 769 register int xfer, left, len; 770 register struct mbuf *mp; 771 long uiosiz, rem; 772 int error = 0; 773 774 mp = *mrep; 775 mbufcp = *dpos; 776 len = mtod(mp, caddr_t)+mp->m_len-mbufcp; 777 rem = nfsm_rndup(siz)-siz; 778 while (siz > 0) { 779 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 780 return (EFBIG); 781 left = uiop->uio_iov->iov_len; 782 uiocp = uiop->uio_iov->iov_base; 783 if (left > siz) 784 left = siz; 785 uiosiz = left; 786 while (left > 0) { 787 while (len == 0) { 788 mp = mp->m_next; 789 if (mp == NULL) 790 return (EBADRPC); 791 mbufcp = mtod(mp, caddr_t); 792 len = mp->m_len; 793 } 794 xfer = (left > len) ? len : left; 795 #ifdef notdef 796 /* Not Yet.. */ 797 if (uiop->uio_iov->iov_op != NULL) 798 (*(uiop->uio_iov->iov_op)) 799 (mbufcp, uiocp, xfer); 800 else 801 #endif 802 if (uiop->uio_segflg == UIO_SYSSPACE) 803 bcopy(mbufcp, uiocp, xfer); 804 else 805 copyout(mbufcp, uiocp, xfer); 806 left -= xfer; 807 len -= xfer; 808 mbufcp += xfer; 809 uiocp += xfer; 810 uiop->uio_offset += xfer; 811 uiop->uio_resid -= xfer; 812 } 813 if (uiop->uio_iov->iov_len <= siz) { 814 uiop->uio_iovcnt--; 815 uiop->uio_iov++; 816 } else { 817 uiop->uio_iov->iov_base += uiosiz; 818 uiop->uio_iov->iov_len -= uiosiz; 819 } 820 siz -= uiosiz; 821 } 822 *dpos = mbufcp; 823 *mrep = mp; 824 if (rem > 0) { 825 if (len < rem) 826 error = nfs_adv(mrep, dpos, rem, len); 827 else 828 *dpos += rem; 829 } 830 return (error); 831 } 832 833 /* 834 * copies a uio scatter/gather list to an mbuf chain. 835 * NOTE: can ony handle iovcnt == 1 836 */ 837 int 838 nfsm_uiotombuf(uiop, mq, siz, bpos) 839 register struct uio *uiop; 840 struct mbuf **mq; 841 int siz; 842 caddr_t *bpos; 843 { 844 register char *uiocp; 845 register struct mbuf *mp, *mp2; 846 register int xfer, left, mlen; 847 int uiosiz, clflg, rem; 848 char *cp; 849 850 #ifdef DIAGNOSTIC 851 if (uiop->uio_iovcnt != 1) 852 panic("nfsm_uiotombuf: iovcnt != 1"); 853 #endif 854 855 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 856 clflg = 1; 857 else 858 clflg = 0; 859 rem = nfsm_rndup(siz)-siz; 860 mp = mp2 = *mq; 861 while (siz > 0) { 862 left = uiop->uio_iov->iov_len; 863 uiocp = uiop->uio_iov->iov_base; 864 if (left > siz) 865 left = siz; 866 uiosiz = left; 867 while (left > 0) { 868 mlen = M_TRAILINGSPACE(mp); 869 if (mlen == 0) { 870 MGET(mp, M_WAIT, MT_DATA); 871 if (clflg) 872 MCLGET(mp, M_WAIT); 873 mp->m_len = 0; 874 mp2->m_next = mp; 875 mp2 = mp; 876 mlen = M_TRAILINGSPACE(mp); 877 } 878 xfer = (left > mlen) ? mlen : left; 879 #ifdef notdef 880 /* Not Yet.. */ 881 if (uiop->uio_iov->iov_op != NULL) 882 (*(uiop->uio_iov->iov_op)) 883 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 884 else 885 #endif 886 if (uiop->uio_segflg == UIO_SYSSPACE) 887 bcopy(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 888 else 889 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 890 mp->m_len += xfer; 891 left -= xfer; 892 uiocp += xfer; 893 uiop->uio_offset += xfer; 894 uiop->uio_resid -= xfer; 895 } 896 uiop->uio_iov->iov_base += uiosiz; 897 uiop->uio_iov->iov_len -= uiosiz; 898 siz -= uiosiz; 899 } 900 if (rem > 0) { 901 if (rem > M_TRAILINGSPACE(mp)) { 902 MGET(mp, M_WAIT, MT_DATA); 903 mp->m_len = 0; 904 mp2->m_next = mp; 905 } 906 cp = mtod(mp, caddr_t)+mp->m_len; 907 for (left = 0; left < rem; left++) 908 *cp++ = '\0'; 909 mp->m_len += rem; 910 *bpos = cp; 911 } else 912 *bpos = mtod(mp, caddr_t)+mp->m_len; 913 *mq = mp; 914 return (0); 915 } 916 917 /* 918 * Get at least "siz" bytes of correctly aligned data. 919 * When called the mbuf pointers are not necessarily correct, 920 * dsosp points to what ought to be in m_data and left contains 921 * what ought to be in m_len. 922 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 923 * cases. (The macros use the vars. dpos and dpos2) 924 */ 925 int 926 nfsm_disct(mdp, dposp, siz, left, cp2) 927 struct mbuf **mdp; 928 caddr_t *dposp; 929 int siz; 930 int left; 931 caddr_t *cp2; 932 { 933 register struct mbuf *m1, *m2; 934 struct mbuf *havebuf = NULL; 935 caddr_t src = *dposp; 936 caddr_t dst; 937 int len; 938 939 #ifdef DEBUG 940 if (left < 0) 941 panic("nfsm_disct: left < 0"); 942 #endif 943 m1 = *mdp; 944 /* 945 * Skip through the mbuf chain looking for an mbuf with 946 * some data. If the first mbuf found has enough data 947 * and it is correctly aligned return it. 948 */ 949 while (left == 0) { 950 havebuf = m1; 951 *mdp = m1 = m1->m_next; 952 if (m1 == NULL) 953 return (EBADRPC); 954 src = mtod(m1, caddr_t); 955 left = m1->m_len; 956 /* 957 * If we start a new mbuf and it is big enough 958 * and correctly aligned just return it, don't 959 * do any pull up. 960 */ 961 if (left >= siz && nfsm_aligned(src)) { 962 *cp2 = src; 963 *dposp = src + siz; 964 return (0); 965 } 966 } 967 if (m1->m_flags & M_EXT) { 968 if (havebuf) { 969 /* If the first mbuf with data has external data 970 * and there is a previous empty mbuf use it 971 * to move the data into. 972 */ 973 m2 = m1; 974 *mdp = m1 = havebuf; 975 if (m1->m_flags & M_EXT) { 976 MEXTREMOVE(m1); 977 } 978 } else { 979 /* 980 * If the first mbuf has a external data 981 * and there is no previous empty mbuf 982 * allocate a new mbuf and move the external 983 * data to the new mbuf. Also make the first 984 * mbuf look empty. 