1 /* $NetBSD: nfs_socket.c,v 1.111 2004/09/17 14:11:26 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1991, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 35 */ 36 37 /* 38 * Socket operations for use by nfs 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.111 2004/09/17 14:11:26 skrll Exp $"); 43 44 #include "fs_nfs.h" 45 #include "opt_nfs.h" 46 #include "opt_nfsserver.h" 47 #include "opt_mbuftrace.h" 48 #include "opt_inet.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/callout.h> 53 #include <sys/proc.h> 54 #include <sys/mount.h> 55 #include <sys/kernel.h> 56 #include <sys/mbuf.h> 57 #include <sys/vnode.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/syslog.h> 63 #include <sys/tprintf.h> 64 #include <sys/namei.h> 65 #include <sys/signal.h> 66 #include <sys/signalvar.h> 67 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 71 #include <nfs/rpcv2.h> 72 #include <nfs/nfsproto.h> 73 #include <nfs/nfs.h> 74 #include <nfs/xdr_subs.h> 75 #include <nfs/nfsm_subs.h> 76 #include <nfs/nfsmount.h> 77 #include <nfs/nfsnode.h> 78 #include <nfs/nfsrtt.h> 79 #include <nfs/nqnfs.h> 80 #include <nfs/nfs_var.h> 81 82 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header"); 83 #ifdef MBUFTRACE 84 struct mowner nfs_mowner = { "nfs" }; 85 #endif 86 87 /* 88 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 89 * Use the mean and mean deviation of rtt for the appropriate type of rpc 90 * for the frequent rpcs and a default for the others. 91 * The justification for doing "other" this way is that these rpcs 92 * happen so infrequently that timer est. would probably be stale. 93 * Also, since many of these rpcs are 94 * non-idempotent, a conservative timeout is desired. 95 * getattr, lookup - A+2D 96 * read, write - A+4D 97 * other - nm_timeo 98 */ 99 #define NFS_RTO(n, t) \ 100 ((t) == 0 ? (n)->nm_timeo : \ 101 ((t) < 3 ? \ 102 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 103 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 104 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 105 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 106 /* 107 * External data, mostly RPC constants in XDR form 108 */ 109 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 110 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 111 rpc_auth_kerb; 112 extern u_int32_t nfs_prog, nqnfs_prog; 113 extern time_t nqnfsstarttime; 114 extern const int nfsv3_procid[NFS_NPROCS]; 115 extern int nfs_ticks; 116 117 /* 118 * Defines which timer to use for the procnum. 119 * 0 - default 120 * 1 - getattr 121 * 2 - lookup 122 * 3 - read 123 * 4 - write 124 */ 125 static const int proct[NFS_NPROCS] = { 126 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 127 0, 0, 0, 128 }; 129 130 /* 131 * There is a congestion window for outstanding rpcs maintained per mount 132 * point. The cwnd size is adjusted in roughly the way that: 133 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 134 * SIGCOMM '88". ACM, August 1988. 135 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 136 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 137 * of rpcs is in progress. 138 * (The sent count and cwnd are scaled for integer arith.) 139 * Variants of "slow start" were tried and were found to be too much of a 140 * performance hit (ave. rtt 3 times larger), 141 * I suspect due to the large rtt that nfs rpcs have. 142 */ 143 #define NFS_CWNDSCALE 256 144 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 145 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 146 int nfsrtton = 0; 147 struct nfsrtt nfsrtt; 148 struct nfsreqhead nfs_reqq; 149 150 struct callout nfs_timer_ch = CALLOUT_INITIALIZER_SETFUNC(nfs_timer, NULL); 151 152 /* 153 * Initialize sockets and congestion for a new NFS connection. 154 * We do not free the sockaddr if error. 155 */ 156 int 157 nfs_connect(nmp, rep, p) 158 struct nfsmount *nmp; 159 struct nfsreq *rep; 160 struct proc *p; 161 { 162 struct socket *so; 163 int s, error, rcvreserve, sndreserve; 164 struct sockaddr *saddr; 165 struct sockaddr_in *sin; 166 #ifdef INET6 167 struct sockaddr_in6 *sin6; 168 #endif 169 struct mbuf *m; 170 171 nmp->nm_so = (struct socket *)0; 172 saddr = mtod(nmp->nm_nam, struct sockaddr *); 173 error = socreate(saddr->sa_family, &nmp->nm_so, 174 nmp->nm_sotype, nmp->nm_soproto, p); 175 if (error) 176 goto bad; 177 so = nmp->nm_so; 178 #ifdef MBUFTRACE 179 so->so_mowner = &nfs_mowner; 180 so->so_rcv.sb_mowner = &nfs_mowner; 181 so->so_snd.sb_mowner = &nfs_mowner; 182 #endif 183 nmp->nm_soflags = so->so_proto->pr_flags; 184 185 /* 186 * Some servers require that the client port be a reserved port number. 187 */ 188 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 189 m = m_get(M_WAIT, MT_SOOPTS); 190 MCLAIM(m, so->so_mowner); 191 *mtod(m, int32_t *) = IP_PORTRANGE_LOW; 192 m->m_len = sizeof(int32_t); 193 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m))) 194 goto bad; 195 m = m_get(M_WAIT, MT_SONAME); 196 MCLAIM(m, so->so_mowner); 197 sin = mtod(m, struct sockaddr_in *); 198 sin->sin_len = m->m_len = sizeof (struct sockaddr_in); 199 sin->sin_family = AF_INET; 200 sin->sin_addr.s_addr = INADDR_ANY; 201 sin->sin_port = 0; 202 error = sobind(so, m, &proc0); 203 m_freem(m); 204 if (error) 205 goto bad; 206 } 207 #ifdef INET6 208 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) { 209 m = m_get(M_WAIT, MT_SOOPTS); 210 MCLAIM(m, so->so_mowner); 211 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW; 212 m->m_len = sizeof(int32_t); 213 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m))) 214 goto bad; 215 m = m_get(M_WAIT, MT_SONAME); 216 MCLAIM(m, so->so_mowner); 217 sin6 = mtod(m, struct sockaddr_in6 *); 218 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6); 219 sin6->sin6_family = AF_INET6; 220 sin6->sin6_addr = in6addr_any; 221 sin6->sin6_port = 0; 222 error = sobind(so, m, &proc0); 223 m_freem(m); 224 if (error) 225 goto bad; 226 } 227 #endif 228 229 /* 230 * Protocols that do not require connections may be optionally left 231 * unconnected for servers that reply from a port other than NFS_PORT. 232 */ 233 if (nmp->nm_flag & NFSMNT_NOCONN) { 234 if (nmp->nm_soflags & PR_CONNREQUIRED) { 235 error = ENOTCONN; 236 goto bad; 237 } 238 } else { 239 error = soconnect(so, nmp->nm_nam, p); 240 if (error) 241 goto bad; 242 243 /* 244 * Wait for the connection to complete. Cribbed from the 245 * connect system call but with the wait timing out so 246 * that interruptible mounts don't hang here for a long time. 247 */ 248 s = splsoftnet(); 249 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 250 (void) tsleep((caddr_t)&so->so_timeo, PSOCK, 251 "nfscn1", 2 * hz); 252 if ((so->so_state & SS_ISCONNECTING) && 253 so->so_error == 0 && rep && 254 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){ 255 so->so_state &= ~SS_ISCONNECTING; 256 splx(s); 257 goto bad; 258 } 259 } 260 if (so->so_error) { 261 error = so->so_error; 262 so->so_error = 0; 263 splx(s); 264 goto bad; 265 } 266 splx(s); 267 } 268 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { 269 so->so_rcv.sb_timeo = (5 * hz); 270 so->so_snd.sb_timeo = (5 * hz); 271 } else { 272 /* 273 * enable receive timeout to detect server crash and reconnect. 274 * otherwise, we can be stuck in soreceive forever. 