xref: /netbsd-src/sys/nfs/nfs_subs.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: nfs_subs.c,v 1.216 2009/03/15 17:20:10 cegger Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
35  */
36 
37 /*
38  * Copyright 2000 Wasabi Systems, Inc.
39  * All rights reserved.
40  *
41  * Written by Frank van der Linden for Wasabi Systems, Inc.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *      This product includes software developed for the NetBSD Project by
54  *      Wasabi Systems, Inc.
55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56  *    or promote products derived from this software without specific prior
57  *    written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69  * POSSIBILITY OF SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.216 2009/03/15 17:20:10 cegger Exp $");
74 
75 #ifdef _KERNEL_OPT
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #endif
79 
80 /*
81  * These functions support the macros and help fiddle mbuf chains for
82  * the nfs op functions. They do things like create the rpc header and
83  * copy data between mbuf chains and uio lists.
84  */
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/kmem.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/filedesc.h>
97 #include <sys/time.h>
98 #include <sys/dirent.h>
99 #include <sys/once.h>
100 #include <sys/kauth.h>
101 #include <sys/atomic.h>
102 
103 #include <uvm/uvm_extern.h>
104 
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114 
115 #include <miscfs/specfs/specdev.h>
116 
117 #include <netinet/in.h>
118 
119 static u_int32_t nfs_xid;
120 
121 /*
122  * Data items converted to xdr at startup, since they are constant
123  * This is kinda hokey, but may save a little time doing byte swaps
124  */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 	rpc_auth_kerb;
129 u_int32_t nfs_prog, nfs_true, nfs_false;
130 
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142 
143 /* NFS client/server stats. */
144 struct nfsstats nfsstats;
145 
146 /*
147  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
148  */
149 const int nfsv3_procid[NFS_NPROCS] = {
150 	NFSPROC_NULL,
151 	NFSPROC_GETATTR,
152 	NFSPROC_SETATTR,
153 	NFSPROC_NOOP,
154 	NFSPROC_LOOKUP,
155 	NFSPROC_READLINK,
156 	NFSPROC_READ,
157 	NFSPROC_NOOP,
158 	NFSPROC_WRITE,
159 	NFSPROC_CREATE,
160 	NFSPROC_REMOVE,
161 	NFSPROC_RENAME,
162 	NFSPROC_LINK,
163 	NFSPROC_SYMLINK,
164 	NFSPROC_MKDIR,
165 	NFSPROC_RMDIR,
166 	NFSPROC_READDIR,
167 	NFSPROC_FSSTAT,
168 	NFSPROC_NOOP,
169 	NFSPROC_NOOP,
170 	NFSPROC_NOOP,
171 	NFSPROC_NOOP,
172 	NFSPROC_NOOP
173 };
174 
175 /*
176  * and the reverse mapping from generic to Version 2 procedure numbers
177  */
178 const int nfsv2_procid[NFS_NPROCS] = {
179 	NFSV2PROC_NULL,
180 	NFSV2PROC_GETATTR,
181 	NFSV2PROC_SETATTR,
182 	NFSV2PROC_LOOKUP,
183 	NFSV2PROC_NOOP,
184 	NFSV2PROC_READLINK,
185 	NFSV2PROC_READ,
186 	NFSV2PROC_WRITE,
187 	NFSV2PROC_CREATE,
188 	NFSV2PROC_MKDIR,
189 	NFSV2PROC_SYMLINK,
190 	NFSV2PROC_CREATE,
191 	NFSV2PROC_REMOVE,
192 	NFSV2PROC_RMDIR,
193 	NFSV2PROC_RENAME,
194 	NFSV2PROC_LINK,
195 	NFSV2PROC_READDIR,
196 	NFSV2PROC_NOOP,
197 	NFSV2PROC_STATFS,
198 	NFSV2PROC_NOOP,
199 	NFSV2PROC_NOOP,
200 	NFSV2PROC_NOOP,
201 	NFSV2PROC_NOOP,
202 };
203 
204 /*
205  * Maps errno values to nfs error numbers.
206  * Use NFSERR_IO as the catch all for ones not specifically defined in
207  * RFC 1094.
208  */
209 static const u_char nfsrv_v2errmap[ELAST] = {
210   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
211   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
212   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
213   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
214   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
215   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
216   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
217   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
218   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
219   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
220   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
221   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
222   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
223   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
226   NFSERR_IO,	NFSERR_IO,
227 };
228 
229 /*
230  * Maps errno values to nfs error numbers.
231  * Although it is not obvious whether or not NFS clients really care if
232  * a returned error value is in the specified list for the procedure, the
233  * safest thing to do is filter them appropriately. For Version 2, the
234  * X/Open XNFS document is the only specification that defines error values
235  * for each RPC (The RFC simply lists all possible error values for all RPCs),
236  * so I have decided to not do this for Version 2.
237  * The first entry is the default error return and the rest are the valid
238  * errors for that RPC in increasing numeric order.
239  */
240 static const short nfsv3err_null[] = {
241 	0,
242 	0,
243 };
244 
245 static const short nfsv3err_getattr[] = {
246 	NFSERR_IO,
247 	NFSERR_IO,
248 	NFSERR_STALE,
249 	NFSERR_BADHANDLE,
250 	NFSERR_SERVERFAULT,
251 	0,
252 };
253 
254 static const short nfsv3err_setattr[] = {
255 	NFSERR_IO,
256 	NFSERR_PERM,
257 	NFSERR_IO,
258 	NFSERR_ACCES,
259 	NFSERR_INVAL,
260 	NFSERR_NOSPC,
261 	NFSERR_ROFS,
262 	NFSERR_DQUOT,
263 	NFSERR_STALE,
264 	NFSERR_BADHANDLE,
265 	NFSERR_NOT_SYNC,
266 	NFSERR_SERVERFAULT,
267 	0,
268 };
269 
270 static const short nfsv3err_lookup[] = {
271 	NFSERR_IO,
272 	NFSERR_NOENT,
273 	NFSERR_IO,
274 	NFSERR_ACCES,
275 	NFSERR_NOTDIR,
276 	NFSERR_NAMETOL,
277 	NFSERR_STALE,
278 	NFSERR_BADHANDLE,
279 	NFSERR_SERVERFAULT,
280 	0,
281 };
282 
283 static const short nfsv3err_access[] = {
284 	NFSERR_IO,
285 	NFSERR_IO,
286 	NFSERR_STALE,
287 	NFSERR_BADHANDLE,
288 	NFSERR_SERVERFAULT,
289 	0,
290 };
291 
292 static const short nfsv3err_readlink[] = {
293 	NFSERR_IO,
294 	NFSERR_IO,
295 	NFSERR_ACCES,
296 	NFSERR_INVAL,
297 	NFSERR_STALE,
298 	NFSERR_BADHANDLE,
299 	NFSERR_NOTSUPP,
300 	NFSERR_SERVERFAULT,
301 	0,
302 };
303 
304 static const short nfsv3err_read[] = {
305 	NFSERR_IO,
306 	NFSERR_IO,
307 	NFSERR_NXIO,
308 	NFSERR_ACCES,
309 	NFSERR_INVAL,
310 	NFSERR_STALE,
311 	NFSERR_BADHANDLE,
312 	NFSERR_SERVERFAULT,
313 	NFSERR_JUKEBOX,
314 	0,
315 };
316 
317 static const short nfsv3err_write[] = {
318 	NFSERR_IO,
319 	NFSERR_IO,
320 	NFSERR_ACCES,
321 	NFSERR_INVAL,
322 	NFSERR_FBIG,
323 	NFSERR_NOSPC,
324 	NFSERR_ROFS,
325 	NFSERR_DQUOT,
326 	NFSERR_STALE,
327 	NFSERR_BADHANDLE,
328 	NFSERR_SERVERFAULT,
329 	NFSERR_JUKEBOX,
330 	0,
331 };
332 
333 static const short nfsv3err_create[] = {
334 	NFSERR_IO,
335 	NFSERR_IO,
336 	NFSERR_ACCES,
337 	NFSERR_EXIST,
338 	NFSERR_NOTDIR,
339 	NFSERR_NOSPC,
340 	NFSERR_ROFS,
341 	NFSERR_NAMETOL,
342 	NFSERR_DQUOT,
343 	NFSERR_STALE,
344 	NFSERR_BADHANDLE,
345 	NFSERR_NOTSUPP,
346 	NFSERR_SERVERFAULT,
347 	0,
348 };
349 
350 static const short nfsv3err_mkdir[] = {
351 	NFSERR_IO,
352 	NFSERR_IO,
353 	NFSERR_ACCES,
354 	NFSERR_EXIST,
355 	NFSERR_NOTDIR,
356 	NFSERR_NOSPC,
357 	NFSERR_ROFS,
358 	NFSERR_NAMETOL,
359 	NFSERR_DQUOT,
360 	NFSERR_STALE,
361 	NFSERR_BADHANDLE,
362 	NFSERR_NOTSUPP,
363 	NFSERR_SERVERFAULT,
364 	0,
365 };
366 
367 static const short nfsv3err_symlink[] = {