985 */ 986 m2 = m_get(M_WAIT, MT_DATA); 987 m2->m_ext = m1->m_ext; 988 m2->m_data = src; 989 m2->m_len = left; 990 MCLADDREFERENCE(m1, m2); 991 MEXTREMOVE(m1); 992 m2->m_next = m1->m_next; 993 m1->m_next = m2; 994 } 995 m1->m_len = 0; 996 dst = m1->m_dat; 997 } else { 998 /* 999 * If the first mbuf has no external data 1000 * move the data to the front of the mbuf. 1001 */ 1002 if ((dst = m1->m_dat) != src) 1003 ovbcopy(src, dst, left); 1004 dst += left; 1005 m1->m_len = left; 1006 m2 = m1->m_next; 1007 } 1008 m1->m_flags &= ~M_PKTHDR; 1009 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */ 1010 *dposp = mtod(m1, caddr_t) + siz; 1011 /* 1012 * Loop through mbufs pulling data up into first mbuf until 1013 * the first mbuf is full or there is no more data to 1014 * pullup. 1015 */ 1016 while ((len = (MLEN - m1->m_len)) != 0 && m2) { 1017 if ((len = min(len, m2->m_len)) != 0) 1018 bcopy(m2->m_data, dst, len); 1019 m1->m_len += len; 1020 dst += len; 1021 m2->m_data += len; 1022 m2->m_len -= len; 1023 m2 = m2->m_next; 1024 } 1025 if (m1->m_len < siz) 1026 return (EBADRPC); 1027 return (0); 1028 } 1029 1030 /* 1031 * Advance the position in the mbuf chain. 1032 */ 1033 int 1034 nfs_adv(mdp, dposp, offs, left) 1035 struct mbuf **mdp; 1036 caddr_t *dposp; 1037 int offs; 1038 int left; 1039 { 1040 register struct mbuf *m; 1041 register int s; 1042 1043 m = *mdp; 1044 s = left; 1045 while (s < offs) { 1046 offs -= s; 1047 m = m->m_next; 1048 if (m == NULL) 1049 return (EBADRPC); 1050 s = m->m_len; 1051 } 1052 *mdp = m; 1053 *dposp = mtod(m, caddr_t)+offs; 1054 return (0); 1055 } 1056 1057 /* 1058 * Copy a string into mbufs for the hard cases... 1059 */ 1060 int 1061 nfsm_strtmbuf(mb, bpos, cp, siz) 1062 struct mbuf **mb; 1063 char **bpos; 1064 const char *cp; 1065 long siz; 1066 { 1067 register struct mbuf *m1 = NULL, *m2; 1068 long left, xfer, len, tlen; 1069 u_int32_t *tl; 1070 int putsize; 1071 1072 putsize = 1; 1073 m2 = *mb; 1074 left = M_TRAILINGSPACE(m2); 1075 if (left > 0) { 1076 tl = ((u_int32_t *)(*bpos)); 1077 *tl++ = txdr_unsigned(siz); 1078 putsize = 0; 1079 left -= NFSX_UNSIGNED; 1080 m2->m_len += NFSX_UNSIGNED; 1081 if (left > 0) { 1082 bcopy(cp, (caddr_t) tl, left); 1083 siz -= left; 1084 cp += left; 1085 m2->m_len += left; 1086 left = 0; 1087 } 1088 } 1089 /* Loop around adding mbufs */ 1090 while (siz > 0) { 1091 MGET(m1, M_WAIT, MT_DATA); 1092 if (siz > MLEN) 1093 MCLGET(m1, M_WAIT); 1094 m1->m_len = NFSMSIZ(m1); 1095 m2->m_next = m1; 1096 m2 = m1; 1097 tl = mtod(m1, u_int32_t *); 1098 tlen = 0; 1099 if (putsize) { 1100 *tl++ = txdr_unsigned(siz); 1101 m1->m_len -= NFSX_UNSIGNED; 1102 tlen = NFSX_UNSIGNED; 1103 putsize = 0; 1104 } 1105 if (siz < m1->m_len) { 1106 len = nfsm_rndup(siz); 1107 xfer = siz; 1108 if (xfer < len) 1109 *(tl+(xfer>>2)) = 0; 1110 } else { 1111 xfer = len = m1->m_len; 1112 } 1113 bcopy(cp, (caddr_t) tl, xfer); 1114 m1->m_len = len+tlen; 1115 siz -= xfer; 1116 cp += xfer; 1117 } 1118 *mb = m1; 1119 *bpos = mtod(m1, caddr_t)+m1->m_len; 1120 return (0); 1121 } 1122 1123 /* 1124 * Directory caching routines. They work as follows: 1125 * - a cache is maintained per VDIR nfsnode. 1126 * - for each offset cookie that is exported to userspace, and can 1127 * thus be thrown back at us as an offset to VOP_READDIR, store 1128 * information in the cache. 1129 * - cached are: 1130 * - cookie itself 1131 * - blocknumber (essentially just a search key in the buffer cache) 1132 * - entry number in block. 1133 * - offset cookie of block in which this entry is stored 1134 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1135 * - entries are looked up in a hash table 1136 * - also maintained is an LRU list of entries, used to determine 1137 * which ones to delete if the cache grows too large. 1138 * - if 32 <-> 64 translation mode is requested for a filesystem, 1139 * the cache also functions as a translation table 1140 * - in the translation case, invalidating the cache does not mean 1141 * flushing it, but just marking entries as invalid, except for 1142 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1143 * still be able to use the cache as a translation table. 1144 * - 32 bit cookies are uniquely created by combining the hash table 1145 * entry value, and one generation count per hash table entry, 1146 * incremented each time an entry is appended to the chain. 1147 * - the cache is invalidated each time a direcory is modified 1148 * - sanity checks are also done; if an entry in a block turns 1149 * out not to have a matching cookie, the cache is invalidated 1150 * and a new block starting from the wanted offset is fetched from 1151 * the server. 1152 * - directory entries as read from the server are extended to contain 1153 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1154 * the cache and exporting them to userspace through the cookie 1155 * argument to VOP_READDIR. 1156 */ 1157 1158 u_long 1159 nfs_dirhash(off) 1160 off_t off; 1161 { 1162 int i; 1163 char *cp = (char *)&off; 1164 u_long sum = 0L; 1165 1166 for (i = 0 ; i < sizeof (off); i++) 1167 sum += *cp++; 1168 1169 return sum; 1170 } 1171 1172 void 1173 nfs_initdircache(vp) 1174 struct vnode *vp; 1175 { 1176 struct nfsnode *np = VTONFS(vp); 1177 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1178 1179 np->n_dircachesize = 0; 1180 np->n_dblkno = 1; 1181 np->n_dircache = 1182 hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, &nfsdirhashmask); 1183 TAILQ_INIT(&np->n_dirchain); 1184 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1185 MALLOC(np->n_dirgens, unsigned *, 1186 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, 1187 M_WAITOK); 1188 bzero((caddr_t)np->n_dirgens, 1189 NFS_DIRHASHSIZ * sizeof (unsigned)); 1190 } 1191 } 1192 1193 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0}; 1194 1195 struct nfsdircache * 1196 nfs_searchdircache(vp, off, do32, hashent) 1197 struct vnode *vp; 1198 off_t off; 1199 int do32; 1200 int *hashent; 1201 { 1202 struct nfsdirhashhead *ndhp; 1203 struct nfsdircache *ndp = NULL; 1204 struct nfsnode *np = VTONFS(vp); 1205 unsigned ent; 1206 1207 /* 1208 * Zero is always a valid cookie. 