275 */ 276 so->so_rcv.sb_timeo = (5 * hz); 277 so->so_snd.sb_timeo = 0; 278 } 279 if (nmp->nm_sotype == SOCK_DGRAM) { 280 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 281 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 282 NFS_MAXPKTHDR) * 2; 283 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 284 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 285 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 286 NFS_MAXPKTHDR) * 2; 287 } else { 288 if (nmp->nm_sotype != SOCK_STREAM) 289 panic("nfscon sotype"); 290 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 291 m = m_get(M_WAIT, MT_SOOPTS); 292 MCLAIM(m, so->so_mowner); 293 *mtod(m, int32_t *) = 1; 294 m->m_len = sizeof(int32_t); 295 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); 296 } 297 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 298 m = m_get(M_WAIT, MT_SOOPTS); 299 MCLAIM(m, so->so_mowner); 300 *mtod(m, int32_t *) = 1; 301 m->m_len = sizeof(int32_t); 302 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); 303 } 304 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 305 sizeof (u_int32_t)) * 2; 306 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 307 sizeof (u_int32_t)) * 2; 308 } 309 error = soreserve(so, sndreserve, rcvreserve); 310 if (error) 311 goto bad; 312 so->so_rcv.sb_flags |= SB_NOINTR; 313 so->so_snd.sb_flags |= SB_NOINTR; 314 315 /* Initialize other non-zero congestion variables */ 316 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = 317 NFS_TIMEO << 3; 318 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 319 nmp->nm_sdrtt[3] = 0; 320 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 321 nmp->nm_sent = 0; 322 nmp->nm_timeouts = 0; 323 return (0); 324 325 bad: 326 nfs_disconnect(nmp); 327 return (error); 328 } 329 330 /* 331 * Reconnect routine: 332 * Called when a connection is broken on a reliable protocol. 333 * - clean up the old socket 334 * - nfs_connect() again 335 * - set R_MUSTRESEND for all outstanding requests on mount point 336 * If this fails the mount point is DEAD! 337 * nb: Must be called with the nfs_sndlock() set on the mount point. 338 */ 339 int 340 nfs_reconnect(rep, p) 341 struct nfsreq *rep; 342 struct proc *p; 343 { 344 struct nfsreq *rp; 345 struct nfsmount *nmp = rep->r_nmp; 346 int error; 347 348 nfs_disconnect(nmp); 349 while ((error = nfs_connect(nmp, rep, p)) != 0) { 350 if (error == EINTR || error == ERESTART) 351 return (EINTR); 352 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0); 353 } 354 355 /* 356 * Loop through outstanding request list and fix up all requests 357 * on old socket. 358 */ 359 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 360 if (rp->r_nmp == nmp) { 361 if ((rp->r_flags & R_MUSTRESEND) == 0) 362 rp->r_flags |= R_MUSTRESEND | R_REXMITTED; 363 rp->r_rexmit = 0; 364 } 365 } 366 return (0); 367 } 368 369 /* 370 * NFS disconnect. Clean up and unlink. 371 */ 372 void 373 nfs_disconnect(nmp) 374 struct nfsmount *nmp; 375 { 376 struct socket *so; 377 int drain = 0; 378 379 if (nmp->nm_so) { 380 so = nmp->nm_so; 381 nmp->nm_so = (struct socket *)0; 382 soshutdown(so, 2); 383 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0; 384 if (drain) { 385 /* 386 * soshutdown() above should wake up the current 387 * listener. 388 * Now wake up those waiting for the receive lock, and 389 * wait for them to go away unhappy, to prevent *nmp 390 * from evaporating while they're sleeping. 391 */ 392 while (nmp->nm_waiters > 0) { 393 wakeup (&nmp->nm_iflag); 394 (void) tsleep(&nmp->nm_waiters, PVFS, 395 "nfsdis", 0); 396 } 397 } 398 soclose(so); 399 } 400 #ifdef DIAGNOSTIC 401 if (drain && (nmp->nm_waiters > 0)) 402 panic("nfs_disconnect: waiters left after drain?"); 403 #endif 404 } 405 406 void 407 nfs_safedisconnect(nmp) 408 struct nfsmount *nmp; 409 { 410 struct nfsreq dummyreq; 411 412 memset(&dummyreq, 0, sizeof(dummyreq)); 413 dummyreq.r_nmp = nmp; 414 nfs_rcvlock(&dummyreq); /* XXX ignored error return */ 415 nfs_disconnect(nmp); 416 nfs_rcvunlock(nmp); 417 } 418 419 /* 420 * This is the nfs send routine. For connection based socket types, it 421 * must be called with an nfs_sndlock() on the socket. 422 * "rep == NULL" indicates that it has been called from a server. 423 * For the client side: 424 * - return EINTR if the RPC is terminated, 0 otherwise 425 * - set R_MUSTRESEND if the send fails for any reason 426 * - do any cleanup required by recoverable socket errors (? ? ?) 427 * For the server side: 428 * - return EINTR or ERESTART if interrupted by a signal 429 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 430 * - do any cleanup required by recoverable socket errors (? ? ?) 431 */ 432 int 433 nfs_send(so, nam, top, rep, p) 434 struct socket *so; 435 struct mbuf *nam; 436 struct mbuf *top; 437 struct nfsreq *rep; 438 struct proc *p; 439 { 440 struct mbuf *sendnam; 441 int error, soflags, flags; 442 443 /* XXX nfs_doio()/nfs_request() calls with rep->r_procp == NULL */ 444 if (p == NULL && rep->r_procp == NULL) 445 p = curproc; 446 447 if (rep) { 448 if (rep->r_flags & R_SOFTTERM) { 449 m_freem(top); 450 return (EINTR); 451 } 452 if ((so = rep->r_nmp->nm_so) == NULL) { 453 rep->r_flags |= R_MUSTRESEND; 454 m_freem(top); 455 return (0); 456 } 457 rep->r_flags &= ~R_MUSTRESEND; 458 soflags = rep->r_nmp->nm_soflags; 459 } else 460 soflags = so->so_proto->pr_flags; 461 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 462 sendnam = (struct mbuf *)0; 463 else 464 sendnam = nam; 465 if (so->so_type == SOCK_SEQPACKET) 466 flags = MSG_EOR; 467 else 468 flags = 0; 469 470 error = (*so->so_send)(so, sendnam, (struct uio *)0, top, 471 (struct mbuf *)0, flags, p); 472 if (error) { 473 if (rep) { 474 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 475 /* 476 * We're too fast for the network/driver, 477 * and UDP isn't flowcontrolled. 478 * We need to resend. This is not fatal, 479 * just try again. 480 * 481 * Could be smarter here by doing some sort 482 * of a backoff, but this is rare. 483 */ 484 rep->r_flags |= R_MUSTRESEND; 485 } else { 486 if (error != EPIPE) 487 log(LOG_INFO, 488 "nfs send error %d for %s\n", 489 error, 490 rep->r_nmp->nm_mountp-> 491 mnt_stat.f_mntfromname); 492 /* 493 * Deal with errors for the client side. 494 */ 495 if (rep->r_flags & R_SOFTTERM) 496 error = EINTR; 497 else 498 rep->r_flags |= R_MUSTRESEND; 499 } 500 } else { 501 /* 502 * See above. This error can happen under normal 503 * circumstances and the log is too noisy. 504 * The error will still show up in nfsstat. 505 */ 506 if (error != ENOBUFS || so->so_type != SOCK_DGRAM) 507 log(LOG_INFO, "nfsd send error %d\n", error); 508 } 509 510 /* 511 * Handle any recoverable (soft) socket errors here. (? ? ?) 512 */ 513 if (error != EINTR && error != ERESTART && 514 error != EWOULDBLOCK && error != EPIPE) 515 error = 0; 516 } 517 return (error); 518 } 519 520 #ifdef NFS 521 /* 522 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 523 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 524 * Mark and consolidate the data into a new mbuf list. 525 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 526 * small mbufs. 527 * For SOCK_STREAM we must be very careful to read an entire record once 528 * we have read any of it, even if the system call has been interrupted. 529 */ 530 int 531 nfs_receive(rep, aname, mp, p) 532 struct nfsreq *rep; 533 struct mbuf **aname; 534 struct mbuf **mp; 535 struct proc *p; 536 { 537 struct socket *so; 538 struct uio auio; 539 struct iovec aio; 540 struct mbuf *m; 541 struct mbuf *control; 542 u_int32_t len; 543 struct mbuf **getnam; 544 int error, sotype, rcvflg; 545 546 /* 547 * Set up arguments for soreceive() 548 */ 549 *mp = (struct mbuf *)0; 550 *aname = (struct mbuf *)0; 551 sotype = rep->r_nmp->nm_sotype; 552 553 /* 554 * For reliable protocols, lock against other senders/receivers 555 * in case a reconnect is necessary. 556 * For SOCK_STREAM, first get the Record Mark to find out how much 557 * more there is to get. 558 * We must lock the socket against other receivers 559 * until we have an entire rpc request/reply. 560 */ 561 if (sotype != SOCK_DGRAM) { 562 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 563 if (error) 564 return (error); 565 tryagain: 566 /* 567 * Check for fatal errors and resending request. 568 */ 569 /* 570 * Ugh: If a reconnect attempt just happened, nm_so 571 * would have changed. NULL indicates a failed 572 * attempt that has essentially shut down this 573 * mount point. 