1 /* $NetBSD: nfs_socket.c,v 1.42 1998/02/19 00:54:13 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1991, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include "fs_nfs.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/proc.h> 50 #include <sys/mount.h> 51 #include <sys/kernel.h> 52 #include <sys/mbuf.h> 53 #include <sys/vnode.h> 54 #include <sys/domain.h> 55 #include <sys/protosw.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/syslog.h> 59 #include <sys/tprintf.h> 60 #include <sys/namei.h> 61 62 #include <netinet/in.h> 63 #include <netinet/tcp.h> 64 65 #include <nfs/rpcv2.h> 66 #include <nfs/nfsproto.h> 67 #include <nfs/nfs.h> 68 #include <nfs/xdr_subs.h> 69 #include <nfs/nfsm_subs.h> 70 #include <nfs/nfsmount.h> 71 #include <nfs/nfsnode.h> 72 #include <nfs/nfsrtt.h> 73 #include <nfs/nqnfs.h> 74 #include <nfs/nfs_var.h> 75 76 #define TRUE 1 77 #define FALSE 0 78 79 /* 80 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 81 * Use the mean and mean deviation of rtt for the appropriate type of rpc 82 * for the frequent rpcs and a default for the others. 83 * The justification for doing "other" this way is that these rpcs 84 * happen so infrequently that timer est. would probably be stale. 85 * Also, since many of these rpcs are 86 * non-idempotent, a conservative timeout is desired. 87 * getattr, lookup - A+2D 88 * read, write - A+4D 89 * other - nm_timeo 90 */ 91 #define NFS_RTO(n, t) \ 92 ((t) == 0 ? (n)->nm_timeo : \ 93 ((t) < 3 ? \ 94 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 95 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 96 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 97 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 98 /* 99 * External data, mostly RPC constants in XDR form 100 */ 101 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 102 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 103 rpc_auth_kerb; 104 extern u_int32_t nfs_prog, nqnfs_prog; 105 extern time_t nqnfsstarttime; 106 extern struct nfsstats nfsstats; 107 extern int nfsv3_procid[NFS_NPROCS]; 108 extern int nfs_ticks; 109 110 /* 111 * Defines which timer to use for the procnum. 112 * 0 - default 113 * 1 - getattr 114 * 2 - lookup 115 * 3 - read 116 * 4 - write 117 */ 118 static int proct[NFS_NPROCS] = { 119 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 120 0, 0, 0, 121 }; 122 123 /* 124 * There is a congestion window for outstanding rpcs maintained per mount 125 * point. The cwnd size is adjusted in roughly the way that: 126 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 127 * SIGCOMM '88". ACM, August 1988. 128 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 129 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 130 * of rpcs is in progress. 131 * (The sent count and cwnd are scaled for integer arith.) 132 * Variants of "slow start" were tried and were found to be too much of a 133 * performance hit (ave. rtt 3 times larger), 134 * I suspect due to the large rtt that nfs rpcs have. 135 */ 136 #define NFS_CWNDSCALE 256 137 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 138 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 139 int nfsrtton = 0; 140 struct nfsrtt nfsrtt; 141 142 /* 143 * Initialize sockets and congestion for a new NFS connection. 144 * We do not free the sockaddr if error. 145 */ 146 int 147 nfs_connect(nmp, rep) 148 register struct nfsmount *nmp; 149 struct nfsreq *rep; 150 { 151 register struct socket *so; 152 int s, error, rcvreserve, sndreserve; 153 struct sockaddr *saddr; 154 struct sockaddr_in *sin; 155 struct mbuf *m; 156 u_int16_t tport; 157 158 nmp->nm_so = (struct socket *)0; 159 saddr = mtod(nmp->nm_nam, struct sockaddr *); 160 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 161 nmp->nm_soproto); 162 if (error) 163 goto bad; 164 so = nmp->nm_so; 165 nmp->nm_soflags = so->so_proto->pr_flags; 166 167 /* 168 * Some servers require that the client port be a reserved port number. 169 */ 170 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 171 MGET(m, M_WAIT, MT_SONAME); 172 sin = mtod(m, struct sockaddr_in *); 173 sin->sin_len = m->m_len = sizeof (struct sockaddr_in); 174 sin->sin_family = AF_INET; 175 sin->sin_addr.s_addr = INADDR_ANY; 176 tport = IPPORT_RESERVED - 1; 177 sin->sin_port = htons(tport); 178 while ((error = sobind(so, m)) == EADDRINUSE && 179 --tport > IPPORT_RESERVED / 2) 180 sin->sin_port = htons(tport); 181 m_freem(m); 182 if (error) 183 goto bad; 184 } 185 186 /* 187 * Protocols that do not require connections may be optionally left 188 * unconnected for servers that reply from a port other than NFS_PORT. 189 */ 190 if (nmp->nm_flag & NFSMNT_NOCONN) { 191 if (nmp->nm_soflags & PR_CONNREQUIRED) { 192 error = ENOTCONN; 193 goto bad; 194 } 195 } else { 196 error = soconnect(so, nmp->nm_nam); 197 if (error) 198 goto bad; 199 200 /* 201 * Wait for the connection to complete. Cribbed from the 202 * connect system call but with the wait timing out so 203 * that interruptible mounts don't hang here for a long time. 204 */ 205 s = splsoftnet(); 206 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 207 (void) tsleep((caddr_t)&so->so_timeo, PSOCK, 208 "nfscon", 2 * hz); 209 if ((so->so_state & SS_ISCONNECTING) && 210 so->so_error == 0 && rep && 211 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){ 212 so->so_state &= ~SS_ISCONNECTING; 213 splx(s); 214 goto bad; 215 } 216 } 217 if (so->so_error) { 218 error = so->so_error; 219 so->so_error = 0; 220 splx(s); 221 goto bad; 222 } 223 splx(s); 224 } 225 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { 226 so->so_rcv.sb_timeo = (5 * hz); 227 so->so_snd.sb_timeo = (5 * hz); 228 } else { 229 so->so_rcv.sb_timeo = 0; 230 so->so_snd.sb_timeo = 0; 231 } 232 if (nmp->nm_sotype == SOCK_DGRAM) { 233 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 234 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 235 NFS_MAXPKTHDR) * 2; 236 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 237 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 238 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 239 NFS_MAXPKTHDR) * 2; 240 } else { 241 if (nmp->nm_sotype != SOCK_STREAM) 242 panic("nfscon sotype"); 243 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 244 MGET(m, M_WAIT, MT_SOOPTS); 245 *mtod(m, int32_t *) = 1; 246 m->m_len = sizeof(int32_t); 247 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); 248 } 249 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 250 MGET(m, M_WAIT, MT_SOOPTS); 251 *mtod(m, int32_t *) = 1; 252 m->m_len = sizeof(int32_t); 253 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); 254 } 255 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 256 sizeof (u_int32_t)) * 2; 257 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 258 sizeof (u_int32_t)) * 2; 259 } 260 error = soreserve(so, sndreserve, rcvreserve); 261 if (error) 262 goto bad; 263 so->so_rcv.sb_flags |= SB_NOINTR; 264 so->so_snd.sb_flags |= SB_NOINTR; 265 266 /* Initialize other non-zero congestion variables */ 267 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = 268 nmp->nm_srtt[4] = (NFS_TIMEO << 3); 269 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 270 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0; 271 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 272 nmp->nm_sent = 0; 273 nmp->nm_timeouts = 0; 274 return (0); 275 276 bad: 277 nfs_disconnect(nmp); 278 return (error); 279 } 280 281 /* 282 * Reconnect routine: 283 * Called when a connection is broken on a reliable protocol. 