1 /* $NetBSD: nfs_subs.c,v 1.157 2006/01/16 21:45:38 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 35 */ 36 37 /* 38 * Copyright 2000 Wasabi Systems, Inc. 39 * All rights reserved. 40 * 41 * Written by Frank van der Linden for Wasabi Systems, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed for the NetBSD Project by 54 * Wasabi Systems, Inc. 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 * or promote products derived from this software without specific prior 57 * written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 * POSSIBILITY OF SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.157 2006/01/16 21:45:38 yamt Exp $"); 74 75 #include "fs_nfs.h" 76 #include "opt_nfs.h" 77 #include "opt_nfsserver.h" 78 #include "opt_iso.h" 79 #include "opt_inet.h" 80 81 /* 82 * These functions support the macros and help fiddle mbuf chains for 83 * the nfs op functions. They do things like create the rpc header and 84 * copy data between mbuf chains and uio lists. 85 */ 86 #include <sys/param.h> 87 #include <sys/proc.h> 88 #include <sys/systm.h> 89 #include <sys/kernel.h> 90 #include <sys/mount.h> 91 #include <sys/vnode.h> 92 #include <sys/namei.h> 93 #include <sys/mbuf.h> 94 #include <sys/socket.h> 95 #include <sys/stat.h> 96 #include <sys/malloc.h> 97 #include <sys/filedesc.h> 98 #include <sys/time.h> 99 #include <sys/dirent.h> 100 #include <sys/once.h> 101 102 #include <uvm/uvm_extern.h> 103 104 #include <nfs/rpcv2.h> 105 #include <nfs/nfsproto.h> 106 #include <nfs/nfsnode.h> 107 #include <nfs/nfs.h> 108 #include <nfs/xdr_subs.h> 109 #include <nfs/nfsm_subs.h> 110 #include <nfs/nfsmount.h> 111 #include <nfs/nqnfs.h> 112 #include <nfs/nfsrtt.h> 113 #include <nfs/nfs_var.h> 114 115 #include <miscfs/specfs/specdev.h> 116 117 #include <netinet/in.h> 118 #ifdef ISO 119 #include <netiso/iso.h> 120 #endif 121 122 /* 123 * Data items converted to xdr at startup, since they are constant 124 * This is kinda hokey, but may save a little time doing byte swaps 125 */ 126 u_int32_t nfs_xdrneg1; 127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 129 rpc_auth_kerb; 130 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false; 131 132 /* And other global data */ 133 const nfstype nfsv2_type[9] = 134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 135 const nfstype nfsv3_type[9] = 136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 137 const enum vtype nv2tov_type[8] = 138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 139 const enum vtype nv3tov_type[8] = 140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 141 int nfs_ticks; 142 int nfs_commitsize; 143 144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies"); 145 146 /* NFS client/server stats. */ 147 struct nfsstats nfsstats; 148 149 /* 150 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 151 */ 152 const int nfsv3_procid[NFS_NPROCS] = { 153 NFSPROC_NULL, 154 NFSPROC_GETATTR, 155 NFSPROC_SETATTR, 156 NFSPROC_NOOP, 157 NFSPROC_LOOKUP, 158 NFSPROC_READLINK, 159 NFSPROC_READ, 160 NFSPROC_NOOP, 161 NFSPROC_WRITE, 162 NFSPROC_CREATE, 163 NFSPROC_REMOVE, 164 NFSPROC_RENAME, 165 NFSPROC_LINK, 166 NFSPROC_SYMLINK, 167 NFSPROC_MKDIR, 168 NFSPROC_RMDIR, 169 NFSPROC_READDIR, 170 NFSPROC_FSSTAT, 171 NFSPROC_NOOP, 172 NFSPROC_NOOP, 173 NFSPROC_NOOP, 174 NFSPROC_NOOP, 175 NFSPROC_NOOP, 176 NFSPROC_NOOP, 177 NFSPROC_NOOP, 178 NFSPROC_NOOP 179 }; 180 181 /* 182 * and the reverse mapping from generic to Version 2 procedure numbers 183 */ 184 const int nfsv2_procid[NFS_NPROCS] = { 185 NFSV2PROC_NULL, 186 NFSV2PROC_GETATTR, 187 NFSV2PROC_SETATTR, 188 NFSV2PROC_LOOKUP, 189 NFSV2PROC_NOOP, 190 NFSV2PROC_READLINK, 191 NFSV2PROC_READ, 192 NFSV2PROC_WRITE, 193 NFSV2PROC_CREATE, 194 NFSV2PROC_MKDIR, 195 NFSV2PROC_SYMLINK, 196 NFSV2PROC_CREATE, 197 NFSV2PROC_REMOVE, 198 NFSV2PROC_RMDIR, 199 NFSV2PROC_RENAME, 200 NFSV2PROC_LINK, 201 NFSV2PROC_READDIR, 202 NFSV2PROC_NOOP, 203 NFSV2PROC_STATFS, 204 NFSV2PROC_NOOP, 205 NFSV2PROC_NOOP, 206 NFSV2PROC_NOOP, 207 NFSV2PROC_NOOP, 208 NFSV2PROC_NOOP, 209 NFSV2PROC_NOOP, 210 NFSV2PROC_NOOP, 211 }; 212 213 /* 214 * Maps errno values to nfs error numbers. 215 * Use NFSERR_IO as the catch all for ones not specifically defined in 216 * RFC 1094. 217 */ 218 static const u_char nfsrv_v2errmap[ELAST] = { 219 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 220 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 221 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 222 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 223 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 224 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 231 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 232 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 235 NFSERR_IO, NFSERR_IO, 236 }; 237 238 /* 239 * Maps errno values to nfs error numbers. 240 * Although it is not obvious whether or not NFS clients really care if 241 * a returned error value is in the specified list for the procedure, the 242 * safest thing to do is filter them appropriately. For Version 2, the 243 * X/Open XNFS document is the only specification that defines error values 244 * for each RPC (The RFC simply lists all possible error values for all RPCs), 245 * so I have decided to not do this for Version 2. 246 * The first entry is the default error return and the rest are the valid 247 * errors for that RPC in increasing numeric order. 248 */ 249 static const short nfsv3err_null[] = { 250 0, 251 0, 252 }; 253 254 static const short nfsv3err_getattr[] = { 255 NFSERR_IO, 256 NFSERR_IO, 257 NFSERR_STALE, 258 NFSERR_BADHANDLE, 259 NFSERR_SERVERFAULT, 260 0, 261 }; 262 263 static const short nfsv3err_setattr[] = { 264 NFSERR_IO, 265 NFSERR_PERM, 266 NFSERR_IO, 267 NFSERR_ACCES, 268 NFSERR_INVAL, 269 NFSERR_NOSPC, 270 NFSERR_ROFS, 271 NFSERR_DQUOT, 272 NFSERR_STALE, 273 NFSERR_BADHANDLE, 274 NFSERR_NOT_SYNC, 275 NFSERR_SERVERFAULT, 276 0, 277 }; 278 279 static const short nfsv3err_lookup[] = { 280 NFSERR_IO, 281 NFSERR_NOENT, 282 NFSERR_IO, 283 NFSERR_ACCES, 284 NFSERR_NOTDIR, 285 NFSERR_NAMETOL, 286 NFSERR_STALE, 287 NFSERR_BADHANDLE, 288 NFSERR_SERVERFAULT, 289 0, 290 }; 291 292 static const short nfsv3err_access[] = { 293 NFSERR_IO, 294 NFSERR_IO, 295 NFSERR_STALE, 296 NFSERR_BADHANDLE, 297 NFSERR_SERVERFAULT, 298 0, 299 }; 300 301 static const short nfsv3err_readlink[] = { 302 NFSERR_IO, 303 NFSERR_IO, 304 NFSERR_ACCES, 305 NFSERR_INVAL, 306 NFSERR_STALE, 307 NFSERR_BADHANDLE, 308 NFSERR_NOTSUPP, 309 NFSERR_SERVERFAULT, 310 0, 311 }; 312 313 static const short nfsv3err_read[] = { 314 NFSERR_IO, 315 NFSERR_IO, 316 NFSERR_NXIO, 317 NFSERR_ACCES, 318 NFSERR_INVAL, 319 NFSERR_STALE, 320 NFSERR_BADHANDLE, 321 NFSERR_SERVERFAULT, 322 NFSERR_JUKEBOX, 323 0, 324 }; 325 326 static const short nfsv3err_write[] = { 327 NFSERR_IO, 328 NFSERR_IO, 329 NFSERR_ACCES, 330 NFSERR_INVAL, 331 NFSERR_FBIG, 332 NFSERR_NOSPC, 333 NFSERR_ROFS, 334 NFSERR_DQUOT, 335 NFSERR_STALE, 336 NFSERR_BADHANDLE, 337 NFSERR_SERVERFAULT, 338 NFSERR_JUKEBOX, 339 0, 340 }; 341 342 static const short nfsv3err_create[] = { 343 NFSERR_IO, 344 NFSERR_IO, 345 NFSERR_ACCES, 346 NFSERR_EXIST, 347 NFSERR_NOTDIR, 348 NFSERR_NOSPC, 349 NFSERR_ROFS, 350 NFSERR_NAMETOL, 351 NFSERR_DQUOT, 352 NFSERR_STALE, 353 NFSERR_BADHANDLE, 354 NFSERR_NOTSUPP, 355 NFSERR_SERVERFAULT, 356 0, 357 }; 358 359 static const short nfsv3err_mkdir[] = { 360 NFSERR_IO, 361 NFSERR_IO, 362 NFSERR_ACCES, 363 NFSERR_EXIST, 364 NFSERR_NOTDIR, 365 NFSERR_NOSPC, 366 NFSERR_ROFS, 367 NFSERR_NAMETOL, 368 NFSERR_DQUOT, 369 NFSERR_STALE, 370 NFSERR_BADHANDLE, 371 NFSERR_NOTSUPP, 372 NFSERR_SERVERFAULT, 373 0, 374 }; 375 376 static const short nfsv3err_symlink[] = { 377 NFSERR_IO, 378 NFSERR_IO, 379 NFSERR_ACCES, 380 NFSERR_EXIST, 381 NFSERR_NOTDIR, 382 NFSERR_NOSPC, 383 NFSERR_ROFS, 384 NFSERR_NAMETOL, 385 NFSERR_DQUOT, 386 NFSERR_STALE, 387 NFSERR_BADHANDLE, 388 NFSERR_NOTSUPP, 389 NFSERR_SERVERFAULT, 390 0, 391 }; 392 393 static const short nfsv3err_mknod[] = { 394 NFSERR_IO, 395 NFSERR_IO, 396 NFSERR_ACCES, 397 NFSERR_EXIST, 398 NFSERR_NOTDIR, 399 NFSERR_NOSPC, 400 NFSERR_ROFS, 401 NFSERR_NAMETOL, 402 NFSERR_DQUOT, 403 NFSERR_STALE, 404 NFSERR_BADHANDLE, 405 NFSERR_NOTSUPP, 406 NFSERR_SERVERFAULT, 407 NFSERR_BADTYPE, 408 0, 409 }; 410 411 static const short nfsv3err_remove[] = { 412 NFSERR_IO, 413 NFSERR_NOENT, 414 NFSERR_IO, 415 NFSERR_ACCES, 416 NFSERR_NOTDIR, 417 NFSERR_ROFS, 418 NFSERR_NAMETOL, 419 NFSERR_STALE, 420 NFSERR_BADHANDLE, 421 NFSERR_SERVERFAULT, 422 0, 423 }; 424 425 static const short nfsv3err_rmdir[] = { 426 NFSERR_IO, 427 NFSERR_NOENT, 428 NFSERR_IO, 429 NFSERR_ACCES, 430 NFSERR_EXIST, 431 NFSERR_NOTDIR, 432 NFSERR_INVAL, 433 NFSERR_ROFS, 434 NFSERR_NAMETOL, 435 NFSERR_NOTEMPTY, 436 NFSERR_STALE, 437 NFSERR_BADHANDLE, 438 NFSERR_NOTSUPP, 439 NFSERR_SERVERFAULT, 440 0, 441 }; 442 443 static const short nfsv3err_rename[] = { 444 NFSERR_IO, 445 NFSERR_NOENT, 446 NFSERR_IO, 447 NFSERR_ACCES, 448 NFSERR_EXIST, 449 NFSERR_XDEV, 450 NFSERR_NOTDIR, 451 NFSERR_ISDIR, 452 NFSERR_INVAL, 453 NFSERR_NOSPC, 454 NFSERR_ROFS, 455 NFSERR_MLINK, 456 NFSERR_NAMETOL, 457 NFSERR_NOTEMPTY, 458 NFSERR_DQUOT, 459 NFSERR_STALE, 460 NFSERR_BADHANDLE, 461 NFSERR_NOTSUPP, 462 NFSERR_SERVERFAULT, 463 0, 464 }; 465 466 static const short nfsv3err_link[] = { 467 NFSERR_IO, 468 NFSERR_IO, 469 NFSERR_ACCES, 470 NFSERR_EXIST, 471 NFSERR_XDEV, 472 NFSERR_NOTDIR, 473 NFSERR_INVAL, 474 NFSERR_NOSPC, 475 NFSERR_ROFS, 476 NFSERR_MLINK, 477 