574 */ 575 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 576 nfs_sndunlock(&rep->r_nmp->nm_iflag); 577 return (EINTR); 578 } 579 so = rep->r_nmp->nm_so; 580 if (!so) { 581 error = nfs_reconnect(rep, p); 582 if (error) { 583 nfs_sndunlock(&rep->r_nmp->nm_iflag); 584 return (error); 585 } 586 goto tryagain; 587 } 588 while (rep->r_flags & R_MUSTRESEND) { 589 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 590 nfsstats.rpcretries++; 591 rep->r_rtt = 0; 592 rep->r_flags &= ~R_TIMING; 593 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, p); 594 if (error) { 595 if (error == EINTR || error == ERESTART || 596 (error = nfs_reconnect(rep, p)) != 0) { 597 nfs_sndunlock(&rep->r_nmp->nm_iflag); 598 return (error); 599 } 600 goto tryagain; 601 } 602 } 603 nfs_sndunlock(&rep->r_nmp->nm_iflag); 604 if (sotype == SOCK_STREAM) { 605 aio.iov_base = (caddr_t) &len; 606 aio.iov_len = sizeof(u_int32_t); 607 auio.uio_iov = &aio; 608 auio.uio_iovcnt = 1; 609 auio.uio_segflg = UIO_SYSSPACE; 610 auio.uio_rw = UIO_READ; 611 auio.uio_offset = 0; 612 auio.uio_resid = sizeof(u_int32_t); 613 auio.uio_procp = NULL; 614 do { 615 rcvflg = MSG_WAITALL; 616 error = (*so->so_receive)(so, (struct mbuf **)0, &auio, 617 (struct mbuf **)0, (struct mbuf **)0, &rcvflg); 618 if (error == EWOULDBLOCK && rep) { 619 if (rep->r_flags & R_SOFTTERM) 620 return (EINTR); 621 /* 622 * if it seems that the server died after it 623 * received our request, set EPIPE so that 624 * we'll reconnect and retransmit requests. 625 */ 626 if (rep->r_rexmit >= rep->r_nmp->nm_retry) { 627 nfsstats.rpctimeouts++; 628 error = EPIPE; 629 } 630 } 631 } while (error == EWOULDBLOCK); 632 if (!error && auio.uio_resid > 0) { 633 /* 634 * Don't log a 0 byte receive; it means 635 * that the socket has been closed, and 636 * can happen during normal operation 637 * (forcible unmount or Solaris server). 638 */ 639 if (auio.uio_resid != sizeof (u_int32_t)) 640 log(LOG_INFO, 641 "short receive (%lu/%lu) from nfs server %s\n", 642 (u_long)sizeof(u_int32_t) - auio.uio_resid, 643 (u_long)sizeof(u_int32_t), 644 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 645 error = EPIPE; 646 } 647 if (error) 648 goto errout; 649 len = ntohl(len) & ~0x80000000; 650 /* 651 * This is SERIOUS! We are out of sync with the sender 652 * and forcing a disconnect/reconnect is all I can do. 653 */ 654 if (len > NFS_MAXPACKET) { 655 log(LOG_ERR, "%s (%d) from nfs server %s\n", 656 "impossible packet length", 657 len, 658 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 659 error = EFBIG; 660 goto errout; 661 } 662 auio.uio_resid = len; 663 do { 664 rcvflg = MSG_WAITALL; 665 error = (*so->so_receive)(so, (struct mbuf **)0, 666 &auio, mp, (struct mbuf **)0, &rcvflg); 667 } while (error == EWOULDBLOCK || error == EINTR || 668 error == ERESTART); 669 if (!error && auio.uio_resid > 0) { 670 if (len != auio.uio_resid) 671 log(LOG_INFO, 672 "short receive (%lu/%d) from nfs server %s\n", 673 (u_long)len - auio.uio_resid, len, 674 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 675 error = EPIPE; 676 } 677 } else { 678 /* 679 * NB: Since uio_resid is big, MSG_WAITALL is ignored 680 * and soreceive() will return when it has either a 681 * control msg or a data msg. 682 * We have no use for control msg., but must grab them 683 * and then throw them away so we know what is going 684 * on. 685 */ 686 auio.uio_resid = len = 100000000; /* Anything Big */ 687 auio.uio_procp = p; 688 do { 689 rcvflg = 0; 690 error = (*so->so_receive)(so, (struct mbuf **)0, 691 &auio, mp, &control, &rcvflg); 692 if (control) 693 m_freem(control); 694 if (error == EWOULDBLOCK && rep) { 695 if (rep->r_flags & R_SOFTTERM) 696 return (EINTR); 697 } 698 } while (error == EWOULDBLOCK || 699 (!error && *mp == NULL && control)); 700 if ((rcvflg & MSG_EOR) == 0) 701 printf("Egad!!\n"); 702 if (!error && *mp == NULL) 703 error = EPIPE; 704 len -= auio.uio_resid; 705 } 706 errout: 707 if (error && error != EINTR && error != ERESTART) { 708 m_freem(*mp); 709 *mp = (struct mbuf *)0; 710 if (error != EPIPE) 711 log(LOG_INFO, 712 "receive error %d from nfs server %s\n", 713 error, 714 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 715 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 716 if (!error) 717 error = nfs_reconnect(rep, p); 718 if (!error) 719 goto tryagain; 720 else 721 nfs_sndunlock(&rep->r_nmp->nm_iflag); 722 } 723 } else { 724 if ((so = rep->r_nmp->nm_so) == NULL) 725 return (EACCES); 726 if (so->so_state & SS_ISCONNECTED) 727 getnam = (struct mbuf **)0; 728 else 729 getnam = aname; 730 auio.uio_resid = len = 1000000; 731 auio.uio_procp = p; 732 do { 733 rcvflg = 0; 734 error = (*so->so_receive)(so, getnam, &auio, mp, 735 (struct mbuf **)0, &rcvflg); 736 if (error == EWOULDBLOCK && 737 (rep->r_flags & R_SOFTTERM)) 738 return (EINTR); 739 } while (error == EWOULDBLOCK); 740 len -= auio.uio_resid; 741 if (!error && *mp == NULL) 742 error = EPIPE; 743 } 744 if (error) { 745 m_freem(*mp); 746 *mp = (struct mbuf *)0; 747 } 748 return (error); 749 } 750 751 /* 752 * Implement receipt of reply on a socket. 753 * We must search through the list of received datagrams matching them 754 * with outstanding requests using the xid, until ours is found. 755 */ 756 /* ARGSUSED */ 757 int 758 nfs_reply(myrep, procp) 759 struct nfsreq *myrep; 760 struct proc *procp; 761 { 762 struct nfsreq *rep; 763 struct nfsmount *nmp = myrep->r_nmp; 764 int32_t t1; 765 struct mbuf *mrep, *nam, *md; 766 u_int32_t rxid, *tl; 767 caddr_t dpos, cp2; 768 int error; 769 770 /* 771 * Loop around until we get our own reply 772 */ 773 for (;;) { 774 /* 775 * Lock against other receivers so that I don't get stuck in 776 * sbwait() after someone else has received my reply for me. 777 * Also necessary for connection based protocols to avoid 778 * race conditions during a reconnect. 779 */ 780 error = nfs_rcvlock(myrep); 781 if (error == EALREADY) 782 return (0); 783 if (error) 784 return (error); 785 /* 786 * Get the next Rpc reply off the socket 787 */ 788 nmp->nm_waiters++; 789 error = nfs_receive(myrep, &nam, &mrep, procp); 790 nfs_rcvunlock(nmp); 791 if (error) { 792 793 if (nmp->nm_iflag & NFSMNT_DISMNT) { 794 /* 795 * Oops, we're going away now.. 796 */ 797 nmp->nm_waiters--; 798 wakeup (&nmp->nm_waiters); 799 return error; 800 } 801 nmp->nm_waiters--; 802 /* 803 * Ignore routing errors on connectionless protocols? ? 804 */ 805 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 806 nmp->nm_so->so_error = 0; 807 #ifdef DEBUG 808 printf("nfs_reply: ignoring error %d\n", error); 809 #endif 810 if (myrep->r_flags & R_GETONEREP) 811 return (0); 812 continue; 813 } 814 return (error); 815 } 816 nmp->nm_waiters--; 817 if (nam) 818 m_freem(nam); 819 820 /* 821 * Get the xid and check that it is an rpc reply 822 */ 823 md = mrep; 824 dpos = mtod(md, caddr_t); 825 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 826 rxid = *tl++; 827 if (*tl != rpc_reply) { 828 #ifndef NFS_V2_ONLY 829 if (nmp->nm_flag & NFSMNT_NQNFS) { 830 if (nqnfs_callback(nmp, mrep, md, dpos)) 831 nfsstats.rpcinvalid++; 832 } else 833 #endif 834 { 835 nfsstats.rpcinvalid++; 836 m_freem(mrep); 837 } 838 nfsmout: 839 if (myrep->r_flags & R_GETONEREP) 840 return (0); 841 continue; 842 } 843 844 /* 845 * Loop through the request list to match up the reply 846 * Iff no match, just drop the datagram 847 */ 848 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 849 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 850 /* Found it.. */ 851 rep->r_mrep = mrep; 852 rep->r_md = md; 853 rep->r_dpos = dpos; 854 if (nfsrtton) { 855 struct rttl *rt; 856 857 rt = &nfsrtt.rttl[nfsrtt.pos]; 858 rt->proc = rep->r_procnum; 859 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 860 rt->sent = nmp->nm_sent; 861 rt->cwnd = nmp->nm_cwnd; 862 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 863 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 864 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx; 865 rt->tstamp = time; 866 if (rep->r_flags & R_TIMING) 867 rt->rtt = rep->r_rtt; 868 else 869 rt->rtt = 1000000; 870 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 871 } 872 /* 873 * Update congestion window. 