284 * - clean up the old socket 285 * - nfs_connect() again 286 * - set R_MUSTRESEND for all outstanding requests on mount point 287 * If this fails the mount point is DEAD! 288 * nb: Must be called with the nfs_sndlock() set on the mount point. 289 */ 290 int 291 nfs_reconnect(rep) 292 register struct nfsreq *rep; 293 { 294 register struct nfsreq *rp; 295 register struct nfsmount *nmp = rep->r_nmp; 296 int error; 297 298 nfs_disconnect(nmp); 299 while ((error = nfs_connect(nmp, rep)) != 0) { 300 if (error == EINTR || error == ERESTART) 301 return (EINTR); 302 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0); 303 } 304 305 /* 306 * Loop through outstanding request list and fix up all requests 307 * on old socket. 308 */ 309 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) { 310 if (rp->r_nmp == nmp) 311 rp->r_flags |= R_MUSTRESEND; 312 } 313 return (0); 314 } 315 316 /* 317 * NFS disconnect. Clean up and unlink. 318 */ 319 void 320 nfs_disconnect(nmp) 321 register struct nfsmount *nmp; 322 { 323 register struct socket *so; 324 325 if (nmp->nm_so) { 326 so = nmp->nm_so; 327 nmp->nm_so = (struct socket *)0; 328 soshutdown(so, 2); 329 soclose(so); 330 } 331 } 332 333 void 334 nfs_safedisconnect(nmp) 335 struct nfsmount *nmp; 336 { 337 struct nfsreq dummyreq; 338 339 bzero(&dummyreq, sizeof(dummyreq)); 340 dummyreq.r_nmp = nmp; 341 nfs_rcvlock(&dummyreq); 342 nfs_disconnect(nmp); 343 nfs_rcvunlock(&nmp->nm_iflag); 344 } 345 346 /* 347 * This is the nfs send routine. For connection based socket types, it 348 * must be called with an nfs_sndlock() on the socket. 349 * "rep == NULL" indicates that it has been called from a server. 350 * For the client side: 351 * - return EINTR if the RPC is terminated, 0 otherwise 352 * - set R_MUSTRESEND if the send fails for any reason 353 * - do any cleanup required by recoverable socket errors (???) 354 * For the server side: 355 * - return EINTR or ERESTART if interrupted by a signal 356 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 357 * - do any cleanup required by recoverable socket errors (???) 358 */ 359 int 360 nfs_send(so, nam, top, rep) 361 register struct socket *so; 362 struct mbuf *nam; 363 register struct mbuf *top; 364 struct nfsreq *rep; 365 { 366 struct mbuf *sendnam; 367 int error, soflags, flags; 368 369 if (rep) { 370 if (rep->r_flags & R_SOFTTERM) { 371 m_freem(top); 372 return (EINTR); 373 } 374 if ((so = rep->r_nmp->nm_so) == NULL) { 375 rep->r_flags |= R_MUSTRESEND; 376 m_freem(top); 377 return (0); 378 } 379 rep->r_flags &= ~R_MUSTRESEND; 380 soflags = rep->r_nmp->nm_soflags; 381 } else 382 soflags = so->so_proto->pr_flags; 383 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 384 sendnam = (struct mbuf *)0; 385 else 386 sendnam = nam; 387 if (so->so_type == SOCK_SEQPACKET) 388 flags = MSG_EOR; 389 else 390 flags = 0; 391 392 error = sosend(so, sendnam, (struct uio *)0, top, 393 (struct mbuf *)0, flags); 394 if (error) { 395 if (rep) { 396 log(LOG_INFO, "nfs send error %d for server %s\n",error, 397 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 398 /* 399 * Deal with errors for the client side. 400 */ 401 if (rep->r_flags & R_SOFTTERM) 402 error = EINTR; 403 else 404 rep->r_flags |= R_MUSTRESEND; 405 } else 406 log(LOG_INFO, "nfsd send error %d\n", error); 407 408 /* 409 * Handle any recoverable (soft) socket errors here. (???) 410 */ 411 if (error != EINTR && error != ERESTART && 412 error != EWOULDBLOCK && error != EPIPE) 413 error = 0; 414 } 415 return (error); 416 } 417 418 #ifdef NFS 419 /* 420 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 421 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 422 * Mark and consolidate the data into a new mbuf list. 423 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 424 * small mbufs. 425 * For SOCK_STREAM we must be very careful to read an entire record once 426 * we have read any of it, even if the system call has been interrupted. 427 */ 428 int 429 nfs_receive(rep, aname, mp) 430 register struct nfsreq *rep; 431 struct mbuf **aname; 432 struct mbuf **mp; 433 { 434 register struct socket *so; 435 struct uio auio; 436 struct iovec aio; 437 register struct mbuf *m; 438 struct mbuf *control; 439 u_int32_t len; 440 struct mbuf **getnam; 441 int error, sotype, rcvflg; 442 struct proc *p = curproc; /* XXX */ 443 444 /* 445 * Set up arguments for soreceive() 446 */ 447 *mp = (struct mbuf *)0; 448 *aname = (struct mbuf *)0; 449 sotype = rep->r_nmp->nm_sotype; 450 451 /* 452 * For reliable protocols, lock against other senders/receivers 453 * in case a reconnect is necessary. 454 * For SOCK_STREAM, first get the Record Mark to find out how much 455 * more there is to get. 456 * We must lock the socket against other receivers 457 * until we have an entire rpc request/reply. 458 */ 459 if (sotype != SOCK_DGRAM) { 460 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 461 if (error) 462 return (error); 463 tryagain: 464 /* 465 * Check for fatal errors and resending request. 466 */ 467 /* 468 * Ugh: If a reconnect attempt just happened, nm_so 469 * would have changed. NULL indicates a failed 470 * attempt that has essentially shut down this 471 * mount point. 472 */ 473 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 474 nfs_sndunlock(&rep->r_nmp->nm_iflag); 475 return (EINTR); 476 } 477 so = rep->r_nmp->nm_so; 478 if (!so) { 479 error = nfs_reconnect(rep); 480 if (error) { 481 nfs_sndunlock(&rep->r_nmp->nm_iflag); 482 return (error); 483 } 484 goto tryagain; 485 } 486 while (rep->r_flags & R_MUSTRESEND) { 487 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 488 nfsstats.rpcretries++; 489 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 490 if (error) { 491 if (error == EINTR || error == ERESTART || 492 (error = nfs_reconnect(rep)) != 0) { 493 nfs_sndunlock(&rep->r_nmp->nm_iflag); 494 return (error); 495 } 496 goto tryagain; 497 } 498 } 499 nfs_sndunlock(&rep->r_nmp->nm_iflag); 500 if (sotype == SOCK_STREAM) { 501 aio.iov_base = (caddr_t) &len; 502 aio.iov_len = sizeof(u_int32_t); 503 auio.uio_iov = &aio; 504 auio.uio_iovcnt = 1; 505 auio.uio_segflg = UIO_SYSSPACE; 506 auio.uio_rw = UIO_READ; 507 auio.uio_offset = 0; 508 auio.uio_resid = sizeof(u_int32_t); 509 auio.uio_procp = p; 510 do { 511 rcvflg = MSG_WAITALL; 512 error = soreceive(so, (struct mbuf **)0, &auio, 513 (struct mbuf **)0, (struct mbuf **)0, &rcvflg); 514 if (error == EWOULDBLOCK && rep) { 515 if (rep->r_flags & R_SOFTTERM) 516 return (EINTR); 517 } 518 } while (error == EWOULDBLOCK); 519 if (!error && auio.uio_resid > 0) { 520 /* 521 * Don't log a 0 byte receive; it means 522 * that the socket has been closed, and 523 * can happen during normal operation 524 * (forcible unmount or Solaris server). 