368 	NFSERR_IO,
369 	NFSERR_IO,
370 	NFSERR_ACCES,
371 	NFSERR_EXIST,
372 	NFSERR_NOTDIR,
373 	NFSERR_NOSPC,
374 	NFSERR_ROFS,
375 	NFSERR_NAMETOL,
376 	NFSERR_DQUOT,
377 	NFSERR_STALE,
378 	NFSERR_BADHANDLE,
379 	NFSERR_NOTSUPP,
380 	NFSERR_SERVERFAULT,
381 	0,
382 };
383 
384 static const short nfsv3err_mknod[] = {
385 	NFSERR_IO,
386 	NFSERR_IO,
387 	NFSERR_ACCES,
388 	NFSERR_EXIST,
389 	NFSERR_NOTDIR,
390 	NFSERR_NOSPC,
391 	NFSERR_ROFS,
392 	NFSERR_NAMETOL,
393 	NFSERR_DQUOT,
394 	NFSERR_STALE,
395 	NFSERR_BADHANDLE,
396 	NFSERR_NOTSUPP,
397 	NFSERR_SERVERFAULT,
398 	NFSERR_BADTYPE,
399 	0,
400 };
401 
402 static const short nfsv3err_remove[] = {
403 	NFSERR_IO,
404 	NFSERR_NOENT,
405 	NFSERR_IO,
406 	NFSERR_ACCES,
407 	NFSERR_NOTDIR,
408 	NFSERR_ROFS,
409 	NFSERR_NAMETOL,
410 	NFSERR_STALE,
411 	NFSERR_BADHANDLE,
412 	NFSERR_SERVERFAULT,
413 	0,
414 };
415 
416 static const short nfsv3err_rmdir[] = {
417 	NFSERR_IO,
418 	NFSERR_NOENT,
419 	NFSERR_IO,
420 	NFSERR_ACCES,
421 	NFSERR_EXIST,
422 	NFSERR_NOTDIR,
423 	NFSERR_INVAL,
424 	NFSERR_ROFS,
425 	NFSERR_NAMETOL,
426 	NFSERR_NOTEMPTY,
427 	NFSERR_STALE,
428 	NFSERR_BADHANDLE,
429 	NFSERR_NOTSUPP,
430 	NFSERR_SERVERFAULT,
431 	0,
432 };
433 
434 static const short nfsv3err_rename[] = {
435 	NFSERR_IO,
436 	NFSERR_NOENT,
437 	NFSERR_IO,
438 	NFSERR_ACCES,
439 	NFSERR_EXIST,
440 	NFSERR_XDEV,
441 	NFSERR_NOTDIR,
442 	NFSERR_ISDIR,
443 	NFSERR_INVAL,
444 	NFSERR_NOSPC,
445 	NFSERR_ROFS,
446 	NFSERR_MLINK,
447 	NFSERR_NAMETOL,
448 	NFSERR_NOTEMPTY,
449 	NFSERR_DQUOT,
450 	NFSERR_STALE,
451 	NFSERR_BADHANDLE,
452 	NFSERR_NOTSUPP,
453 	NFSERR_SERVERFAULT,
454 	0,
455 };
456 
457 static const short nfsv3err_link[] = {
458 	NFSERR_IO,
459 	NFSERR_IO,
460 	NFSERR_ACCES,
461 	NFSERR_EXIST,
462 	NFSERR_XDEV,
463 	NFSERR_NOTDIR,
464 	NFSERR_INVAL,
465 	NFSERR_NOSPC,
466 	NFSERR_ROFS,
467 	NFSERR_MLINK,
468 	NFSERR_NAMETOL,
469 	NFSERR_DQUOT,
470 	NFSERR_STALE,
471 	NFSERR_BADHANDLE,
472 	NFSERR_NOTSUPP,
473 	NFSERR_SERVERFAULT,
474 	0,
475 };
476 
477 static const short nfsv3err_readdir[] = {
478 	NFSERR_IO,
479 	NFSERR_IO,
480 	NFSERR_ACCES,
481 	NFSERR_NOTDIR,
482 	NFSERR_STALE,
483 	NFSERR_BADHANDLE,
484 	NFSERR_BAD_COOKIE,
485 	NFSERR_TOOSMALL,
486 	NFSERR_SERVERFAULT,
487 	0,
488 };
489 
490 static const short nfsv3err_readdirplus[] = {
491 	NFSERR_IO,
492 	NFSERR_IO,
493 	NFSERR_ACCES,
494 	NFSERR_NOTDIR,
495 	NFSERR_STALE,
496 	NFSERR_BADHANDLE,
497 	NFSERR_BAD_COOKIE,
498 	NFSERR_NOTSUPP,
499 	NFSERR_TOOSMALL,
500 	NFSERR_SERVERFAULT,
501 	0,
502 };
503 
504 static const short nfsv3err_fsstat[] = {
505 	NFSERR_IO,
506 	NFSERR_IO,
507 	NFSERR_STALE,
508 	NFSERR_BADHANDLE,
509 	NFSERR_SERVERFAULT,
510 	0,
511 };
512 
513 static const short nfsv3err_fsinfo[] = {
514 	NFSERR_STALE,
515 	NFSERR_STALE,
516 	NFSERR_BADHANDLE,
517 	NFSERR_SERVERFAULT,
518 	0,
519 };
520 
521 static const short nfsv3err_pathconf[] = {
522 	NFSERR_STALE,
523 	NFSERR_STALE,
524 	NFSERR_BADHANDLE,
525 	NFSERR_SERVERFAULT,
526 	0,
527 };
528 
529 static const short nfsv3err_commit[] = {
530 	NFSERR_IO,
531 	NFSERR_IO,
532 	NFSERR_STALE,
533 	NFSERR_BADHANDLE,
534 	NFSERR_SERVERFAULT,
535 	0,
536 };
537 
538 static const short * const nfsrv_v3errmap[] = {
539 	nfsv3err_null,
540 	nfsv3err_getattr,
541 	nfsv3err_setattr,
542 	nfsv3err_lookup,
543 	nfsv3err_access,
544 	nfsv3err_readlink,
545 	nfsv3err_read,
546 	nfsv3err_write,
547 	nfsv3err_create,
548 	nfsv3err_mkdir,
549 	nfsv3err_symlink,
550 	nfsv3err_mknod,
551 	nfsv3err_remove,
552 	nfsv3err_rmdir,
553 	nfsv3err_rename,
554 	nfsv3err_link,
555 	nfsv3err_readdir,
556 	nfsv3err_readdirplus,
557 	nfsv3err_fsstat,
558 	nfsv3err_fsinfo,
559 	nfsv3err_pathconf,
560 	nfsv3err_commit,
561 };
562 
563 extern struct nfsrtt nfsrtt;
564 
565 u_long nfsdirhashmask;
566 
567 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
568 
569 /*
570  * Create the header for an rpc request packet
571  * The hsiz is the size of the rest of the nfs request header.
572  * (just used to decide if a cluster is a good idea)
573  */
574 struct mbuf *
575 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
576 {
577 	struct mbuf *mb;
578 	char *bpos;
579 
580 	mb = m_get(M_WAIT, MT_DATA);
581 	MCLAIM(mb, &nfs_mowner);
582 	if (hsiz >= MINCLSIZE)
583 		m_clget(mb, M_WAIT);
584 	mb->m_len = 0;
585 	bpos = mtod(mb, void *);
586 
587 	/* Finally, return values */
588 	*bposp = bpos;
589 	return (mb);
590 }
591 
592 /*
593  * Build the RPC header and fill in the authorization info.
594  * The authorization string argument is only used when the credentials
595  * come from outside of the kernel.
596  * Returns the head of the mbuf list.
597  */
598 struct mbuf *
599 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
600 	int auth_type, int auth_len, char *auth_str, int verf_len,
601 	char *verf_str, struct mbuf *mrest, int mrest_len,
602 	struct mbuf **mbp, uint32_t *xidp)
603 {
604 	struct mbuf *mb;
605 	u_int32_t *tl;
606 	char *bpos;
607 	int i;
608 	struct mbuf *mreq;
609 	int siz, grpsiz, authsiz;
610 
611 	authsiz = nfsm_rndup(auth_len);
612 	mb = m_gethdr(M_WAIT, MT_DATA);
613 	MCLAIM(mb, &nfs_mowner);
614 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
615 		m_clget(mb, M_WAIT);
616 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
617 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
618 	} else {
619 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
620 	}
621 	mb->m_len = 0;
622 	mreq = mb;
623 	bpos = mtod(mb, void *);
624 
625 	/*
626 	 * First the RPC header.
627 	 */
628 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
629 
630 	*tl++ = *xidp = nfs_getxid();
631 	*tl++ = rpc_call;
632 	*tl++ = rpc_vers;
633 	*tl++ = txdr_unsigned(NFS_PROG);
634 	if (nmflag & NFSMNT_NFSV3)
635 		*tl++ = txdr_unsigned(NFS_VER3);
636 	else
637 		*tl++ = txdr_unsigned(NFS_VER2);
638 	if (nmflag & NFSMNT_NFSV3)
639 		*tl++ = txdr_unsigned(procid);
640 	else
641 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
642 
643 	/*
644 	 * And then the authorization cred.
645 	 */
646 	*tl++ = txdr_unsigned(auth_type);
647 	*tl = txdr_unsigned(authsiz);
648 	switch (auth_type) {
649 	case RPCAUTH_UNIX:
650 		nfsm_build(tl, u_int32_t *, auth_len);
651 		*tl++ = 0;		/* stamp ?? */
652 		*tl++ = 0;		/* NULL hostname */
653 		*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
654 		*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
655 		grpsiz = (auth_len >> 2) - 5;
656 		*tl++ = txdr_unsigned(grpsiz);
657 		for (i = 0; i < grpsiz; i++)
658 			*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
659 		break;
660 	case RPCAUTH_KERB4:
661 		siz = auth_len;
662 		while (siz > 0) {
663 			if (M_TRAILINGSPACE(mb) == 0) {
664 				struct mbuf *mb2;
665 				mb2 = m_get(M_WAIT, MT_DATA);
666 				MCLAIM(mb2, &nfs_mowner);
667 				if (siz >= MINCLSIZE)
668 					m_clget(mb2, M_WAIT);
669 				mb->m_next = mb2;
670 				mb = mb2;
671 				mb->m_len = 0;
672 				bpos = mtod(mb, void *);
673 			}
674 			i = min(siz, M_TRAILINGSPACE(mb));
675 			memcpy(bpos, auth_str, i);
676 			mb->m_len += i;
677 			auth_str += i;
678 			bpos += i;
679 			siz -= i;
680 		}
681 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
682 			for (i = 0; i < siz; i++)
683 				*bpos++ = '\0';
684 			mb->m_len += siz;
685 		}
686 		break;
687 	};
688 
689 	/*
690 	 * And the verifier...