874 * Do the additive increase of 875 * one rpc/rtt. 876 */ 877 if (nmp->nm_cwnd <= nmp->nm_sent) { 878 nmp->nm_cwnd += 879 (NFS_CWNDSCALE * NFS_CWNDSCALE + 880 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 881 if (nmp->nm_cwnd > NFS_MAXCWND) 882 nmp->nm_cwnd = NFS_MAXCWND; 883 } 884 rep->r_flags &= ~R_SENT; 885 nmp->nm_sent -= NFS_CWNDSCALE; 886 /* 887 * Update rtt using a gain of 0.125 on the mean 888 * and a gain of 0.25 on the deviation. 889 */ 890 if (rep->r_flags & R_TIMING) { 891 /* 892 * Since the timer resolution of 893 * NFS_HZ is so course, it can often 894 * result in r_rtt == 0. Since 895 * r_rtt == N means that the actual 896 * rtt is between N+dt and N+2-dt ticks, 897 * add 1. 898 */ 899 t1 = rep->r_rtt + 1; 900 t1 -= (NFS_SRTT(rep) >> 3); 901 NFS_SRTT(rep) += t1; 902 if (t1 < 0) 903 t1 = -t1; 904 t1 -= (NFS_SDRTT(rep) >> 2); 905 NFS_SDRTT(rep) += t1; 906 } 907 nmp->nm_timeouts = 0; 908 break; 909 } 910 } 911 /* 912 * If not matched to a request, drop it. 913 * If it's mine, get out. 914 */ 915 if (rep == 0) { 916 nfsstats.rpcunexpected++; 917 m_freem(mrep); 918 } else if (rep == myrep) { 919 if (rep->r_mrep == NULL) 920 panic("nfsreply nil"); 921 return (0); 922 } 923 if (myrep->r_flags & R_GETONEREP) 924 return (0); 925 } 926 } 927 928 /* 929 * nfs_request - goes something like this 930 * - fill in request struct 931 * - links it into list 932 * - calls nfs_send() for first transmit 933 * - calls nfs_receive() to get reply 934 * - break down rpc header and return with nfs reply pointed to 935 * by mrep or error 936 * nb: always frees up mreq mbuf list 937 */ 938 int 939 nfs_request(np, mrest, procnum, procp, cred, mrp, mdp, dposp, rexmitp) 940 struct nfsnode *np; 941 struct mbuf *mrest; 942 int procnum; 943 struct proc *procp; 944 struct ucred *cred; 945 struct mbuf **mrp; 946 struct mbuf **mdp; 947 caddr_t *dposp; 948 int *rexmitp; 949 { 950 struct mbuf *m, *mrep; 951 struct nfsreq *rep; 952 u_int32_t *tl; 953 int i; 954 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount); 955 struct mbuf *md, *mheadend; 956 char nickv[RPCX_NICKVERF]; 957 time_t reqtime, waituntil; 958 caddr_t dpos, cp2; 959 int t1, s, error = 0, mrest_len, auth_len, auth_type; 960 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0; 961 int verf_len, verf_type; 962 u_int32_t xid; 963 char *auth_str, *verf_str; 964 NFSKERBKEY_T key; /* save session key */ 965 struct ucred acred; 966 #ifndef NFS_V2_ONLY 967 int nqlflag, cachable; 968 u_quad_t frev; 969 #endif 970 struct mbuf *mrest_backup = NULL; 971 struct ucred *origcred = NULL; /* XXX: gcc */ 972 boolean_t retry_cred = TRUE; 973 boolean_t use_opencred = (np->n_flag & NUSEOPENCRED) != 0; 974 975 if (rexmitp != NULL) 976 *rexmitp = 0; 977 978 tryagain_cred: 979 KASSERT(cred != NULL); 980 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 981 rep->r_nmp = nmp; 982 rep->r_procp = procp; 983 rep->r_procnum = procnum; 984 i = 0; 985 m = mrest; 986 while (m) { 987 i += m->m_len; 988 m = m->m_next; 989 } 990 mrest_len = i; 991 992 /* 993 * Get the RPC header with authorization. 994 */ 995 kerbauth: 996 verf_str = auth_str = (char *)0; 997 if (nmp->nm_flag & NFSMNT_KERB) { 998 verf_str = nickv; 999 verf_len = sizeof (nickv); 1000 auth_type = RPCAUTH_KERB4; 1001 memset((caddr_t)key, 0, sizeof (key)); 1002 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 1003 &auth_len, verf_str, verf_len)) { 1004 error = nfs_getauth(nmp, rep, cred, &auth_str, 1005 &auth_len, verf_str, &verf_len, key); 1006 if (error) { 1007 free((caddr_t)rep, M_NFSREQ); 1008 m_freem(mrest); 1009 return (error); 1010 } 1011 } 1012 retry_cred = FALSE; 1013 } else { 1014 /* AUTH_UNIX */ 1015 uid_t uid; 1016 gid_t gid; 1017 1018 /* 1019 * on the most unix filesystems, permission checks are 1020 * done when the file is open(2)'ed. 1021 * ie. once a file is successfully open'ed, 1022 * following i/o operations never fail with EACCES. 1023 * we try to follow the semantics as far as possible. 1024 * 1025 * note that we expect that the nfs server always grant 1026 * accesses by the file's owner. 1027 */ 1028 origcred = cred; 1029 switch (procnum) { 1030 case NFSPROC_READ: 1031 case NFSPROC_WRITE: 1032 case NFSPROC_COMMIT: 1033 uid = np->n_vattr->va_uid; 1034 gid = np->n_vattr->va_gid; 1035 if (cred->cr_uid == uid && cred->cr_gid == gid) { 1036 retry_cred = FALSE; 1037 break; 1038 } 1039 if (use_opencred) 1040 break; 1041 acred.cr_uid = uid; 1042 acred.cr_gid = gid; 1043 acred.cr_ngroups = 0; 1044 acred.cr_ref = 2; /* Just to be safe.. */ 1045 cred = &acred; 1046 break; 1047 default: 1048 retry_cred = FALSE; 1049 break; 1050 } 1051 /* 1052 * backup mbuf chain if we can need it later to retry. 1053 * 1054 * XXX maybe we can keep a direct reference to 1055 * mrest without doing m_copym, but it's ...ugly. 1056 */ 1057 if (retry_cred) 1058 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT); 1059 auth_type = RPCAUTH_UNIX; 1060 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ? 1061 nmp->nm_numgrps : cred->cr_ngroups) << 2) + 1062 5 * NFSX_UNSIGNED; 1063 } 1064 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 1065 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 1066 if (auth_str) 1067 free(auth_str, M_TEMP); 1068 1069 /* 1070 * For stream protocols, insert a Sun RPC Record Mark. 1071 */ 1072 if (nmp->nm_sotype == SOCK_STREAM) { 1073 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 1074 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1075 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1076 } 1077 rep->r_mreq = m; 1078 rep->r_xid = xid; 1079 tryagain: 1080 if (nmp->nm_flag & NFSMNT_SOFT) 1081 rep->r_retry = nmp->nm_retry; 1082 else 1083 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1084 rep->r_rtt = rep->r_rexmit = 0; 1085 if (proct[procnum] > 0) 1086 rep->r_flags = R_TIMING; 1087 else 1088 rep->r_flags = 0; 1089 rep->r_mrep = NULL; 1090 1091 /* 1092 * Do the client side RPC. 1093 */ 1094 nfsstats.rpcrequests++; 1095 /* 1096 * Chain request into list of outstanding requests. Be sure 1097 * to put it LAST so timer finds oldest requests first. 1098 */ 1099 s = splsoftnet(); 1100 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1101 1102 /* Get send time for nqnfs */ 1103 reqtime = time.tv_sec; 1104 1105 /* 1106 * If backing off another request or avoiding congestion, don't 1107 * send this one now but let timer do it. If not timing a request, 1108 * do it now. 1109 */ 1110 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1111 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1112 nmp->nm_sent < nmp->nm_cwnd)) { 1113 splx(s); 1114 if (nmp->nm_soflags & PR_CONNREQUIRED) 1115 error = nfs_sndlock(&nmp->nm_iflag, rep); 1116 if (!error) { 1117 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 1118 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, procp); 1119 if (nmp->nm_soflags & PR_CONNREQUIRED) 1120 nfs_sndunlock(&nmp->nm_iflag); 1121 } 1122 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1123 nmp->nm_sent += NFS_CWNDSCALE; 1124 rep->r_flags |= R_SENT; 1125 } 1126 } else { 1127 splx(s); 1128 rep->r_rtt = -1; 1129 } 1130 1131 /* 1132 * Wait for the reply from our send or the timer's. 1133 */ 1134 if (!error || error == EPIPE) 1135 error = nfs_reply(rep, procp); 1136 1137 /* 1138 * RPC done, unlink the request. 1139 */ 1140 s = splsoftnet(); 1141 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1142 splx(s); 1143 1144 /* 1145 * Decrement the outstanding request count. 1146 */ 1147 if (rep->r_flags & R_SENT) { 1148 rep->r_flags &= ~R_SENT; /* paranoia */ 1149 nmp->nm_sent -= NFS_CWNDSCALE; 1150 } 1151 1152 if (rexmitp != NULL) { 1153 int rexmit; 1154 1155 if (nmp->nm_sotype != SOCK_DGRAM) 1156 rexmit = (rep->r_flags & R_REXMITTED) != 0; 1157 else 1158 rexmit = rep->r_rexmit; 1159 *rexmitp = rexmit; 1160 } 1161 1162 /* 1163 * If there was a successful reply and a tprintf msg. 1164 * tprintf a response. 