1 /* $NetBSD: nfs_subs.c,v 1.118 2003/05/03 18:07:42 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 39 */ 40 41 /* 42 * Copyright 2000 Wasabi Systems, Inc. 43 * All rights reserved. 44 * 45 * Written by Frank van der Linden for Wasabi Systems, Inc. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed for the NetBSD Project by 58 * Wasabi Systems, Inc. 59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 60 * or promote products derived from this software without specific prior 61 * written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 73 * POSSIBILITY OF SUCH DAMAGE. 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.118 2003/05/03 18:07:42 yamt Exp $"); 78 79 #include "fs_nfs.h" 80 #include "opt_nfs.h" 81 #include "opt_nfsserver.h" 82 #include "opt_iso.h" 83 #include "opt_inet.h" 84 85 /* 86 * These functions support the macros and help fiddle mbuf chains for 87 * the nfs op functions. They do things like create the rpc header and 88 * copy data between mbuf chains and uio lists. 89 */ 90 #include <sys/param.h> 91 #include <sys/proc.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/mount.h> 95 #include <sys/vnode.h> 96 #include <sys/namei.h> 97 #include <sys/mbuf.h> 98 #include <sys/socket.h> 99 #include <sys/stat.h> 100 #include <sys/malloc.h> 101 #include <sys/filedesc.h> 102 #include <sys/time.h> 103 #include <sys/dirent.h> 104 105 #include <uvm/uvm_extern.h> 106 107 #include <nfs/rpcv2.h> 108 #include <nfs/nfsproto.h> 109 #include <nfs/nfsnode.h> 110 #include <nfs/nfs.h> 111 #include <nfs/xdr_subs.h> 112 #include <nfs/nfsm_subs.h> 113 #include <nfs/nfsmount.h> 114 #include <nfs/nqnfs.h> 115 #include <nfs/nfsrtt.h> 116 #include <nfs/nfs_var.h> 117 118 #include <miscfs/specfs/specdev.h> 119 120 #include <netinet/in.h> 121 #ifdef ISO 122 #include <netiso/iso.h> 123 #endif 124 125 /* 126 * Data items converted to xdr at startup, since they are constant 127 * This is kinda hokey, but may save a little time doing byte swaps 128 */ 129 u_int32_t nfs_xdrneg1; 130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 132 rpc_auth_kerb; 133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false; 134 135 /* And other global data */ 136 static u_int32_t nfs_xid = 0; 137 const nfstype nfsv2_type[9] = 138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 139 const nfstype nfsv3_type[9] = 140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 141 const enum vtype nv2tov_type[8] = 142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 143 const enum vtype nv3tov_type[8] = 144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 145 int nfs_ticks; 146 int nfs_commitsize; 147 148 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies"); 149 150 /* NFS client/server stats. */ 151 struct nfsstats nfsstats; 152 153 /* 154 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 155 */ 156 const int nfsv3_procid[NFS_NPROCS] = { 157 NFSPROC_NULL, 158 NFSPROC_GETATTR, 159 NFSPROC_SETATTR, 160 NFSPROC_NOOP, 161 NFSPROC_LOOKUP, 162 NFSPROC_READLINK, 163 NFSPROC_READ, 164 NFSPROC_NOOP, 165 NFSPROC_WRITE, 166 NFSPROC_CREATE, 167 NFSPROC_REMOVE, 168 NFSPROC_RENAME, 169 NFSPROC_LINK, 170 NFSPROC_SYMLINK, 171 NFSPROC_MKDIR, 172 NFSPROC_RMDIR, 173 NFSPROC_READDIR, 174 NFSPROC_FSSTAT, 175 NFSPROC_NOOP, 176 NFSPROC_NOOP, 177 NFSPROC_NOOP, 178 NFSPROC_NOOP, 179 NFSPROC_NOOP, 180 NFSPROC_NOOP, 181 NFSPROC_NOOP, 182 NFSPROC_NOOP 183 }; 184 185 /* 186 * and the reverse mapping from generic to Version 2 procedure numbers 187 */ 188 const int nfsv2_procid[NFS_NPROCS] = { 189 NFSV2PROC_NULL, 190 NFSV2PROC_GETATTR, 191 NFSV2PROC_SETATTR, 192 NFSV2PROC_LOOKUP, 193 NFSV2PROC_NOOP, 194 NFSV2PROC_READLINK, 195 NFSV2PROC_READ, 196 NFSV2PROC_WRITE, 197 NFSV2PROC_CREATE, 198 NFSV2PROC_MKDIR, 199 NFSV2PROC_SYMLINK, 200 NFSV2PROC_CREATE, 201 NFSV2PROC_REMOVE, 202 NFSV2PROC_RMDIR, 203 NFSV2PROC_RENAME, 204 NFSV2PROC_LINK, 205 NFSV2PROC_READDIR, 206 NFSV2PROC_NOOP, 207 NFSV2PROC_STATFS, 208 NFSV2PROC_NOOP, 209 NFSV2PROC_NOOP, 210 NFSV2PROC_NOOP, 211 NFSV2PROC_NOOP, 212 NFSV2PROC_NOOP, 213 NFSV2PROC_NOOP, 214 NFSV2PROC_NOOP, 215 }; 216 217 /* 218 * Maps errno values to nfs error numbers. 219 * Use NFSERR_IO as the catch all for ones not specifically defined in 220 * RFC 1094. 221 */ 222 static const u_char nfsrv_v2errmap[ELAST] = { 223 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 224 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 225 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 226 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 227 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 228 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 235 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 236 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 237 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 238 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 239 NFSERR_IO, NFSERR_IO, 240 }; 241 242 /* 243 * Maps errno values to nfs error numbers. 244 * Although it is not obvious whether or not NFS clients really care if 245 * a returned error value is in the specified list for the procedure, the 246 * safest thing to do is filter them appropriately. For Version 2, the 247 * X/Open XNFS document is the only specification that defines error values 248 * for each RPC (The RFC simply lists all possible error values for all RPCs), 249 * so I have decided to not do this for Version 2. 250 * The first entry is the default error return and the rest are the valid 251 * errors for that RPC in increasing numeric order. 252 */ 253 static const short nfsv3err_null[] = { 254 0, 255 0, 256 }; 257 258 static const short nfsv3err_getattr[] = { 259 NFSERR_IO, 260 NFSERR_IO, 261 NFSERR_STALE, 262 NFSERR_BADHANDLE, 263 NFSERR_SERVERFAULT, 264 0, 265 }; 266 267 static const short nfsv3err_setattr[] = { 268 NFSERR_IO, 269 NFSERR_PERM, 270 NFSERR_IO, 271 NFSERR_ACCES, 272 NFSERR_INVAL, 273 NFSERR_NOSPC, 274 NFSERR_ROFS, 275 NFSERR_DQUOT, 276 NFSERR_STALE, 277 NFSERR_BADHANDLE, 278 NFSERR_NOT_SYNC, 279 NFSERR_SERVERFAULT, 280 0, 281 }; 282 283 static const short nfsv3err_lookup[] = { 284 NFSERR_IO, 285 NFSERR_NOENT, 286 NFSERR_IO, 287 NFSERR_ACCES, 288 NFSERR_NOTDIR, 289 NFSERR_NAMETOL, 290 NFSERR_STALE, 291 NFSERR_BADHANDLE, 292 NFSERR_SERVERFAULT, 293 0, 294 }; 295 296 static const short nfsv3err_access[] = { 297 NFSERR_IO, 298 NFSERR_IO, 299 NFSERR_STALE, 300 NFSERR_BADHANDLE, 301 NFSERR_SERVERFAULT, 302 0, 303 }; 304 305 static const short nfsv3err_readlink[] = { 306 NFSERR_IO, 307 NFSERR_IO, 308 NFSERR_ACCES, 309 NFSERR_INVAL, 310 NFSERR_STALE, 311 NFSERR_BADHANDLE, 312 NFSERR_NOTSUPP, 313 NFSERR_SERVERFAULT, 314 0, 315 }; 316 317 static const short nfsv3err_read[] = { 318 NFSERR_IO, 319 NFSERR_IO, 320 NFSERR_NXIO, 321 NFSERR_ACCES, 322 NFSERR_INVAL, 323 NFSERR_STALE, 324 NFSERR_BADHANDLE, 325 NFSERR_SERVERFAULT, 326 NFSERR_JUKEBOX, 327 0, 328 }; 329 330 static const short nfsv3err_write[] = { 331 NFSERR_IO, 332 NFSERR_IO, 333 NFSERR_ACCES, 334 NFSERR_INVAL, 335 NFSERR_FBIG, 336 NFSERR_NOSPC, 337 NFSERR_ROFS, 338 NFSERR_DQUOT, 339 NFSERR_STALE, 340 NFSERR_BADHANDLE, 341 NFSERR_SERVERFAULT, 342 NFSERR_JUKEBOX, 343 0, 344 }; 345 346 static const short nfsv3err_create[] = { 347 NFSERR_IO, 348 NFSERR_IO, 349 NFSERR_ACCES, 350 NFSERR_EXIST, 351 NFSERR_NOTDIR, 352 NFSERR_NOSPC, 353 NFSERR_ROFS, 354 NFSERR_NAMETOL, 355 NFSERR_DQUOT, 356 NFSERR_STALE, 357 NFSERR_BADHANDLE, 358 NFSERR_NOTSUPP, 359 NFSERR_SERVERFAULT, 360 0, 361 }; 362 363 static const short nfsv3err_mkdir[] = { 364 NFSERR_IO, 365 NFSERR_IO, 366 NFSERR_ACCES, 367 NFSERR_EXIST, 368 NFSERR_NOTDIR, 369 NFSERR_NOSPC, 370 NFSERR_ROFS, 371 NFSERR_NAMETOL, 372 NFSERR_DQUOT, 373 NFSERR_STALE, 374 NFSERR_BADHANDLE, 375 NFSERR_NOTSUPP, 376 NFSERR_SERVERFAULT, 377 0, 378 }; 379 380 static const short nfsv3err_symlink[] = { 381 NFSERR_IO, 382 NFSERR_IO, 383 NFSERR_ACCES, 384 NFSERR_EXIST, 385 NFSERR_NOTDIR, 386 NFSERR_NOSPC, 387 NFSERR_ROFS, 388 NFSERR_NAMETOL, 389 NFSERR_DQUOT, 390 NFSERR_STALE, 391 NFSERR_BADHANDLE, 392 NFSERR_NOTSUPP, 393 NFSERR_SERVERFAULT, 394 0, 395 }; 396 397 static const short nfsv3err_mknod[] = { 398 NFSERR_IO, 399 NFSERR_IO, 400 NFSERR_ACCES, 401 NFSERR_EXIST, 402 NFSERR_NOTDIR, 403 NFSERR_NOSPC, 404 NFSERR_ROFS, 405 NFSERR_NAMETOL, 406 NFSERR_DQUOT, 407 NFSERR_STALE, 408 NFSERR_BADHANDLE, 409 NFSERR_NOTSUPP, 410 NFSERR_SERVERFAULT, 411 NFSERR_BADTYPE, 412 0, 413 }; 414 415 static const short nfsv3err_remove[] = { 416 NFSERR_IO, 417 NFSERR_NOENT, 418 NFSERR_IO, 419 NFSERR_ACCES, 420 NFSERR_NOTDIR, 421 NFSERR_ROFS, 422 NFSERR_NAMETOL, 423 NFSERR_STALE, 424 NFSERR_BADHANDLE, 425 NFSERR_SERVERFAULT, 