691 	 */
692 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
693 	if (verf_str) {
694 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
695 		*tl = txdr_unsigned(verf_len);
696 		siz = verf_len;
697 		while (siz > 0) {
698 			if (M_TRAILINGSPACE(mb) == 0) {
699 				struct mbuf *mb2;
700 				mb2 = m_get(M_WAIT, MT_DATA);
701 				MCLAIM(mb2, &nfs_mowner);
702 				if (siz >= MINCLSIZE)
703 					m_clget(mb2, M_WAIT);
704 				mb->m_next = mb2;
705 				mb = mb2;
706 				mb->m_len = 0;
707 				bpos = mtod(mb, void *);
708 			}
709 			i = min(siz, M_TRAILINGSPACE(mb));
710 			memcpy(bpos, verf_str, i);
711 			mb->m_len += i;
712 			verf_str += i;
713 			bpos += i;
714 			siz -= i;
715 		}
716 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
717 			for (i = 0; i < siz; i++)
718 				*bpos++ = '\0';
719 			mb->m_len += siz;
720 		}
721 	} else {
722 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
723 		*tl = 0;
724 	}
725 	mb->m_next = mrest;
726 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
727 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
728 	*mbp = mb;
729 	return (mreq);
730 }
731 
732 /*
733  * copies mbuf chain to the uio scatter/gather list
734  */
735 int
736 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
737 {
738 	char *mbufcp, *uiocp;
739 	int xfer, left, len;
740 	struct mbuf *mp;
741 	long uiosiz, rem;
742 	int error = 0;
743 
744 	mp = *mrep;
745 	mbufcp = *dpos;
746 	len = mtod(mp, char *) + mp->m_len - mbufcp;
747 	rem = nfsm_rndup(siz)-siz;
748 	while (siz > 0) {
749 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
750 			return (EFBIG);
751 		left = uiop->uio_iov->iov_len;
752 		uiocp = uiop->uio_iov->iov_base;
753 		if (left > siz)
754 			left = siz;
755 		uiosiz = left;
756 		while (left > 0) {
757 			while (len == 0) {
758 				mp = mp->m_next;
759 				if (mp == NULL)
760 					return (EBADRPC);
761 				mbufcp = mtod(mp, void *);
762 				len = mp->m_len;
763 			}
764 			xfer = (left > len) ? len : left;
765 			error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
766 			    uiocp, xfer);
767 			if (error) {
768 				return error;
769 			}
770 			left -= xfer;
771 			len -= xfer;
772 			mbufcp += xfer;
773 			uiocp += xfer;
774 			uiop->uio_offset += xfer;
775 			uiop->uio_resid -= xfer;
776 		}
777 		if (uiop->uio_iov->iov_len <= siz) {
778 			uiop->uio_iovcnt--;
779 			uiop->uio_iov++;
780 		} else {
781 			uiop->uio_iov->iov_base =
782 			    (char *)uiop->uio_iov->iov_base + uiosiz;
783 			uiop->uio_iov->iov_len -= uiosiz;
784 		}
785 		siz -= uiosiz;
786 	}
787 	*dpos = mbufcp;
788 	*mrep = mp;
789 	if (rem > 0) {
790 		if (len < rem)
791 			error = nfs_adv(mrep, dpos, rem, len);
792 		else
793 			*dpos += rem;
794 	}
795 	return (error);
796 }
797 
798 /*
799  * copies a uio scatter/gather list to an mbuf chain.
800  * NOTE: can ony handle iovcnt == 1
801  */
802 int
803 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
804 {
805 	char *uiocp;
806 	struct mbuf *mp, *mp2;
807 	int xfer, left, mlen;
808 	int uiosiz, clflg, rem;
809 	char *cp;
810 	int error;
811 
812 #ifdef DIAGNOSTIC
813 	if (uiop->uio_iovcnt != 1)
814 		panic("nfsm_uiotombuf: iovcnt != 1");
815 #endif
816 
817 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
818 		clflg = 1;
819 	else
820 		clflg = 0;
821 	rem = nfsm_rndup(siz)-siz;
822 	mp = mp2 = *mq;
823 	while (siz > 0) {
824 		left = uiop->uio_iov->iov_len;
825 		uiocp = uiop->uio_iov->iov_base;
826 		if (left > siz)
827 			left = siz;
828 		uiosiz = left;
829 		while (left > 0) {
830 			mlen = M_TRAILINGSPACE(mp);
831 			if (mlen == 0) {
832 				mp = m_get(M_WAIT, MT_DATA);
833 				MCLAIM(mp, &nfs_mowner);
834 				if (clflg)
835 					m_clget(mp, M_WAIT);
836 				mp->m_len = 0;
837 				mp2->m_next = mp;
838 				mp2 = mp;
839 				mlen = M_TRAILINGSPACE(mp);
840 			}
841 			xfer = (left > mlen) ? mlen : left;
842 			cp = mtod(mp, char *) + mp->m_len;
843 			error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
844 			    xfer);
845 			if (error) {
846 				/* XXX */
847 			}
848 			mp->m_len += xfer;
849 			left -= xfer;
850 			uiocp += xfer;
851 			uiop->uio_offset += xfer;
852 			uiop->uio_resid -= xfer;
853 		}
854 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
855 		    uiosiz;
856 		uiop->uio_iov->iov_len -= uiosiz;
857 		siz -= uiosiz;
858 	}
859 	if (rem > 0) {
860 		if (rem > M_TRAILINGSPACE(mp)) {
861 			mp = m_get(M_WAIT, MT_DATA);
862 			MCLAIM(mp, &nfs_mowner);
863 			mp->m_len = 0;
864 			mp2->m_next = mp;
865 		}
866 		cp = mtod(mp, char *) + mp->m_len;
867 		for (left = 0; left < rem; left++)
868 			*cp++ = '\0';
869 		mp->m_len += rem;
870 		*bpos = cp;
871 	} else
872 		*bpos = mtod(mp, char *) + mp->m_len;
873 	*mq = mp;
874 	return (0);
875 }
876 
877 /*
878  * Get at least "siz" bytes of correctly aligned data.
879  * When called the mbuf pointers are not necessarily correct,
880  * dsosp points to what ought to be in m_data and left contains
881  * what ought to be in m_len.
882  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
883  * cases. (The macros use the vars. dpos and dpos2)
884  */
885 int
886 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
887 {
888 	struct mbuf *m1, *m2;
889 	struct mbuf *havebuf = NULL;
890 	char *src = *dposp;
891 	char *dst;
892 	int len;
893 
894 #ifdef DEBUG
895 	if (left < 0)
896 		panic("nfsm_disct: left < 0");
897 #endif
898 	m1 = *mdp;
899 	/*
900 	 * Skip through the mbuf chain looking for an mbuf with
901 	 * some data. If the first mbuf found has enough data
902 	 * and it is correctly aligned return it.
903 	 */
904 	while (left == 0) {
905 		havebuf = m1;
906 		*mdp = m1 = m1->m_next;
907 		if (m1 == NULL)
908 			return (EBADRPC);
909 		src = mtod(m1, void *);
910 		left = m1->m_len;
911 		/*
912 		 * If we start a new mbuf and it is big enough
913 		 * and correctly aligned just return it, don't
914 		 * do any pull up.
915 		 */
916 		if (left >= siz && nfsm_aligned(src)) {
917 			*cp2 = src;
918 			*dposp = src + siz;
919 			return (0);
920 		}
921 	}
922 	if ((m1->m_flags & M_EXT) != 0) {
923 		if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
924 		    nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
925 			/*
926 			 * If the first mbuf with data has external data
927 			 * and there is a previous mbuf with some trailing
928 			 * space, use it to move the data into.
929 			 */
930 			m2 = m1;
931 			*mdp = m1 = havebuf;
932 			*cp2 = mtod(m1, char *) + m1->m_len;
933 		} else if (havebuf) {
934 			/*
935 			 * If the first mbuf has a external data
936 			 * and there is no previous empty mbuf
937 			 * allocate a new mbuf and move the external
938 			 * data to the new mbuf. Also make the first
939 			 * mbuf look empty.
940 			 */
941 			m2 = m1;
942 			*mdp = m1 = m_get(M_WAIT, MT_DATA);
943 			MCLAIM(m1, m2->m_owner);
944 			if ((m2->m_flags & M_PKTHDR) != 0) {
945 				/* XXX MOVE */
946 				M_COPY_PKTHDR(m1, m2);
947 				m_tag_delete_chain(m2, NULL);
948 				m2->m_flags &= ~M_PKTHDR;
949 			}
950 			if (havebuf) {
951 				havebuf->m_next = m1;
952 			}
953 			m1->m_next = m2;
954 			MRESETDATA(m1);
955 			m1->m_len = 0;
956 			m2->m_data = src;
957 			m2->m_len = left;
958 			*cp2 = mtod(m1, char *);
959 		} else {
960 			struct mbuf **nextp = &m1->m_next;
961 
962 			m1->m_len -= left;
963 			do {
964 				m2 = m_get(M_WAIT, MT_DATA);
965 				MCLAIM(m2, m1->m_owner);
966 				if (left >= MINCLSIZE) {
967 					MCLGET(m2, M_WAIT);
968 				}
969 				m2->m_next = *nextp;
970 				*nextp = m2;
971 				nextp = &m2->m_next;
972 				len = (m2->m_flags & M_EXT) != 0 ?