525 */ 526 if (auio.uio_resid != sizeof (u_int32_t)) 527 log(LOG_INFO, 528 "short receive (%d/%d) from nfs server %s\n", 529 sizeof(u_int32_t) - auio.uio_resid, 530 sizeof(u_int32_t), 531 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 532 error = EPIPE; 533 } 534 if (error) 535 goto errout; 536 len = ntohl(len) & ~0x80000000; 537 /* 538 * This is SERIOUS! We are out of sync with the sender 539 * and forcing a disconnect/reconnect is all I can do. 540 */ 541 if (len > NFS_MAXPACKET) { 542 log(LOG_ERR, "%s (%d) from nfs server %s\n", 543 "impossible packet length", 544 len, 545 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 546 error = EFBIG; 547 goto errout; 548 } 549 auio.uio_resid = len; 550 do { 551 rcvflg = MSG_WAITALL; 552 error = soreceive(so, (struct mbuf **)0, 553 &auio, mp, (struct mbuf **)0, &rcvflg); 554 } while (error == EWOULDBLOCK || error == EINTR || 555 error == ERESTART); 556 if (!error && auio.uio_resid > 0) { 557 if (len != auio.uio_resid) 558 log(LOG_INFO, 559 "short receive (%d/%d) from nfs server %s\n", 560 len - auio.uio_resid, len, 561 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 562 error = EPIPE; 563 } 564 } else { 565 /* 566 * NB: Since uio_resid is big, MSG_WAITALL is ignored 567 * and soreceive() will return when it has either a 568 * control msg or a data msg. 569 * We have no use for control msg., but must grab them 570 * and then throw them away so we know what is going 571 * on. 572 */ 573 auio.uio_resid = len = 100000000; /* Anything Big */ 574 auio.uio_procp = p; 575 do { 576 rcvflg = 0; 577 error = soreceive(so, (struct mbuf **)0, 578 &auio, mp, &control, &rcvflg); 579 if (control) 580 m_freem(control); 581 if (error == EWOULDBLOCK && rep) { 582 if (rep->r_flags & R_SOFTTERM) 583 return (EINTR); 584 } 585 } while (error == EWOULDBLOCK || 586 (!error && *mp == NULL && control)); 587 if ((rcvflg & MSG_EOR) == 0) 588 printf("Egad!!\n"); 589 if (!error && *mp == NULL) 590 error = EPIPE; 591 len -= auio.uio_resid; 592 } 593 errout: 594 if (error && error != EINTR && error != ERESTART) { 595 m_freem(*mp); 596 *mp = (struct mbuf *)0; 597 if (error != EPIPE) 598 log(LOG_INFO, 599 "receive error %d from nfs server %s\n", 600 error, 601 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 602 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 603 if (!error) 604 error = nfs_reconnect(rep); 605 if (!error) 606 goto tryagain; 607 else 608 nfs_sndunlock(&rep->r_nmp->nm_iflag); 609 } 610 } else { 611 if ((so = rep->r_nmp->nm_so) == NULL) 612 return (EACCES); 613 if (so->so_state & SS_ISCONNECTED) 614 getnam = (struct mbuf **)0; 615 else 616 getnam = aname; 617 auio.uio_resid = len = 1000000; 618 auio.uio_procp = p; 619 do { 620 rcvflg = 0; 621 error = soreceive(so, getnam, &auio, mp, 622 (struct mbuf **)0, &rcvflg); 623 if (error == EWOULDBLOCK && 624 (rep->r_flags & R_SOFTTERM)) 625 return (EINTR); 626 } while (error == EWOULDBLOCK); 627 len -= auio.uio_resid; 628 } 629 if (error) { 630 m_freem(*mp); 631 *mp = (struct mbuf *)0; 632 } 633 return (error); 634 } 635 636 /* 637 * Implement receipt of reply on a socket. 638 * We must search through the list of received datagrams matching them 639 * with outstanding requests using the xid, until ours is found. 640 */ 641 /* ARGSUSED */ 642 int 643 nfs_reply(myrep) 644 struct nfsreq *myrep; 645 { 646 register struct nfsreq *rep; 647 register struct nfsmount *nmp = myrep->r_nmp; 648 register int32_t t1; 649 struct mbuf *mrep, *nam, *md; 650 u_int32_t rxid, *tl; 651 caddr_t dpos, cp2; 652 int error; 653 654 /* 655 * Loop around until we get our own reply 656 */ 657 for (;;) { 658 /* 659 * Lock against other receivers so that I don't get stuck in 660 * sbwait() after someone else has received my reply for me. 661 * Also necessary for connection based protocols to avoid 662 * race conditions during a reconnect. 663 */ 664 error = nfs_rcvlock(myrep); 665 if (error == EALREADY) 666 return (0); 667 if (error) 668 return (error); 669 /* 670 * Get the next Rpc reply off the socket 671 */ 672 error = nfs_receive(myrep, &nam, &mrep); 673 nfs_rcvunlock(&nmp->nm_iflag); 674 if (error) { 675 676 /* 677 * Ignore routing errors on connectionless protocols?? 678 */ 679 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 680 nmp->nm_so->so_error = 0; 681 #ifdef DEBUG 682 printf("nfs_reply: ignoring error %d\n", error); 683 #endif 684 if (myrep->r_flags & R_GETONEREP) 685 return (0); 686 continue; 687 } 688 return (error); 689 } 690 if (nam) 691 m_freem(nam); 692 693 /* 694 * Get the xid and check that it is an rpc reply 695 */ 696 md = mrep; 697 dpos = mtod(md, caddr_t); 698 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 699 rxid = *tl++; 700 if (*tl != rpc_reply) { 701 if (nmp->nm_flag & NFSMNT_NQNFS) { 702 if (nqnfs_callback(nmp, mrep, md, dpos)) 703 nfsstats.rpcinvalid++; 704 } else { 705 nfsstats.rpcinvalid++; 706 m_freem(mrep); 707 } 708 nfsmout: 709 if (myrep->r_flags & R_GETONEREP) 710 return (0); 711 continue; 712 } 713 714 /* 715 * Loop through the request list to match up the reply 716 * Iff no match, just drop the datagram 717 */ 718 for (rep = nfs_reqq.tqh_first; rep != 0; 719 rep = rep->r_chain.tqe_next) { 720 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 721 /* Found it.. */ 722 rep->r_mrep = mrep; 723 rep->r_md = md; 724 rep->r_dpos = dpos; 725 if (nfsrtton) { 726 struct rttl *rt; 727 728 rt = &nfsrtt.rttl[nfsrtt.pos]; 729 rt->proc = rep->r_procnum; 730 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 731 rt->sent = nmp->nm_sent; 732 rt->cwnd = nmp->nm_cwnd; 733 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 734 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 735 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 736 rt->tstamp = time; 737 if (rep->r_flags & R_TIMING) 738 rt->rtt = rep->r_rtt; 739 else 740 rt->rtt = 1000000; 741 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 742 } 743 /* 744 * Update congestion window. 745 * Do the additive increase of 746 * one rpc/rtt. 747 */ 748 if (nmp->nm_cwnd <= nmp->nm_sent) { 749 nmp->nm_cwnd += 750 (NFS_CWNDSCALE * NFS_CWNDSCALE + 751 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 752 if (nmp->nm_cwnd > NFS_MAXCWND) 753 nmp->nm_cwnd = NFS_MAXCWND; 754 } 755 rep->r_flags &= ~R_SENT; 756 nmp->nm_sent -= NFS_CWNDSCALE; 757 /* 758 * Update rtt using a gain of 0.125 on the mean 759 * and a gain of 0.25 on the deviation. 760 */ 761 if (rep->r_flags & R_TIMING) { 762 /* 763 * Since the timer resolution of 764 * NFS_HZ is so course, it can often 765 * result in r_rtt == 0. Since 766 * r_rtt == N means that the actual 767 * rtt is between N+dt and N+2-dt ticks, 768 * add 1. 