426 0, 427 }; 428 429 static const short nfsv3err_rmdir[] = { 430 NFSERR_IO, 431 NFSERR_NOENT, 432 NFSERR_IO, 433 NFSERR_ACCES, 434 NFSERR_EXIST, 435 NFSERR_NOTDIR, 436 NFSERR_INVAL, 437 NFSERR_ROFS, 438 NFSERR_NAMETOL, 439 NFSERR_NOTEMPTY, 440 NFSERR_STALE, 441 NFSERR_BADHANDLE, 442 NFSERR_NOTSUPP, 443 NFSERR_SERVERFAULT, 444 0, 445 }; 446 447 static const short nfsv3err_rename[] = { 448 NFSERR_IO, 449 NFSERR_NOENT, 450 NFSERR_IO, 451 NFSERR_ACCES, 452 NFSERR_EXIST, 453 NFSERR_XDEV, 454 NFSERR_NOTDIR, 455 NFSERR_ISDIR, 456 NFSERR_INVAL, 457 NFSERR_NOSPC, 458 NFSERR_ROFS, 459 NFSERR_MLINK, 460 NFSERR_NAMETOL, 461 NFSERR_NOTEMPTY, 462 NFSERR_DQUOT, 463 NFSERR_STALE, 464 NFSERR_BADHANDLE, 465 NFSERR_NOTSUPP, 466 NFSERR_SERVERFAULT, 467 0, 468 }; 469 470 static const short nfsv3err_link[] = { 471 NFSERR_IO, 472 NFSERR_IO, 473 NFSERR_ACCES, 474 NFSERR_EXIST, 475 NFSERR_XDEV, 476 NFSERR_NOTDIR, 477 NFSERR_INVAL, 478 NFSERR_NOSPC, 479 NFSERR_ROFS, 480 NFSERR_MLINK, 481 NFSERR_NAMETOL, 482 NFSERR_DQUOT, 483 NFSERR_STALE, 484 NFSERR_BADHANDLE, 485 NFSERR_NOTSUPP, 486 NFSERR_SERVERFAULT, 487 0, 488 }; 489 490 static const short nfsv3err_readdir[] = { 491 NFSERR_IO, 492 NFSERR_IO, 493 NFSERR_ACCES, 494 NFSERR_NOTDIR, 495 NFSERR_STALE, 496 NFSERR_BADHANDLE, 497 NFSERR_BAD_COOKIE, 498 NFSERR_TOOSMALL, 499 NFSERR_SERVERFAULT, 500 0, 501 }; 502 503 static const short nfsv3err_readdirplus[] = { 504 NFSERR_IO, 505 NFSERR_IO, 506 NFSERR_ACCES, 507 NFSERR_NOTDIR, 508 NFSERR_STALE, 509 NFSERR_BADHANDLE, 510 NFSERR_BAD_COOKIE, 511 NFSERR_NOTSUPP, 512 NFSERR_TOOSMALL, 513 NFSERR_SERVERFAULT, 514 0, 515 }; 516 517 static const short nfsv3err_fsstat[] = { 518 NFSERR_IO, 519 NFSERR_IO, 520 NFSERR_STALE, 521 NFSERR_BADHANDLE, 522 NFSERR_SERVERFAULT, 523 0, 524 }; 525 526 static const short nfsv3err_fsinfo[] = { 527 NFSERR_STALE, 528 NFSERR_STALE, 529 NFSERR_BADHANDLE, 530 NFSERR_SERVERFAULT, 531 0, 532 }; 533 534 static const short nfsv3err_pathconf[] = { 535 NFSERR_STALE, 536 NFSERR_STALE, 537 NFSERR_BADHANDLE, 538 NFSERR_SERVERFAULT, 539 0, 540 }; 541 542 static const short nfsv3err_commit[] = { 543 NFSERR_IO, 544 NFSERR_IO, 545 NFSERR_STALE, 546 NFSERR_BADHANDLE, 547 NFSERR_SERVERFAULT, 548 0, 549 }; 550 551 static const short * const nfsrv_v3errmap[] = { 552 nfsv3err_null, 553 nfsv3err_getattr, 554 nfsv3err_setattr, 555 nfsv3err_lookup, 556 nfsv3err_access, 557 nfsv3err_readlink, 558 nfsv3err_read, 559 nfsv3err_write, 560 nfsv3err_create, 561 nfsv3err_mkdir, 562 nfsv3err_symlink, 563 nfsv3err_mknod, 564 nfsv3err_remove, 565 nfsv3err_rmdir, 566 nfsv3err_rename, 567 nfsv3err_link, 568 nfsv3err_readdir, 569 nfsv3err_readdirplus, 570 nfsv3err_fsstat, 571 nfsv3err_fsinfo, 572 nfsv3err_pathconf, 573 nfsv3err_commit, 574 }; 575 576 extern struct nfsrtt nfsrtt; 577 extern time_t nqnfsstarttime; 578 extern int nqsrv_clockskew; 579 extern int nqsrv_writeslack; 580 extern int nqsrv_maxlease; 581 extern const int nqnfs_piggy[NFS_NPROCS]; 582 extern struct nfsnodehashhead *nfsnodehashtbl; 583 extern u_long nfsnodehash; 584 585 u_long nfsdirhashmask; 586 587 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *)); 588 589 /* 590 * Create the header for an rpc request packet 591 * The hsiz is the size of the rest of the nfs request header. 592 * (just used to decide if a cluster is a good idea) 593 */ 594 struct mbuf * 595 nfsm_reqh(np, procid, hsiz, bposp) 596 struct nfsnode *np; 597 u_long procid; 598 int hsiz; 599 caddr_t *bposp; 600 { 601 struct mbuf *mb; 602 caddr_t bpos; 603 #ifndef NFS_V2_ONLY 604 struct nfsmount *nmp; 605 u_int32_t *tl; 606 int nqflag; 607 #endif 608 609 mb = m_get(M_WAIT, MT_DATA); 610 MCLAIM(mb, &nfs_mowner); 611 if (hsiz >= MINCLSIZE) 612 m_clget(mb, M_WAIT); 613 mb->m_len = 0; 614 bpos = mtod(mb, caddr_t); 615 616 #ifndef NFS_V2_ONLY 617 /* 618 * For NQNFS, add lease request. 619 */ 620 if (np) { 621 nmp = VFSTONFS(np->n_vnode->v_mount); 622 if (nmp->nm_flag & NFSMNT_NQNFS) { 623 nqflag = NQNFS_NEEDLEASE(np, procid); 624 if (nqflag) { 625 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED); 626 *tl++ = txdr_unsigned(nqflag); 627 *tl = txdr_unsigned(nmp->nm_leaseterm); 628 } else { 629 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 630 *tl = 0; 631 } 632 } 633 } 634 #endif 635 /* Finally, return values */ 636 *bposp = bpos; 637 return (mb); 638 } 639 640 /* 641 * Build the RPC header and fill in the authorization info. 642 * The authorization string argument is only used when the credentials 643 * come from outside of the kernel. 644 * Returns the head of the mbuf list. 645 */ 646 struct mbuf * 647 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len, 648 verf_str, mrest, mrest_len, mbp, xidp) 649 struct ucred *cr; 650 int nmflag; 651 int procid; 652 int auth_type; 653 int auth_len; 654 char *auth_str; 655 int verf_len; 656 char *verf_str; 657 struct mbuf *mrest; 658 int mrest_len; 659 struct mbuf **mbp; 660 u_int32_t *xidp; 661 { 662 struct mbuf *mb; 663 u_int32_t *tl; 664 caddr_t bpos; 665 int i; 666 struct mbuf *mreq; 667 int siz, grpsiz, authsiz; 668 struct timeval tv; 669 static u_int32_t base; 670 671 authsiz = nfsm_rndup(auth_len); 672 mb = m_gethdr(M_WAIT, MT_DATA); 673 MCLAIM(mb, &nfs_mowner); 674 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 675 m_clget(mb, M_WAIT); 676 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 677 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED); 678 } else { 679 MH_ALIGN(mb, 8 * NFSX_UNSIGNED); 680 } 681 mb->m_len = 0; 682 mreq = mb; 683 bpos = mtod(mb, caddr_t); 684 685 /* 686 * First the RPC header. 687 */ 688 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 689 690 /* 691 * derive initial xid from system time 692 * XXX time is invalid if root not yet mounted 693 */ 694 if (!base && (rootvp)) { 695 microtime(&tv); 696 base = tv.tv_sec << 12; 697 nfs_xid = base; 698 } 699 /* 700 * Skip zero xid if it should ever happen. 701 */ 702 if (++nfs_xid == 0) 703 nfs_xid++; 704 705 *tl++ = *xidp = txdr_unsigned(nfs_xid); 706 *tl++ = rpc_call; 707 *tl++ = rpc_vers; 708 if (nmflag & NFSMNT_NQNFS) { 709 *tl++ = txdr_unsigned(NQNFS_PROG); 710 *tl++ = txdr_unsigned(NQNFS_VER3); 711 } else { 712 *tl++ = txdr_unsigned(NFS_PROG); 713 if (nmflag & NFSMNT_NFSV3) 714 *tl++ = txdr_unsigned(NFS_VER3); 715 else 716 *tl++ = txdr_unsigned(NFS_VER2); 717 } 718 if (nmflag & NFSMNT_NFSV3) 719 *tl++ = txdr_unsigned(procid); 720 else 721 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 722 723 /* 724 * And then the authorization cred. 725 */ 726 *tl++ = txdr_unsigned(auth_type); 727 *tl = txdr_unsigned(authsiz); 728 switch (auth_type) { 729 case RPCAUTH_UNIX: 730 nfsm_build(tl, u_int32_t *, auth_len); 731 *tl++ = 0; /* stamp ?? */ 732 *tl++ = 0; /* NULL hostname */ 733 *tl++ = txdr_unsigned(cr->cr_uid); 734 *tl++ = txdr_unsigned(cr->cr_gid); 735 grpsiz = (auth_len >> 2) - 5; 736 *tl++ = txdr_unsigned(grpsiz); 737 for (i = 0; i < grpsiz; i++) 738 *tl++ = txdr_unsigned(cr->cr_groups[i]); 739 break; 740 case RPCAUTH_KERB4: 741 siz = auth_len; 742 while (siz > 0) { 743 if (M_TRAILINGSPACE(mb) == 0) { 744 struct mbuf *mb2; 745 mb2 = m_get(M_WAIT, MT_DATA); 746 MCLAIM(mb2, &nfs_mowner); 747 if (siz >= MINCLSIZE) 748 m_clget(mb2, M_WAIT); 749 mb->m_next = mb2; 750 mb = mb2; 751 mb->m_len = 0; 752 bpos = mtod(mb, caddr_t); 753 } 754 i = min(siz, M_TRAILINGSPACE(mb)); 755 memcpy(bpos, auth_str, i); 756 mb->m_len += i; 757 auth_str += i; 758 bpos += i; 759 siz -= i; 760 } 761 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 762 for (i = 0; i < siz; i++) 763 *bpos++ = '\0'; 764 mb->m_len += siz; 765 } 766 break; 767 }; 768 769 /* 770 * And the verifier... 