1165 */ 1166 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1167 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname, 1168 "is alive again"); 1169 mrep = rep->r_mrep; 1170 md = rep->r_md; 1171 dpos = rep->r_dpos; 1172 if (error) 1173 goto nfsmout; 1174 1175 /* 1176 * break down the rpc header and check if ok 1177 */ 1178 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1179 if (*tl++ == rpc_msgdenied) { 1180 if (*tl == rpc_mismatch) 1181 error = EOPNOTSUPP; 1182 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1183 if (!failed_auth) { 1184 failed_auth++; 1185 mheadend->m_next = (struct mbuf *)0; 1186 m_freem(mrep); 1187 m_freem(rep->r_mreq); 1188 goto kerbauth; 1189 } else 1190 error = EAUTH; 1191 } else 1192 error = EACCES; 1193 m_freem(mrep); 1194 goto nfsmout; 1195 } 1196 1197 /* 1198 * Grab any Kerberos verifier, otherwise just throw it away. 1199 */ 1200 verf_type = fxdr_unsigned(int, *tl++); 1201 i = fxdr_unsigned(int32_t, *tl); 1202 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1203 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1204 if (error) 1205 goto nfsmout; 1206 } else if (i > 0) 1207 nfsm_adv(nfsm_rndup(i)); 1208 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1209 /* 0 == ok */ 1210 if (*tl == 0) { 1211 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1212 if (*tl != 0) { 1213 error = fxdr_unsigned(int, *tl); 1214 if (error == NFSERR_ACCES && retry_cred) { 1215 m_freem(mrep); 1216 m_freem(rep->r_mreq); 1217 FREE(rep, M_NFSREQ); 1218 use_opencred = !use_opencred; 1219 if (mrest_backup == NULL) 1220 return ENOMEM; /* m_copym failure */ 1221 mrest = mrest_backup; 1222 mrest_backup = NULL; 1223 cred = origcred; 1224 error = 0; 1225 retry_cred = FALSE; 1226 goto tryagain_cred; 1227 } 1228 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1229 error == NFSERR_TRYLATER) { 1230 m_freem(mrep); 1231 error = 0; 1232 waituntil = time.tv_sec + trylater_delay; 1233 while (time.tv_sec < waituntil) 1234 (void) tsleep((caddr_t)&lbolt, 1235 PSOCK, "nqnfstry", 0); 1236 trylater_delay *= NFS_TRYLATERDELMUL; 1237 if (trylater_delay > NFS_TRYLATERDELMAX) 1238 trylater_delay = NFS_TRYLATERDELMAX; 1239 /* 1240 * RFC1813: 1241 * The client should wait and then try 1242 * the request with a new RPC transaction ID. 1243 */ 1244 nfs_renewxid(rep); 1245 goto tryagain; 1246 } 1247 1248 /* 1249 * If the File Handle was stale, invalidate the 1250 * lookup cache, just in case. 1251 */ 1252 if (error == ESTALE) 1253 cache_purge(NFSTOV(np)); 1254 if (nmp->nm_flag & NFSMNT_NFSV3) { 1255 *mrp = mrep; 1256 *mdp = md; 1257 *dposp = dpos; 1258 error |= NFSERR_RETERR; 1259 } else 1260 m_freem(mrep); 1261 goto nfsmout; 1262 } 1263 1264 /* 1265 * note which credential worked to minimize number of retries. 1266 */ 1267 if (use_opencred) 1268 np->n_flag |= NUSEOPENCRED; 1269 else 1270 np->n_flag &= ~NUSEOPENCRED; 1271 1272 #ifndef NFS_V2_ONLY 1273 /* 1274 * For nqnfs, get any lease in reply 1275 */ 1276 if (nmp->nm_flag & NFSMNT_NQNFS) { 1277 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1278 if (*tl) { 1279 nqlflag = fxdr_unsigned(int, *tl); 1280 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1281 cachable = fxdr_unsigned(int, *tl++); 1282 reqtime += fxdr_unsigned(int, *tl++); 1283 if (reqtime > time.tv_sec) { 1284 frev = fxdr_hyper(tl); 1285 nqnfs_clientlease(nmp, np, nqlflag, 1286 cachable, reqtime, frev); 1287 } 1288 } 1289 } 1290 #endif 1291 *mrp = mrep; 1292 *mdp = md; 1293 *dposp = dpos; 1294 1295 KASSERT(error == 0); 1296 goto nfsmout; 1297 } 1298 m_freem(mrep); 1299 error = EPROTONOSUPPORT; 1300 nfsmout: 1301 m_freem(rep->r_mreq); 1302 free((caddr_t)rep, M_NFSREQ); 1303 m_freem(mrest_backup); 1304 return (error); 1305 } 1306 #endif /* NFS */ 1307 1308 /* 1309 * Generate the rpc reply header 1310 * siz arg. is used to decide if adding a cluster is worthwhile 1311 */ 1312 int 1313 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1314 int siz; 1315 struct nfsrv_descript *nd; 1316 struct nfssvc_sock *slp; 1317 int err; 1318 int cache; 1319 u_quad_t *frev; 1320 struct mbuf **mrq; 1321 struct mbuf **mbp; 1322 caddr_t *bposp; 1323 { 1324 u_int32_t *tl; 1325 struct mbuf *mreq; 1326 caddr_t bpos; 1327 struct mbuf *mb; 1328 1329 mreq = m_gethdr(M_WAIT, MT_DATA); 1330 MCLAIM(mreq, &nfs_mowner); 1331 mb = mreq; 1332 /* 1333 * If this is a big reply, use a cluster else 1334 * try and leave leading space for the lower level headers. 1335 */ 1336 siz += RPC_REPLYSIZ; 1337 if (siz >= max_datalen) { 1338 m_clget(mreq, M_WAIT); 1339 } else 1340 mreq->m_data += max_hdr; 1341 tl = mtod(mreq, u_int32_t *); 1342 mreq->m_len = 6 * NFSX_UNSIGNED; 1343 bpos = ((caddr_t)tl) + mreq->m_len; 1344 *tl++ = txdr_unsigned(nd->nd_retxid); 1345 *tl++ = rpc_reply; 1346 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1347 *tl++ = rpc_msgdenied; 1348 if (err & NFSERR_AUTHERR) { 1349 *tl++ = rpc_autherr; 1350 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1351 mreq->m_len -= NFSX_UNSIGNED; 1352 bpos -= NFSX_UNSIGNED; 1353 } else { 1354 *tl++ = rpc_mismatch; 1355 *tl++ = txdr_unsigned(RPC_VER2); 1356 *tl = txdr_unsigned(RPC_VER2); 1357 } 1358 } else { 1359 *tl++ = rpc_msgaccepted; 1360 1361 /* 1362 * For Kerberos authentication, we must send the nickname 1363 * verifier back, otherwise just RPCAUTH_NULL. 1364 */ 1365 if (nd->nd_flag & ND_KERBFULL) { 1366 struct nfsuid *nuidp; 1367 struct timeval ktvin, ktvout; 1368 1369 LIST_FOREACH(nuidp, NUIDHASH(slp, nd->nd_cr.cr_uid), 1370 nu_hash) { 1371 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1372 (!nd->nd_nam2 || netaddr_match( 1373 NU_NETFAM(nuidp), &nuidp->nu_haddr, 1374 nd->nd_nam2))) 1375 break; 1376 } 1377 if (nuidp) { 1378 ktvin.tv_sec = 1379 txdr_unsigned(nuidp->nu_timestamp.tv_sec 1380 - 1); 1381 ktvin.tv_usec = 1382 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1383 1384 /* 1385 * Encrypt the timestamp in ecb mode using the 1386 * session key. 1387 */ 1388 #ifdef NFSKERB 1389 XXX 1390 #endif 1391 1392 *tl++ = rpc_auth_kerb; 1393 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1394 *tl = ktvout.tv_sec; 1395 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1396 *tl++ = ktvout.tv_usec; 1397 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1398 } else { 1399 *tl++ = 0; 1400 *tl++ = 0; 1401 } 1402 } else { 1403 *tl++ = 0; 1404 *tl++ = 0; 1405 } 1406 switch (err) { 1407 case EPROGUNAVAIL: 1408 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1409 break; 1410 case EPROGMISMATCH: 1411 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1412 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1413 if (nd->nd_flag & ND_NQNFS) { 1414 *tl++ = txdr_unsigned(3); 1415 *tl = txdr_unsigned(3); 1416 } else { 1417 *tl++ = txdr_unsigned(2); 1418 *tl = txdr_unsigned(3); 1419 } 1420 break; 1421 case EPROCUNAVAIL: 1422 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1423 break; 1424 case EBADRPC: 1425 *tl = txdr_unsigned(RPC_GARBAGE); 1426 break; 1427 default: 1428 *tl = 0; 1429 if (err != NFSERR_RETVOID) { 1430 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1431 if (err) 1432 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1433 else 1434 *tl = 0; 1435 } 1436 break; 1437 }; 1438 } 1439 1440 /* 1441 * For nqnfs, piggyback lease as requested. 