NFSERR_NAMETOL, 478 NFSERR_DQUOT, 479 NFSERR_STALE, 480 NFSERR_BADHANDLE, 481 NFSERR_NOTSUPP, 482 NFSERR_SERVERFAULT, 483 0, 484 }; 485 486 static const short nfsv3err_readdir[] = { 487 NFSERR_IO, 488 NFSERR_IO, 489 NFSERR_ACCES, 490 NFSERR_NOTDIR, 491 NFSERR_STALE, 492 NFSERR_BADHANDLE, 493 NFSERR_BAD_COOKIE, 494 NFSERR_TOOSMALL, 495 NFSERR_SERVERFAULT, 496 0, 497 }; 498 499 static const short nfsv3err_readdirplus[] = { 500 NFSERR_IO, 501 NFSERR_IO, 502 NFSERR_ACCES, 503 NFSERR_NOTDIR, 504 NFSERR_STALE, 505 NFSERR_BADHANDLE, 506 NFSERR_BAD_COOKIE, 507 NFSERR_NOTSUPP, 508 NFSERR_TOOSMALL, 509 NFSERR_SERVERFAULT, 510 0, 511 }; 512 513 static const short nfsv3err_fsstat[] = { 514 NFSERR_IO, 515 NFSERR_IO, 516 NFSERR_STALE, 517 NFSERR_BADHANDLE, 518 NFSERR_SERVERFAULT, 519 0, 520 }; 521 522 static const short nfsv3err_fsinfo[] = { 523 NFSERR_STALE, 524 NFSERR_STALE, 525 NFSERR_BADHANDLE, 526 NFSERR_SERVERFAULT, 527 0, 528 }; 529 530 static const short nfsv3err_pathconf[] = { 531 NFSERR_STALE, 532 NFSERR_STALE, 533 NFSERR_BADHANDLE, 534 NFSERR_SERVERFAULT, 535 0, 536 }; 537 538 static const short nfsv3err_commit[] = { 539 NFSERR_IO, 540 NFSERR_IO, 541 NFSERR_STALE, 542 NFSERR_BADHANDLE, 543 NFSERR_SERVERFAULT, 544 0, 545 }; 546 547 static const short * const nfsrv_v3errmap[] = { 548 nfsv3err_null, 549 nfsv3err_getattr, 550 nfsv3err_setattr, 551 nfsv3err_lookup, 552 nfsv3err_access, 553 nfsv3err_readlink, 554 nfsv3err_read, 555 nfsv3err_write, 556 nfsv3err_create, 557 nfsv3err_mkdir, 558 nfsv3err_symlink, 559 nfsv3err_mknod, 560 nfsv3err_remove, 561 nfsv3err_rmdir, 562 nfsv3err_rename, 563 nfsv3err_link, 564 nfsv3err_readdir, 565 nfsv3err_readdirplus, 566 nfsv3err_fsstat, 567 nfsv3err_fsinfo, 568 nfsv3err_pathconf, 569 nfsv3err_commit, 570 }; 571 572 extern struct nfsrtt nfsrtt; 573 extern time_t nqnfsstarttime; 574 extern int nqsrv_clockskew; 575 extern int nqsrv_writeslack; 576 extern int nqsrv_maxlease; 577 extern const int nqnfs_piggy[NFS_NPROCS]; 578 extern struct nfsnodehashhead *nfsnodehashtbl; 579 extern u_long nfsnodehash; 580 581 u_long nfsdirhashmask; 582 583 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *)); 584 585 /* 586 * Create the header for an rpc request packet 587 * The hsiz is the size of the rest of the nfs request header. 588 * (just used to decide if a cluster is a good idea) 589 */ 590 struct mbuf * 591 nfsm_reqh(np, procid, hsiz, bposp) 592 struct nfsnode *np; 593 u_long procid; 594 int hsiz; 595 caddr_t *bposp; 596 { 597 struct mbuf *mb; 598 caddr_t bpos; 599 #ifndef NFS_V2_ONLY 600 struct nfsmount *nmp; 601 u_int32_t *tl; 602 int nqflag; 603 #endif 604 605 mb = m_get(M_WAIT, MT_DATA); 606 MCLAIM(mb, &nfs_mowner); 607 if (hsiz >= MINCLSIZE) 608 m_clget(mb, M_WAIT); 609 mb->m_len = 0; 610 bpos = mtod(mb, caddr_t); 611 612 #ifndef NFS_V2_ONLY 613 /* 614 * For NQNFS, add lease request. 615 */ 616 if (np) { 617 nmp = VFSTONFS(np->n_vnode->v_mount); 618 if (nmp->nm_flag & NFSMNT_NQNFS) { 619 nqflag = NQNFS_NEEDLEASE(np, procid); 620 if (nqflag) { 621 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED); 622 *tl++ = txdr_unsigned(nqflag); 623 *tl = txdr_unsigned(nmp->nm_leaseterm); 624 } else { 625 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 626 *tl = 0; 627 } 628 } 629 } 630 #endif 631 /* Finally, return values */ 632 *bposp = bpos; 633 return (mb); 634 } 635 636 /* 637 * Build the RPC header and fill in the authorization info. 638 * The authorization string argument is only used when the credentials 639 * come from outside of the kernel. 640 * Returns the head of the mbuf list. 641 */ 642 struct mbuf * 643 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len, 644 verf_str, mrest, mrest_len, mbp, xidp) 645 struct ucred *cr; 646 int nmflag; 647 int procid; 648 int auth_type; 649 int auth_len; 650 char *auth_str; 651 int verf_len; 652 char *verf_str; 653 struct mbuf *mrest; 654 int mrest_len; 655 struct mbuf **mbp; 656 u_int32_t *xidp; 657 { 658 struct mbuf *mb; 659 u_int32_t *tl; 660 caddr_t bpos; 661 int i; 662 struct mbuf *mreq; 663 int siz, grpsiz, authsiz; 664 665 authsiz = nfsm_rndup(auth_len); 666 mb = m_gethdr(M_WAIT, MT_DATA); 667 MCLAIM(mb, &nfs_mowner); 668 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 669 m_clget(mb, M_WAIT); 670 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 671 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 672 } else { 673 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 674 } 675 mb->m_len = 0; 676 mreq = mb; 677 bpos = mtod(mb, caddr_t); 678 679 /* 680 * First the RPC header. 681 */ 682 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 683 684 *tl++ = *xidp = nfs_getxid(); 685 *tl++ = rpc_call; 686 *tl++ = rpc_vers; 687 if (nmflag & NFSMNT_NQNFS) { 688 *tl++ = txdr_unsigned(NQNFS_PROG); 689 *tl++ = txdr_unsigned(NQNFS_VER3); 690 } else { 691 *tl++ = txdr_unsigned(NFS_PROG); 692 if (nmflag & NFSMNT_NFSV3) 693 *tl++ = txdr_unsigned(NFS_VER3); 694 else 695 *tl++ = txdr_unsigned(NFS_VER2); 696 } 697 if (nmflag & NFSMNT_NFSV3) 698 *tl++ = txdr_unsigned(procid); 699 else 700 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 701 702 /* 703 * And then the authorization cred. 704 */ 705 *tl++ = txdr_unsigned(auth_type); 706 *tl = txdr_unsigned(authsiz); 707 switch (auth_type) { 708 case RPCAUTH_UNIX: 709 nfsm_build(tl, u_int32_t *, auth_len); 710 *tl++ = 0; /* stamp ?? */ 711 *tl++ = 0; /* NULL hostname */ 712 *tl++ = txdr_unsigned(cr->cr_uid); 713 *tl++ = txdr_unsigned(cr->cr_gid); 714 grpsiz = (auth_len >> 2) - 5; 715 *tl++ = txdr_unsigned(grpsiz); 716 for (i = 0; i < grpsiz; i++) 717 *tl++ = txdr_unsigned(cr->cr_groups[i]); 718 break; 719 case RPCAUTH_KERB4: 720 siz = auth_len; 721 while (siz > 0) { 722 if (M_TRAILINGSPACE(mb) == 0) { 723 struct mbuf *mb2; 724 mb2 = m_get(M_WAIT, MT_DATA); 725 MCLAIM(mb2, &nfs_mowner); 726 if (siz >= MINCLSIZE) 727 m_clget(mb2, M_WAIT); 728 mb->m_next = mb2; 729 mb = mb2; 730 mb->m_len = 0; 731 bpos = mtod(mb, caddr_t); 732 } 733 i = min(siz, M_TRAILINGSPACE(mb)); 734 memcpy(bpos, auth_str, i); 735 mb->m_len += i; 736 auth_str += i; 737 bpos += i; 738 siz -= i; 739 } 740 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 741 for (i = 0; i < siz; i++) 742 *bpos++ = '\0'; 743 mb->m_len += siz; 744 } 745 break; 746 }; 747 748 /* 749 * And the verifier... 750 */ 751 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 752 if (verf_str) { 753 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 754 *tl = txdr_unsigned(verf_len); 755 siz = verf_len; 756 while (siz > 0) { 757 if (M_TRAILINGSPACE(mb) == 0) { 758 struct mbuf *mb2; 759 mb2 = m_get(M_WAIT, MT_DATA); 760 MCLAIM(mb2, &nfs_mowner); 761 if (siz >= MINCLSIZE) 762 m_clget(mb2, M_WAIT); 763 mb->m_next = mb2; 764 mb = mb2; 765 mb->m_len = 0; 766 bpos = mtod(mb, caddr_t); 767 } 768 i = min(siz, M_TRAILINGSPACE(mb)); 769 memcpy(bpos, verf_str, i); 770 mb->m_len += i; 771 verf_str += i; 772 bpos += i; 773 siz -= i; 774 } 775 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 776 for (i = 0; i < siz; i++) 777 *bpos++ = '\0'; 778 mb->m_len += siz; 779 } 780 } else { 781 *tl++ = txdr_unsigned(RPCAUTH_NULL); 782 *tl = 0; 783 } 784 mb->m_next = mrest; 785 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 786 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 787 *mbp = mb; 788 return (mreq); 789 } 790 791 /* 792 * copies mbuf chain to the uio scatter/gather list 793 */ 794 int 795 nfsm_mbuftouio(mrep, uiop, siz, dpos) 796 struct mbuf **mrep; 797 struct uio *uiop; 798 int siz; 799 caddr_t *dpos; 800 { 801 char *mbufcp, *uiocp; 802 int xfer, left, len; 803 struct mbuf *mp; 804 long uiosiz, rem; 805 int error = 0; 806 807 mp = *mrep; 808 mbufcp = *dpos; 809 len = mtod(mp, caddr_t)+mp->m_len-mbufcp; 810 rem = nfsm_rndup(siz)-siz; 811 while (siz > 0) { 812 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 813 return (EFBIG); 814 left = uiop->uio_iov->iov_len; 815 uiocp = uiop->uio_iov->iov_base; 816 if (left > siz) 817 left = siz; 818 uiosiz = left; 819 while (left > 0) { 820 while (len == 0) { 821 mp = mp->m_next; 822 if (mp == NULL) 823 return (EBADRPC); 824 mbufcp = mtod(mp, caddr_t); 825 len = mp->m_len; 826 } 827 xfer = (left > len) ? len : left; 828 #ifdef notdef 829 /* Not Yet.. */ 830 if (uiop->uio_iov->iov_op != NULL) 831 (*(uiop->uio_iov->iov_op)) 832 (mbufcp, uiocp, xfer); 833 else 834 #endif 835 if (uiop->uio_segflg == UIO_SYSSPACE) 836 memcpy(uiocp, mbufcp, xfer); 837 else 838 if ((error = copyout_proc(uiop->uio_lwp->l_proc, 839 mbufcp, uiocp, xfer)) != 0) 840 return error; 841 left -= xfer; 842 len -= xfer; 843 mbufcp += xfer; 844 uiocp += xfer; 845 uiop->uio_offset += xfer; 846 uiop->uio_resid -= xfer; 847 } 848 if (uiop->uio_iov->iov_len <= siz) { 849 uiop->uio_iovcnt--; 850 uiop->uio_iov++; 851 } else { 852 uiop->uio_iov->iov_base = 853 (caddr_t)uiop->uio_iov->iov_base + uiosiz; 854 uiop->uio_iov->iov_len -= uiosiz; 855 } 856 siz -= uiosiz; 857 } 858 *dpos = mbufcp; 859 *mrep = mp; 860 if (rem > 0) { 861 if (len < rem) 862 error = nfs_adv(mrep, dpos, rem, len); 863 else 864 *dpos += rem; 865 } 866 return (error); 867 } 868 869 /* 870 * copies a uio scatter/gather list to an mbuf chain. 