973 				    MCLBYTES : MLEN;
974 				if (len > left) {
975 					len = left;
976 				}
977 				memcpy(mtod(m2, char *), src, len);
978 				m2->m_len = len;
979 				src += len;
980 				left -= len;
981 			} while (left > 0);
982 			*mdp = m1 = m1->m_next;
983 			m2 = m1->m_next;
984 			*cp2 = mtod(m1, char *);
985 		}
986 	} else {
987 		/*
988 		 * If the first mbuf has no external data
989 		 * move the data to the front of the mbuf.
990 		 */
991 		MRESETDATA(m1);
992 		dst = mtod(m1, char *);
993 		if (dst != src) {
994 			memmove(dst, src, left);
995 		}
996 		m1->m_len = left;
997 		m2 = m1->m_next;
998 		*cp2 = m1->m_data;
999 	}
1000 	*dposp = *cp2 + siz;
1001 	/*
1002 	 * Loop through mbufs pulling data up into first mbuf until
1003 	 * the first mbuf is full or there is no more data to
1004 	 * pullup.
1005 	 */
1006 	dst = mtod(m1, char *) + m1->m_len;
1007 	while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1008 		if ((len = min(len, m2->m_len)) != 0) {
1009 			memcpy(dst, mtod(m2, char *), len);
1010 		}
1011 		m1->m_len += len;
1012 		dst += len;
1013 		m2->m_data += len;
1014 		m2->m_len -= len;
1015 		m2 = m2->m_next;
1016 	}
1017 	if (m1->m_len < siz)
1018 		return (EBADRPC);
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Advance the position in the mbuf chain.
1024  */
1025 int
1026 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
1027 {
1028 	struct mbuf *m;
1029 	int s;
1030 
1031 	m = *mdp;
1032 	s = left;
1033 	while (s < offs) {
1034 		offs -= s;
1035 		m = m->m_next;
1036 		if (m == NULL)
1037 			return (EBADRPC);
1038 		s = m->m_len;
1039 	}
1040 	*mdp = m;
1041 	*dposp = mtod(m, char *) + offs;
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Copy a string into mbufs for the hard cases...
1047  */
1048 int
1049 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
1050 {
1051 	struct mbuf *m1 = NULL, *m2;
1052 	long left, xfer, len, tlen;
1053 	u_int32_t *tl;
1054 	int putsize;
1055 
1056 	putsize = 1;
1057 	m2 = *mb;
1058 	left = M_TRAILINGSPACE(m2);
1059 	if (left > 0) {
1060 		tl = ((u_int32_t *)(*bpos));
1061 		*tl++ = txdr_unsigned(siz);
1062 		putsize = 0;
1063 		left -= NFSX_UNSIGNED;
1064 		m2->m_len += NFSX_UNSIGNED;
1065 		if (left > 0) {
1066 			memcpy((void *) tl, cp, left);
1067 			siz -= left;
1068 			cp += left;
1069 			m2->m_len += left;
1070 			left = 0;
1071 		}
1072 	}
1073 	/* Loop around adding mbufs */
1074 	while (siz > 0) {
1075 		m1 = m_get(M_WAIT, MT_DATA);
1076 		MCLAIM(m1, &nfs_mowner);
1077 		if (siz > MLEN)
1078 			m_clget(m1, M_WAIT);
1079 		m1->m_len = NFSMSIZ(m1);
1080 		m2->m_next = m1;
1081 		m2 = m1;
1082 		tl = mtod(m1, u_int32_t *);
1083 		tlen = 0;
1084 		if (putsize) {
1085 			*tl++ = txdr_unsigned(siz);
1086 			m1->m_len -= NFSX_UNSIGNED;
1087 			tlen = NFSX_UNSIGNED;
1088 			putsize = 0;
1089 		}
1090 		if (siz < m1->m_len) {
1091 			len = nfsm_rndup(siz);
1092 			xfer = siz;
1093 			if (xfer < len)
1094 				*(tl+(xfer>>2)) = 0;
1095 		} else {
1096 			xfer = len = m1->m_len;
1097 		}
1098 		memcpy((void *) tl, cp, xfer);
1099 		m1->m_len = len+tlen;
1100 		siz -= xfer;
1101 		cp += xfer;
1102 	}
1103 	*mb = m1;
1104 	*bpos = mtod(m1, char *) + m1->m_len;
1105 	return (0);
1106 }
1107 
1108 /*
1109  * Directory caching routines. They work as follows:
1110  * - a cache is maintained per VDIR nfsnode.
1111  * - for each offset cookie that is exported to userspace, and can
1112  *   thus be thrown back at us as an offset to VOP_READDIR, store
1113  *   information in the cache.
1114  * - cached are:
1115  *   - cookie itself
1116  *   - blocknumber (essentially just a search key in the buffer cache)
1117  *   - entry number in block.
1118  *   - offset cookie of block in which this entry is stored
1119  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1120  * - entries are looked up in a hash table
1121  * - also maintained is an LRU list of entries, used to determine
1122  *   which ones to delete if the cache grows too large.
1123  * - if 32 <-> 64 translation mode is requested for a filesystem,
1124  *   the cache also functions as a translation table
1125  * - in the translation case, invalidating the cache does not mean
1126  *   flushing it, but just marking entries as invalid, except for
1127  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
1128  *   still be able to use the cache as a translation table.
1129  * - 32 bit cookies are uniquely created by combining the hash table
1130  *   entry value, and one generation count per hash table entry,
1131  *   incremented each time an entry is appended to the chain.
1132  * - the cache is invalidated each time a direcory is modified
1133  * - sanity checks are also done; if an entry in a block turns
1134  *   out not to have a matching cookie, the cache is invalidated
1135  *   and a new block starting from the wanted offset is fetched from
1136  *   the server.
1137  * - directory entries as read from the server are extended to contain
1138  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
1139  *   the cache and exporting them to userspace through the cookie
1140  *   argument to VOP_READDIR.
1141  */
1142 
1143 u_long
1144 nfs_dirhash(off_t off)
1145 {
1146 	int i;
1147 	char *cp = (char *)&off;
1148 	u_long sum = 0L;
1149 
1150 	for (i = 0 ; i < sizeof (off); i++)
1151 		sum += *cp++;
1152 
1153 	return sum;
1154 }
1155 
1156 #define	_NFSDC_MTX(np)		(&NFSTOV(np)->v_interlock)
1157 #define	NFSDC_LOCK(np)		mutex_enter(_NFSDC_MTX(np))
1158 #define	NFSDC_UNLOCK(np)	mutex_exit(_NFSDC_MTX(np))
1159 #define	NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1160 
1161 void
1162 nfs_initdircache(struct vnode *vp)
1163 {
1164 	struct nfsnode *np = VTONFS(vp);
1165 	struct nfsdirhashhead *dircache;
1166 
1167 	dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1168 	    &nfsdirhashmask);
1169 
1170 	NFSDC_LOCK(np);
1171 	if (np->n_dircache == NULL) {
1172 		np->n_dircachesize = 0;
1173 		np->n_dircache = dircache;
1174 		dircache = NULL;
1175 		TAILQ_INIT(&np->n_dirchain);
1176 	}
1177 	NFSDC_UNLOCK(np);
1178 	if (dircache)
1179 		hashdone(dircache, HASH_LIST, nfsdirhashmask);
1180 }
1181 
1182 void
1183 nfs_initdirxlatecookie(struct vnode *vp)
1184 {
1185 	struct nfsnode *np = VTONFS(vp);
1186 	unsigned *dirgens;
1187 
1188 	KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1189 
1190 	dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1191 	NFSDC_LOCK(np);
1192 	if (np->n_dirgens == NULL) {
1193 		np->n_dirgens = dirgens;
1194 		dirgens = NULL;
1195 	}
1196 	NFSDC_UNLOCK(np);
1197 	if (dirgens)
1198 		kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1199 }
1200 
1201 static const struct nfsdircache dzero;
1202 
1203 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
1204 static void nfs_putdircache_unlocked(struct nfsnode *,
1205     struct nfsdircache *);
1206 
1207 static void
1208 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
1209 {
1210 
1211 	NFSDC_ASSERT_LOCKED(np);
1212 	KASSERT(ndp != &dzero);
1213 
1214 	if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1215 		return;
1216 
1217 	TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1218 	LIST_REMOVE(ndp, dc_hash);
1219 	LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1220 
1221 	nfs_putdircache_unlocked(np, ndp);
1222 }
1223 
1224 void
1225 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
1226 {
1227 	int ref;
1228 
1229 	if (ndp == &dzero)
1230 		return;
1231 
1232 	KASSERT(ndp->dc_refcnt > 0);
1233 	NFSDC_LOCK(np);
1234 	ref = --ndp->dc_refcnt;
1235 	NFSDC_UNLOCK(np);
1236 
1237 	if (ref == 0)
1238 		kmem_free(ndp, sizeof(*ndp));
1239 }
1240 
1241 static void
1242 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1243 {
1244 	int ref;
1245 
1246 	NFSDC_ASSERT_LOCKED(np);
1247 
1248 	if (ndp == &dzero)
1249 		return;
1250 
1251 	KASSERT(ndp->dc_refcnt > 0);
1252 	ref = --ndp->dc_refcnt;
1253 	if (ref == 0)
1254 		kmem_free(ndp, sizeof(*ndp));
1255 }
1256 
1257 struct nfsdircache *
1258 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
1259 {
1260 	struct nfsdirhashhead *ndhp;
1261 	struct nfsdircache *ndp = NULL;
1262 	struct nfsnode *np = VTONFS(vp);
1263 	unsigned ent;
1264 
1265 	/*
1266 	 * Zero is always a valid cookie.