771 */ 772 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 773 if (verf_str) { 774 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 775 *tl = txdr_unsigned(verf_len); 776 siz = verf_len; 777 while (siz > 0) { 778 if (M_TRAILINGSPACE(mb) == 0) { 779 struct mbuf *mb2; 780 mb2 = m_get(M_WAIT, MT_DATA); 781 MCLAIM(mb2, &nfs_mowner); 782 if (siz >= MINCLSIZE) 783 m_clget(mb2, M_WAIT); 784 mb->m_next = mb2; 785 mb = mb2; 786 mb->m_len = 0; 787 bpos = mtod(mb, caddr_t); 788 } 789 i = min(siz, M_TRAILINGSPACE(mb)); 790 memcpy(bpos, verf_str, i); 791 mb->m_len += i; 792 verf_str += i; 793 bpos += i; 794 siz -= i; 795 } 796 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 797 for (i = 0; i < siz; i++) 798 *bpos++ = '\0'; 799 mb->m_len += siz; 800 } 801 } else { 802 *tl++ = txdr_unsigned(RPCAUTH_NULL); 803 *tl = 0; 804 } 805 mb->m_next = mrest; 806 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 807 mreq->m_pkthdr.rcvif = (struct ifnet *)0; 808 *mbp = mb; 809 return (mreq); 810 } 811 812 /* 813 * copies mbuf chain to the uio scatter/gather list 814 */ 815 int 816 nfsm_mbuftouio(mrep, uiop, siz, dpos) 817 struct mbuf **mrep; 818 struct uio *uiop; 819 int siz; 820 caddr_t *dpos; 821 { 822 char *mbufcp, *uiocp; 823 int xfer, left, len; 824 struct mbuf *mp; 825 long uiosiz, rem; 826 int error = 0; 827 828 mp = *mrep; 829 mbufcp = *dpos; 830 len = mtod(mp, caddr_t)+mp->m_len-mbufcp; 831 rem = nfsm_rndup(siz)-siz; 832 while (siz > 0) { 833 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 834 return (EFBIG); 835 left = uiop->uio_iov->iov_len; 836 uiocp = uiop->uio_iov->iov_base; 837 if (left > siz) 838 left = siz; 839 uiosiz = left; 840 while (left > 0) { 841 while (len == 0) { 842 mp = mp->m_next; 843 if (mp == NULL) 844 return (EBADRPC); 845 mbufcp = mtod(mp, caddr_t); 846 len = mp->m_len; 847 } 848 xfer = (left > len) ? len : left; 849 #ifdef notdef 850 /* Not Yet.. */ 851 if (uiop->uio_iov->iov_op != NULL) 852 (*(uiop->uio_iov->iov_op)) 853 (mbufcp, uiocp, xfer); 854 else 855 #endif 856 if (uiop->uio_segflg == UIO_SYSSPACE) 857 memcpy(uiocp, mbufcp, xfer); 858 else 859 copyout(mbufcp, uiocp, xfer); 860 left -= xfer; 861 len -= xfer; 862 mbufcp += xfer; 863 uiocp += xfer; 864 uiop->uio_offset += xfer; 865 uiop->uio_resid -= xfer; 866 } 867 if (uiop->uio_iov->iov_len <= siz) { 868 uiop->uio_iovcnt--; 869 uiop->uio_iov++; 870 } else { 871 uiop->uio_iov->iov_base = 872 (caddr_t)uiop->uio_iov->iov_base + uiosiz; 873 uiop->uio_iov->iov_len -= uiosiz; 874 } 875 siz -= uiosiz; 876 } 877 *dpos = mbufcp; 878 *mrep = mp; 879 if (rem > 0) { 880 if (len < rem) 881 error = nfs_adv(mrep, dpos, rem, len); 882 else 883 *dpos += rem; 884 } 885 return (error); 886 } 887 888 /* 889 * copies a uio scatter/gather list to an mbuf chain. 890 * NOTE: can ony handle iovcnt == 1 891 */ 892 int 893 nfsm_uiotombuf(uiop, mq, siz, bpos) 894 struct uio *uiop; 895 struct mbuf **mq; 896 int siz; 897 caddr_t *bpos; 898 { 899 char *uiocp; 900 struct mbuf *mp, *mp2; 901 int xfer, left, mlen; 902 int uiosiz, clflg, rem; 903 char *cp; 904 905 #ifdef DIAGNOSTIC 906 if (uiop->uio_iovcnt != 1) 907 panic("nfsm_uiotombuf: iovcnt != 1"); 908 #endif 909 910 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 911 clflg = 1; 912 else 913 clflg = 0; 914 rem = nfsm_rndup(siz)-siz; 915 mp = mp2 = *mq; 916 while (siz > 0) { 917 left = uiop->uio_iov->iov_len; 918 uiocp = uiop->uio_iov->iov_base; 919 if (left > siz) 920 left = siz; 921 uiosiz = left; 922 while (left > 0) { 923 mlen = M_TRAILINGSPACE(mp); 924 if (mlen == 0) { 925 mp = m_get(M_WAIT, MT_DATA); 926 MCLAIM(mp, &nfs_mowner); 927 if (clflg) 928 m_clget(mp, M_WAIT); 929 mp->m_len = 0; 930 mp2->m_next = mp; 931 mp2 = mp; 932 mlen = M_TRAILINGSPACE(mp); 933 } 934 xfer = (left > mlen) ? mlen : left; 935 #ifdef notdef 936 /* Not Yet.. */ 937 if (uiop->uio_iov->iov_op != NULL) 938 (*(uiop->uio_iov->iov_op)) 939 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 940 else 941 #endif 942 if (uiop->uio_segflg == UIO_SYSSPACE) 943 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer); 944 else 945 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer); 946 mp->m_len += xfer; 947 left -= xfer; 948 uiocp += xfer; 949 uiop->uio_offset += xfer; 950 uiop->uio_resid -= xfer; 951 } 952 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base + 953 uiosiz; 954 uiop->uio_iov->iov_len -= uiosiz; 955 siz -= uiosiz; 956 } 957 if (rem > 0) { 958 if (rem > M_TRAILINGSPACE(mp)) { 959 mp = m_get(M_WAIT, MT_DATA); 960 MCLAIM(mp, &nfs_mowner); 961 mp->m_len = 0; 962 mp2->m_next = mp; 963 } 964 cp = mtod(mp, caddr_t)+mp->m_len; 965 for (left = 0; left < rem; left++) 966 *cp++ = '\0'; 967 mp->m_len += rem; 968 *bpos = cp; 969 } else 970 *bpos = mtod(mp, caddr_t)+mp->m_len; 971 *mq = mp; 972 return (0); 973 } 974 975 /* 976 * Get at least "siz" bytes of correctly aligned data. 977 * When called the mbuf pointers are not necessarily correct, 978 * dsosp points to what ought to be in m_data and left contains 979 * what ought to be in m_len. 980 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 981 * cases. (The macros use the vars. dpos and dpos2) 982 */ 983 int 984 nfsm_disct(mdp, dposp, siz, left, cp2) 985 struct mbuf **mdp; 986 caddr_t *dposp; 987 int siz; 988 int left; 989 caddr_t *cp2; 990 { 991 struct mbuf *m1, *m2; 992 struct mbuf *havebuf = NULL; 993 caddr_t src = *dposp; 994 caddr_t dst; 995 int len; 996 997 #ifdef DEBUG 998 if (left < 0) 999 panic("nfsm_disct: left < 0"); 1000 #endif 1001 m1 = *mdp; 1002 /* 1003 * Skip through the mbuf chain looking for an mbuf with 1004 * some data. If the first mbuf found has enough data 1005 * and it is correctly aligned return it. 1006 */ 1007 while (left == 0) { 1008 havebuf = m1; 1009 *mdp = m1 = m1->m_next; 1010 if (m1 == NULL) 1011 return (EBADRPC); 1012 src = mtod(m1, caddr_t); 1013 left = m1->m_len; 1014 /* 1015 * If we start a new mbuf and it is big enough 1016 * and correctly aligned just return it, don't 1017 * do any pull up. 1018 */ 1019 if (left >= siz && nfsm_aligned(src)) { 1020 *cp2 = src; 1021 *dposp = src + siz; 1022 return (0); 1023 } 1024 } 1025 if (m1->m_flags & M_EXT) { 1026 if (havebuf) { 1027 /* If the first mbuf with data has external data 1028 * and there is a previous empty mbuf use it 1029 * to move the data into. 1030 */ 1031 m2 = m1; 1032 *mdp = m1 = havebuf; 1033 if (m1->m_flags & M_EXT) { 1034 MEXTREMOVE(m1); 1035 } 1036 } else { 1037 /* 1038 * If the first mbuf has a external data 1039 * and there is no previous empty mbuf 1040 * allocate a new mbuf and move the external 1041 * data to the new mbuf. Also make the first 1042 * mbuf look empty. 1043 */ 1044 m2 = m_get(M_WAIT, MT_DATA); 1045 m2->m_ext = m1->m_ext; 1046 m2->m_data = src; 1047 m2->m_len = left; 1048 MCLADDREFERENCE(m1, m2); 1049 MEXTREMOVE(m1); 1050 m2->m_next = m1->m_next; 1051 m1->m_next = m2; 1052 } 1053 m1->m_len = 0; 1054 dst = m1->m_dat; 1055 } else { 1056 /* 1057 * If the first mbuf has no external data 1058 * move the data to the front of the mbuf. 1059 */ 1060 if ((dst = m1->m_dat) != src) 1061 memmove(dst, src, left); 1062 dst += left; 1063 m1->m_len = left; 1064 m2 = m1->m_next; 1065 } 1066 m1->m_flags &= ~M_PKTHDR; 1067 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */ 1068 *dposp = mtod(m1, caddr_t) + siz; 1069 /* 1070 * Loop through mbufs pulling data up into first mbuf until 1071 * the first mbuf is full or there is no more data to 1072 * pullup. 1073 */ 1074 while ((len = (MLEN - m1->m_len)) != 0 && m2) { 1075 if ((len = min(len, m2->m_len)) != 0) 1076 memcpy(dst, m2->m_data, len); 1077 m1->m_len += len; 1078 dst += len; 1079 m2->m_data += len; 1080 m2->m_len -= len; 1081 m2 = m2->m_next; 1082 } 1083 if (m1->m_len < siz) 1084 return (EBADRPC); 1085 return (0); 1086 } 1087 1088 /* 1089 * Advance the position in the mbuf chain. 1090 */ 1091 int 1092 nfs_adv(mdp, dposp, offs, left) 1093 struct mbuf **mdp; 1094 caddr_t *dposp; 1095 int offs; 1096 int left; 1097 { 1098 struct mbuf *m; 1099 int s; 1100 1101 m = *mdp; 1102 s = left; 1103 while (s < offs) { 1104 offs -= s; 1105 m = m->m_next; 1106 if (m == NULL) 1107 return (EBADRPC); 1108 s = m->m_len; 1109 } 1110 *mdp = m; 1111 *dposp = mtod(m, caddr_t)+offs; 1112 return (0); 1113 } 1114 1115 /* 1116 * Copy a string into mbufs for the hard cases... 1117 */ 1118 int 1119 nfsm_strtmbuf(mb, bpos, cp, siz) 1120 struct mbuf **mb; 1121 char **bpos; 1122 const char *cp; 1123 long siz; 1124 { 1125 struct mbuf *m1 = NULL, *m2; 1126 long left, xfer, len, tlen; 1127 u_int32_t *tl; 1128 int putsize; 1129 1130 putsize = 1; 1131 m2 = *mb; 1132 left = M_TRAILINGSPACE(m2); 1133 if (left > 0) { 1134 tl = ((u_int32_t *)(*bpos)); 1135 *tl++ = txdr_unsigned(siz); 1136 putsize = 0; 1137 left -= NFSX_UNSIGNED; 1138 m2->m_len += NFSX_UNSIGNED; 1139 if (left > 0) { 1140 memcpy((caddr_t) tl, cp, left); 1141 siz -= left; 1142 cp += left; 1143 m2->m_len += left; 1144 left = 0; 1145 } 1146 } 1147 /* Loop around adding mbufs */ 1148 while (siz > 0) { 1149 m1 = m_get(M_WAIT, MT_DATA); 1150 MCLAIM(m1, &nfs_mowner); 1151 if (siz > MLEN) 1152 m_clget(m1, M_WAIT); 1153 m1->m_len = NFSMSIZ(m1); 1154 m2->m_next = m1; 1155 m2 = m1; 1156 tl = mtod(m1, u_int32_t *); 1157 tlen = 0; 1158 if (putsize) { 1159 *tl++ = txdr_unsigned(siz); 1160 m1->m_len -= NFSX_UNSIGNED; 1161 tlen = NFSX_UNSIGNED; 1162 putsize = 0; 1163 } 1164 if (siz < m1->m_len) { 1165 len = nfsm_rndup(siz); 1166 xfer = siz; 1167 if (xfer < len) 1168 *(tl+(xfer>>2)) = 0; 1169 } else { 1170 xfer = len = m1->m_len; 1171 } 1172 memcpy((caddr_t) tl, cp, xfer); 1173 m1->m_len = len+tlen; 1174 siz -= xfer; 1175 cp += xfer; 1176 } 1177 *mb = m1; 1178 *bpos = mtod(m1, caddr_t)+m1->m_len; 1179 return (0); 1180 } 1181 1182 /* 1183 * Directory caching routines. They work as follows: 1184 * - a cache is maintained per VDIR nfsnode. 