871 * NOTE: can ony handle iovcnt == 1 872 */ 873 int 874 nfsm_uiotombuf(uiop, mq, siz, bpos) 875 struct uio *uiop; 876 struct mbuf **mq; 877 int siz; 878 caddr_t *bpos; 879 { 880 char *uiocp; 881 struct mbuf *mp, *mp2; 882 int xfer, left, mlen; 883 int uiosiz, clflg, rem; 884 char *cp; 885 886 #ifdef DIAGNOSTIC 887 if (uiop->uio_iovcnt != 1) 888 panic("nfsm_uiotombuf: iovcnt != 1"); 889 #endif 890 891 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 892 clflg = 1; 893 else 894 clflg = 0; 895 rem = nfsm_rndup(siz)-siz; 896 mp = mp2 = *mq; 897 while (siz > 0) { 898 left = uiop->uio_iov->iov_len; 899 uiocp = uiop->uio_iov->iov_base; 900 if (left > siz) 901 left = siz; 902 uiosiz = left; 903 while (left > 0) { 904 mlen = M_TRAILINGSPACE(mp); 905 if (mlen == 0) { 906 mp = m_get(M_WAIT, MT_DATA); 907 MCLAIM(mp, &nfs_mowner); 908 if (clflg) 909 m_clget(mp, M_WAIT); 910 mp->m_len = 0; 911 mp2->m_next = mp; 912 mp2 = mp; 913 mlen = M_TRAILINGSPACE(mp); 914 } 915 xfer = (left > mlen) ? mlen : left; 916 cp = mtod(mp, caddr_t) + mp->m_len; 917 #ifdef notdef 918 /* Not Yet.. */ 919 if (uiop->uio_iov->iov_op != NULL) 920 (*(uiop->uio_iov->iov_op))(uiocp, cp, xfer); 921 else 922 #endif 923 if (uiop->uio_segflg == UIO_SYSSPACE) 924 (void)memcpy(cp, uiocp, xfer); 925 else 926 /*XXX: Check error */ 927 (void)copyin_proc(uiop->uio_lwp->l_proc, uiocp, 928 cp, xfer); 929 mp->m_len += xfer; 930 left -= xfer; 931 uiocp += xfer; 932 uiop->uio_offset += xfer; 933 uiop->uio_resid -= xfer; 934 } 935 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base + 936 uiosiz; 937 uiop->uio_iov->iov_len -= uiosiz; 938 siz -= uiosiz; 939 } 940 if (rem > 0) { 941 if (rem > M_TRAILINGSPACE(mp)) { 942 mp = m_get(M_WAIT, MT_DATA); 943 MCLAIM(mp, &nfs_mowner); 944 mp->m_len = 0; 945 mp2->m_next = mp; 946 } 947 cp = mtod(mp, caddr_t) + mp->m_len; 948 for (left = 0; left < rem; left++) 949 *cp++ = '\0'; 950 mp->m_len += rem; 951 *bpos = cp; 952 } else 953 *bpos = mtod(mp, caddr_t)+mp->m_len; 954 *mq = mp; 955 return (0); 956 } 957 958 /* 959 * Get at least "siz" bytes of correctly aligned data. 960 * When called the mbuf pointers are not necessarily correct, 961 * dsosp points to what ought to be in m_data and left contains 962 * what ought to be in m_len. 963 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 964 * cases. (The macros use the vars. dpos and dpos2) 965 */ 966 int 967 nfsm_disct(mdp, dposp, siz, left, cp2) 968 struct mbuf **mdp; 969 caddr_t *dposp; 970 int siz; 971 int left; 972 caddr_t *cp2; 973 { 974 struct mbuf *m1, *m2; 975 struct mbuf *havebuf = NULL; 976 caddr_t src = *dposp; 977 caddr_t dst; 978 int len; 979 980 #ifdef DEBUG 981 if (left < 0) 982 panic("nfsm_disct: left < 0"); 983 #endif 984 m1 = *mdp; 985 /* 986 * Skip through the mbuf chain looking for an mbuf with 987 * some data. If the first mbuf found has enough data 988 * and it is correctly aligned return it. 989 */ 990 while (left == 0) { 991 havebuf = m1; 992 *mdp = m1 = m1->m_next; 993 if (m1 == NULL) 994 return (EBADRPC); 995 src = mtod(m1, caddr_t); 996 left = m1->m_len; 997 /* 998 * If we start a new mbuf and it is big enough 999 * and correctly aligned just return it, don't 1000 * do any pull up. 1001 */ 1002 if (left >= siz && nfsm_aligned(src)) { 1003 *cp2 = src; 1004 *dposp = src + siz; 1005 return (0); 1006 } 1007 } 1008 if (m1->m_flags & M_EXT) { 1009 if (havebuf) { 1010 /* If the first mbuf with data has external data 1011 * and there is a previous empty mbuf use it 1012 * to move the data into. 1013 */ 1014 m2 = m1; 1015 *mdp = m1 = havebuf; 1016 if (m1->m_flags & M_EXT) { 1017 MEXTREMOVE(m1); 1018 } 1019 } else { 1020 /* 1021 * If the first mbuf has a external data 1022 * and there is no previous empty mbuf 1023 * allocate a new mbuf and move the external 1024 * data to the new mbuf. Also make the first 1025 * mbuf look empty. 1026 */ 1027 m2 = m_get(M_WAIT, MT_DATA); 1028 m2->m_ext = m1->m_ext; 1029 m2->m_data = src; 1030 m2->m_len = left; 1031 MCLADDREFERENCE(m1, m2); 1032 MEXTREMOVE(m1); 1033 m2->m_next = m1->m_next; 1034 m1->m_next = m2; 1035 } 1036 m1->m_len = 0; 1037 if (m1->m_flags & M_PKTHDR) 1038 dst = m1->m_pktdat; 1039 else 1040 dst = m1->m_dat; 1041 m1->m_data = dst; 1042 } else { 1043 /* 1044 * If the first mbuf has no external data 1045 * move the data to the front of the mbuf. 1046 */ 1047 if (m1->m_flags & M_PKTHDR) 1048 dst = m1->m_pktdat; 1049 else 1050 dst = m1->m_dat; 1051 m1->m_data = dst; 1052 if (dst != src) 1053 memmove(dst, src, left); 1054 dst += left; 1055 m1->m_len = left; 1056 m2 = m1->m_next; 1057 } 1058 *cp2 = m1->m_data; 1059 *dposp = mtod(m1, caddr_t) + siz; 1060 /* 1061 * Loop through mbufs pulling data up into first mbuf until 1062 * the first mbuf is full or there is no more data to 1063 * pullup. 1064 */ 1065 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) { 1066 if ((len = min(len, m2->m_len)) != 0) 1067 memcpy(dst, m2->m_data, len); 1068 m1->m_len += len; 1069 dst += len; 1070 m2->m_data += len; 1071 m2->m_len -= len; 1072 m2 = m2->m_next; 1073 } 1074 if (m1->m_len < siz) 1075 return (EBADRPC); 1076 return (0); 1077 } 1078 1079 /* 1080 * Advance the position in the mbuf chain. 1081 */ 1082 int 1083 nfs_adv(mdp, dposp, offs, left) 1084 struct mbuf **mdp; 1085 caddr_t *dposp; 1086 int offs; 1087 int left; 1088 { 1089 struct mbuf *m; 1090 int s; 1091 1092 m = *mdp; 1093 s = left; 1094 while (s < offs) { 1095 offs -= s; 1096 m = m->m_next; 1097 if (m == NULL) 1098 return (EBADRPC); 1099 s = m->m_len; 1100 } 1101 *mdp = m; 1102 *dposp = mtod(m, caddr_t)+offs; 1103 return (0); 1104 } 1105 1106 /* 1107 * Copy a string into mbufs for the hard cases... 1108 */ 1109 int 1110 nfsm_strtmbuf(mb, bpos, cp, siz) 1111 struct mbuf **mb; 1112 char **bpos; 1113 const char *cp; 1114 long siz; 1115 { 1116 struct mbuf *m1 = NULL, *m2; 1117 long left, xfer, len, tlen; 1118 u_int32_t *tl; 1119 int putsize; 1120 1121 putsize = 1; 1122 m2 = *mb; 1123 left = M_TRAILINGSPACE(m2); 1124 if (left > 0) { 1125 tl = ((u_int32_t *)(*bpos)); 1126 *tl++ = txdr_unsigned(siz); 1127 putsize = 0; 1128 left -= NFSX_UNSIGNED; 1129 m2->m_len += NFSX_UNSIGNED; 1130 if (left > 0) { 1131 memcpy((caddr_t) tl, cp, left); 1132 siz -= left; 1133 cp += left; 1134 m2->m_len += left; 1135 left = 0; 1136 } 1137 } 1138 /* Loop around adding mbufs */ 1139 while (siz > 0) { 1140 m1 = m_get(M_WAIT, MT_DATA); 1141 MCLAIM(m1, &nfs_mowner); 1142 if (siz > MLEN) 1143 m_clget(m1, M_WAIT); 1144 m1->m_len = NFSMSIZ(m1); 1145 m2->m_next = m1; 1146 m2 = m1; 1147 tl = mtod(m1, u_int32_t *); 1148 tlen = 0; 1149 if (putsize) { 1150 *tl++ = txdr_unsigned(siz); 1151 m1->m_len -= NFSX_UNSIGNED; 1152 tlen = NFSX_UNSIGNED; 1153 putsize = 0; 1154 } 1155 if (siz < m1->m_len) { 1156 len = nfsm_rndup(siz); 1157 xfer = siz; 1158 if (xfer < len) 1159 *(tl+(xfer>>2)) = 0; 1160 } else { 1161 xfer = len = m1->m_len; 1162 } 1163 memcpy((caddr_t) tl, cp, xfer); 1164 m1->m_len = len+tlen; 1165 siz -= xfer; 1166 cp += xfer; 1167 } 1168 *mb = m1; 1169 *bpos = mtod(m1, caddr_t)+m1->m_len; 1170 return (0); 1171 } 1172 1173 /* 1174 * Directory caching routines. They work as follows: 1175 * - a cache is maintained per VDIR nfsnode. 1176 * - for each offset cookie that is exported to userspace, and can 1177 * thus be thrown back at us as an offset to VOP_READDIR, store 1178 * information in the cache. 1179 * - cached are: 1180 * - cookie itself 1181 * - blocknumber (essentially just a search key in the buffer cache) 1182 * - entry number in block. 1183 * - offset cookie of block in which this entry is stored 1184 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1185 * - entries are looked up in a hash table 1186 * - also maintained is an LRU list of entries, used to determine 1187 * which ones to delete if the cache grows too large. 1188 * - if 32 <-> 64 translation mode is requested for a filesystem, 1189 * the cache also functions as a translation table 1190 * - in the translation case, invalidating the cache does not mean 1191 * flushing it, but just marking entries as invalid, except for 1192 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1193 * still be able to use the cache as a translation table. 1194 * - 32 bit cookies are uniquely created by combining the hash table 1195 * entry value, and one generation count per hash table entry, 1196 * incremented each time an entry is appended to the chain. 1197 * - the cache is invalidated each time a direcory is modified 1198 * - sanity checks are also done; if an entry in a block turns 1199 * out not to have a matching cookie, the cache is invalidated 1200 * and a new block starting from the wanted offset is fetched from 1201 * the server. 1202 * - directory entries as read from the server are extended to contain 1203 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1204 * the cache and exporting them to userspace through the cookie 1205 * argument to VOP_READDIR. 