1267 	 */
1268 	if (off == 0)
1269 		/* XXXUNCONST */
1270 		return (struct nfsdircache *)__UNCONST(&dzero);
1271 
1272 	if (!np->n_dircache)
1273 		return NULL;
1274 
1275 	/*
1276 	 * We use a 32bit cookie as search key, directly reconstruct
1277 	 * the hashentry. Else use the hashfunction.
1278 	 */
1279 	if (do32) {
1280 		ent = (u_int32_t)off >> 24;
1281 		if (ent >= NFS_DIRHASHSIZ)
1282 			return NULL;
1283 		ndhp = &np->n_dircache[ent];
1284 	} else {
1285 		ndhp = NFSDIRHASH(np, off);
1286 	}
1287 
1288 	if (hashent)
1289 		*hashent = (int)(ndhp - np->n_dircache);
1290 
1291 	NFSDC_LOCK(np);
1292 	if (do32) {
1293 		LIST_FOREACH(ndp, ndhp, dc_hash) {
1294 			if (ndp->dc_cookie32 == (u_int32_t)off) {
1295 				/*
1296 				 * An invalidated entry will become the
1297 				 * start of a new block fetched from
1298 				 * the server.
1299 				 */
1300 				if (ndp->dc_flags & NFSDC_INVALID) {
1301 					ndp->dc_blkcookie = ndp->dc_cookie;
1302 					ndp->dc_entry = 0;
1303 					ndp->dc_flags &= ~NFSDC_INVALID;
1304 				}
1305 				break;
1306 			}
1307 		}
1308 	} else {
1309 		LIST_FOREACH(ndp, ndhp, dc_hash) {
1310 			if (ndp->dc_cookie == off)
1311 				break;
1312 		}
1313 	}
1314 	if (ndp != NULL)
1315 		ndp->dc_refcnt++;
1316 	NFSDC_UNLOCK(np);
1317 	return ndp;
1318 }
1319 
1320 
1321 struct nfsdircache *
1322 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1323     daddr_t blkno)
1324 {
1325 	struct nfsnode *np = VTONFS(vp);
1326 	struct nfsdirhashhead *ndhp;
1327 	struct nfsdircache *ndp = NULL;
1328 	struct nfsdircache *newndp = NULL;
1329 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1330 	int hashent = 0, gen, overwrite;	/* XXX: GCC */
1331 
1332 	/*
1333 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
1334 	 * cookie 0 for the '.' entry, making this necessary. This
1335 	 * isn't so bad, as 0 is a special case anyway.
1336 	 */
1337 	if (off == 0)
1338 		/* XXXUNCONST */
1339 		return (struct nfsdircache *)__UNCONST(&dzero);
1340 
1341 	if (!np->n_dircache)
1342 		/*
1343 		 * XXX would like to do this in nfs_nget but vtype
1344 		 * isn't known at that time.
1345 		 */
1346 		nfs_initdircache(vp);
1347 
1348 	if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1349 		nfs_initdirxlatecookie(vp);
1350 
1351 retry:
1352 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
1353 
1354 	NFSDC_LOCK(np);
1355 	if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1356 		/*
1357 		 * Overwriting an old entry. Check if it's the same.
1358 		 * If so, just return. If not, remove the old entry.
1359 		 */
1360 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1361 			goto done;
1362 		nfs_unlinkdircache(np, ndp);
1363 		nfs_putdircache_unlocked(np, ndp);
1364 		ndp = NULL;
1365 	}
1366 
1367 	ndhp = &np->n_dircache[hashent];
1368 
1369 	if (!ndp) {
1370 		if (newndp == NULL) {
1371 			NFSDC_UNLOCK(np);
1372 			newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1373 			newndp->dc_refcnt = 1;
1374 			LIST_NEXT(newndp, dc_hash) = (void *)-1;
1375 			goto retry;
1376 		}
1377 		ndp = newndp;
1378 		newndp = NULL;
1379 		overwrite = 0;
1380 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1381 			/*
1382 			 * We're allocating a new entry, so bump the
1383 			 * generation number.
1384 			 */
1385 			KASSERT(np->n_dirgens);
1386 			gen = ++np->n_dirgens[hashent];
1387 			if (gen == 0) {
1388 				np->n_dirgens[hashent]++;
1389 				gen++;
1390 			}
1391 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1392 		}
1393 	} else
1394 		overwrite = 1;
1395 
1396 	ndp->dc_cookie = off;
1397 	ndp->dc_blkcookie = blkoff;
1398 	ndp->dc_entry = en;
1399 	ndp->dc_flags = 0;
1400 
1401 	if (overwrite)
1402 		goto done;
1403 
1404 	/*
1405 	 * If the maximum directory cookie cache size has been reached
1406 	 * for this node, take one off the front. The idea is that
1407 	 * directories are typically read front-to-back once, so that
1408 	 * the oldest entries can be thrown away without much performance
1409 	 * loss.
1410 	 */
1411 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1412 		nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1413 	} else
1414 		np->n_dircachesize++;
1415 
1416 	KASSERT(ndp->dc_refcnt == 1);
1417 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1418 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1419 	ndp->dc_refcnt++;
1420 done:
1421 	KASSERT(ndp->dc_refcnt > 0);
1422 	NFSDC_UNLOCK(np);
1423 	if (newndp)
1424 		nfs_putdircache(np, newndp);
1425 	return ndp;
1426 }
1427 
1428 void
1429 nfs_invaldircache(struct vnode *vp, int flags)
1430 {
1431 	struct nfsnode *np = VTONFS(vp);
1432 	struct nfsdircache *ndp = NULL;
1433 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1434 	const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1435 
1436 #ifdef DIAGNOSTIC
1437 	if (vp->v_type != VDIR)
1438 		panic("nfs: invaldircache: not dir");
1439 #endif
1440 
1441 	if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1442 		np->n_flag &= ~NEOFVALID;
1443 
1444 	if (!np->n_dircache)
1445 		return;
1446 
1447 	NFSDC_LOCK(np);
1448 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1449 		while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1450 			KASSERT(!forcefree || ndp->dc_refcnt == 1);
1451 			nfs_unlinkdircache(np, ndp);
1452 		}
1453 		np->n_dircachesize = 0;
1454 		if (forcefree && np->n_dirgens) {
1455 			kmem_free(np->n_dirgens,
1456 			    NFS_DIRHASHSIZ * sizeof(unsigned));
1457 			np->n_dirgens = NULL;
1458 		}
1459 	} else {
1460 		TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1461 			ndp->dc_flags |= NFSDC_INVALID;
1462 	}
1463 
1464 	NFSDC_UNLOCK(np);
1465 }
1466 
1467 /*
1468  * Called once before VFS init to initialize shared and
1469  * server-specific data structures.
1470  */
1471 static int
1472 nfs_init0(void)
1473 {
1474 
1475 	nfsrtt.pos = 0;
1476 	rpc_vers = txdr_unsigned(RPC_VER2);
1477 	rpc_call = txdr_unsigned(RPC_CALL);
1478 	rpc_reply = txdr_unsigned(RPC_REPLY);
1479 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1480 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1481 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1482 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1483 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1484 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1485 	nfs_prog = txdr_unsigned(NFS_PROG);
1486 	nfs_true = txdr_unsigned(true);
1487 	nfs_false = txdr_unsigned(false);
1488 	nfs_xdrneg1 = txdr_unsigned(-1);
1489 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1490 	if (nfs_ticks < 1)
1491 		nfs_ticks = 1;
1492 	nfs_xid = arc4random();
1493 	nfsdreq_init();
1494 
1495 	/*
1496 	 * Initialize reply list and start timer
1497 	 */
1498 	TAILQ_INIT(&nfs_reqq);
1499 	nfs_timer_init();
1500 	MOWNER_ATTACH(&nfs_mowner);
1501 
1502 #ifdef NFS
1503 	/* Initialize the kqueue structures */
1504 	nfs_kqinit();
1505 	/* Initialize the iod structures */
1506 	nfs_iodinit();
1507 #endif
1508 
1509 	return 0;
1510 }
1511 
1512 /*
1513  * This is disgusting, but it must support both modular and monolothic
1514  * configurations.  For monolithic builds NFSSERVER may not imply NFS.
1515  *
1516  * Yuck.
1517  */
1518 void
1519 nfs_init(void)
1520 {
1521 	static ONCE_DECL(nfs_init_once);
1522 
1523 	RUN_ONCE(&nfs_init_once, nfs_init0);
1524 }
1525 
1526 void
1527 nfs_fini(void)
1528 {
1529 
1530 #ifdef NFS
1531 	nfs_kqfini();
1532 	nfs_iodfini();
1533 #endif
1534 	nfsdreq_fini();
1535 	nfs_timer_fini();
1536 	MOWNER_DETACH(&nfs_mowner);
1537 }
1538 
1539 #ifdef NFS
1540 /*
1541  * Called once at VFS init to initialize client-specific data structures.
1542  */
1543 void
1544 nfs_vfs_init(void)
1545 {
1546 
1547 	/* Initialize NFS server / client shared data. */
1548 	nfs_init();
1549 	nfs_node_init();
1550 
1551 	nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1552 }
1553 
1554 void
1555 nfs_vfs_done(void)
1556 {
1557 
1558 	nfs_node_done();
1559 }
1560 
1561 /*
1562  * Attribute cache routines.