1442 */ 1443 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1444 if (nd->nd_flag & ND_LEASE) { 1445 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1446 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1447 *tl++ = txdr_unsigned(cache); 1448 *tl++ = txdr_unsigned(nd->nd_duration); 1449 txdr_hyper(*frev, tl); 1450 } else { 1451 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1452 *tl = 0; 1453 } 1454 } 1455 if (mrq != NULL) 1456 *mrq = mreq; 1457 *mbp = mb; 1458 *bposp = bpos; 1459 if (err != 0 && err != NFSERR_RETVOID) 1460 nfsstats.srvrpc_errs++; 1461 return (0); 1462 } 1463 1464 /* 1465 * Nfs timer routine 1466 * Scan the nfsreq list and retranmit any requests that have timed out 1467 * To avoid retransmission attempts on STREAM sockets (in the future) make 1468 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1469 */ 1470 void 1471 nfs_timer(arg) 1472 void *arg; /* never used */ 1473 { 1474 struct nfsreq *rep; 1475 struct mbuf *m; 1476 struct socket *so; 1477 struct nfsmount *nmp; 1478 int timeo; 1479 int s, error; 1480 #ifdef NFSSERVER 1481 struct nfssvc_sock *slp; 1482 static long lasttime = 0; 1483 u_quad_t cur_usec; 1484 #endif 1485 1486 s = splsoftnet(); 1487 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 1488 nmp = rep->r_nmp; 1489 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1490 continue; 1491 if (nfs_sigintr(nmp, rep, rep->r_procp)) { 1492 rep->r_flags |= R_SOFTTERM; 1493 continue; 1494 } 1495 if (rep->r_rtt >= 0) { 1496 rep->r_rtt++; 1497 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1498 timeo = nmp->nm_timeo; 1499 else 1500 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1501 if (nmp->nm_timeouts > 0) 1502 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1503 if (rep->r_rtt <= timeo) 1504 continue; 1505 if (nmp->nm_timeouts < 1506 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0]))) 1507 nmp->nm_timeouts++; 1508 } 1509 /* 1510 * Check for server not responding 1511 */ 1512 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1513 rep->r_rexmit > nmp->nm_deadthresh) { 1514 nfs_msg(rep->r_procp, 1515 nmp->nm_mountp->mnt_stat.f_mntfromname, 1516 "not responding"); 1517 rep->r_flags |= R_TPRINTFMSG; 1518 } 1519 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1520 nfsstats.rpctimeouts++; 1521 rep->r_flags |= R_SOFTTERM; 1522 continue; 1523 } 1524 if (nmp->nm_sotype != SOCK_DGRAM) { 1525 if (++rep->r_rexmit > NFS_MAXREXMIT) 1526 rep->r_rexmit = NFS_MAXREXMIT; 1527 continue; 1528 } 1529 if ((so = nmp->nm_so) == NULL) 1530 continue; 1531 1532 /* 1533 * If there is enough space and the window allows.. 1534 * Resend it 1535 * Set r_rtt to -1 in case we fail to send it now. 1536 */ 1537 rep->r_rtt = -1; 1538 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1539 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1540 (rep->r_flags & R_SENT) || 1541 nmp->nm_sent < nmp->nm_cwnd) && 1542 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1543 if (so->so_state & SS_ISCONNECTED) 1544 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1545 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 1546 else 1547 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1548 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0); 1549 if (error) { 1550 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 1551 #ifdef DEBUG 1552 printf("nfs_timer: ignoring error %d\n", 1553 error); 1554 #endif 1555 so->so_error = 0; 1556 } 1557 } else { 1558 /* 1559 * Iff first send, start timing 1560 * else turn timing off, backoff timer 1561 * and divide congestion window by 2. 1562 */ 1563 if (rep->r_flags & R_SENT) { 1564 rep->r_flags &= ~R_TIMING; 1565 if (++rep->r_rexmit > NFS_MAXREXMIT) 1566 rep->r_rexmit = NFS_MAXREXMIT; 1567 nmp->nm_cwnd >>= 1; 1568 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1569 nmp->nm_cwnd = NFS_CWNDSCALE; 1570 nfsstats.rpcretries++; 1571 } else { 1572 rep->r_flags |= R_SENT; 1573 nmp->nm_sent += NFS_CWNDSCALE; 1574 } 1575 rep->r_rtt = 0; 1576 } 1577 } 1578 } 1579 1580 #ifdef NFSSERVER 1581 /* 1582 * Call the nqnfs server timer once a second to handle leases. 1583 */ 1584 if (lasttime != time.tv_sec) { 1585 lasttime = time.tv_sec; 1586 nqnfs_serverd(); 1587 } 1588 1589 /* 1590 * Scan the write gathering queues for writes that need to be 1591 * completed now. 1592 */ 1593 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec; 1594 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) { 1595 if (LIST_FIRST(&slp->ns_tq) && 1596 LIST_FIRST(&slp->ns_tq)->nd_time <= cur_usec) 1597 nfsrv_wakenfsd(slp); 1598 } 1599 #endif /* NFSSERVER */ 1600 splx(s); 1601 callout_schedule(&nfs_timer_ch, nfs_ticks); 1602 } 1603 1604 /*ARGSUSED*/ 1605 void 1606 nfs_exit(p, v) 1607 struct proc *p; 1608 void *v; 1609 { 1610 struct nfsreq *rp; 1611 int s = splsoftnet(); 1612 1613 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 1614 if (rp->r_procp == p) 1615 TAILQ_REMOVE(&nfs_reqq, rp, r_chain); 1616 } 1617 splx(s); 1618 } 1619 1620 /* 1621 * Test for a termination condition pending on the process. 1622 * This is used for NFSMNT_INT mounts. 1623 */ 1624 int 1625 nfs_sigintr(nmp, rep, p) 1626 struct nfsmount *nmp; 1627 struct nfsreq *rep; 1628 struct proc *p; 1629 { 1630 sigset_t ss; 1631 1632 if (rep && (rep->r_flags & R_SOFTTERM)) 1633 return (EINTR); 1634 if (!(nmp->nm_flag & NFSMNT_INT)) 1635 return (0); 1636 if (p) { 1637 sigpending1(p, &ss); 1638 #if 0 1639 sigminusset(&p->p_sigctx.ps_sigignore, &ss); 1640 #endif 1641 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) || 1642 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) || 1643 sigismember(&ss, SIGQUIT)) 1644 return (EINTR); 1645 } 1646 return (0); 1647 } 1648 1649 /* 1650 * Lock a socket against others. 1651 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1652 * and also to avoid race conditions between the processes with nfs requests 1653 * in progress when a reconnect is necessary. 1654 */ 1655 int 1656 nfs_sndlock(flagp, rep) 1657 int *flagp; 1658 struct nfsreq *rep; 1659 { 1660 struct proc *p; 1661 int slpflag = 0, slptimeo = 0; 1662 1663 if (rep) { 1664 p = rep->r_procp; 1665 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1666 slpflag = PCATCH; 1667 } else 1668 p = (struct proc *)0; 1669 while (*flagp & NFSMNT_SNDLOCK) { 1670 if (rep && nfs_sigintr(rep->r_nmp, rep, p)) 1671 return (EINTR); 1672 *flagp |= NFSMNT_WANTSND; 1673 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck", 1674 slptimeo); 1675 if (slpflag == PCATCH) { 1676 slpflag = 0; 1677 slptimeo = 2 * hz; 1678 } 1679 } 1680 *flagp |= NFSMNT_SNDLOCK; 1681 return (0); 1682 } 1683 1684 /* 1685 * Unlock the stream socket for others. 1686 */ 1687 void 1688 nfs_sndunlock(flagp) 1689 int *flagp; 1690 { 1691 1692 if ((*flagp & NFSMNT_SNDLOCK) == 0) 1693 panic("nfs sndunlock"); 1694 *flagp &= ~NFSMNT_SNDLOCK; 1695 if (*flagp & NFSMNT_WANTSND) { 1696 *flagp &= ~NFSMNT_WANTSND; 1697 wakeup((caddr_t)flagp); 1698 } 1699 } 1700 1701 int 1702 nfs_rcvlock(rep) 1703 struct nfsreq *rep; 1704 { 1705 struct nfsmount *nmp = rep->r_nmp; 1706 int *flagp = &nmp->nm_iflag; 1707 int slpflag, slptimeo = 0; 1708 int error = 0; 1709 1710 if (*flagp & NFSMNT_DISMNT) 1711 return EIO; 1712 1713 if (*flagp & NFSMNT_INT) 1714 slpflag = PCATCH; 1715 else 1716 slpflag = 0; 1717 simple_lock(&nmp->nm_slock); 1718 while (*flagp & NFSMNT_RCVLOCK) { 1719 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) { 1720 error = EINTR; 1721 goto quit; 1722 } 1723 *flagp |= NFSMNT_WANTRCV; 1724 nmp->nm_waiters++; 1725 (void) ltsleep(flagp, slpflag | (PZERO - 1), "nfsrcvlk", 1726 slptimeo, &nmp->nm_slock); 1727 nmp->nm_waiters--; 1728 if (*flagp & NFSMNT_DISMNT) { 1729 wakeup(&nmp->nm_waiters); 1730 error = EIO; 1731 goto quit; 1732 } 1733 /* If our reply was received while we were sleeping, 1734 * then just return without taking the lock to avoid a 1735 * situation where a single iod could 'capture' the 1736 * receive lock. 1737 */ 1738 if (rep->r_mrep != NULL) { 1739 error = EALREADY; 1740 goto quit; 1741 } 1742 if (slpflag == PCATCH) { 1743 slpflag = 0; 1744 slptimeo = 2 * hz; 1745 } 1746 } 1747 *flagp |= NFSMNT_RCVLOCK; 1748 quit: 1749 simple_unlock(&nmp->nm_slock); 1750 return error; 1751 } 1752 1753 /* 1754 * Unlock the stream socket for others. 1755 */ 1756 void 1757 nfs_rcvunlock(nmp) 1758 struct nfsmount *nmp; 1759 { 1760 int *flagp = &nmp->nm_iflag; 1761 1762 simple_lock(&nmp->nm_slock); 1763 if ((*flagp & NFSMNT_RCVLOCK) == 0) 1764 panic("nfs rcvunlock"); 1765 *flagp &= ~NFSMNT_RCVLOCK; 1766 if (*flagp & NFSMNT_WANTRCV) { 1767 *flagp &= ~NFSMNT_WANTRCV; 1768 wakeup((caddr_t)flagp); 1769 } 1770 simple_unlock(&nmp->nm_slock); 1771 } 1772 1773 /* 1774 * Parse an RPC request 1775 * - verify it 1776 * - fill in the cred struct. 