1209 */ 1210 if (off == 0) 1211 return &dzero; 1212 1213 /* 1214 * We use a 32bit cookie as search key, directly reconstruct 1215 * the hashentry. Else use the hashfunction. 1216 */ 1217 if (do32) { 1218 ent = (u_int32_t)off >> 24; 1219 if (ent >= NFS_DIRHASHSIZ) 1220 return NULL; 1221 ndhp = &np->n_dircache[ent]; 1222 } else { 1223 ndhp = NFSDIRHASH(np, off); 1224 } 1225 1226 if (hashent) 1227 *hashent = (int)(ndhp - np->n_dircache); 1228 if (do32) { 1229 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) { 1230 if (ndp->dc_cookie32 == (u_int32_t)off) { 1231 /* 1232 * An invalidated entry will become the 1233 * start of a new block fetched from 1234 * the server. 1235 */ 1236 if (ndp->dc_blkno == -1) { 1237 ndp->dc_blkcookie = ndp->dc_cookie; 1238 ndp->dc_blkno = np->n_dblkno++; 1239 ndp->dc_entry = 0; 1240 } 1241 break; 1242 } 1243 } 1244 } else { 1245 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) 1246 if (ndp->dc_cookie == off) 1247 break; 1248 } 1249 return ndp; 1250 } 1251 1252 1253 struct nfsdircache * 1254 nfs_enterdircache(vp, off, blkoff, en, blkno) 1255 struct vnode *vp; 1256 off_t off, blkoff; 1257 daddr_t blkno; 1258 int en; 1259 { 1260 struct nfsnode *np = VTONFS(vp); 1261 struct nfsdirhashhead *ndhp; 1262 struct nfsdircache *ndp = NULL, *first; 1263 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1264 int hashent, gen, overwrite; 1265 1266 if (!np->n_dircache) 1267 /* 1268 * XXX would like to do this in nfs_nget but vtype 1269 * isn't known at that time. 1270 */ 1271 nfs_initdircache(vp); 1272 1273 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1274 1275 if (ndp && ndp->dc_blkno != -1) { 1276 /* 1277 * Overwriting an old entry. Check if it's the same. 1278 * If so, just return. If not, remove the old entry. 1279 */ 1280 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1281 return ndp; 1282 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1283 LIST_REMOVE(ndp, dc_hash); 1284 FREE(ndp, M_NFSDIROFF); 1285 ndp = 0; 1286 } 1287 1288 ndhp = &np->n_dircache[hashent]; 1289 1290 if (!ndp) { 1291 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF, 1292 M_WAITOK); 1293 overwrite = 0; 1294 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1295 /* 1296 * We're allocating a new entry, so bump the 1297 * generation number. 1298 */ 1299 gen = ++np->n_dirgens[hashent]; 1300 if (gen == 0) { 1301 np->n_dirgens[hashent]++; 1302 gen++; 1303 } 1304 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1305 } 1306 } else 1307 overwrite = 1; 1308 1309 /* 1310 * If the entry number is 0, we are at the start of a new block, so 1311 * allocate a new blocknumber. 1312 */ 1313 if (en == 0) 1314 ndp->dc_blkno = np->n_dblkno++; 1315 else 1316 ndp->dc_blkno = blkno; 1317 1318 ndp->dc_cookie = off; 1319 ndp->dc_blkcookie = blkoff; 1320 ndp->dc_entry = en; 1321 1322 if (overwrite) 1323 return ndp; 1324 1325 /* 1326 * If the maximum directory cookie cache size has been reached 1327 * for this node, take one off the front. The idea is that 1328 * directories are typically read front-to-back once, so that 1329 * the oldest entries can be thrown away without much performance 1330 * loss. 1331 */ 1332 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1333 first = np->n_dirchain.tqh_first; 1334 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain); 1335 LIST_REMOVE(first, dc_hash); 1336 FREE(first, M_NFSDIROFF); 1337 } else 1338 np->n_dircachesize++; 1339 1340 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1341 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1342 return ndp; 1343 } 1344 1345 void 1346 nfs_invaldircache(vp, forcefree) 1347 struct vnode *vp; 1348 int forcefree; 1349 { 1350 struct nfsnode *np = VTONFS(vp); 1351 struct nfsdircache *ndp = NULL; 1352 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1353 1354 #ifdef DIAGNOSTIC 1355 if (vp->v_type != VDIR) 1356 panic("nfs: invaldircache: not dir"); 1357 #endif 1358 1359 if (!np->n_dircache) 1360 return; 1361 1362 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1363 while ((ndp = np->n_dirchain.tqh_first)) { 1364 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1365 LIST_REMOVE(ndp, dc_hash); 1366 FREE(ndp, M_NFSDIROFF); 1367 } 1368 np->n_dircachesize = 0; 1369 if (forcefree && np->n_dirgens) { 1370 FREE(np->n_dirgens, M_NFSDIROFF); 1371 } 1372 } else { 1373 for (ndp = np->n_dirchain.tqh_first; ndp; 1374 ndp = ndp->dc_chain.tqe_next) 1375 ndp->dc_blkno = -1; 1376 } 1377 1378 np->n_dblkno = 1; 1379 } 1380 1381 /* 1382 * Called once before VFS init to initialize shared and 1383 * server-specific data structures. 1384 */ 1385 void 1386 nfs_init() 1387 { 1388 1389 #if !defined(alpha) && defined(DIAGNOSTIC) 1390 /* 1391 * Check to see if major data structures haven't bloated. 