1563  * nfs_loadattrcache() - loads or updates the cache contents from attributes
1564  *	that are on the mbuf list
1565  * nfs_getattrcache() - returns valid attributes if found in cache, returns
1566  *	error otherwise
1567  */
1568 
1569 /*
1570  * Load the attribute cache (that lives in the nfsnode entry) with
1571  * the values on the mbuf list and
1572  * Iff vap not NULL
1573  *    copy the attributes to *vaper
1574  */
1575 int
1576 nfsm_loadattrcache(struct vnode **vpp, struct mbuf **mdp, char **dposp, struct vattr *vaper, int flags)
1577 {
1578 	int32_t t1;
1579 	char *cp2;
1580 	int error = 0;
1581 	struct mbuf *md;
1582 	int v3 = NFS_ISV3(*vpp);
1583 
1584 	md = *mdp;
1585 	t1 = (mtod(md, char *) + md->m_len) - *dposp;
1586 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1587 	if (error)
1588 		return (error);
1589 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1590 }
1591 
1592 int
1593 nfs_loadattrcache(struct vnode **vpp, struct nfs_fattr *fp, struct vattr *vaper, int flags)
1594 {
1595 	struct vnode *vp = *vpp;
1596 	struct vattr *vap;
1597 	int v3 = NFS_ISV3(vp);
1598 	enum vtype vtyp;
1599 	u_short vmode;
1600 	struct timespec mtime;
1601 	struct timespec ctime;
1602 	int32_t rdev;
1603 	struct nfsnode *np;
1604 	extern int (**spec_nfsv2nodeop_p)(void *);
1605 	uid_t uid;
1606 	gid_t gid;
1607 
1608 	if (v3) {
1609 		vtyp = nfsv3tov_type(fp->fa_type);
1610 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1611 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1612 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1613 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1614 		fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1615 	} else {
1616 		vtyp = nfsv2tov_type(fp->fa_type);
1617 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
1618 		if (vtyp == VNON || vtyp == VREG)
1619 			vtyp = IFTOVT(vmode);
1620 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1621 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1622 		ctime.tv_sec = fxdr_unsigned(u_int32_t,
1623 		    fp->fa2_ctime.nfsv2_sec);
1624 		ctime.tv_nsec = 0;
1625 
1626 		/*
1627 		 * Really ugly NFSv2 kludge.
1628 		 */
1629 		if (vtyp == VCHR && rdev == 0xffffffff)
1630 			vtyp = VFIFO;
1631 	}
1632 
1633 	vmode &= ALLPERMS;
1634 
1635 	/*
1636 	 * If v_type == VNON it is a new node, so fill in the v_type,
1637 	 * n_mtime fields. Check to see if it represents a special
1638 	 * device, and if so, check for a possible alias. Once the
1639 	 * correct vnode has been obtained, fill in the rest of the
1640 	 * information.
1641 	 */
1642 	np = VTONFS(vp);
1643 	if (vp->v_type == VNON) {
1644 		vp->v_type = vtyp;
1645 		if (vp->v_type == VFIFO) {
1646 			extern int (**fifo_nfsv2nodeop_p)(void *);
1647 			vp->v_op = fifo_nfsv2nodeop_p;
1648 		} else if (vp->v_type == VREG) {
1649 			mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1650 		} else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1651 			vp->v_op = spec_nfsv2nodeop_p;
1652 			spec_node_init(vp, (dev_t)rdev);
1653 		}
1654 		np->n_mtime = mtime;
1655 	}
1656 	uid = fxdr_unsigned(uid_t, fp->fa_uid);
1657 	gid = fxdr_unsigned(gid_t, fp->fa_gid);
1658 	vap = np->n_vattr;
1659 
1660 	/*
1661 	 * Invalidate access cache if uid, gid, mode or ctime changed.
1662 	 */
1663 	if (np->n_accstamp != -1 &&
1664 	    (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1665 	    || timespeccmp(&ctime, &vap->va_ctime, !=)))
1666 		np->n_accstamp = -1;
1667 
1668 	vap->va_type = vtyp;
1669 	vap->va_mode = vmode;
1670 	vap->va_rdev = (dev_t)rdev;
1671 	vap->va_mtime = mtime;
1672 	vap->va_ctime = ctime;
1673 	vap->va_birthtime.tv_sec = VNOVAL;
1674 	vap->va_birthtime.tv_nsec = VNOVAL;
1675 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1676 	switch (vtyp) {
1677 	case VDIR:
1678 		vap->va_blocksize = NFS_DIRFRAGSIZ;
1679 		break;
1680 	case VBLK:
1681 		vap->va_blocksize = BLKDEV_IOSIZE;
1682 		break;
1683 	case VCHR:
1684 		vap->va_blocksize = MAXBSIZE;
1685 		break;
1686 	default:
1687 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1688 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
1689 		break;
1690 	}
1691 	if (v3) {
1692 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1693 		vap->va_uid = uid;
1694 		vap->va_gid = gid;
1695 		vap->va_size = fxdr_hyper(&fp->fa3_size);
1696 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1697 		vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1698 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1699 		vap->va_flags = 0;
1700 		vap->va_filerev = 0;
1701 	} else {
1702 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1703 		vap->va_uid = uid;
1704 		vap->va_gid = gid;
1705 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1706 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1707 		    * NFS_FABLKSIZE;
1708 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1709 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1710 		vap->va_flags = 0;
1711 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1712 		vap->va_filerev = 0;
1713 	}
1714 	if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1715 		return EFBIG;
1716 	}
1717 	if (vap->va_size != np->n_size) {
1718 		if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1719 			vap->va_size = np->n_size;
1720 		} else {
1721 			np->n_size = vap->va_size;
1722 			if (vap->va_type == VREG) {
1723 				/*
1724 				 * we can't free pages if NAC_NOTRUNC because
1725 				 * the pages can be owned by ourselves.
1726 				 */
1727 				if (flags & NAC_NOTRUNC) {
1728 					np->n_flag |= NTRUNCDELAYED;
1729 				} else {
1730 					genfs_node_wrlock(vp);
1731 					mutex_enter(&vp->v_interlock);
1732 					(void)VOP_PUTPAGES(vp, 0,
1733 					    0, PGO_SYNCIO | PGO_CLEANIT |
1734 					    PGO_FREE | PGO_ALLPAGES);
1735 					uvm_vnp_setsize(vp, np->n_size);
1736 					genfs_node_unlock(vp);
1737 				}
1738 			}
1739 		}
1740 	}
1741 	np->n_attrstamp = time_second;
1742 	if (vaper != NULL) {
1743 		memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1744 		if (np->n_flag & NCHG) {
1745 			if (np->n_flag & NACC)
1746 				vaper->va_atime = np->n_atim;
1747 			if (np->n_flag & NUPD)
1748 				vaper->va_mtime = np->n_mtim;
1749 		}
1750 	}
1751 	return (0);
1752 }
1753 
1754 /*
1755  * Check the time stamp
1756  * If the cache is valid, copy contents to *vap and return 0
1757  * otherwise return an error
1758  */
1759 int
1760 nfs_getattrcache(struct vnode *vp, struct vattr *vaper)
1761 {
1762 	struct nfsnode *np = VTONFS(vp);
1763 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1764 	struct vattr *vap;
1765 
1766 	if (np->n_attrstamp == 0 ||
1767 	    (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1768 		nfsstats.attrcache_misses++;
1769 		return (ENOENT);
1770 	}
1771 	nfsstats.attrcache_hits++;
1772 	vap = np->n_vattr;
1773 	if (vap->va_size != np->n_size) {
1774 		if (vap->va_type == VREG) {
1775 			if ((np->n_flag & NMODIFIED) != 0 &&
1776 			    vap->va_size < np->n_size) {
1777 				vap->va_size = np->n_size;
1778 			} else {
1779 				np->n_size = vap->va_size;
1780 			}
1781 			genfs_node_wrlock(vp);
1782 			uvm_vnp_setsize(vp, np->n_size);
1783 			genfs_node_unlock(vp);
1784 		} else
1785 			np->n_size = vap->va_size;
1786 	}
1787 	memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1788 	if (np->n_flag & NCHG) {
1789 		if (np->n_flag & NACC)
1790 			vaper->va_atime = np->n_atim;
1791 		if (np->n_flag & NUPD)
1792 			vaper->va_mtime = np->n_mtim;
1793 	}
1794 	return (0);
1795 }
1796 
1797 void
1798 nfs_delayedtruncate(struct vnode *vp)
1799 {
1800 	struct nfsnode *np = VTONFS(vp);
1801 
1802 	if (np->n_flag & NTRUNCDELAYED) {
1803 		np->n_flag &= ~NTRUNCDELAYED;
1804 		genfs_node_wrlock(vp);
1805 		mutex_enter(&vp->v_interlock);
1806 		(void)VOP_PUTPAGES(vp, 0,
1807 		    0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1808 		uvm_vnp_setsize(vp, np->n_size);
1809 		genfs_node_unlock(vp);
1810 	}
1811 }
1812 
1813 #define	NFS_WCCKLUDGE_TIMEOUT	(24 * 60 * 60)	/* 1 day */
1814 #define	NFS_WCCKLUDGE(nmp, now) \
1815 	(((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1816 	((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1817 
1818 /*
1819  * nfs_check_wccdata: check inaccurate wcc_data
1820  *
1821  * => return non-zero if we shouldn't trust the wcc_data.
