1 /* $NetBSD: nfs_socket.c,v 1.70 2002/01/21 13:21:51 minoura Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1991, 1993, 1995 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include <sys/cdefs.h> 46 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.70 2002/01/21 13:21:51 minoura Exp $"); 47 48 #include "fs_nfs.h" 49 #include "opt_nfs.h" 50 #include "opt_nfsserver.h" 51 #include "opt_inet.h" 52 53 #include <sys/param.h> 54 #include <sys/systm.h> 55 #include <sys/callout.h> 56 #include <sys/proc.h> 57 #include <sys/mount.h> 58 #include <sys/kernel.h> 59 #include <sys/mbuf.h> 60 #include <sys/vnode.h> 61 #include <sys/domain.h> 62 #include <sys/protosw.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/syslog.h> 66 #include <sys/tprintf.h> 67 #include <sys/namei.h> 68 #include <sys/signal.h> 69 #include <sys/signalvar.h> 70 71 #include <netinet/in.h> 72 #include <netinet/tcp.h> 73 74 #include <nfs/rpcv2.h> 75 #include <nfs/nfsproto.h> 76 #include <nfs/nfs.h> 77 #include <nfs/xdr_subs.h> 78 #include <nfs/nfsm_subs.h> 79 #include <nfs/nfsmount.h> 80 #include <nfs/nfsnode.h> 81 #include <nfs/nfsrtt.h> 82 #include <nfs/nqnfs.h> 83 #include <nfs/nfs_var.h> 84 85 #define TRUE 1 86 #define FALSE 0 87 88 /* 89 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 90 * Use the mean and mean deviation of rtt for the appropriate type of rpc 91 * for the frequent rpcs and a default for the others. 92 * The justification for doing "other" this way is that these rpcs 93 * happen so infrequently that timer est. would probably be stale. 94 * Also, since many of these rpcs are 95 * non-idempotent, a conservative timeout is desired. 96 * getattr, lookup - A+2D 97 * read, write - A+4D 98 * other - nm_timeo 99 */ 100 #define NFS_RTO(n, t) \ 101 ((t) == 0 ? (n)->nm_timeo : \ 102 ((t) < 3 ? \ 103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 107 /* 108 * External data, mostly RPC constants in XDR form 109 */ 110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 112 rpc_auth_kerb; 113 extern u_int32_t nfs_prog, nqnfs_prog; 114 extern time_t nqnfsstarttime; 115 extern struct nfsstats nfsstats; 116 extern int nfsv3_procid[NFS_NPROCS]; 117 extern int nfs_ticks; 118 119 /* 120 * Defines which timer to use for the procnum. 121 * 0 - default 122 * 1 - getattr 123 * 2 - lookup 124 * 3 - read 125 * 4 - write 126 */ 127 static const int proct[NFS_NPROCS] = { 128 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 129 0, 0, 0, 130 }; 131 132 /* 133 * There is a congestion window for outstanding rpcs maintained per mount 134 * point. The cwnd size is adjusted in roughly the way that: 135 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 136 * SIGCOMM '88". ACM, August 1988. 137 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 138 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 139 * of rpcs is in progress. 140 * (The sent count and cwnd are scaled for integer arith.) 141 * Variants of "slow start" were tried and were found to be too much of a 142 * performance hit (ave. rtt 3 times larger), 143 * I suspect due to the large rtt that nfs rpcs have. 144 */ 145 #define NFS_CWNDSCALE 256 146 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 147 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 148 int nfsrtton = 0; 149 struct nfsrtt nfsrtt; 150 151 struct callout nfs_timer_ch = CALLOUT_INITIALIZER; 152 153 /* 154 * Initialize sockets and congestion for a new NFS connection. 155 * We do not free the sockaddr if error. 156 */ 157 int 158 nfs_connect(nmp, rep) 159 struct nfsmount *nmp; 160 struct nfsreq *rep; 161 { 162 struct socket *so; 163 int s, error, rcvreserve, sndreserve; 164 struct sockaddr *saddr; 165 struct sockaddr_in *sin; 166 #ifdef INET6 167 struct sockaddr_in6 *sin6; 168 #endif 169 struct mbuf *m; 170 u_int16_t tport; 171 172 nmp->nm_so = (struct socket *)0; 173 saddr = mtod(nmp->nm_nam, struct sockaddr *); 174 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 175 nmp->nm_soproto); 176 if (error) 177 goto bad; 178 so = nmp->nm_so; 179 nmp->nm_soflags = so->so_proto->pr_flags; 180 181 /* 182 * Some servers require that the client port be a reserved port number. 