769 */ 770 t1 = rep->r_rtt + 1; 771 t1 -= (NFS_SRTT(rep) >> 3); 772 NFS_SRTT(rep) += t1; 773 if (t1 < 0) 774 t1 = -t1; 775 t1 -= (NFS_SDRTT(rep) >> 2); 776 NFS_SDRTT(rep) += t1; 777 } 778 nmp->nm_timeouts = 0; 779 break; 780 } 781 } 782 /* 783 * If not matched to a request, drop it. 784 * If it's mine, get out. 785 */ 786 if (rep == 0) { 787 nfsstats.rpcunexpected++; 788 m_freem(mrep); 789 } else if (rep == myrep) { 790 if (rep->r_mrep == NULL) 791 panic("nfsreply nil"); 792 return (0); 793 } 794 if (myrep->r_flags & R_GETONEREP) 795 return (0); 796 } 797 } 798 799 /* 800 * nfs_request - goes something like this 801 * - fill in request struct 802 * - links it into list 803 * - calls nfs_send() for first transmit 804 * - calls nfs_receive() to get reply 805 * - break down rpc header and return with nfs reply pointed to 806 * by mrep or error 807 * nb: always frees up mreq mbuf list 808 */ 809 int 810 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp) 811 struct vnode *vp; 812 struct mbuf *mrest; 813 int procnum; 814 struct proc *procp; 815 struct ucred *cred; 816 struct mbuf **mrp; 817 struct mbuf **mdp; 818 caddr_t *dposp; 819 { 820 register struct mbuf *m, *mrep; 821 register struct nfsreq *rep; 822 register u_int32_t *tl; 823 register int i; 824 struct nfsmount *nmp; 825 struct mbuf *md, *mheadend; 826 struct nfsnode *np; 827 char nickv[RPCX_NICKVERF]; 828 time_t reqtime, waituntil; 829 caddr_t dpos, cp2; 830 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type; 831 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 832 int verf_len, verf_type; 833 u_int32_t xid; 834 u_quad_t frev; 835 char *auth_str, *verf_str; 836 NFSKERBKEY_T key; /* save session key */ 837 838 nmp = VFSTONFS(vp->v_mount); 839 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 840 rep->r_nmp = nmp; 841 rep->r_vp = vp; 842 rep->r_procp = procp; 843 rep->r_procnum = procnum; 844 i = 0; 845 m = mrest; 846 while (m) { 847 i += m->m_len; 848 m = m->m_next; 849 } 850 mrest_len = i; 851 852 /* 853 * Get the RPC header with authorization. 854 */ 855 kerbauth: 856 verf_str = auth_str = (char *)0; 857 if (nmp->nm_flag & NFSMNT_KERB) { 858 verf_str = nickv; 859 verf_len = sizeof (nickv); 860 auth_type = RPCAUTH_KERB4; 861 bzero((caddr_t)key, sizeof (key)); 862 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 863 &auth_len, verf_str, verf_len)) { 864 error = nfs_getauth(nmp, rep, cred, &auth_str, 865 &auth_len, verf_str, &verf_len, key); 866 if (error) { 867 free((caddr_t)rep, M_NFSREQ); 868 m_freem(mrest); 869 return (error); 870 } 871 } 872 } else { 873 auth_type = RPCAUTH_UNIX; 874 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ? 875 nmp->nm_numgrps : cred->cr_ngroups) << 2) + 876 5 * NFSX_UNSIGNED; 877 } 878 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 879 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 880 if (auth_str) 881 free(auth_str, M_TEMP); 882 883 /* 884 * For stream protocols, insert a Sun RPC Record Mark. 885 */ 886 if (nmp->nm_sotype == SOCK_STREAM) { 887 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 888 *mtod(m, u_int32_t *) = htonl(0x80000000 | 889 (m->m_pkthdr.len - NFSX_UNSIGNED)); 890 } 891 rep->r_mreq = m; 892 rep->r_xid = xid; 893 tryagain: 894 if (nmp->nm_flag & NFSMNT_SOFT) 895 rep->r_retry = nmp->nm_retry; 896 else 897 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 898 rep->r_rtt = rep->r_rexmit = 0; 899 if (proct[procnum] > 0) 900 rep->r_flags = R_TIMING; 901 else 902 rep->r_flags = 0; 903 rep->r_mrep = NULL; 904 905 /* 906 * Do the client side RPC. 907 */ 908 nfsstats.rpcrequests++; 909 /* 910 * Chain request into list of outstanding requests. Be sure 911 * to put it LAST so timer finds oldest requests first. 912 */ 913 s = splsoftnet(); 914 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 915 916 /* Get send time for nqnfs */ 917 reqtime = time.tv_sec; 918 919 /* 920 * If backing off another request or avoiding congestion, don't 921 * send this one now but let timer do it. If not timing a request, 922 * do it now. 923 */ 924 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 925 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 926 nmp->nm_sent < nmp->nm_cwnd)) { 927 splx(s); 928 if (nmp->nm_soflags & PR_CONNREQUIRED) 929 error = nfs_sndlock(&nmp->nm_iflag, rep); 930 if (!error) { 931 m = m_copym(m, 0, M_COPYALL, M_WAIT); 932 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep); 933 if (nmp->nm_soflags & PR_CONNREQUIRED) 934 nfs_sndunlock(&nmp->nm_iflag); 935 } 936 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 937 nmp->nm_sent += NFS_CWNDSCALE; 938 rep->r_flags |= R_SENT; 939 } 940 } else { 941 splx(s); 942 rep->r_rtt = -1; 943 } 944 945 /* 946 * Wait for the reply from our send or the timer's. 947 */ 948 if (!error || error == EPIPE) 949 error = nfs_reply(rep); 950 951 /* 952 * RPC done, unlink the request. 953 */ 954 s = splsoftnet(); 955 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 956 splx(s); 957 958 /* 959 * Decrement the outstanding request count. 960 */ 961 if (rep->r_flags & R_SENT) { 962 rep->r_flags &= ~R_SENT; /* paranoia */ 963 nmp->nm_sent -= NFS_CWNDSCALE; 964 } 965 966 /* 967 * If there was a successful reply and a tprintf msg. 968 * tprintf a response. 969 */ 970 if (!error && (rep->r_flags & R_TPRINTFMSG)) 971 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname, 972 "is alive again"); 973 mrep = rep->r_mrep; 974 md = rep->r_md; 975 dpos = rep->r_dpos; 976 if (error) { 977 m_freem(rep->r_mreq); 978 free((caddr_t)rep, M_NFSREQ); 979 return (error); 980 } 981 982 /* 983 * break down the rpc header and check if ok 984 */ 985 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 986 if (*tl++ == rpc_msgdenied) { 987 if (*tl == rpc_mismatch) 988 error = EOPNOTSUPP; 989 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 990 if (!failed_auth) { 991 failed_auth++; 992 mheadend->m_next = (struct mbuf *)0; 993 m_freem(mrep); 994 m_freem(rep->r_mreq); 995 goto kerbauth; 996 } else 997 error = EAUTH; 998 } else 999 error = EACCES; 1000 m_freem(mrep); 1001 m_freem(rep->r_mreq); 1002 free((caddr_t)rep, M_NFSREQ); 1003 return (error); 1004 } 1005 1006 /* 1007 * Grab any Kerberos verifier, otherwise just throw it away. 1008 */ 1009 verf_type = fxdr_unsigned(int, *tl++); 1010 i = fxdr_unsigned(int32_t, *tl); 1011 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1012 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1013 if (error) 1014 goto nfsmout; 1015 } else if (i > 0) 1016 nfsm_adv(nfsm_rndup(i)); 1017 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1018 /* 0 == ok */ 1019 if (*tl == 0) { 1020 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1021 if (*tl != 0) { 1022 error = fxdr_unsigned(int, *tl); 1023 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1024 error == NFSERR_TRYLATER) { 1025 m_freem(mrep); 1026 error = 0; 1027 waituntil = time.tv_sec + trylater_delay; 1028 while (time.tv_sec < waituntil) 1029 (void) tsleep((caddr_t)&lbolt, 1030 PSOCK, "nqnfstry", 0); 1031 trylater_delay *= nfs_backoff[trylater_cnt]; 1032 if (trylater_cnt < 7) 1033 trylater_cnt++; 1034 goto tryagain; 1035 } 1036 1037 /* 1038 * If the File Handle was stale, invalidate the 1039 * lookup cache, just in case. 1040 */ 1041 if (error == ESTALE) 1042 cache_purge(vp); 1043 if (nmp->nm_flag & NFSMNT_NFSV3) { 1044 *mrp = mrep; 1045 *mdp = md; 1046 *dposp = dpos; 1047 error |= NFSERR_RETERR; 1048 } else 1049 m_freem(mrep); 1050 m_freem(rep->r_mreq); 1051 free((caddr_t)rep, M_NFSREQ); 1052 return (error); 1053 } 1054 1055 /* 1056 * For nqnfs, get any lease in reply 1057 */ 1058 if (nmp->nm_flag & NFSMNT_NQNFS) { 1059 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1060 if (*tl) { 1061 np = VTONFS(vp); 1062 nqlflag = fxdr_unsigned(int, *tl); 1063 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1064 cachable = fxdr_unsigned(int, *tl++); 1065 reqtime += fxdr_unsigned(int, *tl++); 1066 if (reqtime > time.tv_sec) { 1067 fxdr_hyper(tl, &frev); 1068 nqnfs_clientlease(nmp, np, nqlflag, 1069 cachable, reqtime, frev); 1070 } 1071 } 1072 } 1073 *mrp = mrep; 1074 *mdp = md; 1075 *dposp = dpos; 1076 m_freem(rep->r_mreq); 1077 FREE((caddr_t)rep, M_NFSREQ); 1078 return (0); 1079 } 1080 m_freem(mrep); 1081 error = EPROTONOSUPPORT; 1082 nfsmout: 1083 m_freem(rep->r_mreq); 1084 free((caddr_t)rep, M_NFSREQ); 1085 return (error); 1086 } 1087 #endif /* NFS */ 1088 1089 /* 1090 * Generate the rpc reply header 1091 * siz arg. is used to decide if adding a cluster is worthwhile 1092 */ 1093 int 1094 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1095 int siz; 1096 struct nfsrv_descript *nd; 1097 struct nfssvc_sock *slp; 1098 int err; 1099 int cache; 1100 u_quad_t *frev; 1101 struct mbuf **mrq; 1102 struct mbuf **mbp; 1103 caddr_t *bposp; 1104 { 1105 register u_int32_t *tl; 1106 register struct mbuf *mreq; 1107 caddr_t bpos; 1108 struct mbuf *mb, *mb2; 1109 1110 MGETHDR(mreq, M_WAIT, MT_DATA); 1111 mb = mreq; 1112 /* 1113 * If this is a big reply, use a cluster else 1114 * try and leave leading space for the lower level headers. 1115 */ 1116 siz += RPC_REPLYSIZ; 1117 if (siz >= MINCLSIZE) { 1118 MCLGET(mreq, M_WAIT); 1119 } else 1120 mreq->m_data += max_hdr; 1121 tl = mtod(mreq, u_int32_t *); 1122 mreq->m_len = 6 * NFSX_UNSIGNED; 1123 bpos = ((caddr_t)tl) + mreq->m_len; 1124 *tl++ = txdr_unsigned(nd->nd_retxid); 1125 *tl++ = rpc_reply; 1126 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1127 *tl++ = rpc_msgdenied; 1128 if (err & NFSERR_AUTHERR) { 1129 *tl++ = rpc_autherr; 1130 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1131 mreq->m_len -= NFSX_UNSIGNED; 1132 bpos -= NFSX_UNSIGNED; 1133 } else { 1134 *tl++ = rpc_mismatch; 1135 *tl++ = txdr_unsigned(RPC_VER2); 1136 *tl = txdr_unsigned(RPC_VER2); 1137 } 1138 } else { 1139 *tl++ = rpc_msgaccepted; 1140 1141 /* 1142 * For Kerberos authentication, we must send the nickname 1143 * verifier back, otherwise just RPCAUTH_NULL. 1144 */ 1145 if (nd->nd_flag & ND_KERBFULL) { 1146 register struct nfsuid *nuidp; 1147 struct timeval ktvin, ktvout; 1148 1149 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1150 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1151 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1152 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1153 &nuidp->nu_haddr, nd->nd_nam2))) 1154 break; 1155 } 1156 if (nuidp) { 1157 ktvin.tv_sec = 1158 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1159 ktvin.tv_usec = 1160 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1161 1162 /* 1163 * Encrypt the timestamp in ecb mode using the 1164 * session key. 1165 */ 1166 #ifdef NFSKERB 1167 XXX 1168 #endif 1169 1170 *tl++ = rpc_auth_kerb; 1171 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1172 *tl = ktvout.tv_sec; 1173 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1174 *tl++ = ktvout.tv_usec; 1175 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1176 } else { 1177 *tl++ = 0; 1178 *tl++ = 0; 1179 } 1180 } else { 1181 *tl++ = 0; 1182 *tl++ = 0; 1183 } 1184 switch (err) { 1185 case EPROGUNAVAIL: 1186 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1187 break; 1188 case EPROGMISMATCH: 1189 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1190 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1191 if (nd->nd_flag & ND_NQNFS) { 1192 *tl++ = txdr_unsigned(3); 1193 *tl = txdr_unsigned(3); 1194 } else { 1195 *tl++ = txdr_unsigned(2); 1196 *tl = txdr_unsigned(3); 1197 } 1198 break; 1199 case EPROCUNAVAIL: 1200 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1201 break; 1202 case EBADRPC: 1203 *tl = txdr_unsigned(RPC_GARBAGE); 1204 break; 1205 default: 1206 *tl = 0; 1207 if (err != NFSERR_RETVOID) { 1208 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1209 if (err) 1210 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1211 else 1212 *tl = 0; 1213 } 1214 break; 1215 }; 1216 } 1217 1218 /* 1219 * For nqnfs, piggyback lease as requested. 1220 */ 1221 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1222 if (nd->nd_flag & ND_LEASE) { 1223 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1224 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1225 *tl++ = txdr_unsigned(cache); 1226 *tl++ = txdr_unsigned(nd->nd_duration); 1227 txdr_hyper(frev, tl); 1228 } else { 1229 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1230 *tl = 0; 1231 } 1232 } 1233 if (mrq != NULL) 1234 *mrq = mreq; 1235 *mbp = mb; 1236 *bposp = bpos; 1237 if (err != 0 && err != NFSERR_RETVOID) 1238 nfsstats.srvrpc_errs++; 1239 return (0); 1240 } 1241 1242 /* 1243 * Nfs timer routine 1244 * Scan the nfsreq list and retranmit any requests that have timed out 1245 * To avoid retransmission attempts on STREAM sockets (in the future) make 1246 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1247 */ 1248 void 1249 nfs_timer(arg) 1250 void *arg; /* never used */ 1251 { 1252 register struct nfsreq *rep; 1253 register struct mbuf *m; 1254 register struct socket *so; 1255 register struct nfsmount *nmp; 1256 register int timeo; 1257 int s, error; 1258 #ifdef NFSSERVER 1259 register struct nfssvc_sock *slp; 1260 static long lasttime = 0; 1261 u_quad_t cur_usec; 1262 #endif 1263 1264 s = splsoftnet(); 1265 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) { 1266 nmp = rep->r_nmp; 1267 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1268 continue; 1269 if (nfs_sigintr(nmp, rep, rep->r_procp)) { 1270 rep->r_flags |= R_SOFTTERM; 1271 continue; 1272 } 1273 if (rep->r_rtt >= 0) { 1274 rep->r_rtt++; 1275 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1276 timeo = nmp->nm_timeo; 1277 else 1278 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1279 if (nmp->nm_timeouts > 0) 1280 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1281 if (rep->r_rtt <= timeo) 1282 continue; 1283 if (nmp->nm_timeouts < 8) 1284 nmp->nm_timeouts++; 1285 } 1286 /* 1287 * Check for server not responding 1288 */ 1289 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1290 rep->r_rexmit > nmp->nm_deadthresh) { 1291 nfs_msg(rep->r_procp, 1292 nmp->nm_mountp->mnt_stat.f_mntfromname, 1293 "not responding"); 1294 rep->r_flags |= R_TPRINTFMSG; 1295 } 1296 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1297 nfsstats.rpctimeouts++; 1298 rep->r_flags |= R_SOFTTERM; 1299 continue; 1300 } 1301 if (nmp->nm_sotype != SOCK_DGRAM) { 1302 if (++rep->r_rexmit > NFS_MAXREXMIT) 1303 rep->r_rexmit = NFS_MAXREXMIT; 1304 continue; 1305 } 1306 if ((so = nmp->nm_so) == NULL) 1307 continue; 1308 1309 /* 1310 * If there is enough space and the window allows.. 