1822  * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1823  */
1824 
1825 int
1826 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1827     struct timespec *mtime, bool docheck)
1828 {
1829 	int error = 0;
1830 
1831 #if !defined(NFS_V2_ONLY)
1832 
1833 	if (docheck) {
1834 		struct vnode *vp = NFSTOV(np);
1835 		struct nfsmount *nmp;
1836 		long now = time_second;
1837 		const struct timespec *omtime = &np->n_vattr->va_mtime;
1838 		const struct timespec *octime = &np->n_vattr->va_ctime;
1839 		const char *reason = NULL; /* XXX: gcc */
1840 
1841 		if (timespeccmp(omtime, mtime, <=)) {
1842 			reason = "mtime";
1843 			error = EINVAL;
1844 		}
1845 
1846 		if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1847 			reason = "ctime";
1848 			error = EINVAL;
1849 		}
1850 
1851 		nmp = VFSTONFS(vp->v_mount);
1852 		if (error) {
1853 
1854 			/*
1855 			 * despite of the fact that we've updated the file,
1856 			 * timestamps of the file were not updated as we
1857 			 * expected.
1858 			 * it means that the server has incompatible
1859 			 * semantics of timestamps or (more likely)
1860 			 * the server time is not precise enough to
1861 			 * track each modifications.
1862 			 * in that case, we disable wcc processing.
1863 			 *
1864 			 * yes, strictly speaking, we should disable all
1865 			 * caching.  it's a compromise.
1866 			 */
1867 
1868 			mutex_enter(&nmp->nm_lock);
1869 			if (!NFS_WCCKLUDGE(nmp, now)) {
1870 				printf("%s: inaccurate wcc data (%s) detected,"
1871 				    " disabling wcc"
1872 				    " (ctime %u.%09u %u.%09u,"
1873 				    " mtime %u.%09u %u.%09u)\n",
1874 				    vp->v_mount->mnt_stat.f_mntfromname,
1875 				    reason,
1876 				    (unsigned int)octime->tv_sec,
1877 				    (unsigned int)octime->tv_nsec,
1878 				    (unsigned int)ctime->tv_sec,
1879 				    (unsigned int)ctime->tv_nsec,
1880 				    (unsigned int)omtime->tv_sec,
1881 				    (unsigned int)omtime->tv_nsec,
1882 				    (unsigned int)mtime->tv_sec,
1883 				    (unsigned int)mtime->tv_nsec);
1884 			}
1885 			nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1886 			nmp->nm_wcckludgetime = now;
1887 			mutex_exit(&nmp->nm_lock);
1888 		} else if (NFS_WCCKLUDGE(nmp, now)) {
1889 			error = EPERM; /* XXX */
1890 		} else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1891 			mutex_enter(&nmp->nm_lock);
1892 			if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1893 				printf("%s: re-enabling wcc\n",
1894 				    vp->v_mount->mnt_stat.f_mntfromname);
1895 				nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1896 			}
1897 			mutex_exit(&nmp->nm_lock);
1898 		}
1899 	}
1900 
1901 #endif /* !defined(NFS_V2_ONLY) */
1902 
1903 	return error;
1904 }
1905 
1906 /*
1907  * Heuristic to see if the server XDR encodes directory cookies or not.
1908  * it is not supposed to, but a lot of servers may do this. Also, since
1909  * most/all servers will implement V2 as well, it is expected that they
1910  * may return just 32 bits worth of cookie information, so we need to
1911  * find out in which 32 bits this information is available. We do this
1912  * to avoid trouble with emulated binaries that can't handle 64 bit
1913  * directory offsets.
1914  */
1915 
1916 void
1917 nfs_cookieheuristic(struct vnode *vp, int *flagp, struct lwp *l, kauth_cred_t cred)
1918 {
1919 	struct uio auio;
1920 	struct iovec aiov;
1921 	char *tbuf, *cp;
1922 	struct dirent *dp;
1923 	off_t *cookies = NULL, *cop;
1924 	int error, eof, nc, len;
1925 
1926 	tbuf = malloc(NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1927 
1928 	aiov.iov_base = tbuf;
1929 	aiov.iov_len = NFS_DIRFRAGSIZ;
1930 	auio.uio_iov = &aiov;
1931 	auio.uio_iovcnt = 1;
1932 	auio.uio_rw = UIO_READ;
1933 	auio.uio_resid = NFS_DIRFRAGSIZ;
1934 	auio.uio_offset = 0;
1935 	UIO_SETUP_SYSSPACE(&auio);
1936 
1937 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1938 
1939 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
1940 	if (error || len == 0) {
1941 		free(tbuf, M_TEMP);
1942 		if (cookies)
1943 			free(cookies, M_TEMP);
1944 		return;
1945 	}
1946 
1947 	/*
1948 	 * Find the first valid entry and look at its offset cookie.
1949 	 */
1950 
1951 	cp = tbuf;
1952 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
1953 		dp = (struct dirent *)cp;
1954 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1955 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1956 				*flagp |= NFSMNT_SWAPCOOKIE;
1957 				nfs_invaldircache(vp, 0);
1958 				nfs_vinvalbuf(vp, 0, cred, l, 1);
1959 			}
1960 			break;
1961 		}
1962 		cop++;
1963 		cp += dp->d_reclen;
1964 	}
1965 
1966 	free(tbuf, M_TEMP);
1967 	free(cookies, M_TEMP);
1968 }
1969 #endif /* NFS */
1970 
1971 /*
1972  * A fiddled version of m_adj() that ensures null fill to a 32-bit
1973  * boundary and only trims off the back end
1974  *
1975  * 1. trim off 'len' bytes as m_adj(mp, -len).
1976  * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
1977  */
1978 void
1979 nfs_zeropad(struct mbuf *mp, int len, int nul)
1980 {
1981 	struct mbuf *m;
1982 	int count;
1983 
1984 	/*
1985 	 * Trim from tail.  Scan the mbuf chain,
1986 	 * calculating its length and finding the last mbuf.
1987 	 * If the adjustment only affects this mbuf, then just
1988 	 * adjust and return.  Otherwise, rescan and truncate
1989 	 * after the remaining size.
1990 	 */
1991 	count = 0;
1992 	m = mp;
1993 	for (;;) {
1994 		count += m->m_len;
1995 		if (m->m_next == NULL)
1996 			break;
1997 		m = m->m_next;
1998 	}
1999 
2000 	KDASSERT(count >= len);
2001 
2002 	if (m->m_len >= len) {
2003 		m->m_len -= len;
2004 	} else {
2005 		count -= len;
2006 		/*
2007 		 * Correct length for chain is "count".
2008 		 * Find the mbuf with last data, adjust its length,
2009 		 * and toss data from remaining mbufs on chain.
2010 		 */
2011 		for (m = mp; m; m = m->m_next) {
2012 			if (m->m_len >= count) {
2013 				m->m_len = count;
2014 				break;
2015 			}
2016 			count -= m->m_len;
2017 		}
2018 		KASSERT(m && m->m_next);
2019 		m_freem(m->m_next);
2020 		m->m_next = NULL;
2021 	}
2022 
2023 	KDASSERT(m->m_next == NULL);
2024 
2025 	/*
2026 	 * zero-padding.
2027 	 */
2028 	if (nul > 0) {
2029 		char *cp;
2030 		int i;
2031 
2032 		if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2033 			struct mbuf *n;
2034 
2035 			KDASSERT(MLEN >= nul);
2036 			n = m_get(M_WAIT, MT_DATA);
2037 			MCLAIM(n, &nfs_mowner);
2038 			n->m_len = nul;
2039 			n->m_next = NULL;
2040 			m->m_next = n;
2041 			cp = mtod(n, void *);
2042 		} else {
2043 			cp = mtod(m, char *) + m->m_len;
2044 			m->m_len += nul;
2045 		}
2046 		for (i = 0; i < nul; i++)
2047 			*cp++ = '\0';
2048 	}
2049 	return;
2050 }
2051 
2052 /*
2053  * Make these functions instead of macros, so that the kernel text size
2054  * doesn't get too big...
2055  */
2056 void
2057 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
2058 {
2059 	struct mbuf *mb = *mbp;
2060 	char *bpos = *bposp;
2061 	u_int32_t *tl;
2062 
2063 	if (before_ret) {
2064 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2065 		*tl = nfs_false;
2066 	} else {
2067 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2068 		*tl++ = nfs_true;
2069 		txdr_hyper(before_vap->va_size, tl);
2070 		tl += 2;
2071 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
2072 		tl += 2;
2073 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
2074 	}
2075 	*bposp = bpos;
2076 	*mbp = mb;
2077 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2078 }
2079 
2080 void
2081 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
2082 {
2083 	struct mbuf *mb = *mbp;
2084 	char *bpos = *bposp;
2085 	u_int32_t *tl;
2086 	struct nfs_fattr *fp;
2087 
2088 	if (after_ret) {
2089 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2090 		*tl = nfs_false;
2091 	} else {
2092 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2093 		*tl++ = nfs_true;
2094 		fp = (struct nfs_fattr *)tl;
2095 		nfsm_srvfattr(nfsd, after_vap, fp);
2096 	}
2097 	*mbp = mb;
2098 	*bposp = bpos;
2099 }
2100 
2101 void
2102 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
2103 {
2104 
2105 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2106 	fp->fa_uid = txdr_unsigned(vap->va_uid);
2107 	fp->fa_gid = txdr_unsigned(vap->va_gid);
2108 	if (nfsd->nd_flag & ND_NFSV3) {
2109 		fp->fa_type = vtonfsv3_type(vap->va_type);
2110 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2111 		txdr_hyper(vap->va_size, &fp->fa3_size);
2112 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
2113 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2114 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2115 		fp->fa3_fsid.nfsuquad[0] = 0;
2116 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2117 		txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2118 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2119 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2120 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2121 	} else {
2122 		fp->fa_type = vtonfsv2_type(vap->va_type);
2123 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2124 		fp->fa2_size = txdr_unsigned(vap->va_size);
2125 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2126 		if (vap->va_type == VFIFO)
2127 			fp->fa2_rdev = 0xffffffff;
2128 		else
2129 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2130 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2131 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2132 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2133 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2134 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2135 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2136 	}
2137 }
2138 
2139 /*
2140  * This function compares two net addresses by family and returns true
2141  * if they are the same host.