183 */ 184 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 185 MGET(m, M_WAIT, MT_SONAME); 186 sin = mtod(m, struct sockaddr_in *); 187 sin->sin_len = m->m_len = sizeof (struct sockaddr_in); 188 sin->sin_family = AF_INET; 189 sin->sin_addr.s_addr = INADDR_ANY; 190 tport = IPPORT_RESERVED - 1; 191 sin->sin_port = htons(tport); 192 while ((error = sobind(so, m, &proc0)) == EADDRINUSE && 193 --tport > IPPORT_RESERVED / 2) 194 sin->sin_port = htons(tport); 195 m_freem(m); 196 if (error) 197 goto bad; 198 } 199 #ifdef INET6 200 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) { 201 MGET(m, M_WAIT, MT_SONAME); 202 sin6 = mtod(m, struct sockaddr_in6 *); 203 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6); 204 sin6->sin6_family = AF_INET6; 205 sin6->sin6_addr = in6addr_any; 206 tport = IPV6PORT_RESERVED - 1; 207 sin6->sin6_port = htons(tport); 208 while ((error = sobind(so, m, &proc0)) == EADDRINUSE && 209 --tport > IPV6PORT_RESERVED / 2) 210 sin6->sin6_port = htons(tport); 211 m_freem(m); 212 if (error) 213 goto bad; 214 } 215 #endif 216 217 /* 218 * Protocols that do not require connections may be optionally left 219 * unconnected for servers that reply from a port other than NFS_PORT. 220 */ 221 if (nmp->nm_flag & NFSMNT_NOCONN) { 222 if (nmp->nm_soflags & PR_CONNREQUIRED) { 223 error = ENOTCONN; 224 goto bad; 225 } 226 } else { 227 error = soconnect(so, nmp->nm_nam); 228 if (error) 229 goto bad; 230 231 /* 232 * Wait for the connection to complete. Cribbed from the 233 * connect system call but with the wait timing out so 234 * that interruptible mounts don't hang here for a long time. 235 */ 236 s = splsoftnet(); 237 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 238 (void) tsleep((caddr_t)&so->so_timeo, PSOCK, 239 "nfscn1", 2 * hz); 240 if ((so->so_state & SS_ISCONNECTING) && 241 so->so_error == 0 && rep && 242 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){ 243 so->so_state &= ~SS_ISCONNECTING; 244 splx(s); 245 goto bad; 246 } 247 } 248 if (so->so_error) { 249 error = so->so_error; 250 so->so_error = 0; 251 splx(s); 252 goto bad; 253 } 254 splx(s); 255 } 256 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { 257 so->so_rcv.sb_timeo = (5 * hz); 258 so->so_snd.sb_timeo = (5 * hz); 259 } else { 260 so->so_rcv.sb_timeo = 0; 261 so->so_snd.sb_timeo = 0; 262 } 263 if (nmp->nm_sotype == SOCK_DGRAM) { 264 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 265 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 266 NFS_MAXPKTHDR) * 2; 267 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 268 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 269 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 270 NFS_MAXPKTHDR) * 2; 271 } else { 272 if (nmp->nm_sotype != SOCK_STREAM) 273 panic("nfscon sotype"); 274 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 275 MGET(m, M_WAIT, MT_SOOPTS); 276 *mtod(m, int32_t *) = 1; 277 m->m_len = sizeof(int32_t); 278 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); 279 } 280 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 281 MGET(m, M_WAIT, MT_SOOPTS); 282 *mtod(m, int32_t *) = 1; 283 m->m_len = sizeof(int32_t); 284 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); 285 } 286 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 287 sizeof (u_int32_t)) * 2; 288 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 289 sizeof (u_int32_t)) * 2; 290 } 291 error = soreserve(so, sndreserve, rcvreserve); 292 if (error) 293 goto bad; 294 so->so_rcv.sb_flags |= SB_NOINTR; 295 so->so_snd.sb_flags |= SB_NOINTR; 296 297 /* Initialize other non-zero congestion variables */ 298 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = 299 NFS_TIMEO << 3; 300 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 301 nmp->nm_sdrtt[3] = 0; 302 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 303 nmp->nm_sent = 0; 304 nmp->nm_timeouts = 0; 305 return (0); 306 307 bad: 308 nfs_disconnect(nmp); 309 return (error); 310 } 311 312 /* 313 * Reconnect routine: 314 * Called when a connection is broken on a reliable protocol. 315 * - clean up the old socket 316 * - nfs_connect() again 317 * - set R_MUSTRESEND for all outstanding requests on mount point 318 * If this fails the mount point is DEAD! 319 * nb: Must be called with the nfs_sndlock() set on the mount point. 320 */ 321 int 322 nfs_reconnect(rep) 323 struct nfsreq *rep; 324 { 325 struct nfsreq *rp; 326 struct nfsmount *nmp = rep->r_nmp; 327 int error; 328 329 nfs_disconnect(nmp); 330 while ((error = nfs_connect(nmp, rep)) != 0) { 331 if (error == EINTR || error == ERESTART) 332 return (EINTR); 333 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0); 334 } 335 336 /* 337 * Loop through outstanding request list and fix up all requests 338 * on old socket. 339 */ 340 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) { 341 if (rp->r_nmp == nmp) 342 rp->r_flags |= R_MUSTRESEND; 343 } 344 return (0); 345 } 346 347 /* 348 * NFS disconnect. Clean up and unlink. 349 */ 350 void 351 nfs_disconnect(nmp) 352 struct nfsmount *nmp; 353 { 354 struct socket *so; 355 int drain = 0; 356 357 if (nmp->nm_so) { 358 so = nmp->nm_so; 359 nmp->nm_so = (struct socket *)0; 360 soshutdown(so, 2); 361 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0; 362 if (drain) { 363 /* 364 * soshutdown() above should wake up the current 365 * listener. 