1185 * - for each offset cookie that is exported to userspace, and can 1186 * thus be thrown back at us as an offset to VOP_READDIR, store 1187 * information in the cache. 1188 * - cached are: 1189 * - cookie itself 1190 * - blocknumber (essentially just a search key in the buffer cache) 1191 * - entry number in block. 1192 * - offset cookie of block in which this entry is stored 1193 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1194 * - entries are looked up in a hash table 1195 * - also maintained is an LRU list of entries, used to determine 1196 * which ones to delete if the cache grows too large. 1197 * - if 32 <-> 64 translation mode is requested for a filesystem, 1198 * the cache also functions as a translation table 1199 * - in the translation case, invalidating the cache does not mean 1200 * flushing it, but just marking entries as invalid, except for 1201 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1202 * still be able to use the cache as a translation table. 1203 * - 32 bit cookies are uniquely created by combining the hash table 1204 * entry value, and one generation count per hash table entry, 1205 * incremented each time an entry is appended to the chain. 1206 * - the cache is invalidated each time a direcory is modified 1207 * - sanity checks are also done; if an entry in a block turns 1208 * out not to have a matching cookie, the cache is invalidated 1209 * and a new block starting from the wanted offset is fetched from 1210 * the server. 1211 * - directory entries as read from the server are extended to contain 1212 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1213 * the cache and exporting them to userspace through the cookie 1214 * argument to VOP_READDIR. 1215 */ 1216 1217 u_long 1218 nfs_dirhash(off) 1219 off_t off; 1220 { 1221 int i; 1222 char *cp = (char *)&off; 1223 u_long sum = 0L; 1224 1225 for (i = 0 ; i < sizeof (off); i++) 1226 sum += *cp++; 1227 1228 return sum; 1229 } 1230 1231 void 1232 nfs_initdircache(vp) 1233 struct vnode *vp; 1234 { 1235 struct nfsnode *np = VTONFS(vp); 1236 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1237 1238 np->n_dircachesize = 0; 1239 np->n_dblkno = 1; 1240 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF, 1241 M_WAITOK, &nfsdirhashmask); 1242 TAILQ_INIT(&np->n_dirchain); 1243 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1244 MALLOC(np->n_dirgens, unsigned *, 1245 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, 1246 M_WAITOK); 1247 memset((caddr_t)np->n_dirgens, 0, 1248 NFS_DIRHASHSIZ * sizeof (unsigned)); 1249 } 1250 } 1251 1252 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0}; 1253 1254 struct nfsdircache * 1255 nfs_searchdircache(vp, off, do32, hashent) 1256 struct vnode *vp; 1257 off_t off; 1258 int do32; 1259 int *hashent; 1260 { 1261 struct nfsdirhashhead *ndhp; 1262 struct nfsdircache *ndp = NULL; 1263 struct nfsnode *np = VTONFS(vp); 1264 unsigned ent; 1265 1266 /* 1267 * Zero is always a valid cookie. 1268 */ 1269 if (off == 0) 1270 return &dzero; 1271 1272 /* 1273 * We use a 32bit cookie as search key, directly reconstruct 1274 * the hashentry. Else use the hashfunction. 1275 */ 1276 if (do32) { 1277 ent = (u_int32_t)off >> 24; 1278 if (ent >= NFS_DIRHASHSIZ) 1279 return NULL; 1280 ndhp = &np->n_dircache[ent]; 1281 } else { 1282 ndhp = NFSDIRHASH(np, off); 1283 } 1284 1285 if (hashent) 1286 *hashent = (int)(ndhp - np->n_dircache); 1287 if (do32) { 1288 LIST_FOREACH(ndp, ndhp, dc_hash) { 1289 if (ndp->dc_cookie32 == (u_int32_t)off) { 1290 /* 1291 * An invalidated entry will become the 1292 * start of a new block fetched from 1293 * the server. 1294 */ 1295 if (ndp->dc_blkno == -1) { 1296 ndp->dc_blkcookie = ndp->dc_cookie; 1297 ndp->dc_blkno = np->n_dblkno++; 1298 ndp->dc_entry = 0; 1299 } 1300 break; 1301 } 1302 } 1303 } else { 1304 LIST_FOREACH(ndp, ndhp, dc_hash) { 1305 if (ndp->dc_cookie == off) 1306 break; 1307 } 1308 } 1309 return ndp; 1310 } 1311 1312 1313 struct nfsdircache * 1314 nfs_enterdircache(vp, off, blkoff, en, blkno) 1315 struct vnode *vp; 1316 off_t off, blkoff; 1317 int en; 1318 daddr_t blkno; 1319 { 1320 struct nfsnode *np = VTONFS(vp); 1321 struct nfsdirhashhead *ndhp; 1322 struct nfsdircache *ndp = NULL, *first; 1323 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1324 int hashent, gen, overwrite; 1325 1326 if (!np->n_dircache) 1327 /* 1328 * XXX would like to do this in nfs_nget but vtype 1329 * isn't known at that time. 1330 */ 1331 nfs_initdircache(vp); 1332 1333 /* 1334 * XXX refuse entries for offset 0. amd(8) erroneously sets 1335 * cookie 0 for the '.' entry, making this necessary. This 1336 * isn't so bad, as 0 is a special case anyway. 1337 */ 1338 if (off == 0) 1339 return &dzero; 1340 1341 ndp = nfs_searchdircache(vp, off, 0, &hashent); 1342 1343 if (ndp && ndp->dc_blkno != -1) { 1344 /* 1345 * Overwriting an old entry. Check if it's the same. 1346 * If so, just return. If not, remove the old entry. 1347 */ 1348 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en) 1349 return ndp; 1350 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1351 LIST_REMOVE(ndp, dc_hash); 1352 FREE(ndp, M_NFSDIROFF); 1353 ndp = 0; 1354 } 1355 1356 ndhp = &np->n_dircache[hashent]; 1357 1358 if (!ndp) { 1359 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF, 1360 M_WAITOK); 1361 overwrite = 0; 1362 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 1363 /* 1364 * We're allocating a new entry, so bump the 1365 * generation number. 1366 */ 1367 gen = ++np->n_dirgens[hashent]; 1368 if (gen == 0) { 1369 np->n_dirgens[hashent]++; 1370 gen++; 1371 } 1372 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff); 1373 } 1374 } else 1375 overwrite = 1; 1376 1377 /* 1378 * If the entry number is 0, we are at the start of a new block, so 1379 * allocate a new blocknumber. 1380 */ 1381 if (en == 0) 1382 ndp->dc_blkno = np->n_dblkno++; 1383 else 1384 ndp->dc_blkno = blkno; 1385 1386 ndp->dc_cookie = off; 1387 ndp->dc_blkcookie = blkoff; 1388 ndp->dc_entry = en; 1389 1390 if (overwrite) 1391 return ndp; 1392 1393 /* 1394 * If the maximum directory cookie cache size has been reached 1395 * for this node, take one off the front. The idea is that 1396 * directories are typically read front-to-back once, so that 1397 * the oldest entries can be thrown away without much performance 1398 * loss. 1399 */ 1400 if (np->n_dircachesize == NFS_MAXDIRCACHE) { 1401 first = TAILQ_FIRST(&np->n_dirchain); 1402 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain); 1403 LIST_REMOVE(first, dc_hash); 1404 FREE(first, M_NFSDIROFF); 1405 } else 1406 np->n_dircachesize++; 1407 1408 LIST_INSERT_HEAD(ndhp, ndp, dc_hash); 1409 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain); 1410 return ndp; 1411 } 1412 1413 void 1414 nfs_invaldircache(vp, forcefree) 1415 struct vnode *vp; 1416 int forcefree; 1417 { 1418 struct nfsnode *np = VTONFS(vp); 1419 struct nfsdircache *ndp = NULL; 1420 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1421 1422 #ifdef DIAGNOSTIC 1423 if (vp->v_type != VDIR) 1424 panic("nfs: invaldircache: not dir"); 1425 #endif 1426 1427 if (!np->n_dircache) 1428 return; 1429 1430 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) { 1431 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != 0) { 1432 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1433 LIST_REMOVE(ndp, dc_hash); 1434 FREE(ndp, M_NFSDIROFF); 1435 } 1436 np->n_dircachesize = 0; 1437 if (forcefree && np->n_dirgens) { 1438 FREE(np->n_dirgens, M_NFSDIROFF); 1439 } 1440 } else { 1441 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) { 1442 ndp->dc_blkno = -1; 1443 } 1444 } 1445 1446 np->n_dblkno = 1; 1447 } 1448 1449 /* 1450 * Called once before VFS init to initialize shared and 1451 * server-specific data structures. 1452 */ 1453 void 1454 nfs_init() 1455 { 1456 nfsrtt.pos = 0; 1457 rpc_vers = txdr_unsigned(RPC_VER2); 1458 rpc_call = txdr_unsigned(RPC_CALL); 1459 rpc_reply = txdr_unsigned(RPC_REPLY); 1460 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED); 1461 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED); 1462 rpc_mismatch = txdr_unsigned(RPC_MISMATCH); 1463 rpc_autherr = txdr_unsigned(RPC_AUTHERR); 1464 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX); 1465 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4); 1466 nfs_prog = txdr_unsigned(NFS_PROG); 1467 nqnfs_prog = txdr_unsigned(NQNFS_PROG); 1468 nfs_true = txdr_unsigned(TRUE); 1469 nfs_false = txdr_unsigned(FALSE); 1470 nfs_xdrneg1 = txdr_unsigned(-1); 1471 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000; 1472 if (nfs_ticks < 1) 1473 nfs_ticks = 1; 1474 #ifdef NFSSERVER 1475 nfsrv_init(0); /* Init server data structures */ 1476 nfsrv_initcache(); /* Init the server request cache */ 1477 #endif /* NFSSERVER */ 1478 1479 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY) 1480 /* 1481 * Initialize the nqnfs data structures. 