2142  * If there is any doubt, return false.
2143  * The AF_INET family is handled as a special case so that address mbufs
2144  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2145  */
2146 int
2147 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
2148 {
2149 	struct sockaddr_in *inetaddr;
2150 
2151 	switch (family) {
2152 	case AF_INET:
2153 		inetaddr = mtod(nam, struct sockaddr_in *);
2154 		if (inetaddr->sin_family == AF_INET &&
2155 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2156 			return (1);
2157 		break;
2158 	case AF_INET6:
2159 	    {
2160 		struct sockaddr_in6 *sin6_1, *sin6_2;
2161 
2162 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
2163 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2164 		if (sin6_1->sin6_family == AF_INET6 &&
2165 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2166 			return 1;
2167 	    }
2168 	default:
2169 		break;
2170 	};
2171 	return (0);
2172 }
2173 
2174 /*
2175  * The write verifier has changed (probably due to a server reboot), so all
2176  * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2177  * as dirty or are being written out just now, all this takes is clearing
2178  * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2179  * the mount point.
2180  */
2181 void
2182 nfs_clearcommit(struct mount *mp)
2183 {
2184 	struct vnode *vp;
2185 	struct nfsnode *np;
2186 	struct vm_page *pg;
2187 	struct nfsmount *nmp = VFSTONFS(mp);
2188 
2189 	rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2190 	mutex_enter(&mntvnode_lock);
2191 	TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2192 		KASSERT(vp->v_mount == mp);
2193 		if (vp->v_type != VREG)
2194 			continue;
2195 		np = VTONFS(vp);
2196 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2197 		    np->n_pushedhi = 0;
2198 		np->n_commitflags &=
2199 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2200 		mutex_enter(&vp->v_uobj.vmobjlock);
2201 		TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
2202 			pg->flags &= ~PG_NEEDCOMMIT;
2203 		}
2204 		mutex_exit(&vp->v_uobj.vmobjlock);
2205 	}
2206 	mutex_exit(&mntvnode_lock);
2207 	mutex_enter(&nmp->nm_lock);
2208 	nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2209 	mutex_exit(&nmp->nm_lock);
2210 	rw_exit(&nmp->nm_writeverflock);
2211 }
2212 
2213 void
2214 nfs_merge_commit_ranges(struct vnode *vp)
2215 {
2216 	struct nfsnode *np = VTONFS(vp);
2217 
2218 	KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2219 
2220 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2221 		np->n_pushedlo = np->n_pushlo;
2222 		np->n_pushedhi = np->n_pushhi;
2223 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2224 	} else {
2225 		if (np->n_pushlo < np->n_pushedlo)
2226 			np->n_pushedlo = np->n_pushlo;
2227 		if (np->n_pushhi > np->n_pushedhi)
2228 			np->n_pushedhi = np->n_pushhi;
2229 	}
2230 
2231 	np->n_pushlo = np->n_pushhi = 0;
2232 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2233 
2234 #ifdef NFS_DEBUG_COMMIT
2235 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2236 	    (unsigned)np->n_pushedhi);
2237 #endif
2238 }
2239 
2240 int
2241 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
2242 {
2243 	struct nfsnode *np = VTONFS(vp);
2244 	off_t lo, hi;
2245 
2246 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2247 		return 0;
2248 	lo = off;
2249 	hi = lo + len;
2250 
2251 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2252 }
2253 
2254 int
2255 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
2256 {
2257 	struct nfsnode *np = VTONFS(vp);
2258 	off_t lo, hi;
2259 
2260 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2261 		return 0;
2262 	lo = off;
2263 	hi = lo + len;
2264 
2265 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2266 }
2267 
2268 void
2269 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
2270 {
2271 	struct nfsnode *np = VTONFS(vp);
2272 	off_t lo, hi;
2273 
2274 	lo = off;
2275 	hi = lo + len;
2276 
2277 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2278 		np->n_pushedlo = lo;
2279 		np->n_pushedhi = hi;
2280 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2281 	} else {
2282 		if (hi > np->n_pushedhi)
2283 			np->n_pushedhi = hi;
2284 		if (lo < np->n_pushedlo)
2285 			np->n_pushedlo = lo;
2286 	}
2287 #ifdef NFS_DEBUG_COMMIT
2288 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2289 	    (unsigned)np->n_pushedhi);
2290 #endif
2291 }
2292 
2293 void
2294 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
2295 {
2296 	struct nfsnode *np = VTONFS(vp);
2297 	off_t lo, hi;
2298 
2299 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2300 		return;
2301 
2302 	lo = off;
2303 	hi = lo + len;
2304 
2305 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2306 		return;
2307 	if (lo <= np->n_pushedlo)
2308 		np->n_pushedlo = hi;
2309 	else if (hi >= np->n_pushedhi)
2310 		np->n_pushedhi = lo;
2311 	else {
2312 		/*
2313 		 * XXX There's only one range. If the deleted range
2314 		 * is in the middle, pick the largest of the
2315 		 * contiguous ranges that it leaves.
2316 		 */
2317 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2318 			np->n_pushedhi = lo;
2319 		else
2320 			np->n_pushedlo = hi;
2321 	}
2322 #ifdef NFS_DEBUG_COMMIT
2323 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2324 	    (unsigned)np->n_pushedhi);
2325 #endif
2326 }
2327 
2328 void
2329 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
2330 {
2331 	struct nfsnode *np = VTONFS(vp);
2332 	off_t lo, hi;
2333 
2334 	lo = off;
2335 	hi = lo + len;
2336 
2337 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2338 		np->n_pushlo = lo;
2339 		np->n_pushhi = hi;
2340 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2341 	} else {
2342 		if (lo < np->n_pushlo)
2343 			np->n_pushlo = lo;
2344 		if (hi > np->n_pushhi)
2345 			np->n_pushhi = hi;
2346 	}
2347 #ifdef NFS_DEBUG_COMMIT
2348 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2349 	    (unsigned)np->n_pushhi);
2350 #endif
2351 }
2352 
2353 void
2354 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
2355 {
2356 	struct nfsnode *np = VTONFS(vp);
2357 	off_t lo, hi;
2358 
2359 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2360 		return;
2361 
2362 	lo = off;
2363 	hi = lo + len;
2364 
2365 	if (lo > np->n_pushhi || hi < np->n_pushlo)
2366 		return;
2367 
2368 	if (lo <= np->n_pushlo)
2369 		np->n_pushlo = hi;
2370 	else if (hi >= np->n_pushhi)
2371 		np->n_pushhi = lo;
2372 	else {
2373 		/*
2374 		 * XXX There's only one range. If the deleted range
2375 		 * is in the middle, pick the largest of the
2376 		 * contiguous ranges that it leaves.
2377 		 */
2378 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2379 			np->n_pushhi = lo;
2380 		else
2381 			np->n_pushlo = hi;
2382 	}
2383 #ifdef NFS_DEBUG_COMMIT
2384 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2385 	    (unsigned)np->n_pushhi);
2386 #endif
2387 }
2388 
2389 /*
2390  * Map errnos to NFS error numbers. For Version 3 also filter out error
2391  * numbers not specified for the associated procedure.
2392  */
2393 int
2394 nfsrv_errmap(struct nfsrv_descript *nd, int err)
2395 {
2396 	const short *defaulterrp, *errp;
2397 
2398 	if (nd->nd_flag & ND_NFSV3) {
2399 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
2400 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2401 		while (*++errp) {
2402 			if (*errp == err)
2403 				return (err);
2404 			else if (*errp > err)
2405 				break;
2406 		}
2407 		return ((int)*defaulterrp);
2408 	    } else
2409 		return (err & 0xffff);
2410 	}
2411 	if (err <= ELAST)
2412 		return ((int)nfsrv_v2errmap[err - 1]);
2413 	return (NFSERR_IO);
2414 }
2415 
2416 u_int32_t
2417 nfs_getxid(void)
2418 {
2419 	u_int32_t newxid;
2420 
2421 	/* get next xid.  skip 0 */
2422 	do {
2423 		newxid = atomic_inc_32_nv(&nfs_xid);
2424 	} while (__predict_false(newxid == 0));
2425 
2426 	return txdr_unsigned(newxid);
2427 }
2428 
2429 /*
2430  * assign a new xid for existing request.
2431  * used for NFSERR_JUKEBOX handling.
2432  */
2433 void
2434 nfs_renewxid(struct nfsreq *req)
2435 {
2436 	u_int32_t xid;
2437 	int off;
2438 
2439 	xid = nfs_getxid();
2440 	if (req->r_nmp->nm_sotype == SOCK_STREAM)
2441 		off = sizeof(u_int32_t); /* RPC record mark */
2442 	else
2443 		off = 0;
2444 
2445 	m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2446 	req->r_xid = xid;
2447 }
2448 
2449 #if defined(NFS)
2450 /*
2451  * Set the attribute timeout based on how recently the file has been modified.
2452  */
2453 
2454 time_t
2455 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
2456 {
2457 	time_t timeo;
2458 
2459 	if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
2460 		return 0;
2461 
2462 	if (((np)->n_flag & NMODIFIED) != 0)
2463 		return NFS_MINATTRTIMO;
2464 
2465 	timeo = (time_second - np->n_mtime.tv_sec) / 10;
2466 	timeo = max(timeo, NFS_MINATTRTIMO);
2467 	timeo = min(timeo, NFS_MAXATTRTIMO);
2468 	return timeo;
2469 }
2470 #endif /* defined(NFS) */
2471