1206 */ 1207 1208 u_long 1209 nfs_dirhash(off) 1210 off_t off; 1211 { 1212 int i; 1213 char *cp = (char *)&off; 1214 u_long sum = 0L; 1215 1216 for (i = 0 ; i < sizeof (off); i++) 1217 sum += *cp++; 1218 1219 return sum; 1220 } 1221 1222 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock) 1223 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np)) 1224 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np)) 1225 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np))) 1226 1227 void 1228 nfs_initdircache(vp) 1229 struct vnode *vp; 1230 { 1231 struct nfsnode *np = VTONFS(vp); 1232 struct nfsdirhashhead *dircache; 1233 1234 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF, 1235 M_WAITOK, &nfsdirhashmask); 1236 1237 NFSDC_LOCK(np); 1238 if (np->n_dircache == NULL) { 1239 np->n_dircachesize = 0; 1240 np->n_dircache = dircache; 1241 dircache = NULL; 1242 TAILQ_INIT(&np->n_dirchain); 1243 } 1244 NFSDC_UNLOCK(np); 1245 if (dircache) 1246 hashdone(dircache, M_NFSDIROFF); 1247 } 1248 1249 void 1250 nfs_initdirxlatecookie(vp) 1251 struct vnode *vp; 1252 { 1253 struct nfsnode *np = VTONFS(vp); 1254 unsigned *dirgens; 1255 1256 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1257 1258 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, 1259 M_WAITOK|M_ZERO); 1260 NFSDC_LOCK(np); 1261 if (np->n_dirgens == NULL) { 1262 np->n_dirgens = dirgens; 1263 dirgens = NULL; 1264 } 1265 NFSDC_UNLOCK(np); 1266 if (dirgens) 1267 free(dirgens, M_NFSDIROFF); 1268 } 1269 1270 static const struct nfsdircache dzero; 1271 1272 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *)); 1273 static void nfs_putdircache_unlocked __P((struct nfsnode *, 1274 struct nfsdircache *)); 1275 1276 static void 1277 nfs_unlinkdircache(np, ndp) 1278 struct nfsnode *np; 1279 struct nfsdircache *ndp; 1280 { 1281 1282 NFSDC_ASSERT_LOCKED(np); 1283 KASSERT(ndp != &dzero); 1284 1285 if (LIST_NEXT(ndp, dc_hash) == (void *)-1) 1286 return; 1287 1288 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1289 LIST_REMOVE(ndp, dc_hash); 1290 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */ 1291 1292 nfs_putdircache_unlocked(np, ndp); 1293 } 1294 1295 void 1296 nfs_putdircache(np, ndp) 1297 struct nfsnode *np; 1298 struct nfsdircache *ndp; 1299 { 1300 int ref; 1301 1302 if (ndp == &dzero) 1303 return; 1304 1305 KASSERT(ndp->dc_refcnt > 0); 1306 NFSDC_LOCK(np); 1307 ref = --ndp->dc_refcnt; 1308 NFSDC_UNLOCK(np); 1309 1310 if (ref == 0) 1311 free(ndp, M_NFSDIROFF); 1312 } 1313 1314 static void 1315 nfs_putdircache_unlocked(np, ndp) 1316 struct nfsnode *np; 1317 struct nfsdircache *ndp; 1318 { 1319 int ref; 1320 1321 NFSDC_ASSERT_LOCKED(np); 1322 1323 if (ndp == &dzero) 1324 return; 1325 1326 KASSERT(ndp->dc_refcnt > 0); 1327 ref = --ndp->dc_refcnt; 1328 if (ref == 0) 1329 free(ndp, M_NFSDIROFF); 1330 } 1331 1332 struct nfsdircache * 1333 nfs_searchdircache(vp, off, do32, hashent) 1334 struct vnode *vp; 1335 off_t off; 1336 int do32; 1337 int *hashent; 1338 { 1339 struct nfsdirhashhead *ndhp; 1340 struct nfsdircache *ndp = NULL; 1341 struct nfsnode *np = VTONFS(vp); 1342 unsigned ent; 1343 1344 /* 1345 * Zero is always a valid cookie. 1346 */ 1347 if (off == 0) 1348 /* XXXUNCONST */ 1349 return (struct nfsdircache *)__UNCONST(&dzero); 1350 1351 if (!np->n_dircache) 1352 return NULL; 1353 1354 /* 1355 * We use a 32bit cookie as search key, directly reconstruct 1356 * the hashentry. Else use the hashfunction. 1357 */ 1358 if (do32) { 1359 ent = (u_int32_t)off >> 24; 1360 if (ent >= NFS_DIRHASHSIZ) 1361 return NULL; 1362 ndhp = &np->n_dircache[ent]; 1363 } else { 1364 ndhp = NFSDIRHASH(np, off); 1365 } 1366 1367 if (hashent) 1368 *hashent = (int)(ndhp - np->n_dircache); 1369 1370 NFSDC_LOCK(np); 1371 if (do32) { 1372 LIST_FOREACH(ndp, ndhp, dc_hash) { 1373 if (ndp->dc_cookie32 == (u_int32_t)off) { 1374 /* 1375 * An invalidated entry will become the 1376 * start of a new block fetched from 1377 * the server. 1378 */ 1379 if (ndp->dc_flags & NFSDC_INVALID) { 1380 ndp->dc_blkcookie = ndp->dc_cookie; 1381 ndp->dc_entry = 0; 1382 ndp->dc_flags &= ~NFSDC_INVALID; 1383 } 1384 break; 1385 } 1386 } 1387 } else { 1388 LIST_FOREACH(ndp, ndhp, dc_hash) { 1389 if (ndp->dc_cookie == off) 1390 break; 1391 } 1392 } 1393 if (ndp != NULL) 1394 ndp->dc_refcnt++; 1395 NFSDC_UNLOCK(np); 1396 return ndp; 1397 } 1398 1399 1400 struct nfsdircache * 1401 nfs_enterdircache(vp, off, blkoff, en, blkno) 1402 struct vnode *vp; 1403 off_t off, blkoff; 1404 int en; 1405 daddr_t blkno; 1406 { 1407 struct nfsnode *np = VTONFS(vp); 1408 struct nfsdirhashhead *ndhp; 1409 struct nfsdircache *ndp = NULL; 1410 struct nfsdircache *newndp = NULL; 1411 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1412 int hashent, gen, overwrite; 1413 1414 /* 1415 * XXX refuse entries for offset 0. amd(8) erroneously sets 1416 * cookie 0 for the '.' entry, making this necessary. This 1417 * isn't so bad, as 0 is a special case anyway. 1418 */ 1419 if (off == 0) 1420 /* XXXUNCONST */ 1421 return (struct nfsdircache *)__UNCONST(&dzero); 1422 1423 if (!np->n_dircache) 1424 /* 1425 * XXX would like to do this in nfs_nget but vtype 1426 * isn't known at that time. 1427 */ 1428 nfs_initdircache(vp); 1429 1430 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens) 1431 nfs_initdirxlatecookie(vp); 1432 1433 retry: 1434 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1435 1436 NFSDC_LOCK(np); 1437 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) { 1438 /* 1439 * Overwriting an old entry. Check if it's the same. 1440 * If so, just return. If not, remove the old entry. 1441 */ 1442 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1443 goto done; 1444 nfs_unlinkdircache(np, ndp); 1445 nfs_putdircache_unlocked(np, ndp); 1446 ndp = NULL; 1447 } 1448 1449 ndhp = &np->n_dircache[hashent]; 1450 1451 if (!ndp) { 1452 if (newndp == NULL) { 1453 NFSDC_UNLOCK(np); 1454 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK); 1455 newndp->dc_refcnt = 1; 1456 LIST_NEXT(newndp, dc_hash) = (void *)-1; 1457 goto retry; 1458 } 1459 ndp = newndp; 1460 newndp = NULL; 1461 overwrite = 0; 1462 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1463 /* 1464 * We're allocating a new entry, so bump the 1465 * generation number. 1466 */ 1467 gen = ++np->n_dirgens[hashent]; 1468 if (gen == 0) { 1469 np->n_dirgens[hashent]++; 1470 gen++; 1471 } 1472 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1473 } 1474 } else 1475 overwrite = 1; 1476 1477 ndp->dc_cookie = off; 1478 ndp->dc_blkcookie = blkoff; 1479 ndp->dc_entry = en; 1480 ndp->dc_flags = 0; 1481 1482 if (overwrite) 1483 goto done; 1484 1485 /* 1486 * If the maximum directory cookie cache size has been reached 1487 * for this node, take one off the front. The idea is that 1488 * directories are typically read front-to-back once, so that 1489 * the oldest entries can be thrown away without much performance 1490 * loss. 1491 */ 1492 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1493 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain)); 1494 } else 1495 np->n_dircachesize++; 1496 1497 KASSERT(ndp->dc_refcnt == 1); 1498 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1499 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1500 ndp->dc_refcnt++; 1501 done: 1502 KASSERT(ndp->dc_refcnt > 0); 1503 NFSDC_UNLOCK(np); 1504 if (newndp) 1505 nfs_putdircache(np, newndp); 1506 return ndp; 1507 } 1508 1509 void 1510 nfs_invaldircache(vp, flags) 1511 struct vnode *vp; 1512 int flags; 1513 { 1514 struct nfsnode *np = VTONFS(vp); 1515 struct nfsdircache *ndp = NULL; 1516 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1517 const boolean_t forcefree = flags & NFS_INVALDIRCACHE_FORCE; 1518 1519 #ifdef DIAGNOSTIC 1520 if (vp->v_type != VDIR) 1521 panic("nfs: invaldircache: not dir"); 1522 #endif 1523 1524 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0) 1525 np->n_flag &= ~NEOFVALID; 1526 1527 if (!np->n_dircache) 1528 return; 1529 1530 NFSDC_LOCK(np); 1531 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1532 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) { 1533 KASSERT(!forcefree || ndp->dc_refcnt == 1); 1534 nfs_unlinkdircache(np, ndp); 1535 } 1536 np->n_dircachesize = 0; 1537 if (forcefree && np->n_dirgens) { 1538 FREE(np->n_dirgens, M_NFSDIROFF); 1539 np->n_dirgens = NULL; 1540 } 1541 } else { 1542 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) 1543 ndp->dc_flags |= NFSDC_INVALID; 1544 } 1545 1546 NFSDC_UNLOCK(np); 1547 } 1548 1549 /* 1550 * Called once before VFS init to initialize shared and 1551 * server-specific data structures. 1552 */ 1553 static int 1554 nfs_init0(void) 1555 { 1556 nfsrtt.pos = 0; 1557 rpc_vers = txdr_unsigned(RPC_VER2); 1558 rpc_call = txdr_unsigned(RPC_CALL); 1559 rpc_reply = txdr_unsigned(RPC_REPLY); 1560 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1561 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1562 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1563 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1564 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1565 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1566 nfs_prog = txdr_unsigned(NFS_PROG); 1567 nqnfs_prog = txdr_unsigned(NQNFS_PROG); 1568 nfs_true = txdr_unsigned(TRUE); 1569 nfs_false = txdr_unsigned(FALSE); 1570 nfs_xdrneg1 = txdr_unsigned(-1); 1571 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1572 if (nfs_ticks < 1) 1573 nfs_ticks = 1; 1574 #ifdef NFSSERVER 1575 nfsrv_init(0); /* Init server data structures */ 1576 nfsrv_initcache(); /* Init the server request cache */ 1577 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 1578 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr); 1579 #endif /* NFSSERVER */ 1580 1581 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY) 1582 /* 1583 * Initialize the nqnfs data structures. 1584 */ 1585 if (nqnfsstarttime == 0) { 1586 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease 1587 + nqsrv_clockskew + nqsrv_writeslack; 1588 NQLOADNOVRAM(nqnfsstarttime); 1589 CIRCLEQ_INIT(&nqtimerhead); 1590 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE, 1591 M_WAITOK, &nqfhhash); 1592 } 1593 #endif 1594 1595 exithook_establish(nfs_exit, NULL); 1596 1597 /* 1598 * Initialize reply list and start timer 1599 */ 1600 TAILQ_INIT(&nfs_reqq); 1601 nfs_timer(NULL); 1602 MOWNER_ATTACH(&nfs_mowner); 1603 1604 #ifdef NFS 1605 /* Initialize the kqueue structures */ 1606 nfs_kqinit(); 1607 /* Initialize the iod structures */ 1608 nfs_iodinit(); 1609 #endif 1610 return 0; 1611 } 1612 1613 void 1614 nfs_init(void) 1615 { 1616 static ONCE_DECL(nfs_init_once); 1617 1618 RUN_ONCE(&nfs_init_once, nfs_init0); 1619 } 1620 1621 #ifdef NFS 1622 /* 1623 * Called once at VFS init to initialize client-specific data structures. 