366 * Now wake up those waiting for the recive lock, and 367 * wait for them to go away unhappy, to prevent *nmp 368 * from evaporating while they're sleeping. 369 */ 370 while (nmp->nm_waiters > 0) { 371 wakeup (&nmp->nm_iflag); 372 (void) tsleep(&nmp->nm_waiters, PVFS, 373 "nfsdis", 0); 374 } 375 } 376 soclose(so); 377 } 378 #ifdef DIAGNOSTIC 379 if (drain && (nmp->nm_waiters > 0)) 380 panic("nfs_disconnect: waiters left after drain?\n"); 381 #endif 382 } 383 384 void 385 nfs_safedisconnect(nmp) 386 struct nfsmount *nmp; 387 { 388 struct nfsreq dummyreq; 389 390 memset(&dummyreq, 0, sizeof(dummyreq)); 391 dummyreq.r_nmp = nmp; 392 nfs_rcvlock(&dummyreq); /* XXX ignored error return */ 393 nfs_disconnect(nmp); 394 nfs_rcvunlock(&nmp->nm_iflag); 395 } 396 397 /* 398 * This is the nfs send routine. For connection based socket types, it 399 * must be called with an nfs_sndlock() on the socket. 400 * "rep == NULL" indicates that it has been called from a server. 401 * For the client side: 402 * - return EINTR if the RPC is terminated, 0 otherwise 403 * - set R_MUSTRESEND if the send fails for any reason 404 * - do any cleanup required by recoverable socket errors (? ? ?) 405 * For the server side: 406 * - return EINTR or ERESTART if interrupted by a signal 407 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 408 * - do any cleanup required by recoverable socket errors (? ? ?) 409 */ 410 int 411 nfs_send(so, nam, top, rep) 412 struct socket *so; 413 struct mbuf *nam; 414 struct mbuf *top; 415 struct nfsreq *rep; 416 { 417 struct mbuf *sendnam; 418 int error, soflags, flags; 419 420 if (rep) { 421 if (rep->r_flags & R_SOFTTERM) { 422 m_freem(top); 423 return (EINTR); 424 } 425 if ((so = rep->r_nmp->nm_so) == NULL) { 426 rep->r_flags |= R_MUSTRESEND; 427 m_freem(top); 428 return (0); 429 } 430 rep->r_flags &= ~R_MUSTRESEND; 431 soflags = rep->r_nmp->nm_soflags; 432 } else 433 soflags = so->so_proto->pr_flags; 434 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 435 sendnam = (struct mbuf *)0; 436 else 437 sendnam = nam; 438 if (so->so_type == SOCK_SEQPACKET) 439 flags = MSG_EOR; 440 else 441 flags = 0; 442 443 error = (*so->so_send)(so, sendnam, (struct uio *)0, top, 444 (struct mbuf *)0, flags); 445 if (error) { 446 if (rep) { 447 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 448 /* 449 * We're too fast for the network/driver, 450 * and UDP isn't flowcontrolled. 451 * We need to resend. This is not fatal, 452 * just try again. 453 * 454 * Could be smarter here by doing some sort 455 * of a backoff, but this is rare. 456 */ 457 rep->r_flags |= R_MUSTRESEND; 458 } else { 459 log(LOG_INFO, "nfs send error %d for %s\n", 460 error, 461 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 462 /* 463 * Deal with errors for the client side. 464 */ 465 if (rep->r_flags & R_SOFTTERM) 466 error = EINTR; 467 else 468 rep->r_flags |= R_MUSTRESEND; 469 } 470 } else { 471 /* 472 * See above. This error can happen under normal 473 * circumstances and the log is too noisy. 474 * The error will still show up in nfsstat. 475 */ 476 if (error != ENOBUFS || so->so_type != SOCK_DGRAM) 477 log(LOG_INFO, "nfsd send error %d\n", error); 478 } 479 480 /* 481 * Handle any recoverable (soft) socket errors here. (? ? ?) 482 */ 483 if (error != EINTR && error != ERESTART && 484 error != EWOULDBLOCK && error != EPIPE) 485 error = 0; 486 } 487 return (error); 488 } 489 490 #ifdef NFS 491 /* 492 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 493 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 494 * Mark and consolidate the data into a new mbuf list. 495 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 496 * small mbufs. 497 * For SOCK_STREAM we must be very careful to read an entire record once 498 * we have read any of it, even if the system call has been interrupted. 499 */ 500 int 501 nfs_receive(rep, aname, mp) 502 struct nfsreq *rep; 503 struct mbuf **aname; 504 struct mbuf **mp; 505 { 506 struct socket *so; 507 struct uio auio; 508 struct iovec aio; 509 struct mbuf *m; 510 struct mbuf *control; 511 u_int32_t len; 512 struct mbuf **getnam; 513 int error, sotype, rcvflg; 514 struct proc *p = curproc; /* XXX */ 515 516 /* 517 * Set up arguments for soreceive() 518 */ 519 *mp = (struct mbuf *)0; 520 *aname = (struct mbuf *)0; 521 sotype = rep->r_nmp->nm_sotype; 522 523 /* 524 * For reliable protocols, lock against other senders/receivers 525 * in case a reconnect is necessary. 526 * For SOCK_STREAM, first get the Record Mark to find out how much 527 * more there is to get. 528 * We must lock the socket against other receivers 529 * until we have an entire rpc request/reply. 