1482 */ 1483 if (nqnfsstarttime == 0) { 1484 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease 1485 + nqsrv_clockskew + nqsrv_writeslack; 1486 NQLOADNOVRAM(nqnfsstarttime); 1487 CIRCLEQ_INIT(&nqtimerhead); 1488 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE, 1489 M_WAITOK, &nqfhhash); 1490 } 1491 #endif 1492 1493 exithook_establish(nfs_exit, NULL); 1494 1495 /* 1496 * Initialize reply list and start timer 1497 */ 1498 TAILQ_INIT(&nfs_reqq); 1499 nfs_timer(NULL); 1500 MOWNER_ATTACH(&nfs_mowner); 1501 1502 #ifdef NFS 1503 /* Initialize the kqueue structures */ 1504 nfs_kqinit(); 1505 #endif 1506 } 1507 1508 #ifdef NFS 1509 /* 1510 * Called once at VFS init to initialize client-specific data structures. 1511 */ 1512 void 1513 nfs_vfs_init() 1514 { 1515 nfs_nhinit(); /* Init the nfsnode table */ 1516 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4); 1517 } 1518 1519 void 1520 nfs_vfs_reinit() 1521 { 1522 nfs_nhreinit(); 1523 } 1524 1525 void 1526 nfs_vfs_done() 1527 { 1528 nfs_nhdone(); 1529 } 1530 1531 /* 1532 * Attribute cache routines. 1533 * nfs_loadattrcache() - loads or updates the cache contents from attributes 1534 * that are on the mbuf list 1535 * nfs_getattrcache() - returns valid attributes if found in cache, returns 1536 * error otherwise 1537 */ 1538 1539 /* 1540 * Load the attribute cache (that lives in the nfsnode entry) with 1541 * the values on the mbuf list and 1542 * Iff vap not NULL 1543 * copy the attributes to *vaper 1544 */ 1545 int 1546 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags) 1547 struct vnode **vpp; 1548 struct mbuf **mdp; 1549 caddr_t *dposp; 1550 struct vattr *vaper; 1551 int flags; 1552 { 1553 int32_t t1; 1554 caddr_t cp2; 1555 int error = 0; 1556 struct mbuf *md; 1557 int v3 = NFS_ISV3(*vpp); 1558 1559 md = *mdp; 1560 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp; 1561 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2); 1562 if (error) 1563 return (error); 1564 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags); 1565 } 1566 1567 int 1568 nfs_loadattrcache(vpp, fp, vaper, flags) 1569 struct vnode **vpp; 1570 struct nfs_fattr *fp; 1571 struct vattr *vaper; 1572 int flags; 1573 { 1574 struct vnode *vp = *vpp; 1575 struct vattr *vap; 1576 int v3 = NFS_ISV3(vp); 1577 enum vtype vtyp; 1578 u_short vmode; 1579 struct timespec mtime; 1580 struct vnode *nvp; 1581 int32_t rdev; 1582 struct nfsnode *np; 1583 extern int (**spec_nfsv2nodeop_p) __P((void *)); 1584 uid_t uid; 1585 gid_t gid; 1586 1587 if (v3) { 1588 vtyp = nfsv3tov_type(fp->fa_type); 1589 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1590 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1), 1591 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2)); 1592 fxdr_nfsv3time(&fp->fa3_mtime, &mtime); 1593 } else { 1594 vtyp = nfsv2tov_type(fp->fa_type); 1595 vmode = fxdr_unsigned(u_short, fp->fa_mode); 1596 if (vtyp == VNON || vtyp == VREG) 1597 vtyp = IFTOVT(vmode); 1598 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev); 1599 fxdr_nfsv2time(&fp->fa2_mtime, &mtime); 1600 1601 /* 1602 * Really ugly NFSv2 kludge. 1603 */ 1604 if (vtyp == VCHR && rdev == 0xffffffff) 1605 vtyp = VFIFO; 1606 } 1607 1608 vmode &= ALLPERMS; 1609 1610 /* 1611 * If v_type == VNON it is a new node, so fill in the v_type, 1612 * n_mtime fields. Check to see if it represents a special 1613 * device, and if so, check for a possible alias. Once the 1614 * correct vnode has been obtained, fill in the rest of the 1615 * information. 1616 */ 1617 np = VTONFS(vp); 1618 if (vp->v_type == VNON) { 1619 vp->v_type = vtyp; 1620 if (vp->v_type == VFIFO) { 1621 extern int (**fifo_nfsv2nodeop_p) __P((void *)); 1622 vp->v_op = fifo_nfsv2nodeop_p; 1623 } 1624 if (vp->v_type == VCHR || vp->v_type == VBLK) { 1625 vp->v_op = spec_nfsv2nodeop_p; 1626 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount); 1627 if (nvp) { 1628 /* 1629 * Discard unneeded vnode, but save its nfsnode. 1630 * Since the nfsnode does not have a lock, its 1631 * vnode lock has to be carried over. 1632 */ 1633 /* 1634 * XXX is the old node sure to be locked here? 1635 */ 1636 KASSERT(lockstatus(&vp->v_lock) == 1637 LK_EXCLUSIVE); 1638 nvp->v_data = vp->v_data; 1639 vp->v_data = NULL; 1640 VOP_UNLOCK(vp, 0); 1641 vp->v_op = spec_vnodeop_p; 1642 vrele(vp); 1643 vgone(vp); 1644 lockmgr(&nvp->v_lock, LK_EXCLUSIVE, 1645 &nvp->v_interlock); 1646 /* 1647 * Reinitialize aliased node. 1648 */ 1649 np->n_vnode = nvp; 1650 *vpp = vp = nvp; 1651 } 1652 } 1653 np->n_mtime = mtime.tv_sec; 1654 } 1655 uid = fxdr_unsigned(uid_t, fp->fa_uid); 1656 gid = fxdr_unsigned(gid_t, fp->fa_gid); 1657 vap = np->n_vattr; 1658 1659 /* 1660 * Invalidate access cache if uid, gid or mode changed. 1661 */ 1662 if (np->n_accstamp != -1 && 1663 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode)) 1664 np->n_accstamp = -1; 1665 1666 vap->va_type = vtyp; 1667 vap->va_mode = vmode; 1668 vap->va_rdev = (dev_t)rdev; 1669 vap->va_mtime = mtime; 1670 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 1671 switch (vtyp) { 1672 case VDIR: 1673 vap->va_blocksize = NFS_DIRFRAGSIZ; 1674 break; 1675 case VBLK: 1676 vap->va_blocksize = BLKDEV_IOSIZE; 1677 break; 1678 case VCHR: 1679 vap->va_blocksize = MAXBSIZE; 1680 break; 1681 default: 1682 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize : 1683 fxdr_unsigned(int32_t, fp->fa2_blocksize); 1684 break; 1685 } 1686 if (v3) { 1687 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1688 vap->va_uid = uid; 1689 vap->va_gid = gid; 1690 vap->va_size = fxdr_hyper(&fp->fa3_size); 1691 vap->va_bytes = fxdr_hyper(&fp->fa3_used); 1692 vap->va_fileid = fxdr_unsigned(int32_t, 1693 fp->fa3_fileid.nfsuquad[1]); 1694 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime); 1695 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime); 1696 vap->va_flags = 0; 1697 vap->va_filerev = 0; 1698 } else { 1699 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink); 1700 vap->va_uid = uid; 1701 vap->va_gid = gid; 1702 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size); 1703 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks) 1704 * NFS_FABLKSIZE; 1705 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid); 1706 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime); 1707 vap->va_flags = 0; 1708 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t, 1709 fp->fa2_ctime.nfsv2_sec); 1710 vap->va_ctime.tv_nsec = 0; 1711 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec); 1712 vap->va_filerev = 0; 1713 } 1714 if (vap->va_size != np->n_size) { 1715 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) { 1716 vap->va_size = np->n_size; 1717 } else { 1718 np->n_size = vap->va_size; 1719 if (vap->va_type == VREG) { 1720 if ((flags & NAC_NOTRUNC) 1721 && np->n_size < vp->v_size) { 1722 /* 1723 * we can't free pages now because 1724 * the pages can be owned by ourselves. 1725 */ 1726 np->n_flag |= NTRUNCDELAYED; 1727 } 1728 else { 1729 uvm_vnp_setsize(vp, np->n_size); 1730 } 1731 } 1732 } 1733 } 1734 np->n_attrstamp = time.tv_sec; 1735 if (vaper != NULL) { 1736 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap)); 1737 if (np->n_flag & NCHG) { 1738 if (np->n_flag & NACC) 1739 vaper->va_atime = np->n_atim; 1740 if (np->n_flag & NUPD) 1741 vaper->va_mtime = np->n_mtim; 1742 } 1743 } 1744 return (0); 1745 } 1746 1747 /* 1748 * Check the time stamp 1749 * If the cache is valid, copy contents to *vap and return 0 1750 * otherwise return an error 1751 */ 1752 int 1753 nfs_getattrcache(vp, vaper) 1754 struct vnode *vp; 1755 struct vattr *vaper; 1756 { 1757 struct nfsnode *np = VTONFS(vp); 1758 struct vattr *vap; 1759 1760 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) { 1761 nfsstats.attrcache_misses++; 1762 return (ENOENT); 1763 } 1764 nfsstats.attrcache_hits++; 1765 vap = np->n_vattr; 1766 if (vap->va_size != np->n_size) { 1767 if (vap->va_type == VREG) { 1768 if (np->n_flag & NMODIFIED) { 1769 if (vap->va_size < np->n_size) 1770 vap->va_size = np->n_size; 1771 else 1772 np->n_size = vap->va_size; 1773 } else 1774 np->n_size = vap->va_size; 1775 uvm_vnp_setsize(vp, np->n_size); 1776 } else 1777 np->n_size = vap->va_size; 1778 } 1779 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr)); 1780 if (np->n_flag & NCHG) { 1781 if (np->n_flag & NACC) 1782 vaper->va_atime = np->n_atim; 1783 if (np->n_flag & NUPD) 1784 vaper->va_mtime = np->n_mtim; 1785 } 1786 return (0); 1787 } 1788 1789 void 1790 nfs_delayedtruncate(vp) 1791 struct vnode *vp; 1792 { 1793 struct nfsnode *np = VTONFS(vp); 1794 1795 if (np->n_flag & NTRUNCDELAYED) { 1796 np->n_flag &= ~NTRUNCDELAYED; 1797 uvm_vnp_setsize(vp, np->n_size); 1798 } 1799 } 1800 1801 /* 1802 * Heuristic to see if the server XDR encodes directory cookies or not. 1803 * it is not supposed to, but a lot of servers may do this. Also, since 1804 * most/all servers will implement V2 as well, it is expected that they 1805 * may return just 32 bits worth of cookie information, so we need to 1806 * find out in which 32 bits this information is available. We do this 1807 * to avoid trouble with emulated binaries that can't handle 64 bit 1808 * directory offsets. 