1624 */ 1625 void 1626 nfs_vfs_init() 1627 { 1628 /* Initialize NFS server / client shared data. */ 1629 nfs_init(); 1630 1631 nfs_nhinit(); /* Init the nfsnode table */ 1632 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4); 1633 } 1634 1635 void 1636 nfs_vfs_reinit() 1637 { 1638 nfs_nhreinit(); 1639 } 1640 1641 void 1642 nfs_vfs_done() 1643 { 1644 nfs_nhdone(); 1645 } 1646 1647 /* 1648 * Attribute cache routines. 1649 * nfs_loadattrcache() - loads or updates the cache contents from attributes 1650 * that are on the mbuf list 1651 * nfs_getattrcache() - returns valid attributes if found in cache, returns 1652 * error otherwise 1653 */ 1654 1655 /* 1656 * Load the attribute cache (that lives in the nfsnode entry) with 1657 * the values on the mbuf list and 1658 * Iff vap not NULL 1659 * copy the attributes to *vaper 1660 */ 1661 int 1662 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags) 1663 struct vnode **vpp; 1664 struct mbuf **mdp; 1665 caddr_t *dposp; 1666 struct vattr *vaper; 1667 int flags; 1668 { 1669 int32_t t1; 1670 caddr_t cp2; 1671 int error = 0; 1672 struct mbuf *md; 1673 int v3 = NFS_ISV3(*vpp); 1674 1675 md = *mdp; 1676 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp; 1677 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2); 1678 if (error) 1679 return (error); 1680 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags); 1681 } 1682 1683 int 1684 nfs_loadattrcache(vpp, fp, vaper, flags) 1685 struct vnode **vpp; 1686 struct nfs_fattr *fp; 1687 struct vattr *vaper; 1688 int flags; 1689 { 1690 struct vnode *vp = *vpp; 1691 struct vattr *vap; 1692 int v3 = NFS_ISV3(vp); 1693 enum vtype vtyp; 1694 u_short vmode; 1695 struct timespec mtime; 1696 struct timespec ctime; 1697 struct vnode *nvp; 1698 int32_t rdev; 1699 struct nfsnode *np; 1700 extern int (**spec_nfsv2nodeop_p) __P((void *)); 1701 uid_t uid; 1702 gid_t gid; 1703 1704 if (v3) { 1705 vtyp = nfsv3tov_type(fp->fa_type); 1706 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1707 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1), 1708 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2)); 1709 fxdr_nfsv3time(&fp->fa3_mtime, &mtime); 1710 fxdr_nfsv3time(&fp->fa3_ctime, &ctime); 1711 } else { 1712 vtyp = nfsv2tov_type(fp->fa_type); 1713 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1714 if (vtyp == VNON || vtyp == VREG) 1715 vtyp = IFTOVT(vmode); 1716 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); 1717 fxdr_nfsv2time(&fp->fa2_mtime, &mtime); 1718 ctime.tv_sec = fxdr_unsigned(u_int32_t, 1719 fp->fa2_ctime.nfsv2_sec); 1720 ctime.tv_nsec = 0; 1721 1722 /* 1723 * Really ugly NFSv2 kludge. 1724 */ 1725 if (vtyp == VCHR && rdev == 0xffffffff) 1726 vtyp = VFIFO; 1727 } 1728 1729 vmode &= ALLPERMS; 1730 1731 /* 1732 * If v_type == VNON it is a new node, so fill in the v_type, 1733 * n_mtime fields. Check to see if it represents a special 1734 * device, and if so, check for a possible alias. Once the 1735 * correct vnode has been obtained, fill in the rest of the 1736 * information. 1737 */ 1738 np = VTONFS(vp); 1739 if (vp->v_type == VNON) { 1740 vp->v_type = vtyp; 1741 if (vp->v_type == VFIFO) { 1742 extern int (**fifo_nfsv2nodeop_p) __P((void *)); 1743 vp->v_op = fifo_nfsv2nodeop_p; 1744 } else if (vp->v_type == VREG) { 1745 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0); 1746 } else if (vp->v_type == VCHR || vp->v_type == VBLK) { 1747 vp->v_op = spec_nfsv2nodeop_p; 1748 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount); 1749 if (nvp) { 1750 /* 1751 * Discard unneeded vnode, but save its nfsnode. 1752 * Since the nfsnode does not have a lock, its 1753 * vnode lock has to be carried over. 1754 */ 1755 /* 1756 * XXX is the old node sure to be locked here? 1757 */ 1758 KASSERT(lockstatus(&vp->v_lock) == 1759 LK_EXCLUSIVE); 1760 nvp->v_data = vp->v_data; 1761 vp->v_data = NULL; 1762 VOP_UNLOCK(vp, 0); 1763 vp->v_op = spec_vnodeop_p; 1764 vrele(vp); 1765 vgone(vp); 1766 lockmgr(&nvp->v_lock, LK_EXCLUSIVE, 1767 &nvp->v_interlock); 1768 /* 1769 * Reinitialize aliased node. 1770 */ 1771 np->n_vnode = nvp; 1772 *vpp = vp = nvp; 1773 } 1774 } 1775 np->n_mtime = mtime; 1776 } 1777 uid = fxdr_unsigned(uid_t, fp->fa_uid); 1778 gid = fxdr_unsigned(gid_t, fp->fa_gid); 1779 vap = np->n_vattr; 1780 1781 /* 1782 * Invalidate access cache if uid, gid, mode or ctime changed. 1783 */ 1784 if (np->n_accstamp != -1 && 1785 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode 1786 || timespeccmp(&ctime, &vap->va_ctime, !=))) 1787 np->n_accstamp = -1; 1788 1789 vap->va_type = vtyp; 1790 vap->va_mode = vmode; 1791 vap->va_rdev = (dev_t)rdev; 1792 vap->va_mtime = mtime; 1793 vap->va_ctime = ctime; 1794 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0]; 1795 switch (vtyp) { 1796 case VDIR: 1797 vap->va_blocksize = NFS_DIRFRAGSIZ; 1798 break; 1799 case VBLK: 1800 vap->va_blocksize = BLKDEV_IOSIZE; 1801 break; 1802 case VCHR: 1803 vap->va_blocksize = MAXBSIZE; 1804 break; 1805 default: 1806 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize : 1807 fxdr_unsigned(int32_t, fp->fa2_blocksize); 1808 break; 1809 } 1810 if (v3) { 1811 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1812 vap->va_uid = uid; 1813 vap->va_gid = gid; 1814 vap->va_size = fxdr_hyper(&fp->fa3_size); 1815 vap->va_bytes = fxdr_hyper(&fp->fa3_used); 1816 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid); 1817 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); 1818 vap->va_flags = 0; 1819 vap->va_filerev = 0; 1820 } else { 1821 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1822 vap->va_uid = uid; 1823 vap->va_gid = gid; 1824 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); 1825 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks) 1826 * NFS_FABLKSIZE; 1827 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); 1828 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); 1829 vap->va_flags = 0; 1830 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec); 1831 vap->va_filerev = 0; 1832 } 1833 if (vap->va_size != np->n_size) { 1834 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) { 1835 vap->va_size = np->n_size; 1836 } else { 1837 np->n_size = vap->va_size; 1838 if (vap->va_type == VREG) { 1839 /* 1840 * we can't free pages if NAC_NOTRUNC because 1841 * the pages can be owned by ourselves. 1842 */ 1843 if (flags & NAC_NOTRUNC) { 1844 np->n_flag |= NTRUNCDELAYED; 1845 } else { 1846 simple_lock(&vp->v_interlock); 1847 (void)VOP_PUTPAGES(vp, 0, 1848 0, PGO_SYNCIO | PGO_CLEANIT | 1849 PGO_FREE | PGO_ALLPAGES); 1850 uvm_vnp_setsize(vp, np->n_size); 1851 } 1852 } 1853 } 1854 } 1855 np->n_attrstamp = mono_time.tv_sec; 1856 if (vaper != NULL) { 1857 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap)); 1858 if (np->n_flag & NCHG) { 1859 if (np->n_flag & NACC) 1860 vaper->va_atime = np->n_atim; 1861 if (np->n_flag & NUPD) 1862 vaper->va_mtime = np->n_mtim; 1863 } 1864 } 1865 return (0); 1866 } 1867 1868 /* 1869 * Check the time stamp 1870 * If the cache is valid, copy contents to *vap and return 0 1871 * otherwise return an error 1872 */ 1873 int 1874 nfs_getattrcache(vp, vaper) 1875 struct vnode *vp; 1876 struct vattr *vaper; 1877 { 1878 struct nfsnode *np = VTONFS(vp); 1879 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1880 struct vattr *vap; 1881 1882 if (np->n_attrstamp == 0 || 1883 (mono_time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) { 1884 nfsstats.attrcache_misses++; 1885 return (ENOENT); 1886 } 1887 nfsstats.attrcache_hits++; 1888 vap = np->n_vattr; 1889 if (vap->va_size != np->n_size) { 1890 if (vap->va_type == VREG) { 1891 if (np->n_flag & NMODIFIED) { 1892 if (vap->va_size < np->n_size) 1893 vap->va_size = np->n_size; 1894 else 1895 np->n_size = vap->va_size; 1896 } else 1897 np->n_size = vap->va_size; 1898 uvm_vnp_setsize(vp, np->n_size); 1899 } else 1900 np->n_size = vap->va_size; 1901 } 1902 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr)); 1903 if (np->n_flag & NCHG) { 1904 if (np->n_flag & NACC) 1905 vaper->va_atime = np->n_atim; 1906 if (np->n_flag & NUPD) 1907 vaper->va_mtime = np->n_mtim; 1908 } 1909 return (0); 1910 } 1911 1912 void 1913 nfs_delayedtruncate(vp) 1914 struct vnode *vp; 1915 { 1916 struct nfsnode *np = VTONFS(vp); 1917 1918 if (np->n_flag & NTRUNCDELAYED) { 1919 np->n_flag &= ~NTRUNCDELAYED; 1920 simple_lock(&vp->v_interlock); 1921 (void)VOP_PUTPAGES(vp, 0, 1922 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES); 1923 uvm_vnp_setsize(vp, np->n_size); 1924 } 1925 } 1926 1927 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */ 1928 #define NFS_WCCKLUDGE(nmp, now) \ 1929 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \ 1930 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0) 1931 1932 /* 1933 * nfs_check_wccdata: check inaccurate wcc_data 1934 * 1935 * => return non-zero if we shouldn't trust the wcc_data. 1936 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed". 