1777 */ 1778 int 1779 nfs_getreq(nd, nfsd, has_header) 1780 struct nfsrv_descript *nd; 1781 struct nfsd *nfsd; 1782 int has_header; 1783 { 1784 int len, i; 1785 u_int32_t *tl; 1786 int32_t t1; 1787 struct uio uio; 1788 struct iovec iov; 1789 caddr_t dpos, cp2, cp; 1790 u_int32_t nfsvers, auth_type; 1791 uid_t nickuid; 1792 int error = 0, nqnfs = 0, ticklen; 1793 struct mbuf *mrep, *md; 1794 struct nfsuid *nuidp; 1795 struct timeval tvin, tvout; 1796 1797 mrep = nd->nd_mrep; 1798 md = nd->nd_md; 1799 dpos = nd->nd_dpos; 1800 if (has_header) { 1801 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1802 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1803 if (*tl++ != rpc_call) { 1804 m_freem(mrep); 1805 return (EBADRPC); 1806 } 1807 } else 1808 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1809 nd->nd_repstat = 0; 1810 nd->nd_flag = 0; 1811 if (*tl++ != rpc_vers) { 1812 nd->nd_repstat = ERPCMISMATCH; 1813 nd->nd_procnum = NFSPROC_NOOP; 1814 return (0); 1815 } 1816 if (*tl != nfs_prog) { 1817 if (*tl == nqnfs_prog) 1818 nqnfs++; 1819 else { 1820 nd->nd_repstat = EPROGUNAVAIL; 1821 nd->nd_procnum = NFSPROC_NOOP; 1822 return (0); 1823 } 1824 } 1825 tl++; 1826 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1827 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1828 (nfsvers != NQNFS_VER3 && nqnfs)) { 1829 nd->nd_repstat = EPROGMISMATCH; 1830 nd->nd_procnum = NFSPROC_NOOP; 1831 return (0); 1832 } 1833 if (nqnfs) 1834 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1835 else if (nfsvers == NFS_VER3) 1836 nd->nd_flag = ND_NFSV3; 1837 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1838 if (nd->nd_procnum == NFSPROC_NULL) 1839 return (0); 1840 if (nd->nd_procnum >= NFS_NPROCS || 1841 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1842 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1843 nd->nd_repstat = EPROCUNAVAIL; 1844 nd->nd_procnum = NFSPROC_NOOP; 1845 return (0); 1846 } 1847 if ((nd->nd_flag & ND_NFSV3) == 0) 1848 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1849 auth_type = *tl++; 1850 len = fxdr_unsigned(int, *tl++); 1851 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1852 m_freem(mrep); 1853 return (EBADRPC); 1854 } 1855 1856 nd->nd_flag &= ~ND_KERBAUTH; 1857 /* 1858 * Handle auth_unix or auth_kerb. 1859 */ 1860 if (auth_type == rpc_auth_unix) { 1861 len = fxdr_unsigned(int, *++tl); 1862 if (len < 0 || len > NFS_MAXNAMLEN) { 1863 m_freem(mrep); 1864 return (EBADRPC); 1865 } 1866 nfsm_adv(nfsm_rndup(len)); 1867 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1868 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred)); 1869 nd->nd_cr.cr_ref = 1; 1870 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1871 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1872 len = fxdr_unsigned(int, *tl); 1873 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1874 m_freem(mrep); 1875 return (EBADRPC); 1876 } 1877 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1878 for (i = 0; i < len; i++) 1879 if (i < NGROUPS) 1880 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1881 else 1882 tl++; 1883 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len; 1884 if (nd->nd_cr.cr_ngroups > 1) 1885 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1886 len = fxdr_unsigned(int, *++tl); 1887 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1888 m_freem(mrep); 1889 return (EBADRPC); 1890 } 1891 if (len > 0) 1892 nfsm_adv(nfsm_rndup(len)); 1893 } else if (auth_type == rpc_auth_kerb) { 1894 switch (fxdr_unsigned(int, *tl++)) { 1895 case RPCAKN_FULLNAME: 1896 ticklen = fxdr_unsigned(int, *tl); 1897 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1898 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1899 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1900 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1901 m_freem(mrep); 1902 return (EBADRPC); 1903 } 1904 uio.uio_offset = 0; 1905 uio.uio_iov = &iov; 1906 uio.uio_iovcnt = 1; 1907 uio.uio_segflg = UIO_SYSSPACE; 1908 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1909 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1910 nfsm_mtouio(&uio, uio.uio_resid); 1911 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1912 if (*tl++ != rpc_auth_kerb || 1913 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1914 printf("Bad kerb verifier\n"); 1915 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1916 nd->nd_procnum = NFSPROC_NOOP; 1917 return (0); 1918 } 1919 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1920 tl = (u_int32_t *)cp; 1921 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1922 printf("Not fullname kerb verifier\n"); 1923 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1924 nd->nd_procnum = NFSPROC_NOOP; 1925 return (0); 1926 } 1927 cp += NFSX_UNSIGNED; 1928 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED); 1929 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1930 nd->nd_flag |= ND_KERBFULL; 1931 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1932 break; 1933 case RPCAKN_NICKNAME: 1934 if (len != 2 * NFSX_UNSIGNED) { 1935 printf("Kerb nickname short\n"); 1936 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1937 nd->nd_procnum = NFSPROC_NOOP; 1938 return (0); 1939 } 1940 nickuid = fxdr_unsigned(uid_t, *tl); 1941 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1942 if (*tl++ != rpc_auth_kerb || 1943 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1944 printf("Kerb nick verifier bad\n"); 1945 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1946 nd->nd_procnum = NFSPROC_NOOP; 1947 return (0); 1948 } 1949 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1950 tvin.tv_sec = *tl++; 1951 tvin.tv_usec = *tl; 1952 1953 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid), 1954 nu_hash) { 1955 if (nuidp->nu_cr.cr_uid == nickuid && 1956 (!nd->nd_nam2 || 1957 netaddr_match(NU_NETFAM(nuidp), 1958 &nuidp->nu_haddr, nd->nd_nam2))) 1959 break; 1960 } 1961 if (!nuidp) { 1962 nd->nd_repstat = 1963 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1964 nd->nd_procnum = NFSPROC_NOOP; 1965 return (0); 1966 } 1967 1968 /* 1969 * Now, decrypt the timestamp using the session key 1970 * and validate it. 1971 */ 1972 #ifdef NFSKERB 1973 XXX 1974 #endif 1975 1976 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1977 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1978 if (nuidp->nu_expire < time.tv_sec || 1979 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1980 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1981 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1982 nuidp->nu_expire = 0; 1983 nd->nd_repstat = 1984 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1985 nd->nd_procnum = NFSPROC_NOOP; 1986 return (0); 1987 } 1988 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1989 nd->nd_flag |= ND_KERBNICK; 1990 }; 1991 } else { 1992 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1993 nd->nd_procnum = NFSPROC_NOOP; 1994 return (0); 1995 } 1996 1997 /* 1998 * For nqnfs, get piggybacked lease request. 1999 */ 2000 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 2001 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2002 nd->nd_flag |= fxdr_unsigned(int, *tl); 2003 if (nd->nd_flag & ND_LEASE) { 2004 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2005 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl); 2006 } else 2007 nd->nd_duration = NQ_MINLEASE; 2008 } else 2009 nd->nd_duration = NQ_MINLEASE; 2010 nd->nd_md = md; 2011 nd->nd_dpos = dpos; 2012 return (0); 2013 nfsmout: 2014 return (error); 2015 } 2016 2017 int 2018 nfs_msg(p, server, msg) 2019 struct proc *p; 2020 char *server, *msg; 2021 { 2022 tpr_t tpr; 2023 2024 if (p) 2025 tpr = tprintf_open(p); 2026 else 2027 tpr = NULL; 2028 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2029 tprintf_close(tpr); 2030 return (0); 2031 } 2032 2033 #ifdef NFSSERVER 2034 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, 2035 struct nfssvc_sock *, struct proc *, 2036 struct mbuf **)) = { 2037 nfsrv_null, 2038 nfsrv_getattr, 2039 nfsrv_setattr, 2040 nfsrv_lookup, 2041 nfsrv3_access, 2042 nfsrv_readlink, 2043 nfsrv_read, 2044 nfsrv_write, 2045 nfsrv_create, 2046 nfsrv_mkdir, 2047 nfsrv_symlink, 2048 nfsrv_mknod, 2049 nfsrv_remove, 2050 nfsrv_rmdir, 2051 nfsrv_rename, 2052 nfsrv_link, 2053 nfsrv_readdir, 2054 nfsrv_readdirplus, 2055 nfsrv_statfs, 2056 nfsrv_fsinfo, 2057 nfsrv_pathconf, 2058 nfsrv_commit, 2059 nqnfsrv_getlease, 2060 nqnfsrv_vacated, 2061 nfsrv_noop, 2062 nfsrv_noop 2063 }; 2064 2065 /* 2066 * Socket upcall routine for the nfsd sockets. 