1809 */ 1810 1811 void 1812 nfs_cookieheuristic(vp, flagp, p, cred) 1813 struct vnode *vp; 1814 int *flagp; 1815 struct proc *p; 1816 struct ucred *cred; 1817 { 1818 struct uio auio; 1819 struct iovec aiov; 1820 caddr_t buf, cp; 1821 struct dirent *dp; 1822 off_t *cookies = NULL, *cop; 1823 int error, eof, nc, len; 1824 1825 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK); 1826 1827 aiov.iov_base = buf; 1828 aiov.iov_len = NFS_DIRFRAGSIZ; 1829 auio.uio_iov = &aiov; 1830 auio.uio_iovcnt = 1; 1831 auio.uio_rw = UIO_READ; 1832 auio.uio_segflg = UIO_SYSSPACE; 1833 auio.uio_procp = p; 1834 auio.uio_resid = NFS_DIRFRAGSIZ; 1835 auio.uio_offset = 0; 1836 1837 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc); 1838 1839 len = NFS_DIRFRAGSIZ - auio.uio_resid; 1840 if (error || len == 0) { 1841 FREE(buf, M_TEMP); 1842 if (cookies) 1843 free(cookies, M_TEMP); 1844 return; 1845 } 1846 1847 /* 1848 * Find the first valid entry and look at its offset cookie. 1849 */ 1850 1851 cp = buf; 1852 for (cop = cookies; len > 0; len -= dp->d_reclen) { 1853 dp = (struct dirent *)cp; 1854 if (dp->d_fileno != 0 && len >= dp->d_reclen) { 1855 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) { 1856 *flagp |= NFSMNT_SWAPCOOKIE; 1857 nfs_invaldircache(vp, 0); 1858 nfs_vinvalbuf(vp, 0, cred, p, 1); 1859 } 1860 break; 1861 } 1862 cop++; 1863 cp += dp->d_reclen; 1864 } 1865 1866 FREE(buf, M_TEMP); 1867 free(cookies, M_TEMP); 1868 } 1869 #endif /* NFS */ 1870 1871 /* 1872 * Set up nameidata for a lookup() call and do it. 1873 * 1874 * If pubflag is set, this call is done for a lookup operation on the 1875 * public filehandle. In that case we allow crossing mountpoints and 1876 * absolute pathnames. However, the caller is expected to check that 1877 * the lookup result is within the public fs, and deny access if 1878 * it is not. 1879 */ 1880 int 1881 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag) 1882 struct nameidata *ndp; 1883 fhandle_t *fhp; 1884 uint32_t len; 1885 struct nfssvc_sock *slp; 1886 struct mbuf *nam; 1887 struct mbuf **mdp; 1888 caddr_t *dposp; 1889 struct vnode **retdirp; 1890 struct proc *p; 1891 int kerbflag, pubflag; 1892 { 1893 int i, rem; 1894 struct mbuf *md; 1895 char *fromcp, *tocp, *cp; 1896 struct iovec aiov; 1897 struct uio auio; 1898 struct vnode *dp; 1899 int error, rdonly, linklen; 1900 struct componentname *cnp = &ndp->ni_cnd; 1901 1902 *retdirp = (struct vnode *)0; 1903 1904 if ((len + 1) > MAXPATHLEN) 1905 return (ENAMETOOLONG); 1906 cnp->cn_pnbuf = PNBUF_GET(); 1907 1908 /* 1909 * Copy the name from the mbuf list to ndp->ni_pnbuf 1910 * and set the various ndp fields appropriately. 1911 */ 1912 fromcp = *dposp; 1913 tocp = cnp->cn_pnbuf; 1914 md = *mdp; 1915 rem = mtod(md, caddr_t) + md->m_len - fromcp; 1916 for (i = 0; i < len; i++) { 1917 while (rem == 0) { 1918 md = md->m_next; 1919 if (md == NULL) { 1920 error = EBADRPC; 1921 goto out; 1922 } 1923 fromcp = mtod(md, caddr_t); 1924 rem = md->m_len; 1925 } 1926 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) { 1927 error = EACCES; 1928 goto out; 1929 } 1930 *tocp++ = *fromcp++; 1931 rem--; 1932 } 1933 *tocp = '\0'; 1934 *mdp = md; 1935 *dposp = fromcp; 1936 len = nfsm_rndup(len)-len; 1937 if (len > 0) { 1938 if (rem >= len) 1939 *dposp += len; 1940 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0) 1941 goto out; 1942 } 1943 1944 /* 1945 * Extract and set starting directory. 1946 */ 1947 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp, 1948 nam, &rdonly, kerbflag, pubflag); 1949 if (error) 1950 goto out; 1951 if (dp->v_type != VDIR) { 1952 vrele(dp); 1953 error = ENOTDIR; 1954 goto out; 1955 } 1956 1957 if (rdonly) 1958 cnp->cn_flags |= RDONLY; 1959 1960 *retdirp = dp; 1961 1962 if (pubflag) { 1963 /* 1964 * Oh joy. For WebNFS, handle those pesky '%' escapes, 1965 * and the 'native path' indicator. 1966 */ 1967 cp = PNBUF_GET(); 1968 fromcp = cnp->cn_pnbuf; 1969 tocp = cp; 1970 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) { 1971 switch ((unsigned char)*fromcp) { 1972 case WEBNFS_NATIVE_CHAR: 1973 /* 1974 * 'Native' path for us is the same 1975 * as a path according to the NFS spec, 1976 * just skip the escape char. 1977 */ 1978 fromcp++; 1979 break; 1980 /* 1981 * More may be added in the future, range 0x80-0xff 1982 */ 1983 default: 1984 error = EIO; 1985 PNBUF_PUT(cp); 1986 goto out; 1987 } 1988 } 1989 /* 1990 * Translate the '%' escapes, URL-style. 1991 */ 1992 while (*fromcp != '\0') { 1993 if (*fromcp == WEBNFS_ESC_CHAR) { 1994 if (fromcp[1] != '\0' && fromcp[2] != '\0') { 1995 fromcp++; 1996 *tocp++ = HEXSTRTOI(fromcp); 1997 fromcp += 2; 1998 continue; 1999 } else { 2000 error = ENOENT; 2001 PNBUF_PUT(cp); 2002 goto out; 2003 } 2004 } else 2005 *tocp++ = *fromcp++; 2006 } 2007 *tocp = '\0'; 2008 PNBUF_PUT(cnp->cn_pnbuf); 2009 cnp->cn_pnbuf = cp; 2010 } 2011 2012 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1; 2013 ndp->ni_segflg = UIO_SYSSPACE; 2014 ndp->ni_rootdir = rootvnode; 2015 2016 if (pubflag) { 2017 ndp->ni_loopcnt = 0; 2018 if (cnp->cn_pnbuf[0] == '/') 2019 dp = rootvnode; 2020 } else { 2021 cnp->cn_flags |= NOCROSSMOUNT; 2022 } 2023 2024 cnp->cn_proc = p; 2025 VREF(dp); 2026 2027 for (;;) { 2028 cnp->cn_nameptr = cnp->cn_pnbuf; 2029 ndp->ni_startdir = dp; 2030 /* 2031 * And call lookup() to do the real work 2032 */ 2033 error = lookup(ndp); 2034 if (error) { 2035 PNBUF_PUT(cnp->cn_pnbuf); 2036 return (error); 2037 } 2038 /* 2039 * Check for encountering a symbolic link 2040 */ 2041 if ((cnp->cn_flags & ISSYMLINK) == 0) { 2042 if (cnp->cn_flags & (SAVENAME | SAVESTART)) 2043 cnp->cn_flags |= HASBUF; 2044 else 2045 PNBUF_PUT(cnp->cn_pnbuf); 2046 return (0); 2047 } else { 2048 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN)) 2049 VOP_UNLOCK(ndp->ni_dvp, 0); 2050 if (!pubflag) { 2051 error = EINVAL; 2052 break; 2053 } 2054 2055 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) { 2056 error = ELOOP; 2057 break; 2058 } 2059 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) { 2060 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred, 2061 cnp->cn_proc); 2062 if (error != 0) 2063 break; 2064 } 2065 if (ndp->ni_pathlen > 1) 2066 cp = PNBUF_GET(); 2067 else 2068 cp = cnp->cn_pnbuf; 2069 aiov.iov_base = cp; 2070 aiov.iov_len = MAXPATHLEN; 2071 auio.uio_iov = &aiov; 2072 auio.uio_iovcnt = 1; 2073 auio.uio_offset = 0; 2074 auio.uio_rw = UIO_READ; 2075 auio.uio_segflg = UIO_SYSSPACE; 2076 auio.uio_procp = (struct proc *)0; 2077 auio.uio_resid = MAXPATHLEN; 2078 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred); 2079 if (error) { 2080 badlink: 2081 if (ndp->ni_pathlen > 1) 2082 PNBUF_PUT(cp); 2083 break; 2084 } 2085 linklen = MAXPATHLEN - auio.uio_resid; 2086 if (linklen == 0) { 2087 error = ENOENT; 2088 goto badlink; 2089 } 2090 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) { 2091 error = ENAMETOOLONG; 2092 goto badlink; 2093 } 2094 if (ndp->ni_pathlen > 1) { 2095 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen); 2096 PNBUF_PUT(cnp->cn_pnbuf); 2097 cnp->cn_pnbuf = cp; 2098 } else 2099 cnp->cn_pnbuf[linklen] = '\0'; 2100 ndp->ni_pathlen += linklen; 2101 vput(ndp->ni_vp); 2102 dp = ndp->ni_dvp; 2103 /* 2104 * Check if root directory should replace current directory. 