1937 */ 1938 1939 int 1940 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime, 1941 struct timespec *mtime, boolean_t docheck) 1942 { 1943 int error = 0; 1944 1945 #if !defined(NFS_V2_ONLY) 1946 1947 if (docheck) { 1948 struct vnode *vp = NFSTOV(np); 1949 struct nfsmount *nmp; 1950 long now = mono_time.tv_sec; 1951 #if defined(DEBUG) 1952 const char *reason = NULL; /* XXX: gcc */ 1953 #endif 1954 1955 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) { 1956 #if defined(DEBUG) 1957 reason = "mtime"; 1958 #endif 1959 error = EINVAL; 1960 } 1961 1962 if (vp->v_type == VDIR && 1963 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) { 1964 #if defined(DEBUG) 1965 reason = "ctime"; 1966 #endif 1967 error = EINVAL; 1968 } 1969 1970 nmp = VFSTONFS(vp->v_mount); 1971 if (error) { 1972 1973 /* 1974 * despite of the fact that we've updated the file, 1975 * timestamps of the file were not updated as we 1976 * expected. 1977 * it means that the server has incompatible 1978 * semantics of timestamps or (more likely) 1979 * the server time is not precise enough to 1980 * track each modifications. 1981 * in that case, we disable wcc processing. 1982 * 1983 * yes, strictly speaking, we should disable all 1984 * caching. it's a compromise. 1985 */ 1986 1987 simple_lock(&nmp->nm_slock); 1988 #if defined(DEBUG) 1989 if (!NFS_WCCKLUDGE(nmp, now)) { 1990 printf("%s: inaccurate wcc data (%s) detected," 1991 " disabling wcc\n", 1992 vp->v_mount->mnt_stat.f_mntfromname, 1993 reason); 1994 } 1995 #endif 1996 nmp->nm_iflag |= NFSMNT_WCCKLUDGE; 1997 nmp->nm_wcckludgetime = now; 1998 simple_unlock(&nmp->nm_slock); 1999 } else if (NFS_WCCKLUDGE(nmp, now)) { 2000 error = EPERM; /* XXX */ 2001 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) { 2002 simple_lock(&nmp->nm_slock); 2003 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) { 2004 #if defined(DEBUG) 2005 printf("%s: re-enabling wcc\n", 2006 vp->v_mount->mnt_stat.f_mntfromname); 2007 #endif 2008 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE; 2009 } 2010 simple_unlock(&nmp->nm_slock); 2011 } 2012 } 2013 2014 #endif /* !defined(NFS_V2_ONLY) */ 2015 2016 return error; 2017 } 2018 2019 /* 2020 * Heuristic to see if the server XDR encodes directory cookies or not. 2021 * it is not supposed to, but a lot of servers may do this. Also, since 2022 * most/all servers will implement V2 as well, it is expected that they 2023 * may return just 32 bits worth of cookie information, so we need to 2024 * find out in which 32 bits this information is available. We do this 2025 * to avoid trouble with emulated binaries that can't handle 64 bit 2026 * directory offsets. 2027 */ 2028 2029 void 2030 nfs_cookieheuristic(vp, flagp, l, cred) 2031 struct vnode *vp; 2032 int *flagp; 2033 struct lwp *l; 2034 struct ucred *cred; 2035 { 2036 struct uio auio; 2037 struct iovec aiov; 2038 caddr_t tbuf, cp; 2039 struct dirent *dp; 2040 off_t *cookies = NULL, *cop; 2041 int error, eof, nc, len; 2042 2043 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK); 2044 2045 aiov.iov_base = tbuf; 2046 aiov.iov_len = NFS_DIRFRAGSIZ; 2047 auio.uio_iov = &aiov; 2048 auio.uio_iovcnt = 1; 2049 auio.uio_rw = UIO_READ; 2050 auio.uio_segflg = UIO_SYSSPACE; 2051 auio.uio_lwp = NULL; 2052 auio.uio_resid = NFS_DIRFRAGSIZ; 2053 auio.uio_offset = 0; 2054 2055 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc); 2056 2057 len = NFS_DIRFRAGSIZ - auio.uio_resid; 2058 if (error || len == 0) { 2059 FREE(tbuf, M_TEMP); 2060 if (cookies) 2061 free(cookies, M_TEMP); 2062 return; 2063 } 2064 2065 /* 2066 * Find the first valid entry and look at its offset cookie. 2067 */ 2068 2069 cp = tbuf; 2070 for (cop = cookies; len > 0; len -= dp->d_reclen) { 2071 dp = (struct dirent *)cp; 2072 if (dp->d_fileno != 0 && len >= dp->d_reclen) { 2073 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) { 2074 *flagp |= NFSMNT_SWAPCOOKIE; 2075 nfs_invaldircache(vp, 0); 2076 nfs_vinvalbuf(vp, 0, cred, l, 1); 2077 } 2078 break; 2079 } 2080 cop++; 2081 cp += dp->d_reclen; 2082 } 2083 2084 FREE(tbuf, M_TEMP); 2085 free(cookies, M_TEMP); 2086 } 2087 #endif /* NFS */ 2088 2089 #ifdef NFSSERVER 2090 /* 2091 * Set up nameidata for a lookup() call and do it. 2092 * 2093 * If pubflag is set, this call is done for a lookup operation on the 2094 * public filehandle. In that case we allow crossing mountpoints and 2095 * absolute pathnames. However, the caller is expected to check that 2096 * the lookup result is within the public fs, and deny access if 2097 * it is not. 2098 */ 2099 int 2100 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag) 2101 struct nameidata *ndp; 2102 fhandle_t *fhp; 2103 uint32_t len; 2104 struct nfssvc_sock *slp; 2105 struct mbuf *nam; 2106 struct mbuf **mdp; 2107 caddr_t *dposp; 2108 struct vnode **retdirp; 2109 struct lwp *l; 2110 int kerbflag, pubflag; 2111 { 2112 int i, rem; 2113 struct mbuf *md; 2114 char *fromcp, *tocp, *cp; 2115 struct iovec aiov; 2116 struct uio auio; 2117 struct vnode *dp; 2118 int error, rdonly, linklen; 2119 struct componentname *cnp = &ndp->ni_cnd; 2120 2121 *retdirp = (struct vnode *)0; 2122 2123 if ((len + 1) > MAXPATHLEN) 2124 return (ENAMETOOLONG); 2125 if (len == 0) 2126 return (EACCES); 2127 cnp->cn_pnbuf = PNBUF_GET(); 2128 2129 /* 2130 * Copy the name from the mbuf list to ndp->ni_pnbuf 2131 * and set the various ndp fields appropriately. 2132 */ 2133 fromcp = *dposp; 2134 tocp = cnp->cn_pnbuf; 2135 md = *mdp; 2136 rem = mtod(md, caddr_t) + md->m_len - fromcp; 2137 for (i = 0; i < len; i++) { 2138 while (rem == 0) { 2139 md = md->m_next; 2140 if (md == NULL) { 2141 error = EBADRPC; 2142 goto out; 2143 } 2144 fromcp = mtod(md, caddr_t); 2145 rem = md->m_len; 2146 } 2147 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) { 2148 error = EACCES; 2149 goto out; 2150 } 2151 *tocp++ = *fromcp++; 2152 rem--; 2153 } 2154 *tocp = '\0'; 2155 *mdp = md; 2156 *dposp = fromcp; 2157 len = nfsm_rndup(len)-len; 2158 if (len > 0) { 2159 if (rem >= len) 2160 *dposp += len; 2161 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0) 2162 goto out; 2163 } 2164 2165 /* 2166 * Extract and set starting directory. 2167 */ 2168 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp, 2169 nam, &rdonly, kerbflag, pubflag); 2170 if (error) 2171 goto out; 2172 if (dp->v_type != VDIR) { 2173 vrele(dp); 2174 error = ENOTDIR; 2175 goto out; 2176 } 2177 2178 if (rdonly) 2179 cnp->cn_flags |= RDONLY; 2180 2181 *retdirp = dp; 2182 2183 if (pubflag) { 2184 /* 2185 * Oh joy. For WebNFS, handle those pesky '%' escapes, 2186 * and the 'native path' indicator. 2187 */ 2188 cp = PNBUF_GET(); 2189 fromcp = cnp->cn_pnbuf; 2190 tocp = cp; 2191 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) { 2192 switch ((unsigned char)*fromcp) { 2193 case WEBNFS_NATIVE_CHAR: 2194 /* 2195 * 'Native' path for us is the same 2196 * as a path according to the NFS spec, 2197 * just skip the escape char. 2198 */ 2199 fromcp++; 2200 break; 2201 /* 2202 * More may be added in the future, range 0x80-0xff 2203 */ 2204 default: 2205 error = EIO; 2206 PNBUF_PUT(cp); 2207 goto out; 2208 } 2209 } 2210 /* 2211 * Translate the '%' escapes, URL-style. 2212 */ 2213 while (*fromcp != '\0') { 2214 if (*fromcp == WEBNFS_ESC_CHAR) { 2215 if (fromcp[1] != '\0' && fromcp[2] != '\0') { 2216 fromcp++; 2217 *tocp++ = HEXSTRTOI(fromcp); 2218 fromcp += 2; 2219 continue; 2220 } else { 2221 error = ENOENT; 2222 PNBUF_PUT(cp); 2223 goto out; 2224 } 2225 } else 2226 *tocp++ = *fromcp++; 2227 } 2228 *tocp = '\0'; 2229 PNBUF_PUT(cnp->cn_pnbuf); 2230 cnp->cn_pnbuf = cp; 2231 } 2232 2233 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1; 2234 ndp->ni_segflg = UIO_SYSSPACE; 2235 ndp->ni_rootdir = rootvnode; 2236 2237 if (pubflag) { 2238 ndp->ni_loopcnt = 0; 2239 if (cnp->cn_pnbuf[0] == '/') 2240 dp = rootvnode; 2241 } else { 2242 cnp->cn_flags |= NOCROSSMOUNT; 2243 } 2244 2245 cnp->cn_lwp = l; 2246 VREF(dp); 2247 2248 for (;;) { 2249 cnp->cn_nameptr = cnp->cn_pnbuf; 2250 ndp->ni_startdir = dp; 2251 /* 2252 * And call lookup() to do the real work 2253 */ 2254 error = lookup(ndp); 2255 if (error) { 2256 PNBUF_PUT(cnp->cn_pnbuf); 2257 return (error); 2258 } 2259 /* 2260 * Check for encountering a symbolic link 2261 */ 2262 if ((cnp->cn_flags & ISSYMLINK) == 0) { 2263 if (cnp->cn_flags & (SAVENAME | SAVESTART)) 2264 cnp->cn_flags |= HASBUF; 2265 else 2266 PNBUF_PUT(cnp->cn_pnbuf); 2267 return (0); 2268 } else { 2269 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN)) 2270 VOP_UNLOCK(ndp->ni_dvp, 0); 2271 if (!pubflag) { 2272 error = EINVAL; 2273 break; 2274 } 2275 2276 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) { 2277 error = ELOOP; 2278 break; 2279 } 2280 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) { 2281 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred, 2282 cnp->cn_lwp); 2283 if (error != 0) 2284 break; 2285 } 2286 if (ndp->ni_pathlen > 1) 2287 cp = PNBUF_GET(); 2288 else 2289 cp = cnp->cn_pnbuf; 2290 aiov.iov_base = cp; 2291 aiov.iov_len = MAXPATHLEN; 2292 auio.uio_iov = &aiov; 2293 auio.uio_iovcnt = 1; 2294 auio.uio_offset = 0; 2295 auio.uio_rw = UIO_READ; 2296 auio.uio_segflg = UIO_SYSSPACE; 2297 auio.uio_lwp = NULL; 2298 auio.uio_resid = MAXPATHLEN; 2299 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred); 2300 if (error) { 2301 badlink: 2302 if (ndp->ni_pathlen > 1) 2303 PNBUF_PUT(cp); 2304 break; 2305 } 2306 linklen = MAXPATHLEN - auio.uio_resid; 2307 if (linklen == 0) { 2308 error = ENOENT; 2309 goto badlink; 2310 } 2311 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) { 2312 error = ENAMETOOLONG; 2313 goto badlink; 2314 } 2315 if (ndp->ni_pathlen > 1) { 2316 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen); 2317 PNBUF_PUT(cnp->cn_pnbuf); 2318 cnp->cn_pnbuf = cp; 2319 } else 2320 cnp->cn_pnbuf[linklen] = '\0'; 2321 ndp->ni_pathlen += linklen; 2322 vput(ndp->ni_vp); 2323 dp = ndp->ni_dvp; 2324 /* 2325 * Check if root directory should replace current directory. 