530 */ 531 if (sotype != SOCK_DGRAM) { 532 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 533 if (error) 534 return (error); 535 tryagain: 536 /* 537 * Check for fatal errors and resending request. 538 */ 539 /* 540 * Ugh: If a reconnect attempt just happened, nm_so 541 * would have changed. NULL indicates a failed 542 * attempt that has essentially shut down this 543 * mount point. 544 */ 545 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 546 nfs_sndunlock(&rep->r_nmp->nm_iflag); 547 return (EINTR); 548 } 549 so = rep->r_nmp->nm_so; 550 if (!so) { 551 error = nfs_reconnect(rep); 552 if (error) { 553 nfs_sndunlock(&rep->r_nmp->nm_iflag); 554 return (error); 555 } 556 goto tryagain; 557 } 558 while (rep->r_flags & R_MUSTRESEND) { 559 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 560 nfsstats.rpcretries++; 561 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 562 if (error) { 563 if (error == EINTR || error == ERESTART || 564 (error = nfs_reconnect(rep)) != 0) { 565 nfs_sndunlock(&rep->r_nmp->nm_iflag); 566 return (error); 567 } 568 goto tryagain; 569 } 570 } 571 nfs_sndunlock(&rep->r_nmp->nm_iflag); 572 if (sotype == SOCK_STREAM) { 573 aio.iov_base = (caddr_t) &len; 574 aio.iov_len = sizeof(u_int32_t); 575 auio.uio_iov = &aio; 576 auio.uio_iovcnt = 1; 577 auio.uio_segflg = UIO_SYSSPACE; 578 auio.uio_rw = UIO_READ; 579 auio.uio_offset = 0; 580 auio.uio_resid = sizeof(u_int32_t); 581 auio.uio_procp = p; 582 do { 583 rcvflg = MSG_WAITALL; 584 error = (*so->so_receive)(so, (struct mbuf **)0, &auio, 585 (struct mbuf **)0, (struct mbuf **)0, &rcvflg); 586 if (error == EWOULDBLOCK && rep) { 587 if (rep->r_flags & R_SOFTTERM) 588 return (EINTR); 589 } 590 } while (error == EWOULDBLOCK); 591 if (!error && auio.uio_resid > 0) { 592 /* 593 * Don't log a 0 byte receive; it means 594 * that the socket has been closed, and 595 * can happen during normal operation 596 * (forcible unmount or Solaris server). 597 */ 598 if (auio.uio_resid != sizeof (u_int32_t)) 599 log(LOG_INFO, 600 "short receive (%lu/%lu) from nfs server %s\n", 601 (u_long)sizeof(u_int32_t) - auio.uio_resid, 602 (u_long)sizeof(u_int32_t), 603 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 604 error = EPIPE; 605 } 606 if (error) 607 goto errout; 608 len = ntohl(len) & ~0x80000000; 609 /* 610 * This is SERIOUS! We are out of sync with the sender 611 * and forcing a disconnect/reconnect is all I can do. 612 */ 613 if (len > NFS_MAXPACKET) { 614 log(LOG_ERR, "%s (%d) from nfs server %s\n", 615 "impossible packet length", 616 len, 617 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 618 error = EFBIG; 619 goto errout; 620 } 621 auio.uio_resid = len; 622 do { 623 rcvflg = MSG_WAITALL; 624 error = (*so->so_receive)(so, (struct mbuf **)0, 625 &auio, mp, (struct mbuf **)0, &rcvflg); 626 } while (error == EWOULDBLOCK || error == EINTR || 627 error == ERESTART); 628 if (!error && auio.uio_resid > 0) { 629 if (len != auio.uio_resid) 630 log(LOG_INFO, 631 "short receive (%lu/%d) from nfs server %s\n", 632 (u_long)len - auio.uio_resid, len, 633 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 634 error = EPIPE; 635 } 636 } else { 637 /* 638 * NB: Since uio_resid is big, MSG_WAITALL is ignored 639 * and soreceive() will return when it has either a 640 * control msg or a data msg. 641 * We have no use for control msg., but must grab them 642 * and then throw them away so we know what is going 643 * on. 644 */ 645 auio.uio_resid = len = 100000000; /* Anything Big */ 646 auio.uio_procp = p; 647 do { 648 rcvflg = 0; 649 error = (*so->so_receive)(so, (struct mbuf **)0, 650 &auio, mp, &control, &rcvflg); 651 if (control) 652 m_freem(control); 653 if (error == EWOULDBLOCK && rep) { 654 if (rep->r_flags & R_SOFTTERM) 655 return (EINTR); 656 } 657 } while (error == EWOULDBLOCK || 658 (!error && *mp == NULL && control)); 659 if ((rcvflg & MSG_EOR) == 0) 660 printf("Egad!!\n"); 661 if (!error && *mp == NULL) 662 error = EPIPE; 663 len -= auio.uio_resid; 664 } 665 errout: 666 if (error && error != EINTR && error != ERESTART) { 667 m_freem(*mp); 668 *mp = (struct mbuf *)0; 669 if (error != EPIPE) 670 log(LOG_INFO, 671 "receive error %d from nfs server %s\n", 672 error, 673 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 674 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep); 675 if (!error) 676 error = nfs_reconnect(rep); 677 if (!error) 678 goto tryagain; 679 else 680 nfs_sndunlock(&rep->r_nmp->nm_iflag); 681 } 682 } else { 683 if ((so = rep->r_nmp->nm_so) == NULL) 684 return (EACCES); 685 if (so->so_state & SS_ISCONNECTED) 686 getnam = (struct mbuf **)0; 687 else 688 getnam = aname; 689 auio.uio_resid = len = 1000000; 690 auio.uio_procp = p; 691 do { 692 rcvflg = 0; 693 error = (*so->so_receive)(so, getnam, &auio, mp, 694 (struct mbuf **)0, &rcvflg); 695 if (error == EWOULDBLOCK && 696 (rep->r_flags & R_SOFTTERM)) 697 return (EINTR); 698 } while (error == EWOULDBLOCK); 699 len -= auio.uio_resid; 700 if (!error && *mp == NULL) 701 error = EPIPE; 702 } 703 if (error) { 704 m_freem(*mp); 705 *mp = (struct mbuf *)0; 706 } 707 return (error); 708 } 709 710 /* 711 * Implement receipt of reply on a socket. 