1392 */ 1393 if (sizeof (struct nfsnode) > NFS_NODEALLOC) { 1394 printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC); 1395 printf("Try reducing NFS_SMALLFH\n"); 1396 } 1397 if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) { 1398 printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC); 1399 printf("Try reducing NFS_UIDHASHSIZ\n"); 1400 } 1401 if (sizeof (struct nfsuid) > NFS_UIDALLOC) { 1402 printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC); 1403 printf("Try unionizing the nu_nickname and nu_flag fields\n"); 1404 } 1405 #endif 1406 1407 nfsrtt.pos = 0; 1408 rpc_vers = txdr_unsigned(RPC_VER2); 1409 rpc_call = txdr_unsigned(RPC_CALL); 1410 rpc_reply = txdr_unsigned(RPC_REPLY); 1411 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1412 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1413 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1414 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1415 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1416 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1417 nfs_prog = txdr_unsigned(NFS_PROG); 1418 nqnfs_prog = txdr_unsigned(NQNFS_PROG); 1419 nfs_true = txdr_unsigned(TRUE); 1420 nfs_false = txdr_unsigned(FALSE); 1421 nfs_xdrneg1 = txdr_unsigned(-1); 1422 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1423 if (nfs_ticks < 1) 1424 nfs_ticks = 1; 1425 #ifdef NFSSERVER 1426 nfsrv_init(0); /* Init server data structures */ 1427 nfsrv_initcache(); /* Init the server request cache */ 1428 #endif /* NFSSERVER */ 1429 1430 /* 1431 * Initialize the nqnfs data structures. 1432 */ 1433 if (nqnfsstarttime == 0) { 1434 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease 1435 + nqsrv_clockskew + nqsrv_writeslack; 1436 NQLOADNOVRAM(nqnfsstarttime); 1437 CIRCLEQ_INIT(&nqtimerhead); 1438 nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, &nqfhhash); 1439 } 1440 1441 /* 1442 * Initialize reply list and start timer 1443 */ 1444 TAILQ_INIT(&nfs_reqq); 1445 nfs_timer(NULL); 1446 } 1447 1448 #ifdef NFS 1449 /* 1450 * Called once at VFS init to initialize client-specific data structures. 1451 */ 1452 void 1453 nfs_vfs_init() 1454 { 1455 register int i; 1456 1457 /* Ensure async daemons disabled */ 1458 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) { 1459 nfs_iodwant[i] = (struct proc *)0; 1460 nfs_iodmount[i] = (struct nfsmount *)0; 1461 } 1462 nfs_nhinit(); /* Init the nfsnode table */ 1463 } 1464 1465 /* 1466 * Attribute cache routines. 1467 * nfs_loadattrcache() - loads or updates the cache contents from attributes 1468 * that are on the mbuf list 1469 * nfs_getattrcache() - returns valid attributes if found in cache, returns 1470 * error otherwise 1471 */ 1472 1473 /* 1474 * Load the attribute cache (that lives in the nfsnode entry) with 1475 * the values on the mbuf list and 1476 * Iff vap not NULL 1477 * copy the attributes to *vaper 1478 */ 1479 int 1480 nfsm_loadattrcache(vpp, mdp, dposp, vaper) 1481 struct vnode **vpp; 1482 struct mbuf **mdp; 1483 caddr_t *dposp; 1484 struct vattr *vaper; 1485 { 1486 register int32_t t1; 1487 caddr_t cp2; 1488 int error = 0; 1489 struct mbuf *md; 1490 int v3 = NFS_ISV3(*vpp); 1491 1492 md = *mdp; 1493 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp; 1494 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2); 1495 if (error) 1496 return (error); 1497 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper); 1498 } 1499 1500 int 1501 nfs_loadattrcache(vpp, fp, vaper) 1502 struct vnode **vpp; 1503 struct nfs_fattr *fp; 1504 struct vattr *vaper; 1505 { 1506 register struct vnode *vp = *vpp; 1507 register struct vattr *vap; 1508 int v3 = NFS_ISV3(vp); 1509 enum vtype vtyp; 1510 u_short vmode; 1511 struct timespec mtime; 1512 struct vnode *nvp; 1513 int32_t rdev; 1514 register struct nfsnode *np; 1515 extern int (**spec_nfsv2nodeop_p) __P((void *)); 1516 1517 if (v3) { 1518 vtyp = nfsv3tov_type(fp->fa_type); 1519 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1520 rdev = makedev(fxdr_unsigned(u_char, fp->fa3_rdev.specdata1), 1521 fxdr_unsigned(u_char, fp->fa3_rdev.specdata2)); 1522 fxdr_nfsv3time(&fp->fa3_mtime, &mtime); 1523 } else { 1524 vtyp = nfsv2tov_type(fp->fa_type); 1525 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1526 if (vtyp == VNON || vtyp == VREG) 1527 vtyp = IFTOVT(vmode); 1528 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); 1529 fxdr_nfsv2time(&fp->fa2_mtime, &mtime); 1530 1531 /* 1532 * Really ugly NFSv2 kludge. 1533 */ 1534 if (vtyp == VCHR && rdev == 0xffffffff) 1535 vtyp = VFIFO; 1536 } 1537 1538 /* 1539 * If v_type == VNON it is a new node, so fill in the v_type, 1540 * n_mtime fields. Check to see if it represents a special 1541 * device, and if so, check for a possible alias. Once the 1542 * correct vnode has been obtained, fill in the rest of the 1543 * information. 1544 */ 1545 np = VTONFS(vp); 1546 if (vp->v_type != vtyp) { 1547 vp->v_type = vtyp; 1548 if (vp->v_type == VFIFO) { 1549 #ifndef FIFO 1550 return (EOPNOTSUPP); 1551 #else 1552 extern int (**fifo_nfsv2nodeop_p) __P((void *)); 1553 vp->v_op = fifo_nfsv2nodeop_p; 1554 #endif /* FIFO */ 1555 } 1556 if (vp->v_type == VCHR || vp->v_type == VBLK) { 1557 vp->v_op = spec_nfsv2nodeop_p; 1558 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount); 1559 if (nvp) { 1560 /* 1561 * Discard unneeded vnode, but save its nfsnode. 1562 * Since the nfsnode does not have a lock, its 1563 * vnode lock has to be carried over. 1564 */ 1565 #ifdef Lite2_integrated 1566 nvp->v_vnlock = vp->v_vnlock; 1567 vp->v_vnlock = NULL; 1568 #endif 1569 nvp->v_data = vp->v_data; 1570 vp->v_data = NULL; 1571 vp->v_op = spec_vnodeop_p; 1572 vrele(vp); 1573 vgone(vp); 1574 /* 1575 * Reinitialize aliased node. 1576 */ 1577 np->n_vnode = nvp; 1578 *vpp = vp = nvp; 1579 } 1580 } 1581 np->n_mtime = mtime.tv_sec; 1582 } 1583 vap = np->n_vattr; 1584 vap->va_type = vtyp; 1585 vap->va_mode = vmode & ALLPERMS; 1586 vap->va_rdev = (dev_t)rdev; 1587 vap->va_mtime = mtime; 1588 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 1589 if (v3) { 1590 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1591 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid); 1592 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid); 1593 fxdr_hyper(&fp->fa3_size, &vap->va_size); 1594 if (vtyp == VDIR) 1595 vap->va_blocksize = NFS_DIRFRAGSIZ; 1596 else 1597 vap->va_blocksize = NFS_FABLKSIZE; 1598 