2105 */ 2106 if (cnp->cn_pnbuf[0] == '/') { 2107 vrele(dp); 2108 dp = ndp->ni_rootdir; 2109 VREF(dp); 2110 } 2111 } 2112 } 2113 vrele(ndp->ni_dvp); 2114 vput(ndp->ni_vp); 2115 ndp->ni_vp = NULL; 2116 out: 2117 PNBUF_PUT(cnp->cn_pnbuf); 2118 return (error); 2119 } 2120 2121 /* 2122 * A fiddled version of m_adj() that ensures null fill to a 32-bit 2123 * boundary and only trims off the back end 2124 */ 2125 void 2126 nfsm_adj(mp, len, nul) 2127 struct mbuf *mp; 2128 int len; 2129 int nul; 2130 { 2131 struct mbuf *m; 2132 int count, i; 2133 char *cp; 2134 2135 /* 2136 * Trim from tail. Scan the mbuf chain, 2137 * calculating its length and finding the last mbuf. 2138 * If the adjustment only affects this mbuf, then just 2139 * adjust and return. Otherwise, rescan and truncate 2140 * after the remaining size. 2141 */ 2142 count = 0; 2143 m = mp; 2144 for (;;) { 2145 count += m->m_len; 2146 if (m->m_next == (struct mbuf *)0) 2147 break; 2148 m = m->m_next; 2149 } 2150 if (m->m_len > len) { 2151 m->m_len -= len; 2152 if (nul > 0) { 2153 if (M_ROMAP(m)) { 2154 struct mbuf *n; 2155 2156 KDASSERT(MLEN >= nul); 2157 n = m_get(M_WAIT, MT_DATA); 2158 MCLAIM(n, &nfs_mowner); 2159 n->m_len = nul; 2160 n->m_next = m->m_next; 2161 m->m_len -= nul; 2162 m->m_next = n; 2163 m = n; 2164 } 2165 cp = mtod(m, caddr_t)+m->m_len-nul; 2166 for (i = 0; i < nul; i++) 2167 *cp++ = '\0'; 2168 } 2169 return; 2170 } 2171 count -= len; 2172 if (count < 0) 2173 count = 0; 2174 /* 2175 * Correct length for chain is "count". 2176 * Find the mbuf with last data, adjust its length, 2177 * and toss data from remaining mbufs on chain. 2178 */ 2179 for (m = mp; m; m = m->m_next) { 2180 if (m->m_len >= count) { 2181 m->m_len = count; 2182 if (nul > 0) { 2183 if (M_ROMAP(m)) { 2184 struct mbuf *n; 2185 2186 KDASSERT(MLEN >= nul); 2187 n = m_get(M_WAIT, MT_DATA); 2188 MCLAIM(n, &nfs_mowner); 2189 n->m_len = nul; 2190 n->m_next = m->m_next; 2191 m->m_len -= nul; 2192 m->m_next = n; 2193 m = n; 2194 } 2195 cp = mtod(m, caddr_t)+m->m_len-nul; 2196 for (i = 0; i < nul; i++) 2197 *cp++ = '\0'; 2198 } 2199 break; 2200 } 2201 count -= m->m_len; 2202 } 2203 for (m = m->m_next;m;m = m->m_next) 2204 m->m_len = 0; 2205 } 2206 2207 /* 2208 * Make these functions instead of macros, so that the kernel text size 2209 * doesn't get too big... 2210 */ 2211 void 2212 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp) 2213 struct nfsrv_descript *nfsd; 2214 int before_ret; 2215 struct vattr *before_vap; 2216 int after_ret; 2217 struct vattr *after_vap; 2218 struct mbuf **mbp; 2219 char **bposp; 2220 { 2221 struct mbuf *mb = *mbp; 2222 char *bpos = *bposp; 2223 u_int32_t *tl; 2224 2225 if (before_ret) { 2226 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2227 *tl = nfs_false; 2228 } else { 2229 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED); 2230 *tl++ = nfs_true; 2231 txdr_hyper(before_vap->va_size, tl); 2232 tl += 2; 2233 txdr_nfsv3time(&(before_vap->va_mtime), tl); 2234 tl += 2; 2235 txdr_nfsv3time(&(before_vap->va_ctime), tl); 2236 } 2237 *bposp = bpos; 2238 *mbp = mb; 2239 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp); 2240 } 2241 2242 void 2243 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp) 2244 struct nfsrv_descript *nfsd; 2245 int after_ret; 2246 struct vattr *after_vap; 2247 struct mbuf **mbp; 2248 char **bposp; 2249 { 2250 struct mbuf *mb = *mbp; 2251 char *bpos = *bposp; 2252 u_int32_t *tl; 2253 struct nfs_fattr *fp; 2254 2255 if (after_ret) { 2256 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 2257 *tl = nfs_false; 2258 } else { 2259 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR); 2260 *tl++ = nfs_true; 2261 fp = (struct nfs_fattr *)tl; 2262 nfsm_srvfattr(nfsd, after_vap, fp); 2263 } 2264 *mbp = mb; 2265 *bposp = bpos; 2266 } 2267 2268 void 2269 nfsm_srvfattr(nfsd, vap, fp) 2270 struct nfsrv_descript *nfsd; 2271 struct vattr *vap; 2272 struct nfs_fattr *fp; 2273 { 2274 2275 fp->fa_nlink = txdr_unsigned(vap->va_nlink); 2276 fp->fa_uid = txdr_unsigned(vap->va_uid); 2277 fp->fa_gid = txdr_unsigned(vap->va_gid); 2278 if (nfsd->nd_flag & ND_NFSV3) { 2279 fp->fa_type = vtonfsv3_type(vap->va_type); 2280 fp->fa_mode = vtonfsv3_mode(vap->va_mode); 2281 txdr_hyper(vap->va_size, &fp->fa3_size); 2282 txdr_hyper(vap->va_bytes, &fp->fa3_used); 2283 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev)); 2284 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev)); 2285 fp->fa3_fsid.nfsuquad[0] = 0; 2286 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid); 2287 fp->fa3_fileid.nfsuquad[0] = 0; 2288 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid); 2289 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime); 2290 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime); 2291 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime); 2292 } else { 2293 fp->fa_type = vtonfsv2_type(vap->va_type); 2294 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 2295 fp->fa2_size = txdr_unsigned(vap->va_size); 2296 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize); 2297 if (vap->va_type == VFIFO) 2298 fp->fa2_rdev = 0xffffffff; 2299 else 2300 fp->fa2_rdev = txdr_unsigned(vap->va_rdev); 2301 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE); 2302 fp->fa2_fsid = txdr_unsigned(vap->va_fsid); 2303 fp->fa2_fileid = txdr_unsigned(vap->va_fileid); 2304 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime); 2305 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime); 2306 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime); 2307 } 2308 } 2309 2310 /* 2311 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked) 2312 * - look up fsid in mount list (if not found ret error) 2313 * - get vp and export rights by calling VFS_FHTOVP() 2314 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon 2315 * - if not lockflag unlock it with VOP_UNLOCK() 2316 */ 2317 int 2318 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag) 2319 fhandle_t *fhp; 2320 int lockflag; 2321 struct vnode **vpp; 2322 struct ucred *cred; 2323 struct nfssvc_sock *slp; 2324 struct mbuf *nam; 2325 int *rdonlyp; 2326 int kerbflag; 2327 { 2328 struct mount *mp; 2329 int i; 2330 struct ucred *credanon; 2331 int error, exflags; 2332 struct sockaddr_in *saddr; 2333 2334 *vpp = (struct vnode *)0; 2335 2336 if (nfs_ispublicfh(fhp)) { 2337 if (!pubflag || !nfs_pub.np_valid) 2338 return (ESTALE); 2339 fhp = &nfs_pub.np_handle; 2340 } 2341 2342 mp = vfs_getvfs(&fhp->fh_fsid); 2343 if (!mp) 2344 return (ESTALE); 2345 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon); 2346 if (error) 2347 return (error); 2348 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp); 2349 if (error) 2350 return (error); 2351 2352 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) { 2353 saddr = mtod(nam, struct sockaddr_in *); 2354 if ((saddr->sin_family == AF_INET) && 2355 ntohs(saddr->sin_port) >= IPPORT_RESERVED) { 2356 vput(*vpp); 2357 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2358 } 2359 #ifdef INET6 2360 if ((saddr->sin_family == AF_INET6) && 2361 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) { 2362 vput(*vpp); 2363 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2364 } 2365 #endif 2366 } 2367 /* 2368 * Check/setup credentials. 2369 */ 2370 if (exflags & MNT_EXKERB) { 2371 if (!kerbflag) { 2372 vput(*vpp); 2373 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2374 } 2375 } else if (kerbflag) { 2376 vput(*vpp); 2377 return (NFSERR_AUTHERR | AUTH_TOOWEAK); 2378 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) { 2379 cred->cr_uid = credanon->cr_uid; 2380 cred->cr_gid = credanon->cr_gid; 2381 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++) 2382 cred->cr_groups[i] = credanon->cr_groups[i]; 2383 cred->cr_ngroups = i; 2384 } 2385 if (exflags & MNT_EXRDONLY) 2386 *rdonlyp = 1; 2387 else 2388 *rdonlyp = 0; 2389 if (!lockflag) 2390 VOP_UNLOCK(*vpp, 0); 2391 return (0); 2392 } 2393 2394 /* 2395 * WebNFS: check if a filehandle is a public filehandle. For v3, this 2396 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has 2397 * transformed this to all zeroes in both cases, so check for it. 2398 */ 2399 int 2400 nfs_ispublicfh(fhp) 2401 fhandle_t *fhp; 2402 { 2403 char *cp = (char *)fhp; 2404 int i; 2405 2406 for (i = 0; i < NFSX_V3FH; i++) 2407 if (*cp++ != 0) 2408 return (FALSE); 2409 return (TRUE); 2410 } 2411 2412 /* 2413 * This function compares two net addresses by family and returns TRUE 2414 * if they are the same host. 2415 * If there is any doubt, return FALSE. 2416 * The AF_INET family is handled as a special case so that address mbufs 2417 * don't need to be saved to store "struct in_addr", which is only 4 bytes. 