1311 * Resend it 1312 * Set r_rtt to -1 in case we fail to send it now. 1313 */ 1314 rep->r_rtt = -1; 1315 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1316 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1317 (rep->r_flags & R_SENT) || 1318 nmp->nm_sent < nmp->nm_cwnd) && 1319 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1320 if (so->so_state & SS_ISCONNECTED) 1321 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1322 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 1323 else 1324 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1325 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0); 1326 if (error) { 1327 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 1328 #ifdef DEBUG 1329 printf("nfs_timer: ignoring error %d\n", 1330 error); 1331 #endif 1332 so->so_error = 0; 1333 } 1334 } else { 1335 /* 1336 * Iff first send, start timing 1337 * else turn timing off, backoff timer 1338 * and divide congestion window by 2. 1339 */ 1340 if (rep->r_flags & R_SENT) { 1341 rep->r_flags &= ~R_TIMING; 1342 if (++rep->r_rexmit > NFS_MAXREXMIT) 1343 rep->r_rexmit = NFS_MAXREXMIT; 1344 nmp->nm_cwnd >>= 1; 1345 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1346 nmp->nm_cwnd = NFS_CWNDSCALE; 1347 nfsstats.rpcretries++; 1348 } else { 1349 rep->r_flags |= R_SENT; 1350 nmp->nm_sent += NFS_CWNDSCALE; 1351 } 1352 rep->r_rtt = 0; 1353 } 1354 } 1355 } 1356 1357 #ifdef NFSSERVER 1358 /* 1359 * Call the nqnfs server timer once a second to handle leases. 1360 */ 1361 if (lasttime != time.tv_sec) { 1362 lasttime = time.tv_sec; 1363 nqnfs_serverd(); 1364 } 1365 1366 /* 1367 * Scan the write gathering queues for writes that need to be 1368 * completed now. 1369 */ 1370 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec; 1371 for (slp = nfssvc_sockhead.tqh_first; slp != 0; 1372 slp = slp->ns_chain.tqe_next) { 1373 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1374 nfsrv_wakenfsd(slp); 1375 } 1376 #endif /* NFSSERVER */ 1377 splx(s); 1378 timeout(nfs_timer, (void *)0, nfs_ticks); 1379 } 1380 1381 /* 1382 * Test for a termination condition pending on the process. 1383 * This is used for NFSMNT_INT mounts. 1384 */ 1385 int 1386 nfs_sigintr(nmp, rep, p) 1387 struct nfsmount *nmp; 1388 struct nfsreq *rep; 1389 register struct proc *p; 1390 { 1391 1392 if (rep && (rep->r_flags & R_SOFTTERM)) 1393 return (EINTR); 1394 if (!(nmp->nm_flag & NFSMNT_INT)) 1395 return (0); 1396 if (p && p->p_siglist && 1397 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) & 1398 NFSINT_SIGMASK)) 1399 return (EINTR); 1400 return (0); 1401 } 1402 1403 /* 1404 * Lock a socket against others. 1405 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1406 * and also to avoid race conditions between the processes with nfs requests 1407 * in progress when a reconnect is necessary. 1408 */ 1409 int 1410 nfs_sndlock(flagp, rep) 1411 register int *flagp; 1412 struct nfsreq *rep; 1413 { 1414 struct proc *p; 1415 int slpflag = 0, slptimeo = 0; 1416 1417 if (rep) { 1418 p = rep->r_procp; 1419 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1420 slpflag = PCATCH; 1421 } else 1422 p = (struct proc *)0; 1423 while (*flagp & NFSMNT_SNDLOCK) { 1424 if (nfs_sigintr(rep->r_nmp, rep, p)) 1425 return (EINTR); 1426 *flagp |= NFSMNT_WANTSND; 1427 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck", 1428 slptimeo); 1429 if (slpflag == PCATCH) { 1430 slpflag = 0; 1431 slptimeo = 2 * hz; 1432 } 1433 } 1434 *flagp |= NFSMNT_SNDLOCK; 1435 return (0); 1436 } 1437 1438 /* 1439 * Unlock the stream socket for others. 1440 */ 1441 void 1442 nfs_sndunlock(flagp) 1443 register int *flagp; 1444 { 1445 1446 if ((*flagp & NFSMNT_SNDLOCK) == 0) 1447 panic("nfs sndunlock"); 1448 *flagp &= ~NFSMNT_SNDLOCK; 1449 if (*flagp & NFSMNT_WANTSND) { 1450 *flagp &= ~NFSMNT_WANTSND; 1451 wakeup((caddr_t)flagp); 1452 } 1453 } 1454 1455 int 1456 nfs_rcvlock(rep) 1457 register struct nfsreq *rep; 1458 { 1459 register int *flagp = &rep->r_nmp->nm_iflag; 1460 int slpflag, slptimeo = 0; 1461 1462 if (*flagp & NFSMNT_INT) 1463 slpflag = PCATCH; 1464 else 1465 slpflag = 0; 1466 while (*flagp & NFSMNT_RCVLOCK) { 1467 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) 1468 return (EINTR); 1469 *flagp |= NFSMNT_WANTRCV; 1470 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk", 1471 slptimeo); 1472 /* If our reply was received while we were sleeping, 1473 * then just return without taking the lock to avoid a 1474 * situation where a single iod could 'capture' the 1475 * receive lock. 1476 */ 1477 if (rep->r_mrep != NULL) 1478 return (EALREADY); 1479 if (slpflag == PCATCH) { 1480 slpflag = 0; 1481 slptimeo = 2 * hz; 1482 } 1483 } 1484 *flagp |= NFSMNT_RCVLOCK; 1485 return (0); 1486 } 1487 1488 /* 1489 * Unlock the stream socket for others. 1490 */ 1491 void 1492 nfs_rcvunlock(flagp) 1493 register int *flagp; 1494 { 1495 1496 if ((*flagp & NFSMNT_RCVLOCK) == 0) 1497 panic("nfs rcvunlock"); 1498 *flagp &= ~NFSMNT_RCVLOCK; 1499 if (*flagp & NFSMNT_WANTRCV) { 1500 *flagp &= ~NFSMNT_WANTRCV; 1501 wakeup((caddr_t)flagp); 1502 } 1503 } 1504 1505 /* 1506 * Parse an RPC request 1507 * - verify it 1508 * - fill in the cred struct. 1509 */ 1510 int 1511 nfs_getreq(nd, nfsd, has_header) 1512 register struct nfsrv_descript *nd; 1513 struct nfsd *nfsd; 1514 int has_header; 1515 { 1516 register int len, i; 1517 register u_int32_t *tl; 1518 register int32_t t1; 1519 struct uio uio; 1520 struct iovec iov; 1521 caddr_t dpos, cp2, cp; 1522 u_int32_t nfsvers, auth_type; 1523 uid_t nickuid; 1524 int error = 0, nqnfs = 0, ticklen; 1525 struct mbuf *mrep, *md; 1526 register struct nfsuid *nuidp; 1527 struct timeval tvin, tvout; 1528 1529 mrep = nd->nd_mrep; 1530 md = nd->nd_md; 1531 dpos = nd->nd_dpos; 1532 if (has_header) { 1533 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1534 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1535 if (*tl++ != rpc_call) { 1536 m_freem(mrep); 1537 return (EBADRPC); 1538 } 1539 } else 1540 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1541 nd->nd_repstat = 0; 1542 nd->nd_flag = 0; 1543 if (*tl++ != rpc_vers) { 1544 nd->nd_repstat = ERPCMISMATCH; 1545 nd->nd_procnum = NFSPROC_NOOP; 1546 return (0); 1547 } 1548 if (*tl != nfs_prog) { 1549 if (*tl == nqnfs_prog) 1550 nqnfs++; 1551 else { 1552 nd->nd_repstat = EPROGUNAVAIL; 1553 nd->nd_procnum = NFSPROC_NOOP; 1554 return (0); 1555 } 1556 } 1557 tl++; 1558 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1559 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1560 (nfsvers != NQNFS_VER3 && nqnfs)) { 1561 nd->nd_repstat = EPROGMISMATCH; 1562 nd->nd_procnum = NFSPROC_NOOP; 1563 return (0); 1564 } 1565 if (nqnfs) 1566 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1567 else if (nfsvers == NFS_VER3) 1568 nd->nd_flag = ND_NFSV3; 1569 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1570 if (nd->nd_procnum == NFSPROC_NULL) 1571 return (0); 1572 if (nd->nd_procnum >= NFS_NPROCS || 1573 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1574 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1575 nd->nd_repstat = EPROCUNAVAIL; 1576 nd->nd_procnum = NFSPROC_NOOP; 1577 return (0); 1578 } 1579 if ((nd->nd_flag & ND_NFSV3) == 0) 1580 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1581 auth_type = *tl++; 1582 len = fxdr_unsigned(int, *tl++); 1583 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1584 m_freem(mrep); 1585 return (EBADRPC); 1586 } 1587 1588 nd->nd_flag &= ~ND_KERBAUTH; 1589 /* 1590 * Handle auth_unix or auth_kerb. 1591 */ 