fxdr_hyper(&fp->fa3_used, &vap->va_bytes); 1599 vap->va_fileid = fxdr_unsigned(int32_t, 1600 fp->fa3_fileid.nfsuquad[1]); 1601 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); 1602 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime); 1603 vap->va_flags = 0; 1604 vap->va_filerev = 0; 1605 } else { 1606 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1607 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid); 1608 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid); 1609 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); 1610 if (vtyp == VDIR) 1611 vap->va_blocksize = NFS_DIRFRAGSIZ; 1612 else 1613 vap->va_blocksize = 1614 fxdr_unsigned(int32_t, fp->fa2_blocksize); 1615 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks) 1616 * NFS_FABLKSIZE; 1617 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); 1618 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); 1619 vap->va_flags = 0; 1620 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t, 1621 fp->fa2_ctime.nfsv2_sec); 1622 vap->va_ctime.tv_nsec = 0; 1623 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec); 1624 vap->va_filerev = 0; 1625 } 1626 if (vap->va_size != np->n_size) { 1627 if (vap->va_type == VREG) { 1628 if (np->n_flag & NMODIFIED) { 1629 if (vap->va_size < np->n_size) 1630 vap->va_size = np->n_size; 1631 else 1632 np->n_size = vap->va_size; 1633 } else 1634 np->n_size = vap->va_size; 1635 vnode_pager_setsize(vp, np->n_size); 1636 } else 1637 np->n_size = vap->va_size; 1638 } 1639 np->n_attrstamp = time.tv_sec; 1640 if (vaper != NULL) { 1641 bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(*vap)); 1642 if (np->n_flag & NCHG) { 1643 if (np->n_flag & NACC) 1644 vaper->va_atime = np->n_atim; 1645 if (np->n_flag & NUPD) 1646 vaper->va_mtime = np->n_mtim; 1647 } 1648 } 1649 return (0); 1650 } 1651 1652 /* 1653 * Check the time stamp 1654 * If the cache is valid, copy contents to *vap and return 0 1655 * otherwise return an error 1656 */ 1657 int 1658 nfs_getattrcache(vp, vaper) 1659 register struct vnode *vp; 1660 struct vattr *vaper; 1661 { 1662 register struct nfsnode *np = VTONFS(vp); 1663 register struct vattr *vap; 1664 1665 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) { 1666 nfsstats.attrcache_misses++; 1667 return (ENOENT); 1668 } 1669 nfsstats.attrcache_hits++; 1670 vap = np->n_vattr; 1671 if (vap->va_size != np->n_size) { 1672 if (vap->va_type == VREG) { 1673 if (np->n_flag & NMODIFIED) { 1674 if (vap->va_size < np->n_size) 1675 vap->va_size = np->n_size; 1676 else 1677 np->n_size = vap->va_size; 1678 } else 1679 np->n_size = vap->va_size; 1680 vnode_pager_setsize(vp, np->n_size); 1681 } else 1682 np->n_size = vap->va_size; 1683 } 1684 bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(struct vattr)); 1685 if (np->n_flag & NCHG) { 1686 if (np->n_flag & NACC) 1687 vaper->va_atime = np->n_atim; 1688 if (np->n_flag & NUPD) 1689 vaper->va_mtime = np->n_mtim; 1690 } 1691 return (0); 1692 } 1693 1694 /* 1695 * Heuristic to see if the server XDR encodes directory cookies or not. 1696 * it is not supposed to, but a lot of servers may do this. Also, since 1697 * most/all servers will implement V2 as well, it is expected that they 1698 * may return just 32 bits worth of cookie information, so we need to 1699 * find out in which 32 bits this information is available. We do this 1700 * to avoid trouble with emulated binaries that can't handle 64 bit 1701 * directory offsets. 1702 */ 1703 1704 void 1705 nfs_cookieheuristic(vp, flagp, p, cred) 1706 struct vnode *vp; 1707 int *flagp; 1708 struct proc *p; 1709 struct ucred *cred; 1710 { 1711 struct uio auio; 1712 struct iovec aiov; 1713 caddr_t buf, cp; 1714 struct dirent *dp; 1715 off_t *cookies, *cop; 1716 int error, eof, nc, len; 1717 1718 nc = NFS_DIRFRAGSIZ / 16; 1719 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK); 1720 MALLOC(cookies, off_t *, nc * sizeof (off_t), M_TEMP, M_WAITOK); 1721 1722 aiov.iov_base = buf; 1723 aiov.iov_len = NFS_DIRFRAGSIZ; 1724 auio.uio_iov = &aiov; 1725 auio.uio_iovcnt = 1; 1726 auio.uio_rw = UIO_READ; 1727 auio.uio_segflg = UIO_SYSSPACE; 1728 auio.uio_procp = p; 1729 auio.uio_resid = NFS_DIRFRAGSIZ; 1730 auio.uio_offset = 0; 1731 1732 error = VOP_READDIR(vp, &auio, cred, &eof, cookies, nc); 1733 1734 len = NFS_DIRFRAGSIZ - auio.uio_resid; 1735 if (error || len == 0) { 1736 FREE(buf, M_TEMP); 1737 FREE(cookies, M_TEMP); 1738 return; 1739 } 1740 1741 /* 1742 * Find the first valid entry and look at its offset cookie. 1743 */ 1744 1745 cp = buf; 1746 for (cop = cookies; len > 0; len -= dp->d_reclen) { 1747 dp = (struct dirent *)cp; 1748 if (dp->d_fileno != 0 && len >= dp->d_reclen) { 1749 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) { 1750 *flagp |= NFSMNT_SWAPCOOKIE; 1751 nfs_invaldircache(vp, 0); 1752 nfs_vinvalbuf(vp, 0, cred, p, 1); 1753 } 1754 break; 1755 } 1756 cop++; 1757 cp += dp->d_reclen; 1758 } 1759 1760 FREE(buf, M_TEMP); 1761 FREE(cookies, M_TEMP); 1762 } 1763 #endif /* NFS */ 1764 1765 /* 1766 * Set up nameidata for a lookup() call and do it. 1767 * 1768 * If pubflag is set, this call is done for a lookup operation on the 1769 * public filehandle. In that case we allow crossing mountpoints and 1770 * absolute pathnames. However, the caller is expected to check that 1771 * the lookup result is within the public fs, and deny access if 1772 * it is not. 1773 */ 1774 int 1775 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag) 1776 register struct nameidata *ndp; 1777 fhandle_t *fhp; 1778 int len; 1779 struct nfssvc_sock *slp; 1780 struct mbuf *nam; 1781 struct mbuf **mdp; 1782 caddr_t *dposp; 1783 struct vnode **retdirp; 1784 struct proc *p; 1785 int kerbflag, pubflag; 1786 { 1787 register int i, rem; 1788 register struct mbuf *md; 1789 register char *fromcp, *tocp, *cp; 1790 struct iovec aiov; 1791 struct uio auio; 1792 struct vnode *dp; 1793 int error, rdonly, linklen; 1794 struct componentname *cnp = &ndp->ni_cnd; 1795 1796 *retdirp = (struct vnode *)0; 1797 MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK); 1798 /* 1799 * Copy the name from the mbuf list to ndp->ni_pnbuf 1800 * and set the various ndp fields appropriately. 