2326 */ 2327 if (cnp->cn_pnbuf[0] == '/') { 2328 vrele(dp); 2329 dp = ndp->ni_rootdir; 2330 VREF(dp); 2331 } 2332 } 2333 } 2334 vrele(ndp->ni_dvp); 2335 vput(ndp->ni_vp); 2336 ndp->ni_vp = NULL; 2337 out: 2338 PNBUF_PUT(cnp->cn_pnbuf); 2339 return (error); 2340 } 2341 #endif /* NFSSERVER */ 2342 2343 /* 2344 * A fiddled version of m_adj() that ensures null fill to a 32-bit 2345 * boundary and only trims off the back end 2346 * 2347 * 1. trim off 'len' bytes as m_adj(mp, -len). 2348 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain. 2349 */ 2350 void 2351 nfs_zeropad(mp, len, nul) 2352 struct mbuf *mp; 2353 int len; 2354 int nul; 2355 { 2356 struct mbuf *m; 2357 int count; 2358 2359 /* 2360 * Trim from tail. Scan the mbuf chain, 2361 * calculating its length and finding the last mbuf. 2362 * If the adjustment only affects this mbuf, then just 2363 * adjust and return. Otherwise, rescan and truncate 2364 * after the remaining size. 2365 */ 2366 count = 0; 2367 m = mp; 2368 for (;;) { 2369 count += m->m_len; 2370 if (m->m_next == NULL) 2371 break; 2372 m = m->m_next; 2373 } 2374 2375 KDASSERT(count >= len); 2376 2377 if (m->m_len >= len) { 2378 m->m_len -= len; 2379 } else { 2380 count -= len; 2381 /* 2382 * Correct length for chain is "count". 2383 * Find the mbuf with last data, adjust its length, 2384 * and toss data from remaining mbufs on chain. 2385 */ 2386 for (m = mp; m; m = m->m_next) { 2387 if (m->m_len >= count) { 2388 m->m_len = count; 2389 break; 2390 } 2391 count -= m->m_len; 2392 } 2393 m_freem(m->m_next); 2394 m->m_next = NULL; 2395 } 2396 2397 KDASSERT(m->m_next == NULL); 2398 2399 /* 2400 * zero-padding. 2401 */ 2402 if (nul > 0) { 2403 char *cp; 2404 int i; 2405 2406 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) { 2407 struct mbuf *n; 2408 2409 KDASSERT(MLEN >= nul); 2410 n = m_get(M_WAIT, MT_DATA); 2411 MCLAIM(n, &nfs_mowner); 2412 n->m_len = nul; 2413 n->m_next = NULL; 2414 m->m_next = n; 2415 cp = mtod(n, caddr_t); 2416 } else { 2417 cp = mtod(m, caddr_t) + m->m_len; 2418 m->m_len += nul; 2419 } 2420 for (i = 0; i < nul; i++) 2421 *cp++ = '\0'; 2422 } 2423 return; 2424 } 2425 2426 /* 2427 * Make these functions instead of macros, so that the kernel text size 2428 * doesn't get too big... 2429 */ 2430 void 2431 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp) 2432 struct nfsrv_descript *nfsd; 2433 int before_ret; 2434 struct vattr *before_vap; 2435 int after_ret; 2436 struct vattr *after_vap; 2437 struct mbuf **mbp; 2438 char **bposp; 2439 { 2440 struct mbuf *mb = *mbp; 2441 char *bpos = *bposp; 2442 u_int32_t *tl; 2443 2444 if (before_ret) { 2445 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2446 *tl = nfs_false; 2447 } else { 2448 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 2449 *tl++ = nfs_true; 2450 txdr_hyper(before_vap->va_size, tl); 2451 tl += 2; 2452 txdr_nfsv3time(&(before_vap->va_mtime), tl); 2453 tl += 2; 2454 txdr_nfsv3time(&(before_vap->va_ctime), tl); 2455 } 2456 *bposp = bpos; 2457 *mbp = mb; 2458 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 2459 } 2460 2461 void 2462 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp) 2463 struct nfsrv_descript *nfsd; 2464 int after_ret; 2465 struct vattr *after_vap; 2466 struct mbuf **mbp; 2467 char **bposp; 2468 { 2469 struct mbuf *mb = *mbp; 2470 char *bpos = *bposp; 2471 u_int32_t *tl; 2472 struct nfs_fattr *fp; 2473 2474 if (after_ret) { 2475 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2476 *tl = nfs_false; 2477 } else { 2478 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 2479 *tl++ = nfs_true; 2480 fp = (struct nfs_fattr *)tl; 2481 nfsm_srvfattr(nfsd, after_vap, fp); 2482 } 2483 *mbp = mb; 2484 *bposp = bpos; 2485 } 2486 2487 void 2488 nfsm_srvfattr(nfsd, vap, fp) 2489 struct nfsrv_descript *nfsd; 2490 struct vattr *vap; 2491 struct nfs_fattr *fp; 2492 { 2493 2494 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 2495 fp->fa_uid = txdr_unsigned(vap->va_uid); 2496 fp->fa_gid = txdr_unsigned(vap->va_gid); 2497 if (nfsd->nd_flag & ND_NFSV3) { 2498 fp->fa_type = vtonfsv3_type(vap->va_type); 2499 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 2500 txdr_hyper(vap->va_size, &fp->fa3_size); 2501 txdr_hyper(vap->va_bytes, &fp->fa3_used); 2502 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 2503 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 2504 fp->fa3_fsid.nfsuquad[0] = 0; 2505 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 2506 txdr_hyper(vap->va_fileid, &fp->fa3_fileid); 2507 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 2508 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 2509 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 2510 } else { 2511 fp->fa_type = vtonfsv2_type(vap->va_type); 2512 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 2513 fp->fa2_size = txdr_unsigned(vap->va_size); 2514 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 2515 if (vap->va_type == VFIFO) 2516 fp->fa2_rdev = 0xffffffff; 2517 else 2518 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 2519 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 2520 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 2521 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 2522 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 2523 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 2524 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 2525 } 2526 } 2527 2528 #ifdef NFSSERVER 2529 /* 2530 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) 2531 * - look up fsid in mount list (if not found ret error) 2532 * - get vp and export rights by calling VFS_FHTOVP() 2533 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon 2534 * - if not lockflag unlock it with VOP_UNLOCK() 2535 */ 2536 int 2537 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag) 2538 fhandle_t *fhp; 2539 int lockflag; 2540 struct vnode **vpp; 2541 struct ucred *cred; 2542 struct nfssvc_sock *slp; 2543 struct mbuf *nam; 2544 int *rdonlyp; 2545 int kerbflag; 2546 { 2547 struct mount *mp; 2548 int i; 2549 struct ucred *credanon; 2550 int error, exflags; 2551 struct sockaddr_in *saddr; 2552 2553 *vpp = (struct vnode *)0; 2554 2555 if (nfs_ispublicfh(fhp)) { 2556 if (!pubflag || !nfs_pub.np_valid) 2557 return (ESTALE); 2558 fhp = &nfs_pub.np_handle; 2559 } 2560 2561 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon); 2562 if (error) { 2563 return error; 2564 } 2565 2566 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp); 2567 if (error) 2568 return (error); 2569 2570 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) { 2571 saddr = mtod(nam, struct sockaddr_in *); 2572 if ((saddr->sin_family == AF_INET) && 2573 ntohs(saddr->sin_port) >= IPPORT_RESERVED) { 2574 vput(*vpp); 2575 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2576 } 2577 #ifdef INET6 2578 if ((saddr->sin_family == AF_INET6) && 2579 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) { 2580 vput(*vpp); 2581 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2582 } 2583 #endif 2584 } 2585 /* 2586 * Check/setup credentials. 2587 */ 2588 if (exflags & MNT_EXKERB) { 2589 if (!kerbflag) { 2590 vput(*vpp); 2591 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2592 } 2593 } else if (kerbflag) { 2594 vput(*vpp); 2595 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2596 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { 2597 cred->cr_uid = credanon->cr_uid; 2598 cred->cr_gid = credanon->cr_gid; 2599 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++) 2600 cred->cr_groups[i] = credanon->cr_groups[i]; 2601 cred->cr_ngroups = i; 2602 } 2603 if (exflags & MNT_EXRDONLY) 2604 *rdonlyp = 1; 2605 else 2606 *rdonlyp = 0; 2607 if (!lockflag) 2608 VOP_UNLOCK(*vpp, 0); 2609 return (0); 2610 } 2611 2612 /* 2613 * WebNFS: check if a filehandle is a public filehandle. For v3, this 2614 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has 2615 * transformed this to all zeroes in both cases, so check for it. 2616 */ 2617 int 2618 nfs_ispublicfh(fhp) 2619 fhandle_t *fhp; 2620 { 2621 char *cp = (char *)fhp; 2622 int i; 2623 2624 for (i = 0; i < NFSX_V3FH; i++) 2625 if (*cp++ != 0) 2626 return (FALSE); 2627 return (TRUE); 2628 } 2629 #endif /* NFSSERVER */ 2630 2631 /* 2632 * This function compares two net addresses by family and returns TRUE 2633 * if they are the same host. 2634 * If there is any doubt, return FALSE. 