1592 if (auth_type == rpc_auth_unix) { 1593 len = fxdr_unsigned(int, *++tl); 1594 if (len < 0 || len > NFS_MAXNAMLEN) { 1595 m_freem(mrep); 1596 return (EBADRPC); 1597 } 1598 nfsm_adv(nfsm_rndup(len)); 1599 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1600 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred)); 1601 nd->nd_cr.cr_ref = 1; 1602 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1603 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1604 len = fxdr_unsigned(int, *tl); 1605 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1606 m_freem(mrep); 1607 return (EBADRPC); 1608 } 1609 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1610 for (i = 0; i < len; i++) 1611 if (i < NGROUPS) 1612 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1613 else 1614 tl++; 1615 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len; 1616 if (nd->nd_cr.cr_ngroups > 1) 1617 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1618 len = fxdr_unsigned(int, *++tl); 1619 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1620 m_freem(mrep); 1621 return (EBADRPC); 1622 } 1623 if (len > 0) 1624 nfsm_adv(nfsm_rndup(len)); 1625 } else if (auth_type == rpc_auth_kerb) { 1626 switch (fxdr_unsigned(int, *tl++)) { 1627 case RPCAKN_FULLNAME: 1628 ticklen = fxdr_unsigned(int, *tl); 1629 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1630 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1631 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1632 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1633 m_freem(mrep); 1634 return (EBADRPC); 1635 } 1636 uio.uio_offset = 0; 1637 uio.uio_iov = &iov; 1638 uio.uio_iovcnt = 1; 1639 uio.uio_segflg = UIO_SYSSPACE; 1640 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1641 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1642 nfsm_mtouio(&uio, uio.uio_resid); 1643 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1644 if (*tl++ != rpc_auth_kerb || 1645 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1646 printf("Bad kerb verifier\n"); 1647 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1648 nd->nd_procnum = NFSPROC_NOOP; 1649 return (0); 1650 } 1651 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1652 tl = (u_int32_t *)cp; 1653 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1654 printf("Not fullname kerb verifier\n"); 1655 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1656 nd->nd_procnum = NFSPROC_NOOP; 1657 return (0); 1658 } 1659 cp += NFSX_UNSIGNED; 1660 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED); 1661 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1662 nd->nd_flag |= ND_KERBFULL; 1663 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1664 break; 1665 case RPCAKN_NICKNAME: 1666 if (len != 2 * NFSX_UNSIGNED) { 1667 printf("Kerb nickname short\n"); 1668 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1669 nd->nd_procnum = NFSPROC_NOOP; 1670 return (0); 1671 } 1672 nickuid = fxdr_unsigned(uid_t, *tl); 1673 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1674 if (*tl++ != rpc_auth_kerb || 1675 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1676 printf("Kerb nick verifier bad\n"); 1677 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1678 nd->nd_procnum = NFSPROC_NOOP; 1679 return (0); 1680 } 1681 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1682 tvin.tv_sec = *tl++; 1683 tvin.tv_usec = *tl; 1684 1685 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1686 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1687 if (nuidp->nu_cr.cr_uid == nickuid && 1688 (!nd->nd_nam2 || 1689 netaddr_match(NU_NETFAM(nuidp), 1690 &nuidp->nu_haddr, nd->nd_nam2))) 1691 break; 1692 } 1693 if (!nuidp) { 1694 nd->nd_repstat = 1695 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1696 nd->nd_procnum = NFSPROC_NOOP; 1697 return (0); 1698 } 1699 1700 /* 1701 * Now, decrypt the timestamp using the session key 1702 * and validate it. 1703 */ 1704 #ifdef NFSKERB 1705 XXX 1706 #endif 1707 1708 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1709 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1710 if (nuidp->nu_expire < time.tv_sec || 1711 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1712 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1713 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1714 nuidp->nu_expire = 0; 1715 nd->nd_repstat = 1716 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1717 nd->nd_procnum = NFSPROC_NOOP; 1718 return (0); 1719 } 1720 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1721 nd->nd_flag |= ND_KERBNICK; 1722 }; 1723 } else { 1724 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1725 nd->nd_procnum = NFSPROC_NOOP; 1726 return (0); 1727 } 1728 1729 /* 1730 * For nqnfs, get piggybacked lease request. 1731 */ 1732 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 1733 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1734 nd->nd_flag |= fxdr_unsigned(int, *tl); 1735 if (nd->nd_flag & ND_LEASE) { 1736 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1737 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl); 1738 } else 1739 nd->nd_duration = NQ_MINLEASE; 1740 } else 1741 nd->nd_duration = NQ_MINLEASE; 1742 nd->nd_md = md; 1743 nd->nd_dpos = dpos; 1744 return (0); 1745 nfsmout: 1746 return (error); 1747 } 1748 1749 int 1750 nfs_msg(p, server, msg) 1751 struct proc *p; 1752 char *server, *msg; 1753 { 1754 tpr_t tpr; 1755 1756 if (p) 1757 tpr = tprintf_open(p); 1758 else 1759 tpr = NULL; 1760 tprintf(tpr, "nfs server %s: %s\n", server, msg); 1761 tprintf_close(tpr); 1762 return (0); 1763 } 1764 1765 #ifdef NFSSERVER 1766 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, 1767 struct nfssvc_sock *, struct proc *, 1768 struct mbuf **)) = { 1769 nfsrv_null, 1770 nfsrv_getattr, 1771 nfsrv_setattr, 1772 nfsrv_lookup, 1773 nfsrv3_access, 1774 nfsrv_readlink, 1775 nfsrv_read, 1776 nfsrv_write, 1777 nfsrv_create, 1778 nfsrv_mkdir, 1779 nfsrv_symlink, 1780 nfsrv_mknod, 1781 nfsrv_remove, 1782 nfsrv_rmdir, 1783 nfsrv_rename, 1784 nfsrv_link, 1785 nfsrv_readdir, 1786 nfsrv_readdirplus, 1787 nfsrv_statfs, 1788 nfsrv_fsinfo, 1789 nfsrv_pathconf, 1790 nfsrv_commit, 1791 nqnfsrv_getlease, 1792 nqnfsrv_vacated, 1793 nfsrv_noop, 1794 nfsrv_noop 1795 }; 1796 1797 /* 1798 * Socket upcall routine for the nfsd sockets. 1799 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 1800 * Essentially do as much as possible non-blocking, else punt and it will 1801 * be called with M_WAIT from an nfsd. 1802 */ 1803 void 1804 nfsrv_rcv(so, arg, waitflag) 1805 struct socket *so; 1806 caddr_t arg; 1807 int waitflag; 1808 { 1809 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 1810 register struct mbuf *m; 1811 struct mbuf *mp, *nam; 1812 struct uio auio; 1813 int flags, error; 1814 1815 if ((slp->ns_flag & SLP_VALID) == 0) 1816 return; 1817 #ifdef notdef 1818 /* 1819 * Define this to test for nfsds handling this under heavy load. 1820 */ 1821 if (waitflag == M_DONTWAIT) { 1822 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 1823 } 1824 #endif 1825 auio.uio_procp = NULL; 1826 if (so->so_type == SOCK_STREAM) { 1827 /* 1828 * If there are already records on the queue, defer soreceive() 1829 * to an nfsd so that there is feedback to the TCP layer that 1830 * the nfs servers are heavily loaded. 