2067 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 2068 * Essentially do as much as possible non-blocking, else punt and it will 2069 * be called with M_WAIT from an nfsd. 2070 */ 2071 void 2072 nfsrv_rcv(so, arg, waitflag) 2073 struct socket *so; 2074 caddr_t arg; 2075 int waitflag; 2076 { 2077 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2078 struct mbuf *m; 2079 struct mbuf *mp, *nam; 2080 struct uio auio; 2081 int flags, error; 2082 2083 if ((slp->ns_flag & SLP_VALID) == 0) 2084 return; 2085 #ifdef notdef 2086 /* 2087 * Define this to test for nfsds handling this under heavy load. 2088 */ 2089 if (waitflag == M_DONTWAIT) { 2090 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 2091 } 2092 #endif 2093 /* XXX: was NULL, soreceive() requires non-NULL uio->uio_procp */ 2094 auio.uio_procp = curproc; /* XXX curproc */ 2095 if (so->so_type == SOCK_STREAM) { 2096 /* 2097 * If there are already records on the queue, defer soreceive() 2098 * to an nfsd so that there is feedback to the TCP layer that 2099 * the nfs servers are heavily loaded. 2100 */ 2101 if (slp->ns_rec && waitflag == M_DONTWAIT) { 2102 slp->ns_flag |= SLP_NEEDQ; 2103 goto dorecs; 2104 } 2105 2106 /* 2107 * Do soreceive(). 2108 */ 2109 auio.uio_resid = 1000000000; 2110 flags = MSG_DONTWAIT; 2111 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags); 2112 if (error || mp == (struct mbuf *)0) { 2113 if (error == EWOULDBLOCK) 2114 slp->ns_flag |= SLP_NEEDQ; 2115 else 2116 slp->ns_flag |= SLP_DISCONN; 2117 goto dorecs; 2118 } 2119 m = mp; 2120 if (slp->ns_rawend) { 2121 slp->ns_rawend->m_next = m; 2122 slp->ns_cc += 1000000000 - auio.uio_resid; 2123 } else { 2124 slp->ns_raw = m; 2125 slp->ns_cc = 1000000000 - auio.uio_resid; 2126 } 2127 while (m->m_next) 2128 m = m->m_next; 2129 slp->ns_rawend = m; 2130 2131 /* 2132 * Now try and parse record(s) out of the raw stream data. 2133 */ 2134 error = nfsrv_getstream(slp, waitflag); 2135 if (error) { 2136 if (error == EPERM) 2137 slp->ns_flag |= SLP_DISCONN; 2138 else 2139 slp->ns_flag |= SLP_NEEDQ; 2140 } 2141 } else { 2142 do { 2143 auio.uio_resid = 1000000000; 2144 flags = MSG_DONTWAIT; 2145 error = (*so->so_receive)(so, &nam, &auio, &mp, 2146 (struct mbuf **)0, &flags); 2147 if (mp) { 2148 if (nam) { 2149 m = nam; 2150 m->m_next = mp; 2151 } else 2152 m = mp; 2153 if (slp->ns_recend) 2154 slp->ns_recend->m_nextpkt = m; 2155 else 2156 slp->ns_rec = m; 2157 slp->ns_recend = m; 2158 m->m_nextpkt = (struct mbuf *)0; 2159 } 2160 if (error) { 2161 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2162 && error != EWOULDBLOCK) { 2163 slp->ns_flag |= SLP_DISCONN; 2164 goto dorecs; 2165 } 2166 } 2167 } while (mp); 2168 } 2169 2170 /* 2171 * Now try and process the request records, non-blocking. 2172 */ 2173 dorecs: 2174 if (waitflag == M_DONTWAIT && 2175 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 2176 nfsrv_wakenfsd(slp); 2177 } 2178 2179 /* 2180 * Try and extract an RPC request from the mbuf data list received on a 2181 * stream socket. The "waitflag" argument indicates whether or not it 2182 * can sleep. 2183 */ 2184 int 2185 nfsrv_getstream(slp, waitflag) 2186 struct nfssvc_sock *slp; 2187 int waitflag; 2188 { 2189 struct mbuf *m, **mpp; 2190 struct mbuf *recm; 2191 u_int32_t recmark; 2192 2193 if (slp->ns_flag & SLP_GETSTREAM) 2194 panic("nfs getstream"); 2195 slp->ns_flag |= SLP_GETSTREAM; 2196 for (;;) { 2197 if (slp->ns_reclen == 0) { 2198 if (slp->ns_cc < NFSX_UNSIGNED) { 2199 slp->ns_flag &= ~SLP_GETSTREAM; 2200 return (0); 2201 } 2202 m = slp->ns_raw; 2203 m_copydata(m, 0, NFSX_UNSIGNED, (caddr_t)&recmark); 2204 m_adj(m, NFSX_UNSIGNED); 2205 slp->ns_cc -= NFSX_UNSIGNED; 2206 recmark = ntohl(recmark); 2207 slp->ns_reclen = recmark & ~0x80000000; 2208 if (recmark & 0x80000000) 2209 slp->ns_flag |= SLP_LASTFRAG; 2210 else 2211 slp->ns_flag &= ~SLP_LASTFRAG; 2212 if (slp->ns_reclen > NFS_MAXPACKET) { 2213 slp->ns_flag &= ~SLP_GETSTREAM; 2214 return (EPERM); 2215 } 2216 } 2217 2218 /* 2219 * Now get the record part. 2220 * 2221 * Note that slp->ns_reclen may be 0. Linux sometimes 2222 * generates 0-length records. 2223 */ 2224 if (slp->ns_cc == slp->ns_reclen) { 2225 recm = slp->ns_raw; 2226 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2227 slp->ns_cc = slp->ns_reclen = 0; 2228 } else if (slp->ns_cc > slp->ns_reclen) { 2229 recm = slp->ns_raw; 2230 m = m_split(recm, slp->ns_reclen, waitflag); 2231 if (m == NULL) { 2232 slp->ns_flag &= ~SLP_GETSTREAM; 2233 return (EWOULDBLOCK); 2234 } 2235 m_claimm(recm, &nfs_mowner); 2236 slp->ns_raw = m; 2237 if (m->m_next == NULL) 2238 slp->ns_rawend = m; 2239 slp->ns_cc -= slp->ns_reclen; 2240 slp->ns_reclen = 0; 2241 } else { 2242 slp->ns_flag &= ~SLP_GETSTREAM; 2243 return (0); 2244 } 2245 2246 /* 2247 * Accumulate the fragments into a record. 2248 */ 2249 mpp = &slp->ns_frag; 2250 while (*mpp) 2251 mpp = &((*mpp)->m_next); 2252 *mpp = recm; 2253 if (slp->ns_flag & SLP_LASTFRAG) { 2254 if (slp->ns_recend) 2255 slp->ns_recend->m_nextpkt = slp->ns_frag; 2256 else 2257 slp->ns_rec = slp->ns_frag; 2258 slp->ns_recend = slp->ns_frag; 2259 slp->ns_frag = (struct mbuf *)0; 2260 } 2261 } 2262 } 2263 2264 /* 2265 * Parse an RPC header. 2266 */ 2267 int 2268 nfsrv_dorec(slp, nfsd, ndp) 2269 struct nfssvc_sock *slp; 2270 struct nfsd *nfsd; 2271 struct nfsrv_descript **ndp; 2272 { 2273 struct mbuf *m, *nam; 2274 struct nfsrv_descript *nd; 2275 int error; 2276 2277 *ndp = NULL; 2278 if ((slp->ns_flag & SLP_VALID) == 0 || 2279 (m = slp->ns_rec) == (struct mbuf *)0) 2280 return (ENOBUFS); 2281 slp->ns_rec = m->m_nextpkt; 2282 if (slp->ns_rec) 2283 m->m_nextpkt = (struct mbuf *)0; 2284 else 2285 slp->ns_recend = (struct mbuf *)0; 2286 if (m->m_type == MT_SONAME) { 2287 nam = m; 2288 m = m->m_next; 2289 nam->m_next = NULL; 2290 } else 2291 nam = NULL; 2292 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK); 2293 nd->nd_md = nd->nd_mrep = m; 2294 nd->nd_nam2 = nam; 2295 nd->nd_dpos = mtod(m, caddr_t); 2296 error = nfs_getreq(nd, nfsd, TRUE); 2297 if (error) { 2298 m_freem(nam); 2299 pool_put(&nfs_srvdesc_pool, nd); 2300 return (error); 2301 } 2302 *ndp = nd; 2303 nfsd->nfsd_nd = nd; 2304 return (0); 2305 } 2306 2307 2308 /* 2309 * Search for a sleeping nfsd and wake it up. 2310 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2311 * running nfsds will go look for the work in the nfssvc_sock list. 2312 */ 2313 void 2314 nfsrv_wakenfsd(slp) 2315 struct nfssvc_sock *slp; 2316 { 2317 struct nfsd *nd; 2318 2319 if ((slp->ns_flag & SLP_VALID) == 0) 2320 return; 2321 simple_lock(&nfsd_slock); 2322 if (slp->ns_flag & SLP_DOREC) { 2323 simple_unlock(&nfsd_slock); 2324 return; 2325 } 2326 nd = SLIST_FIRST(&nfsd_idle_head); 2327 if (nd) { 2328 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle); 2329 simple_unlock(&nfsd_slock); 2330 2331 KASSERT(nd->nfsd_flag & NFSD_WAITING); 2332 nd->nfsd_flag &= ~NFSD_WAITING; 2333 if (nd->nfsd_slp) 2334 panic("nfsd wakeup"); 2335 slp->ns_sref++; 2336 nd->nfsd_slp = slp; 2337 wakeup(nd); 2338 return; 2339 } 2340 slp->ns_flag |= SLP_DOREC; 2341 nfsd_head_flag |= NFSD_CHECKSLP; 2342 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending); 2343 simple_unlock(&nfsd_slock); 2344 } 2345 #endif /* NFSSERVER */ 2346