2418 */ 2419 int 2420 netaddr_match(family, haddr, nam) 2421 int family; 2422 union nethostaddr *haddr; 2423 struct mbuf *nam; 2424 { 2425 struct sockaddr_in *inetaddr; 2426 2427 switch (family) { 2428 case AF_INET: 2429 inetaddr = mtod(nam, struct sockaddr_in *); 2430 if (inetaddr->sin_family == AF_INET && 2431 inetaddr->sin_addr.s_addr == haddr->had_inetaddr) 2432 return (1); 2433 break; 2434 #ifdef INET6 2435 case AF_INET6: 2436 { 2437 struct sockaddr_in6 *sin6_1, *sin6_2; 2438 2439 sin6_1 = mtod(nam, struct sockaddr_in6 *); 2440 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *); 2441 if (sin6_1->sin6_family == AF_INET6 && 2442 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr)) 2443 return 1; 2444 } 2445 #endif 2446 #ifdef ISO 2447 case AF_ISO: 2448 { 2449 struct sockaddr_iso *isoaddr1, *isoaddr2; 2450 2451 isoaddr1 = mtod(nam, struct sockaddr_iso *); 2452 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *); 2453 if (isoaddr1->siso_family == AF_ISO && 2454 isoaddr1->siso_nlen > 0 && 2455 isoaddr1->siso_nlen == isoaddr2->siso_nlen && 2456 SAME_ISOADDR(isoaddr1, isoaddr2)) 2457 return (1); 2458 break; 2459 } 2460 #endif /* ISO */ 2461 default: 2462 break; 2463 }; 2464 return (0); 2465 } 2466 2467 /* 2468 * The write verifier has changed (probably due to a server reboot), so all 2469 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked 2470 * as dirty or are being written out just now, all this takes is clearing 2471 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for 2472 * the mount point. 2473 */ 2474 void 2475 nfs_clearcommit(mp) 2476 struct mount *mp; 2477 { 2478 struct vnode *vp; 2479 struct nfsnode *np; 2480 struct vm_page *pg; 2481 struct nfsmount *nmp = VFSTONFS(mp); 2482 2483 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL); 2484 2485 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 2486 KASSERT(vp->v_mount == mp); 2487 if (vp->v_type == VNON) 2488 continue; 2489 np = VTONFS(vp); 2490 np->n_pushlo = np->n_pushhi = np->n_pushedlo = 2491 np->n_pushedhi = 0; 2492 np->n_commitflags &= 2493 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID); 2494 simple_lock(&vp->v_uobj.vmobjlock); 2495 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) { 2496 pg->flags &= ~PG_NEEDCOMMIT; 2497 } 2498 simple_unlock(&vp->v_uobj.vmobjlock); 2499 } 2500 simple_lock(&nmp->nm_slock); 2501 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF; 2502 simple_unlock(&nmp->nm_slock); 2503 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 2504 } 2505 2506 void 2507 nfs_merge_commit_ranges(vp) 2508 struct vnode *vp; 2509 { 2510 struct nfsnode *np = VTONFS(vp); 2511 2512 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID); 2513 2514 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2515 np->n_pushedlo = np->n_pushlo; 2516 np->n_pushedhi = np->n_pushhi; 2517 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2518 } else { 2519 if (np->n_pushlo < np->n_pushedlo) 2520 np->n_pushedlo = np->n_pushlo; 2521 if (np->n_pushhi > np->n_pushedhi) 2522 np->n_pushedhi = np->n_pushhi; 2523 } 2524 2525 np->n_pushlo = np->n_pushhi = 0; 2526 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID; 2527 2528 #ifdef NFS_DEBUG_COMMIT 2529 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2530 (unsigned)np->n_pushedhi); 2531 #endif 2532 } 2533 2534 int 2535 nfs_in_committed_range(vp, off, len) 2536 struct vnode *vp; 2537 off_t off, len; 2538 { 2539 struct nfsnode *np = VTONFS(vp); 2540 off_t lo, hi; 2541 2542 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2543 return 0; 2544 lo = off; 2545 hi = lo + len; 2546 2547 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi); 2548 } 2549 2550 int 2551 nfs_in_tobecommitted_range(vp, off, len) 2552 struct vnode *vp; 2553 off_t off, len; 2554 { 2555 struct nfsnode *np = VTONFS(vp); 2556 off_t lo, hi; 2557 2558 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2559 return 0; 2560 lo = off; 2561 hi = lo + len; 2562 2563 return (lo >= np->n_pushlo && hi <= np->n_pushhi); 2564 } 2565 2566 void 2567 nfs_add_committed_range(vp, off, len) 2568 struct vnode *vp; 2569 off_t off, len; 2570 { 2571 struct nfsnode *np = VTONFS(vp); 2572 off_t lo, hi; 2573 2574 lo = off; 2575 hi = lo + len; 2576 2577 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) { 2578 np->n_pushedlo = lo; 2579 np->n_pushedhi = hi; 2580 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID; 2581 } else { 2582 if (hi > np->n_pushedhi) 2583 np->n_pushedhi = hi; 2584 if (lo < np->n_pushedlo) 2585 np->n_pushedlo = lo; 2586 } 2587 #ifdef NFS_DEBUG_COMMIT 2588 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2589 (unsigned)np->n_pushedhi); 2590 #endif 2591 } 2592 2593 void 2594 nfs_del_committed_range(vp, off, len) 2595 struct vnode *vp; 2596 off_t off, len; 2597 { 2598 struct nfsnode *np = VTONFS(vp); 2599 off_t lo, hi; 2600 2601 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) 2602 return; 2603 2604 lo = off; 2605 hi = lo + len; 2606 2607 if (lo > np->n_pushedhi || hi < np->n_pushedlo) 2608 return; 2609 if (lo <= np->n_pushedlo) 2610 np->n_pushedlo = hi; 2611 else if (hi >= np->n_pushedhi) 2612 np->n_pushedhi = lo; 2613 else { 2614 /* 2615 * XXX There's only one range. If the deleted range 2616 * is in the middle, pick the largest of the 2617 * contiguous ranges that it leaves. 2618 */ 2619 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi)) 2620 np->n_pushedhi = lo; 2621 else 2622 np->n_pushedlo = hi; 2623 } 2624 #ifdef NFS_DEBUG_COMMIT 2625 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo, 2626 (unsigned)np->n_pushedhi); 2627 #endif 2628 } 2629 2630 void 2631 nfs_add_tobecommitted_range(vp, off, len) 2632 struct vnode *vp; 2633 off_t off, len; 2634 { 2635 struct nfsnode *np = VTONFS(vp); 2636 off_t lo, hi; 2637 2638 lo = off; 2639 hi = lo + len; 2640 2641 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) { 2642 np->n_pushlo = lo; 2643 np->n_pushhi = hi; 2644 np->n_commitflags |= NFS_COMMIT_PUSH_VALID; 2645 } else { 2646 if (lo < np->n_pushlo) 2647 np->n_pushlo = lo; 2648 if (hi > np->n_pushhi) 2649 np->n_pushhi = hi; 2650 } 2651 #ifdef NFS_DEBUG_COMMIT 2652 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2653 (unsigned)np->n_pushhi); 2654 #endif 2655 } 2656 2657 void 2658 nfs_del_tobecommitted_range(vp, off, len) 2659 struct vnode *vp; 2660 off_t off, len; 2661 { 2662 struct nfsnode *np = VTONFS(vp); 2663 off_t lo, hi; 2664 2665 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) 2666 return; 2667 2668 lo = off; 2669 hi = lo + len; 2670 2671 if (lo > np->n_pushhi || hi < np->n_pushlo) 2672 return; 2673 2674 if (lo <= np->n_pushlo) 2675 np->n_pushlo = hi; 2676 else if (hi >= np->n_pushhi) 2677 np->n_pushhi = lo; 2678 else { 2679 /* 2680 * XXX There's only one range. If the deleted range 2681 * is in the middle, pick the largest of the 2682 * contiguous ranges that it leaves. 2683 */ 2684 if ((np->n_pushlo - lo) > (hi - np->n_pushhi)) 2685 np->n_pushhi = lo; 2686 else 2687 np->n_pushlo = hi; 2688 } 2689 #ifdef NFS_DEBUG_COMMIT 2690 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo, 2691 (unsigned)np->n_pushhi); 2692 #endif 2693 } 2694 2695 /* 2696 * Map errnos to NFS error numbers. For Version 3 also filter out error 2697 * numbers not specified for the associated procedure. 2698 */ 2699 int 2700 nfsrv_errmap(nd, err) 2701 struct nfsrv_descript *nd; 2702 int err; 2703 { 2704 const short *defaulterrp, *errp; 2705 2706 if (nd->nd_flag & ND_NFSV3) { 2707 if (nd->nd_procnum <= NFSPROC_COMMIT) { 2708 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum]; 2709 while (*++errp) { 2710 if (*errp == err) 2711 return (err); 2712 else if (*errp > err) 2713 break; 2714 } 2715 return ((int)*defaulterrp); 2716 } else 2717 return (err & 0xffff); 2718 } 2719 if (err <= ELAST) 2720 return ((int)nfsrv_v2errmap[err - 1]); 2721 return (NFSERR_IO); 2722 } 2723 2724 /* 2725 * Sort the group list in increasing numerical order. 2726 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort 2727 * that used to be here.) 2728 */ 2729 void 2730 nfsrvw_sort(list, num) 2731 gid_t *list; 2732 int num; 2733 { 2734 int i, j; 2735 gid_t v; 2736 2737 /* Insertion sort. */ 2738 for (i = 1; i < num; i++) { 2739 v = list[i]; 2740 /* find correct slot for value v, moving others up */ 2741 for (j = i; --j >= 0 && v < list[j];) 2742 list[j + 1] = list[j]; 2743 list[j + 1] = v; 2744 } 2745 } 2746 2747 /* 2748 * copy credentials making sure that the result can be compared with memcmp(). 2749 */ 2750 void 2751 nfsrv_setcred(incred, outcred) 2752 struct ucred *incred, *outcred; 2753 { 2754 int i; 2755 2756 memset((caddr_t)outcred, 0, sizeof (struct ucred)); 2757 outcred->cr_ref = 1; 2758 outcred->cr_uid = incred->cr_uid; 2759 outcred->cr_gid = incred->cr_gid; 2760 outcred->cr_ngroups = incred->cr_ngroups; 2761 for (i = 0; i < incred->cr_ngroups; i++) 2762 outcred->cr_groups[i] = incred->cr_groups[i]; 2763 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups); 2764 } 2765