2635 * The AF_INET family is handled as a special case so that address mbufs 2636 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 2637 */ 2638 int 2639 netaddr_match(family, haddr, nam) 2640 int family; 2641 union nethostaddr *haddr; 2642 struct mbuf *nam; 2643 { 2644 struct sockaddr_in *inetaddr; 2645 2646 switch (family) { 2647 case AF_INET: 2648 inetaddr = mtod(nam, struct sockaddr_in *); 2649 if (inetaddr->sin_family == AF_INET && 2650 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 2651 return (1); 2652 break; 2653 #ifdef INET6 2654 case AF_INET6: 2655 { 2656 struct sockaddr_in6 *sin6_1, *sin6_2; 2657 2658 sin6_1 = mtod(nam, struct sockaddr_in6 *); 2659 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 2660 if (sin6_1->sin6_family == AF_INET6 && 2661 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 2662 return 1; 2663 } 2664 #endif 2665 #ifdef ISO 2666 case AF_ISO: 2667 { 2668 struct sockaddr_iso *isoaddr1, *isoaddr2; 2669 2670 isoaddr1 = mtod(nam, struct sockaddr_iso *); 2671 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); 2672 if (isoaddr1->siso_family == AF_ISO && 2673 isoaddr1->siso_nlen > 0 && 2674 isoaddr1->siso_nlen == isoaddr2->siso_nlen && 2675 SAME_ISOADDR(isoaddr1, isoaddr2)) 2676 return (1); 2677 break; 2678 } 2679 #endif /* ISO */ 2680 default: 2681 break; 2682 }; 2683 return (0); 2684 } 2685 2686 /* 2687 * The write verifier has changed (probably due to a server reboot), so all 2688 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 2689 * as dirty or are being written out just now, all this takes is clearing 2690 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 2691 * the mount point. 2692 */ 2693 void 2694 nfs_clearcommit(mp) 2695 struct mount *mp; 2696 { 2697 struct vnode *vp; 2698 struct nfsnode *np; 2699 struct vm_page *pg; 2700 struct nfsmount *nmp = VFSTONFS(mp); 2701 2702 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL); 2703 2704 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 2705 KASSERT(vp->v_mount == mp); 2706 if (vp->v_type != VREG) 2707 continue; 2708 np = VTONFS(vp); 2709 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 2710 np->n_pushedhi = 0; 2711 np->n_commitflags &= 2712 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 2713 simple_lock(&vp->v_uobj.vmobjlock); 2714 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) { 2715 pg->flags &= ~PG_NEEDCOMMIT; 2716 } 2717 simple_unlock(&vp->v_uobj.vmobjlock); 2718 } 2719 simple_lock(&nmp->nm_slock); 2720 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 2721 simple_unlock(&nmp->nm_slock); 2722 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 2723 } 2724 2725 void 2726 nfs_merge_commit_ranges(vp) 2727 struct vnode *vp; 2728 { 2729 struct nfsnode *np = VTONFS(vp); 2730 2731 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 2732 2733 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2734 np->n_pushedlo = np->n_pushlo; 2735 np->n_pushedhi = np->n_pushhi; 2736 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2737 } else { 2738 if (np->n_pushlo < np->n_pushedlo) 2739 np->n_pushedlo = np->n_pushlo; 2740 if (np->n_pushhi > np->n_pushedhi) 2741 np->n_pushedhi = np->n_pushhi; 2742 } 2743 2744 np->n_pushlo = np->n_pushhi = 0; 2745 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 2746 2747 #ifdef NFS_DEBUG_COMMIT 2748 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2749 (unsigned)np->n_pushedhi); 2750 #endif 2751 } 2752 2753 int 2754 nfs_in_committed_range(vp, off, len) 2755 struct vnode *vp; 2756 off_t off, len; 2757 { 2758 struct nfsnode *np = VTONFS(vp); 2759 off_t lo, hi; 2760 2761 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2762 return 0; 2763 lo = off; 2764 hi = lo + len; 2765 2766 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 2767 } 2768 2769 int 2770 nfs_in_tobecommitted_range(vp, off, len) 2771 struct vnode *vp; 2772 off_t off, len; 2773 { 2774 struct nfsnode *np = VTONFS(vp); 2775 off_t lo, hi; 2776 2777 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2778 return 0; 2779 lo = off; 2780 hi = lo + len; 2781 2782 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 2783 } 2784 2785 void 2786 nfs_add_committed_range(vp, off, len) 2787 struct vnode *vp; 2788 off_t off, len; 2789 { 2790 struct nfsnode *np = VTONFS(vp); 2791 off_t lo, hi; 2792 2793 lo = off; 2794 hi = lo + len; 2795 2796 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2797 np->n_pushedlo = lo; 2798 np->n_pushedhi = hi; 2799 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2800 } else { 2801 if (hi > np->n_pushedhi) 2802 np->n_pushedhi = hi; 2803 if (lo < np->n_pushedlo) 2804 np->n_pushedlo = lo; 2805 } 2806 #ifdef NFS_DEBUG_COMMIT 2807 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2808 (unsigned)np->n_pushedhi); 2809 #endif 2810 } 2811 2812 void 2813 nfs_del_committed_range(vp, off, len) 2814 struct vnode *vp; 2815 off_t off, len; 2816 { 2817 struct nfsnode *np = VTONFS(vp); 2818 off_t lo, hi; 2819 2820 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2821 return; 2822 2823 lo = off; 2824 hi = lo + len; 2825 2826 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 2827 return; 2828 if (lo <= np->n_pushedlo) 2829 np->n_pushedlo = hi; 2830 else if (hi >= np->n_pushedhi) 2831 np->n_pushedhi = lo; 2832 else { 2833 /* 2834 * XXX There's only one range. If the deleted range 2835 * is in the middle, pick the largest of the 2836 * contiguous ranges that it leaves. 2837 */ 2838 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 2839 np->n_pushedhi = lo; 2840 else 2841 np->n_pushedlo = hi; 2842 } 2843 #ifdef NFS_DEBUG_COMMIT 2844 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2845 (unsigned)np->n_pushedhi); 2846 #endif 2847 } 2848 2849 void 2850 nfs_add_tobecommitted_range(vp, off, len) 2851 struct vnode *vp; 2852 off_t off, len; 2853 { 2854 struct nfsnode *np = VTONFS(vp); 2855 off_t lo, hi; 2856 2857 lo = off; 2858 hi = lo + len; 2859 2860 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 2861 np->n_pushlo = lo; 2862 np->n_pushhi = hi; 2863 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 2864 } else { 2865 if (lo < np->n_pushlo) 2866 np->n_pushlo = lo; 2867 if (hi > np->n_pushhi) 2868 np->n_pushhi = hi; 2869 } 2870 #ifdef NFS_DEBUG_COMMIT 2871 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2872 (unsigned)np->n_pushhi); 2873 #endif 2874 } 2875 2876 void 2877 nfs_del_tobecommitted_range(vp, off, len) 2878 struct vnode *vp; 2879 off_t off, len; 2880 { 2881 struct nfsnode *np = VTONFS(vp); 2882 off_t lo, hi; 2883 2884 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2885 return; 2886 2887 lo = off; 2888 hi = lo + len; 2889 2890 if (lo > np->n_pushhi || hi < np->n_pushlo) 2891 return; 2892 2893 if (lo <= np->n_pushlo) 2894 np->n_pushlo = hi; 2895 else if (hi >= np->n_pushhi) 2896 np->n_pushhi = lo; 2897 else { 2898 /* 2899 * XXX There's only one range. If the deleted range 2900 * is in the middle, pick the largest of the 2901 * contiguous ranges that it leaves. 2902 */ 2903 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 2904 np->n_pushhi = lo; 2905 else 2906 np->n_pushlo = hi; 2907 } 2908 #ifdef NFS_DEBUG_COMMIT 2909 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2910 (unsigned)np->n_pushhi); 2911 #endif 2912 } 2913 2914 /* 2915 * Map errnos to NFS error numbers. For Version 3 also filter out error 2916 * numbers not specified for the associated procedure. 2917 */ 2918 int 2919 nfsrv_errmap(nd, err) 2920 struct nfsrv_descript *nd; 2921 int err; 2922 { 2923 const short *defaulterrp, *errp; 2924 2925 if (nd->nd_flag & ND_NFSV3) { 2926 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2927 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2928 while (*++errp) { 2929 if (*errp == err) 2930 return (err); 2931 else if (*errp > err) 2932 break; 2933 } 2934 return ((int)*defaulterrp); 2935 } else 2936 return (err & 0xffff); 2937 } 2938 if (err <= ELAST) 2939 return ((int)nfsrv_v2errmap[err - 1]); 2940 return (NFSERR_IO); 2941 } 2942 2943 /* 2944 * Sort the group list in increasing numerical order. 2945 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort 2946 * that used to be here.) 2947 */ 2948 void 2949 nfsrvw_sort(list, num) 2950 gid_t *list; 2951 int num; 2952 { 2953 int i, j; 2954 gid_t v; 2955 2956 /* Insertion sort. */ 2957 for (i = 1; i < num; i++) { 2958 v = list[i]; 2959 /* find correct slot for value v, moving others up */ 2960 for (j = i; --j >= 0 && v < list[j];) 2961 list[j + 1] = list[j]; 2962 list[j + 1] = v; 2963 } 2964 } 2965 2966 /* 2967 * copy credentials making sure that the result can be compared with memcmp(). 2968 */ 2969 void 2970 nfsrv_setcred(incred, outcred) 2971 struct ucred *incred, *outcred; 2972 { 2973 int i; 2974 2975 memset((caddr_t)outcred, 0, sizeof (struct ucred)); 2976 outcred->cr_ref = 1; 2977 outcred->cr_uid = incred->cr_uid; 2978 outcred->cr_gid = incred->cr_gid; 2979 outcred->cr_ngroups = incred->cr_ngroups; 2980 for (i = 0; i < incred->cr_ngroups; i++) 2981 outcred->cr_groups[i] = incred->cr_groups[i]; 2982 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups); 2983 } 2984 2985 u_int32_t 2986 nfs_getxid() 2987 { 2988 static u_int32_t base; 2989 static u_int32_t nfs_xid = 0; 2990 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER; 2991 u_int32_t newxid; 2992 2993 simple_lock(&nfs_xidlock); 2994 /* 2995 * derive initial xid from system time 2996 * XXX time is invalid if root not yet mounted 2997 */ 2998 if (__predict_false(!base && (rootvp))) { 2999 struct timeval tv; 3000 3001 microtime(&tv); 3002 base = tv.tv_sec << 12; 3003 nfs_xid = base; 3004 } 3005 3006 /* 3007 * Skip zero xid if it should ever happen. 3008 */ 3009 if (__predict_false(++nfs_xid == 0)) 3010 nfs_xid++; 3011 newxid = nfs_xid; 3012 simple_unlock(&nfs_xidlock); 3013 3014 return txdr_unsigned(newxid); 3015 } 3016 3017 /* 3018 * assign a new xid for existing request. 3019 * used for NFSERR_JUKEBOX handling. 3020 */ 3021 void 3022 nfs_renewxid(struct nfsreq *req) 3023 { 3024 u_int32_t xid; 3025 int off; 3026 3027 xid = nfs_getxid(); 3028 if (req->r_nmp->nm_sotype == SOCK_STREAM) 3029 off = sizeof(u_int32_t); /* RPC record mark */ 3030 else 3031 off = 0; 3032 3033 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid); 3034 req->r_xid = xid; 3035 } 3036