712 * We must search through the list of received datagrams matching them 713 * with outstanding requests using the xid, until ours is found. 714 */ 715 /* ARGSUSED */ 716 int 717 nfs_reply(myrep) 718 struct nfsreq *myrep; 719 { 720 struct nfsreq *rep; 721 struct nfsmount *nmp = myrep->r_nmp; 722 int32_t t1; 723 struct mbuf *mrep, *nam, *md; 724 u_int32_t rxid, *tl; 725 caddr_t dpos, cp2; 726 int error; 727 728 /* 729 * Loop around until we get our own reply 730 */ 731 for (;;) { 732 /* 733 * Lock against other receivers so that I don't get stuck in 734 * sbwait() after someone else has received my reply for me. 735 * Also necessary for connection based protocols to avoid 736 * race conditions during a reconnect. 737 */ 738 error = nfs_rcvlock(myrep); 739 if (error == EALREADY) 740 return (0); 741 if (error) 742 return (error); 743 /* 744 * Get the next Rpc reply off the socket 745 */ 746 nmp->nm_waiters++; 747 error = nfs_receive(myrep, &nam, &mrep); 748 nfs_rcvunlock(&nmp->nm_iflag); 749 if (error) { 750 751 if (nmp->nm_iflag & NFSMNT_DISMNT) { 752 /* 753 * Oops, we're going away now.. 754 */ 755 nmp->nm_waiters--; 756 wakeup (&nmp->nm_waiters); 757 return error; 758 } 759 nmp->nm_waiters--; 760 /* 761 * Ignore routing errors on connectionless protocols? ? 762 */ 763 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 764 nmp->nm_so->so_error = 0; 765 #ifdef DEBUG 766 printf("nfs_reply: ignoring error %d\n", error); 767 #endif 768 if (myrep->r_flags & R_GETONEREP) 769 return (0); 770 continue; 771 } 772 return (error); 773 } 774 nmp->nm_waiters--; 775 if (nam) 776 m_freem(nam); 777 778 /* 779 * Get the xid and check that it is an rpc reply 780 */ 781 md = mrep; 782 dpos = mtod(md, caddr_t); 783 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 784 rxid = *tl++; 785 if (*tl != rpc_reply) { 786 #ifndef NFS_V2_ONLY 787 if (nmp->nm_flag & NFSMNT_NQNFS) { 788 if (nqnfs_callback(nmp, mrep, md, dpos)) 789 nfsstats.rpcinvalid++; 790 } else 791 #endif 792 { 793 nfsstats.rpcinvalid++; 794 m_freem(mrep); 795 } 796 nfsmout: 797 if (myrep->r_flags & R_GETONEREP) 798 return (0); 799 continue; 800 } 801 802 /* 803 * Loop through the request list to match up the reply 804 * Iff no match, just drop the datagram 805 */ 806 for (rep = nfs_reqq.tqh_first; rep != 0; 807 rep = rep->r_chain.tqe_next) { 808 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 809 /* Found it.. */ 810 rep->r_mrep = mrep; 811 rep->r_md = md; 812 rep->r_dpos = dpos; 813 if (nfsrtton) { 814 struct rttl *rt; 815 816 rt = &nfsrtt.rttl[nfsrtt.pos]; 817 rt->proc = rep->r_procnum; 818 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 819 rt->sent = nmp->nm_sent; 820 rt->cwnd = nmp->nm_cwnd; 821 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 822 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 823 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 824 rt->tstamp = time; 825 if (rep->r_flags & R_TIMING) 826 rt->rtt = rep->r_rtt; 827 else 828 rt->rtt = 1000000; 829 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 830 } 831 /* 832 * Update congestion window. 833 * Do the additive increase of 834 * one rpc/rtt. 835 */ 836 if (nmp->nm_cwnd <= nmp->nm_sent) { 837 nmp->nm_cwnd += 838 (NFS_CWNDSCALE * NFS_CWNDSCALE + 839 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 840 if (nmp->nm_cwnd > NFS_MAXCWND) 841 nmp->nm_cwnd = NFS_MAXCWND; 842 } 843 rep->r_flags &= ~R_SENT; 844 nmp->nm_sent -= NFS_CWNDSCALE; 845 /* 846 * Update rtt using a gain of 0.125 on the mean 847 * and a gain of 0.25 on the deviation. 848 */ 849 if (rep->r_flags & R_TIMING) { 850 /* 851 * Since the timer resolution of 852 * NFS_HZ is so course, it can often 853 * result in r_rtt == 0. Since 854 * r_rtt == N means that the actual 855 * rtt is between N+dt and N+2-dt ticks, 856 * add 1. 