1801 */ 1802 fromcp = *dposp; 1803 tocp = cnp->cn_pnbuf; 1804 md = *mdp; 1805 rem = mtod(md, caddr_t) + md->m_len - fromcp; 1806 for (i = 0; i < len; i++) { 1807 while (rem == 0) { 1808 md = md->m_next; 1809 if (md == NULL) { 1810 error = EBADRPC; 1811 goto out; 1812 } 1813 fromcp = mtod(md, caddr_t); 1814 rem = md->m_len; 1815 } 1816 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) { 1817 error = EACCES; 1818 goto out; 1819 } 1820 *tocp++ = *fromcp++; 1821 rem--; 1822 } 1823 *tocp = '\0'; 1824 *mdp = md; 1825 *dposp = fromcp; 1826 len = nfsm_rndup(len)-len; 1827 if (len > 0) { 1828 if (rem >= len) 1829 *dposp += len; 1830 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0) 1831 goto out; 1832 } 1833 1834 /* 1835 * Extract and set starting directory. 1836 */ 1837 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp, 1838 nam, &rdonly, kerbflag, pubflag); 1839 if (error) 1840 goto out; 1841 if (dp->v_type != VDIR) { 1842 vrele(dp); 1843 error = ENOTDIR; 1844 goto out; 1845 } 1846 1847 if (rdonly) 1848 cnp->cn_flags |= RDONLY; 1849 1850 *retdirp = dp; 1851 1852 if (pubflag) { 1853 /* 1854 * Oh joy. For WebNFS, handle those pesky '%' escapes, 1855 * and the 'native path' indicator. 1856 */ 1857 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK); 1858 fromcp = cnp->cn_pnbuf; 1859 tocp = cp; 1860 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) { 1861 switch ((unsigned char)*fromcp) { 1862 case WEBNFS_NATIVE_CHAR: 1863 /* 1864 * 'Native' path for us is the same 1865 * as a path according to the NFS spec, 1866 * just skip the escape char. 1867 */ 1868 fromcp++; 1869 break; 1870 /* 1871 * More may be added in the future, range 0x80-0xff 1872 */ 1873 default: 1874 error = EIO; 1875 FREE(cp, M_NAMEI); 1876 goto out; 1877 } 1878 } 1879 /* 1880 * Translate the '%' escapes, URL-style. 1881 */ 1882 while (*fromcp != '\0') { 1883 if (*fromcp == WEBNFS_ESC_CHAR) { 1884 if (fromcp[1] != '\0' && fromcp[2] != '\0') { 1885 fromcp++; 1886 *tocp++ = HEXSTRTOI(fromcp); 1887 fromcp += 2; 1888 continue; 1889 } else { 1890 error = ENOENT; 1891 FREE(cp, M_NAMEI); 1892 goto out; 1893 } 1894 } else 1895 *tocp++ = *fromcp++; 1896 } 1897 *tocp = '\0'; 1898 FREE(cnp->cn_pnbuf, M_NAMEI); 1899 cnp->cn_pnbuf = cp; 1900 } 1901 1902 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1; 1903 ndp->ni_segflg = UIO_SYSSPACE; 1904 1905 if (pubflag) { 1906 ndp->ni_rootdir = rootvnode; 1907 ndp->ni_loopcnt = 0; 1908 if (cnp->cn_pnbuf[0] == '/') 1909 dp = rootvnode; 1910 } else { 1911 cnp->cn_flags |= NOCROSSMOUNT; 1912 } 1913 1914 cnp->cn_proc = p; 1915 VREF(dp); 1916 1917 for (;;) { 1918 cnp->cn_nameptr = cnp->cn_pnbuf; 1919 ndp->ni_startdir = dp; 1920 /* 1921 * And call lookup() to do the real work 1922 */ 1923 error = lookup(ndp); 1924 if (error) 1925 break; 1926 /* 1927 * Check for encountering a symbolic link 1928 */ 1929 if ((cnp->cn_flags & ISSYMLINK) == 0) { 1930 if (cnp->cn_flags & (SAVENAME | SAVESTART)) { 1931 cnp->cn_flags |= HASBUF; 1932 return (0); 1933 } 1934 break; 1935 } else { 1936 if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1) 1937 VOP_UNLOCK(ndp->ni_dvp); 1938 if (!pubflag) { 1939 vrele(ndp->ni_dvp); 1940 vput(ndp->ni_vp); 1941 ndp->ni_vp = NULL; 1942 error = EINVAL; 1943 break; 1944 } 1945 1946 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) { 1947 error = ELOOP; 1948 break; 1949 } 1950 if (ndp->ni_pathlen > 1) 1951 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK); 1952 else 1953 cp = cnp->cn_pnbuf; 1954 aiov.iov_base = cp; 1955 aiov.iov_len = MAXPATHLEN; 1956 auio.uio_iov = &aiov; 1957 auio.uio_iovcnt = 1; 1958 auio.uio_offset = 0; 1959 auio.uio_rw = UIO_READ; 1960 auio.uio_segflg = UIO_SYSSPACE; 1961 auio.uio_procp = (struct proc *)0; 1962 auio.uio_resid = MAXPATHLEN; 1963 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred); 1964 if (error) { 1965 badlink: 1966 if (ndp->ni_pathlen > 1) 1967 FREE(cp, M_NAMEI); 1968 break; 1969 } 1970 linklen = MAXPATHLEN - auio.uio_resid; 1971 if (linklen == 0) { 1972 error = ENOENT; 1973 goto badlink; 1974 } 1975 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) { 1976 error = ENAMETOOLONG; 1977 goto badlink; 1978 } 1979 if (ndp->ni_pathlen > 1) { 1980 bcopy(ndp->ni_next, cp + linklen, ndp->ni_pathlen); 1981 FREE(cnp->cn_pnbuf, M_NAMEI); 1982 cnp->cn_pnbuf = cp; 1983 } else 1984 cnp->cn_pnbuf[linklen] = '\0'; 1985 ndp->ni_pathlen += linklen; 1986 vput(ndp->ni_vp); 1987 dp = ndp->ni_dvp; 1988 /* 1989 * Check if root directory should replace current directory. 