1831 */ 1832 if (slp->ns_rec && waitflag == M_DONTWAIT) { 1833 slp->ns_flag |= SLP_NEEDQ; 1834 goto dorecs; 1835 } 1836 1837 /* 1838 * Do soreceive(). 1839 */ 1840 auio.uio_resid = 1000000000; 1841 flags = MSG_DONTWAIT; 1842 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags); 1843 if (error || mp == (struct mbuf *)0) { 1844 if (error == EWOULDBLOCK) 1845 slp->ns_flag |= SLP_NEEDQ; 1846 else 1847 slp->ns_flag |= SLP_DISCONN; 1848 goto dorecs; 1849 } 1850 m = mp; 1851 if (slp->ns_rawend) { 1852 slp->ns_rawend->m_next = m; 1853 slp->ns_cc += 1000000000 - auio.uio_resid; 1854 } else { 1855 slp->ns_raw = m; 1856 slp->ns_cc = 1000000000 - auio.uio_resid; 1857 } 1858 while (m->m_next) 1859 m = m->m_next; 1860 slp->ns_rawend = m; 1861 1862 /* 1863 * Now try and parse record(s) out of the raw stream data. 1864 */ 1865 error = nfsrv_getstream(slp, waitflag); 1866 if (error) { 1867 if (error == EPERM) 1868 slp->ns_flag |= SLP_DISCONN; 1869 else 1870 slp->ns_flag |= SLP_NEEDQ; 1871 } 1872 } else { 1873 do { 1874 auio.uio_resid = 1000000000; 1875 flags = MSG_DONTWAIT; 1876 error = soreceive(so, &nam, &auio, &mp, 1877 (struct mbuf **)0, &flags); 1878 if (mp) { 1879 if (nam) { 1880 m = nam; 1881 m->m_next = mp; 1882 } else 1883 m = mp; 1884 if (slp->ns_recend) 1885 slp->ns_recend->m_nextpkt = m; 1886 else 1887 slp->ns_rec = m; 1888 slp->ns_recend = m; 1889 m->m_nextpkt = (struct mbuf *)0; 1890 } 1891 if (error) { 1892 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 1893 && error != EWOULDBLOCK) { 1894 slp->ns_flag |= SLP_DISCONN; 1895 goto dorecs; 1896 } 1897 } 1898 } while (mp); 1899 } 1900 1901 /* 1902 * Now try and process the request records, non-blocking. 1903 */ 1904 dorecs: 1905 if (waitflag == M_DONTWAIT && 1906 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 1907 nfsrv_wakenfsd(slp); 1908 } 1909 1910 /* 1911 * Try and extract an RPC request from the mbuf data list received on a 1912 * stream socket. The "waitflag" argument indicates whether or not it 1913 * can sleep. 1914 */ 1915 int 1916 nfsrv_getstream(slp, waitflag) 1917 register struct nfssvc_sock *slp; 1918 int waitflag; 1919 { 1920 register struct mbuf *m, **mpp; 1921 register char *cp1, *cp2; 1922 register int len; 1923 struct mbuf *om, *m2, *recm = NULL; 1924 u_int32_t recmark; 1925 1926 if (slp->ns_flag & SLP_GETSTREAM) 1927 panic("nfs getstream"); 1928 slp->ns_flag |= SLP_GETSTREAM; 1929 for (;;) { 1930 if (slp->ns_reclen == 0) { 1931 if (slp->ns_cc < NFSX_UNSIGNED) { 1932 slp->ns_flag &= ~SLP_GETSTREAM; 1933 return (0); 1934 } 1935 m = slp->ns_raw; 1936 if (m->m_len >= NFSX_UNSIGNED) { 1937 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED); 1938 m->m_data += NFSX_UNSIGNED; 1939 m->m_len -= NFSX_UNSIGNED; 1940 } else { 1941 cp1 = (caddr_t)&recmark; 1942 cp2 = mtod(m, caddr_t); 1943 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 1944 while (m->m_len == 0) { 1945 m = m->m_next; 1946 cp2 = mtod(m, caddr_t); 1947 } 1948 *cp1++ = *cp2++; 1949 m->m_data++; 1950 m->m_len--; 1951 } 1952 } 1953 slp->ns_cc -= NFSX_UNSIGNED; 1954 recmark = ntohl(recmark); 1955 slp->ns_reclen = recmark & ~0x80000000; 1956 if (recmark & 0x80000000) 1957 slp->ns_flag |= SLP_LASTFRAG; 1958 else 1959 slp->ns_flag &= ~SLP_LASTFRAG; 1960 if (slp->ns_reclen > NFS_MAXPACKET) { 1961 slp->ns_flag &= ~SLP_GETSTREAM; 1962 return (EPERM); 1963 } 1964 } 1965 1966 /* 1967 * Now get the record part. 1968 */ 1969 if (slp->ns_cc == slp->ns_reclen) { 1970 recm = slp->ns_raw; 1971 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 1972 slp->ns_cc = slp->ns_reclen = 0; 1973 } else if (slp->ns_cc > slp->ns_reclen) { 1974 len = 0; 1975 m = slp->ns_raw; 1976 om = (struct mbuf *)0; 1977 while (len < slp->ns_reclen) { 1978 if ((len + m->m_len) > slp->ns_reclen) { 1979 size_t left = slp->ns_reclen - len; 1980 1981 MGETHDR(m2, waitflag, m->m_type); 1982 if (m2 == NULL) { 1983 slp->ns_flag &= ~SLP_GETSTREAM; 1984 return (EWOULDBLOCK); 1985 } 1986 if (left > MHLEN) { 1987 MCLGET(m2, waitflag); 1988 if (!(m2->m_flags & M_EXT)) { 1989 m_freem(m2); 1990 slp->ns_flag &= ~SLP_GETSTREAM; 1991 return (EWOULDBLOCK); 1992 } 1993 } 1994 bcopy(mtod(m, caddr_t), mtod(m2, caddr_t), 1995 left); 1996 m2->m_len = left; 1997 m->m_data += left; 1998 m->m_len -= left; 1999 if (om) { 2000 om->m_next = m2; 2001 recm = slp->ns_raw; 2002 } else 2003 recm = m2; 2004 len = slp->ns_reclen; 2005 } else if ((len + m->m_len) == slp->ns_reclen) { 2006 om = m; 2007 len += m->m_len; 2008 m = m->m_next; 2009 recm = slp->ns_raw; 2010 om->m_next = (struct mbuf *)0; 2011 } else { 2012 om = m; 2013 len += m->m_len; 2014 m = m->m_next; 2015 } 2016 } 2017 slp->ns_raw = m; 2018 slp->ns_cc -= len; 2019 slp->ns_reclen = 0; 2020 } else { 2021 slp->ns_flag &= ~SLP_GETSTREAM; 2022 return (0); 2023 } 2024 2025 /* 2026 * Accumulate the fragments into a record. 2027 */ 2028 mpp = &slp->ns_frag; 2029 while (*mpp) 2030 mpp = &((*mpp)->m_next); 2031 *mpp = recm; 2032 if (slp->ns_flag & SLP_LASTFRAG) { 2033 if (slp->ns_recend) 2034 slp->ns_recend->m_nextpkt = slp->ns_frag; 2035 else 2036 slp->ns_rec = slp->ns_frag; 2037 slp->ns_recend = slp->ns_frag; 2038 slp->ns_frag = (struct mbuf *)0; 2039 } 2040 } 2041 } 2042 2043 /* 2044 * Parse an RPC header. 2045 */ 2046 int 2047 nfsrv_dorec(slp, nfsd, ndp) 2048 register struct nfssvc_sock *slp; 2049 struct nfsd *nfsd; 2050 struct nfsrv_descript **ndp; 2051 { 2052 register struct mbuf *m, *nam; 2053 register struct nfsrv_descript *nd; 2054 int error; 2055 2056 *ndp = NULL; 2057 if ((slp->ns_flag & SLP_VALID) == 0 || 2058 (m = slp->ns_rec) == (struct mbuf *)0) 2059 return (ENOBUFS); 2060 slp->ns_rec = m->m_nextpkt; 2061 if (slp->ns_rec) 2062 m->m_nextpkt = (struct mbuf *)0; 2063 else 2064 slp->ns_recend = (struct mbuf *)0; 2065 if (m->m_type == MT_SONAME) { 2066 nam = m; 2067 m = m->m_next; 2068 nam->m_next = NULL; 2069 } else 2070 nam = NULL; 2071 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2072 M_NFSRVDESC, M_WAITOK); 2073 nd->nd_md = nd->nd_mrep = m; 2074 nd->nd_nam2 = nam; 2075 nd->nd_dpos = mtod(m, caddr_t); 2076 error = nfs_getreq(nd, nfsd, TRUE); 2077 if (error) { 2078 m_freem(nam); 2079 free((caddr_t)nd, M_NFSRVDESC); 2080 return (error); 2081 } 2082 *ndp = nd; 2083 nfsd->nfsd_nd = nd; 2084 return (0); 2085 } 2086 2087 2088 /* 2089 * Search for a sleeping nfsd and wake it up. 2090 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2091 * running nfsds will go look for the work in the nfssvc_sock list. 2092 */ 2093 void 2094 nfsrv_wakenfsd(slp) 2095 struct nfssvc_sock *slp; 2096 { 2097 register struct nfsd *nd; 2098 2099 if ((slp->ns_flag & SLP_VALID) == 0) 2100 return; 2101 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) { 2102 if (nd->nfsd_flag & NFSD_WAITING) { 2103 nd->nfsd_flag &= ~NFSD_WAITING; 2104 if (nd->nfsd_slp) 2105 panic("nfsd wakeup"); 2106 slp->ns_sref++; 2107 nd->nfsd_slp = slp; 2108 wakeup((caddr_t)nd); 2109 return; 2110 } 2111 } 2112 slp->ns_flag |= SLP_DOREC; 2113 nfsd_head_flag |= NFSD_CHECKSLP; 2114 } 2115 #endif /* NFSSERVER */ 2116