857 */ 858 t1 = rep->r_rtt + 1; 859 t1 -= (NFS_SRTT(rep) >> 3); 860 NFS_SRTT(rep) += t1; 861 if (t1 < 0) 862 t1 = -t1; 863 t1 -= (NFS_SDRTT(rep) >> 2); 864 NFS_SDRTT(rep) += t1; 865 } 866 nmp->nm_timeouts = 0; 867 break; 868 } 869 } 870 /* 871 * If not matched to a request, drop it. 872 * If it's mine, get out. 873 */ 874 if (rep == 0) { 875 nfsstats.rpcunexpected++; 876 m_freem(mrep); 877 } else if (rep == myrep) { 878 if (rep->r_mrep == NULL) 879 panic("nfsreply nil"); 880 return (0); 881 } 882 if (myrep->r_flags & R_GETONEREP) 883 return (0); 884 } 885 } 886 887 /* 888 * nfs_request - goes something like this 889 * - fill in request struct 890 * - links it into list 891 * - calls nfs_send() for first transmit 892 * - calls nfs_receive() to get reply 893 * - break down rpc header and return with nfs reply pointed to 894 * by mrep or error 895 * nb: always frees up mreq mbuf list 896 */ 897 int 898 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp) 899 struct vnode *vp; 900 struct mbuf *mrest; 901 int procnum; 902 struct proc *procp; 903 struct ucred *cred; 904 struct mbuf **mrp; 905 struct mbuf **mdp; 906 caddr_t *dposp; 907 { 908 struct mbuf *m, *mrep; 909 struct nfsreq *rep; 910 u_int32_t *tl; 911 int i; 912 struct nfsmount *nmp; 913 struct mbuf *md, *mheadend; 914 char nickv[RPCX_NICKVERF]; 915 time_t reqtime, waituntil; 916 caddr_t dpos, cp2; 917 int t1, s, error = 0, mrest_len, auth_len, auth_type; 918 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 919 int verf_len, verf_type; 920 u_int32_t xid; 921 char *auth_str, *verf_str; 922 NFSKERBKEY_T key; /* save session key */ 923 #ifndef NFS_V2_ONLY 924 int nqlflag, cachable; 925 u_quad_t frev; 926 struct nfsnode *np; 927 #endif 928 929 KASSERT(cred != NULL); 930 nmp = VFSTONFS(vp->v_mount); 931 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 932 rep->r_nmp = nmp; 933 rep->r_vp = vp; 934 rep->r_procp = procp; 935 rep->r_procnum = procnum; 936 i = 0; 937 m = mrest; 938 while (m) { 939 i += m->m_len; 940 m = m->m_next; 941 } 942 mrest_len = i; 943 944 /* 945 * Get the RPC header with authorization. 946 */ 947 kerbauth: 948 verf_str = auth_str = (char *)0; 949 if (nmp->nm_flag & NFSMNT_KERB) { 950 verf_str = nickv; 951 verf_len = sizeof (nickv); 952 auth_type = RPCAUTH_KERB4; 953 memset((caddr_t)key, 0, sizeof (key)); 954 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 955 &auth_len, verf_str, verf_len)) { 956 error = nfs_getauth(nmp, rep, cred, &auth_str, 957 &auth_len, verf_str, &verf_len, key); 958 if (error) { 959 free((caddr_t)rep, M_NFSREQ); 960 m_freem(mrest); 961 return (error); 962 } 963 } 964 } else { 965 auth_type = RPCAUTH_UNIX; 966 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ? 967 nmp->nm_numgrps : cred->cr_ngroups) << 2) + 968 5 * NFSX_UNSIGNED; 969 } 970 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 971 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 972 if (auth_str) 973 free(auth_str, M_TEMP); 974 975 /* 976 * For stream protocols, insert a Sun RPC Record Mark. 977 */ 978 if (nmp->nm_sotype == SOCK_STREAM) { 979 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 980 *mtod(m, u_int32_t *) = htonl(0x80000000 | 981 (m->m_pkthdr.len - NFSX_UNSIGNED)); 982 } 983 rep->r_mreq = m; 984 rep->r_xid = xid; 985 tryagain: 986 if (nmp->nm_flag & NFSMNT_SOFT) 987 rep->r_retry = nmp->nm_retry; 988 else 989 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 990 rep->r_rtt = rep->r_rexmit = 0; 991 if (proct[procnum] > 0) 992 rep->r_flags = R_TIMING; 993 else 994 rep->r_flags = 0; 995 rep->r_mrep = NULL; 996 997 /* 998 * Do the client side RPC. 999 */ 1000 nfsstats.rpcrequests++; 1001 /* 1002 * Chain request into list of outstanding requests. Be sure 1003 * to put it LAST so timer finds oldest requests first. 1004 */ 1005 s = splsoftnet(); 1006 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1007 1008 /* Get send time for nqnfs */ 1009 reqtime = time.tv_sec; 1010 1011 /* 1012 * If backing off another request or avoiding congestion, don't 1013 * send this one now but let timer do it. If not timing a request, 1014 * do it now. 1015 */ 1016 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1017 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1018 nmp->nm_sent < nmp->nm_cwnd)) { 1019 splx(s); 1020 if (nmp->nm_soflags & PR_CONNREQUIRED) 1021 error = nfs_sndlock(&nmp->nm_iflag, rep); 1022 if (!error) { 1023 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 1024 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep); 1025 if (nmp->nm_soflags & PR_CONNREQUIRED) 1026 nfs_sndunlock(&nmp->nm_iflag); 1027 } 1028 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1029 nmp->nm_sent += NFS_CWNDSCALE; 1030 rep->r_flags |= R_SENT; 1031 } 1032 } else { 1033 splx(s); 1034 rep->r_rtt = -1; 1035 } 1036 1037 /* 1038 * Wait for the reply from our send or the timer's. 1039 */ 1040 if (!error || error == EPIPE) 1041 error = nfs_reply(rep); 1042 1043 /* 1044 * RPC done, unlink the request. 1045 */ 1046 s = splsoftnet(); 1047 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1048 splx(s); 1049 1050 /* 1051 * Decrement the outstanding request count. 1052 */ 1053 if (rep->r_flags & R_SENT) { 1054 rep->r_flags &= ~R_SENT; /* paranoia */ 1055 nmp->nm_sent -= NFS_CWNDSCALE; 1056 } 1057 1058 /* 1059 * If there was a successful reply and a tprintf msg. 1060 * tprintf a response. 