1990 */ 1991 if (cnp->cn_pnbuf[0] == '/') { 1992 vrele(dp); 1993 dp = ndp->ni_rootdir; 1994 VREF(dp); 1995 } 1996 } 1997 } 1998 out: 1999 FREE(cnp->cn_pnbuf, M_NAMEI); 2000 return (error); 2001 } 2002 2003 /* 2004 * A fiddled version of m_adj() that ensures null fill to a long 2005 * boundary and only trims off the back end 2006 */ 2007 void 2008 nfsm_adj(mp, len, nul) 2009 struct mbuf *mp; 2010 register int len; 2011 int nul; 2012 { 2013 register struct mbuf *m; 2014 register int count, i; 2015 register char *cp; 2016 2017 /* 2018 * Trim from tail. Scan the mbuf chain, 2019 * calculating its length and finding the last mbuf. 2020 * If the adjustment only affects this mbuf, then just 2021 * adjust and return. Otherwise, rescan and truncate 2022 * after the remaining size. 2023 */ 2024 count = 0; 2025 m = mp; 2026 for (;;) { 2027 count += m->m_len; 2028 if (m->m_next == (struct mbuf *)0) 2029 break; 2030 m = m->m_next; 2031 } 2032 if (m->m_len > len) { 2033 m->m_len -= len; 2034 if (nul > 0) { 2035 cp = mtod(m, caddr_t)+m->m_len-nul; 2036 for (i = 0; i < nul; i++) 2037 *cp++ = '\0'; 2038 } 2039 return; 2040 } 2041 count -= len; 2042 if (count < 0) 2043 count = 0; 2044 /* 2045 * Correct length for chain is "count". 2046 * Find the mbuf with last data, adjust its length, 2047 * and toss data from remaining mbufs on chain. 2048 */ 2049 for (m = mp; m; m = m->m_next) { 2050 if (m->m_len >= count) { 2051 m->m_len = count; 2052 if (nul > 0) { 2053 cp = mtod(m, caddr_t)+m->m_len-nul; 2054 for (i = 0; i < nul; i++) 2055 *cp++ = '\0'; 2056 } 2057 break; 2058 } 2059 count -= m->m_len; 2060 } 2061 for (m = m->m_next;m;m = m->m_next) 2062 m->m_len = 0; 2063 } 2064 2065 /* 2066 * Make these functions instead of macros, so that the kernel text size 2067 * doesn't get too big... 2068 */ 2069 void 2070 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp) 2071 struct nfsrv_descript *nfsd; 2072 int before_ret; 2073 register struct vattr *before_vap; 2074 int after_ret; 2075 struct vattr *after_vap; 2076 struct mbuf **mbp; 2077 char **bposp; 2078 { 2079 register struct mbuf *mb = *mbp, *mb2; 2080 register char *bpos = *bposp; 2081 register u_int32_t *tl; 2082 2083 if (before_ret) { 2084 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2085 *tl = nfs_false; 2086 } else { 2087 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 2088 *tl++ = nfs_true; 2089 txdr_hyper(&(before_vap->va_size), tl); 2090 tl += 2; 2091 txdr_nfsv3time(&(before_vap->va_mtime), tl); 2092 tl += 2; 2093 txdr_nfsv3time(&(before_vap->va_ctime), tl); 2094 } 2095 *bposp = bpos; 2096 *mbp = mb; 2097 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 2098 } 2099 2100 void 2101 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp) 2102 struct nfsrv_descript *nfsd; 2103 int after_ret; 2104 struct vattr *after_vap; 2105 struct mbuf **mbp; 2106 char **bposp; 2107 { 2108 register struct mbuf *mb = *mbp, *mb2; 2109 register char *bpos = *bposp; 2110 register u_int32_t *tl; 2111 register struct nfs_fattr *fp; 2112 2113 if (after_ret) { 2114 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2115 *tl = nfs_false; 2116 } else { 2117 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 2118 *tl++ = nfs_true; 2119 fp = (struct nfs_fattr *)tl; 2120 nfsm_srvfattr(nfsd, after_vap, fp); 2121 } 2122 *mbp = mb; 2123 *bposp = bpos; 2124 } 2125 2126 void 2127 nfsm_srvfattr(nfsd, vap, fp) 2128 register struct nfsrv_descript *nfsd; 2129 register struct vattr *vap; 2130 register struct nfs_fattr *fp; 2131 { 2132 2133 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 2134 fp->fa_uid = txdr_unsigned(vap->va_uid); 2135 fp->fa_gid = txdr_unsigned(vap->va_gid); 2136 if (nfsd->nd_flag & ND_NFSV3) { 2137 fp->fa_type = vtonfsv3_type(vap->va_type); 2138 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 2139 txdr_hyper(&vap->va_size, &fp->fa3_size); 2140 txdr_hyper(&vap->va_bytes, &fp->fa3_used); 2141 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 2142 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 2143 fp->fa3_fsid.nfsuquad[0] = 0; 2144 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 2145 fp->fa3_fileid.nfsuquad[0] = 0; 2146 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid); 2147 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 2148 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 2149 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 2150 } else { 2151 fp->fa_type = vtonfsv2_type(vap->va_type); 2152 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 2153 fp->fa2_size = txdr_unsigned(vap->va_size); 2154 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 2155 if (vap->va_type == VFIFO) 2156 fp->fa2_rdev = 0xffffffff; 2157 else 2158 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 2159 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 2160 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 2161 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 2162 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 2163 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 2164 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 2165 } 2166 } 2167 2168 /* 2169 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) 2170 * - look up fsid in mount list (if not found ret error) 2171 * - get vp and export rights by calling VFS_FHTOVP() 2172 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon 2173 * - if not lockflag unlock it with VOP_UNLOCK() 2174 */ 2175 int 2176 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag) 2177 fhandle_t *fhp; 2178 int lockflag; 2179 struct vnode **vpp; 2180 struct ucred *cred; 2181 struct nfssvc_sock *slp; 2182 struct mbuf *nam; 2183 int *rdonlyp; 2184 int kerbflag; 2185 { 2186 #ifdef Lite2_integrated 2187 struct proc *p = curproc; /* XXX */ 2188 #endif 2189 register struct mount *mp; 2190 register int i; 2191 struct ucred *credanon; 2192 int error, exflags; 2193 struct sockaddr_in *saddr; 2194 2195 *vpp = (struct vnode *)0; 2196 2197 if (nfs_ispublicfh(fhp)) { 2198 if (!pubflag || !nfs_pub.np_valid) 2199 return (ESTALE); 2200 fhp = &nfs_pub.np_handle; 2201 } 2202 2203 #ifdef Lite2_integrated 2204 mp = vfs_getvfs(&fhp->fh_fsid); 2205 #else 2206 mp = getvfs(&fhp->fh_fsid); 2207 #endif 2208 if (!mp) 2209 return (ESTALE); 2210 error = VFS_FHTOVP(mp, &fhp->fh_fid, nam, vpp, &exflags, &credanon); 2211 if (error) 2212 return (error); 2213 2214 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) { 2215 saddr = mtod(nam, struct sockaddr_in *); 2216 if (saddr->sin_family == AF_INET && 2217 ntohs(saddr->sin_port) >= IPPORT_RESERVED) { 2218 vput(*vpp); 2219 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2220 } 2221 } 2222 /* 2223 * Check/setup credentials. 