1061 */ 1062 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1063 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname, 1064 "is alive again"); 1065 mrep = rep->r_mrep; 1066 md = rep->r_md; 1067 dpos = rep->r_dpos; 1068 if (error) { 1069 m_freem(rep->r_mreq); 1070 free((caddr_t)rep, M_NFSREQ); 1071 return (error); 1072 } 1073 1074 /* 1075 * break down the rpc header and check if ok 1076 */ 1077 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1078 if (*tl++ == rpc_msgdenied) { 1079 if (*tl == rpc_mismatch) 1080 error = EOPNOTSUPP; 1081 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1082 if (!failed_auth) { 1083 failed_auth++; 1084 mheadend->m_next = (struct mbuf *)0; 1085 m_freem(mrep); 1086 m_freem(rep->r_mreq); 1087 goto kerbauth; 1088 } else 1089 error = EAUTH; 1090 } else 1091 error = EACCES; 1092 m_freem(mrep); 1093 m_freem(rep->r_mreq); 1094 free((caddr_t)rep, M_NFSREQ); 1095 return (error); 1096 } 1097 1098 /* 1099 * Grab any Kerberos verifier, otherwise just throw it away. 1100 */ 1101 verf_type = fxdr_unsigned(int, *tl++); 1102 i = fxdr_unsigned(int32_t, *tl); 1103 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1104 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1105 if (error) 1106 goto nfsmout; 1107 } else if (i > 0) 1108 nfsm_adv(nfsm_rndup(i)); 1109 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1110 /* 0 == ok */ 1111 if (*tl == 0) { 1112 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1113 if (*tl != 0) { 1114 error = fxdr_unsigned(int, *tl); 1115 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1116 error == NFSERR_TRYLATER) { 1117 m_freem(mrep); 1118 error = 0; 1119 waituntil = time.tv_sec + trylater_delay; 1120 while (time.tv_sec < waituntil) 1121 (void) tsleep((caddr_t)&lbolt, 1122 PSOCK, "nqnfstry", 0); 1123 trylater_delay *= nfs_backoff[trylater_cnt]; 1124 if (trylater_cnt < 7) 1125 trylater_cnt++; 1126 goto tryagain; 1127 } 1128 1129 /* 1130 * If the File Handle was stale, invalidate the 1131 * lookup cache, just in case. 1132 */ 1133 if (error == ESTALE) 1134 cache_purge(vp); 1135 if (nmp->nm_flag & NFSMNT_NFSV3) { 1136 *mrp = mrep; 1137 *mdp = md; 1138 *dposp = dpos; 1139 error |= NFSERR_RETERR; 1140 } else 1141 m_freem(mrep); 1142 m_freem(rep->r_mreq); 1143 free((caddr_t)rep, M_NFSREQ); 1144 return (error); 1145 } 1146 1147 #ifndef NFS_V2_ONLY 1148 /* 1149 * For nqnfs, get any lease in reply 1150 */ 1151 if (nmp->nm_flag & NFSMNT_NQNFS) { 1152 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1153 if (*tl) { 1154 np = VTONFS(vp); 1155 nqlflag = fxdr_unsigned(int, *tl); 1156 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1157 cachable = fxdr_unsigned(int, *tl++); 1158 reqtime += fxdr_unsigned(int, *tl++); 1159 if (reqtime > time.tv_sec) { 1160 frev = fxdr_hyper(tl); 1161 nqnfs_clientlease(nmp, np, nqlflag, 1162 cachable, reqtime, frev); 1163 } 1164 } 1165 } 1166 #endif 1167 *mrp = mrep; 1168 *mdp = md; 1169 *dposp = dpos; 1170 m_freem(rep->r_mreq); 1171 FREE((caddr_t)rep, M_NFSREQ); 1172 return (0); 1173 } 1174 m_freem(mrep); 1175 error = EPROTONOSUPPORT; 1176 nfsmout: 1177 m_freem(rep->r_mreq); 1178 free((caddr_t)rep, M_NFSREQ); 1179 return (error); 1180 } 1181 #endif /* NFS */ 1182 1183 /* 1184 * Generate the rpc reply header 1185 * siz arg. is used to decide if adding a cluster is worthwhile 1186 */ 1187 int 1188 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1189 int siz; 1190 struct nfsrv_descript *nd; 1191 struct nfssvc_sock *slp; 1192 int err; 1193 int cache; 1194 u_quad_t *frev; 1195 struct mbuf **mrq; 1196 struct mbuf **mbp; 1197 caddr_t *bposp; 1198 { 1199 u_int32_t *tl; 1200 struct mbuf *mreq; 1201 caddr_t bpos; 1202 struct mbuf *mb, *mb2; 1203 1204 MGETHDR(mreq, M_WAIT, MT_DATA); 1205 mb = mreq; 1206 /* 1207 * If this is a big reply, use a cluster else 1208 * try and leave leading space for the lower level headers. 1209 */ 1210 siz += RPC_REPLYSIZ; 1211 if (siz >= max_datalen) { 1212 MCLGET(mreq, M_WAIT); 1213 } else 1214 mreq->m_data += max_hdr; 1215 tl = mtod(mreq, u_int32_t *); 1216 mreq->m_len = 6 * NFSX_UNSIGNED; 1217 bpos = ((caddr_t)tl) + mreq->m_len; 1218 *tl++ = txdr_unsigned(nd->nd_retxid); 1219 *tl++ = rpc_reply; 1220 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1221 *tl++ = rpc_msgdenied; 1222 if (err & NFSERR_AUTHERR) { 1223 *tl++ = rpc_autherr; 1224 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1225 mreq->m_len -= NFSX_UNSIGNED; 1226 bpos -= NFSX_UNSIGNED; 1227 } else { 1228 *tl++ = rpc_mismatch; 1229 *tl++ = txdr_unsigned(RPC_VER2); 1230 *tl = txdr_unsigned(RPC_VER2); 1231 } 1232 } else { 1233 *tl++ = rpc_msgaccepted; 1234 1235 /* 1236 * For Kerberos