2224 */ 2225 if (exflags & MNT_EXKERB) { 2226 if (!kerbflag) { 2227 vput(*vpp); 2228 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2229 } 2230 } else if (kerbflag) { 2231 vput(*vpp); 2232 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2233 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { 2234 cred->cr_uid = credanon->cr_uid; 2235 cred->cr_gid = credanon->cr_gid; 2236 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++) 2237 cred->cr_groups[i] = credanon->cr_groups[i]; 2238 cred->cr_ngroups = i; 2239 } 2240 if (exflags & MNT_EXRDONLY) 2241 *rdonlyp = 1; 2242 else 2243 *rdonlyp = 0; 2244 if (!lockflag) 2245 #ifdef Lite2_integrated 2246 VOP_UNLOCK(*vpp, 0, p); 2247 #else 2248 VOP_UNLOCK(*vpp); 2249 #endif 2250 return (0); 2251 } 2252 2253 /* 2254 * WebNFS: check if a filehandle is a public filehandle. For v3, this 2255 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has 2256 * transformed this to all zeroes in both cases, so check for it. 2257 */ 2258 int 2259 nfs_ispublicfh(fhp) 2260 fhandle_t *fhp; 2261 { 2262 char *cp = (char *)fhp; 2263 int i; 2264 2265 for (i = 0; i < NFSX_V3FH; i++) 2266 if (*cp++ != 0) 2267 return (FALSE); 2268 return (TRUE); 2269 } 2270 2271 /* 2272 * This function compares two net addresses by family and returns TRUE 2273 * if they are the same host. 2274 * If there is any doubt, return FALSE. 2275 * The AF_INET family is handled as a special case so that address mbufs 2276 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 2277 */ 2278 int 2279 netaddr_match(family, haddr, nam) 2280 int family; 2281 union nethostaddr *haddr; 2282 struct mbuf *nam; 2283 { 2284 register struct sockaddr_in *inetaddr; 2285 2286 switch (family) { 2287 case AF_INET: 2288 inetaddr = mtod(nam, struct sockaddr_in *); 2289 if (inetaddr->sin_family == AF_INET && 2290 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 2291 return (1); 2292 break; 2293 #ifdef ISO 2294 case AF_ISO: 2295 { 2296 register struct sockaddr_iso *isoaddr1, *isoaddr2; 2297 2298 isoaddr1 = mtod(nam, struct sockaddr_iso *); 2299 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); 2300 if (isoaddr1->siso_family == AF_ISO && 2301 isoaddr1->siso_nlen > 0 && 2302 isoaddr1->siso_nlen == isoaddr2->siso_nlen && 2303 SAME_ISOADDR(isoaddr1, isoaddr2)) 2304 return (1); 2305 break; 2306 } 2307 #endif /* ISO */ 2308 default: 2309 break; 2310 }; 2311 return (0); 2312 } 2313 2314 2315 /* 2316 * The write verifier has changed (probably due to a server reboot), so all 2317 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the 2318 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT 2319 * flag. Once done the new write verifier can be set for the mount point. 2320 */ 2321 void 2322 nfs_clearcommit(mp) 2323 struct mount *mp; 2324 { 2325 register struct vnode *vp, *nvp; 2326 register struct buf *bp, *nbp; 2327 int s; 2328 2329 s = splbio(); 2330 loop: 2331 for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) { 2332 if (vp->v_mount != mp) /* Paranoia */ 2333 goto loop; 2334 nvp = vp->v_mntvnodes.le_next; 2335 for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) { 2336 nbp = bp->b_vnbufs.le_next; 2337 if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT)) 2338 == (B_DELWRI | B_NEEDCOMMIT)) 2339 bp->b_flags &= ~B_NEEDCOMMIT; 2340 } 2341 } 2342 splx(s); 2343 } 2344 2345 /* 2346 * Map errnos to NFS error numbers. For Version 3 also filter out error 2347 * numbers not specified for the associated procedure. 2348 */ 2349 int 2350 nfsrv_errmap(nd, err) 2351 struct nfsrv_descript *nd; 2352 register int err; 2353 { 2354 register short *defaulterrp, *errp; 2355 2356 if (nd->nd_flag & ND_NFSV3) { 2357 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2358 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2359 while (*++errp) { 2360 if (*errp == err) 2361 return (err); 2362 else if (*errp > err) 2363 break; 2364 } 2365 return ((int)*defaulterrp); 2366 } else 2367 return (err & 0xffff); 2368 } 2369 if (err <= ELAST) 2370 return ((int)nfsrv_v2errmap[err - 1]); 2371 return (NFSERR_IO); 2372 } 2373 2374 /* 2375 * Sort the group list in increasing numerical order. 2376 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort 2377 * that used to be here.) 2378 */ 2379 void 2380 nfsrvw_sort(list, num) 2381 register gid_t *list; 2382 register int num; 2383 { 2384 register int i, j; 2385 gid_t v; 2386 2387 /* Insertion sort. */ 2388 for (i = 1; i < num; i++) { 2389 v = list[i]; 2390 /* find correct slot for value v, moving others up */ 2391 for (j = i; --j >= 0 && v < list[j];) 2392 list[j + 1] = list[j]; 2393 list[j + 1] = v; 2394 } 2395 } 2396 2397 /* 2398 * copy credentials making sure that the result can be compared with bcmp(). 2399 */ 2400 void 2401 nfsrv_setcred(incred, outcred) 2402 register struct ucred *incred, *outcred; 2403 { 2404 register int i; 2405 2406 bzero((caddr_t)outcred, sizeof (struct ucred)); 2407 outcred->cr_ref = 1; 2408 outcred->cr_uid = incred->cr_uid; 2409 outcred->cr_gid = incred->cr_gid; 2410 outcred->cr_ngroups = incred->cr_ngroups; 2411 for (i = 0; i < incred->cr_ngroups; i++) 2412 outcred->cr_groups[i] = incred->cr_groups[i]; 2413 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups); 2414 } 2415