authentication, we must send the nickname 1237 * verifier back, otherwise just RPCAUTH_NULL. 1238 */ 1239 if (nd->nd_flag & ND_KERBFULL) { 1240 struct nfsuid *nuidp; 1241 struct timeval ktvin, ktvout; 1242 1243 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1244 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1245 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1246 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1247 &nuidp->nu_haddr, nd->nd_nam2))) 1248 break; 1249 } 1250 if (nuidp) { 1251 ktvin.tv_sec = 1252 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1253 ktvin.tv_usec = 1254 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1255 1256 /* 1257 * Encrypt the timestamp in ecb mode using the 1258 * session key. 1259 */ 1260 #ifdef NFSKERB 1261 XXX 1262 #endif 1263 1264 *tl++ = rpc_auth_kerb; 1265 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1266 *tl = ktvout.tv_sec; 1267 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1268 *tl++ = ktvout.tv_usec; 1269 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1270 } else { 1271 *tl++ = 0; 1272 *tl++ = 0; 1273 } 1274 } else { 1275 *tl++ = 0; 1276 *tl++ = 0; 1277 } 1278 switch (err) { 1279 case EPROGUNAVAIL: 1280 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1281 break; 1282 case EPROGMISMATCH: 1283 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1284 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1285 if (nd->nd_flag & ND_NQNFS) { 1286 *tl++ = txdr_unsigned(3); 1287 *tl = txdr_unsigned(3); 1288 } else { 1289 *tl++ = txdr_unsigned(2); 1290 *tl = txdr_unsigned(3); 1291 } 1292 break; 1293 case EPROCUNAVAIL: 1294 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1295 break; 1296 case EBADRPC: 1297 *tl = txdr_unsigned(RPC_GARBAGE); 1298 break; 1299 default: 1300 *tl = 0; 1301 if (err != NFSERR_RETVOID) { 1302 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1303 if (err) 1304 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1305 else 1306 *tl = 0; 1307 } 1308 break; 1309 }; 1310 } 1311 1312 /* 1313 * For nqnfs, piggyback lease as requested. 1314 */ 1315 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1316 if (nd->nd_flag & ND_LEASE) { 1317 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1318 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1319 *tl++ = txdr_unsigned(cache); 1320 *tl++ = txdr_unsigned(nd->nd_duration); 1321 txdr_hyper(*frev, tl); 1322 } else { 1323 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1324 *tl = 0; 1325 } 1326 } 1327 if (mrq != NULL) 1328 *mrq = mreq; 1329 *mbp = mb; 1330 *bposp = bpos; 1331 if (err != 0 && err != NFSERR_RETVOID) 1332 nfsstats.srvrpc_errs++; 1333 return (0); 1334 } 1335 1336 /* 1337 * Nfs timer routine 1338 * Scan the nfsreq list and retranmit any requests that have timed out 1339 * To avoid retransmission attempts on STREAM sockets (in the future) make 1340 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1341 */ 1342 void 1343 nfs_timer(arg) 1344 void *arg; /* never used */ 1345 { 1346 struct nfsreq *rep; 1347 struct mbuf *m; 1348 struct socket *so; 1349 struct nfsmount *nmp; 1350 int timeo; 1351 int s, error; 1352 #ifdef NFSSERVER 1353 struct nfssvc_sock *slp; 1354 static long lasttime = 0; 1355 u_quad_t cur_usec; 1356 #endif 1357 1358 s = splsoftnet(); 1359 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) { 1360 nmp = rep->r_nmp; 1361 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1362 continue; 1363 if (nfs_sigintr(nmp, rep, rep->r_procp)) { 1364 rep->r_flags |= R_SOFTTERM; 1365 continue; 1366 } 1367 if (rep->r_rtt >= 0) { 1368 rep->r_rtt++; 1369 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1370 timeo = nmp->nm_timeo; 1371 else 1372 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1373 if (nmp->nm_timeouts > 0) 1374 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1375 if (rep->r_rtt <= timeo) 1376 continue; 1377 if (nmp->nm_timeouts < 8) 1378 nmp->nm_timeouts++; 1379 } 1380 /* 1381 * Check for server not responding 1382 */ 1383 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1384 rep->r_rexmit > nmp->nm_deadthresh) { 1385 nfs_msg(rep->r_procp, 1386 nmp->nm_mountp->mnt_stat.f_mntfromname, 1387 "not responding"); 1388 rep->r_flags |= R_TPRINTFMSG; 1389 } 1390 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1391 nfsstats.rpctimeouts++; 1392 rep->r_flags |= R_SOFTTERM; 1393 continue; 1394 } 1395 if (nmp->nm_sotype != SOCK_DGRAM) { 1396 if (++rep->r_rexmit > NFS_MAXREXMIT) 1397 rep->r_rexmit = NFS_MAXREXMIT; 1398 continue; 1399 } 1400 if ((so = nmp->nm_so) == NULL) 1401 continue; 1402 1403 /* 1404 * If there is enough space and the window allows.. 1405 * Resend it 1406 * Set r_rtt to -1 in case we fail to send it now. 1407 */ 1408 rep->r_rtt = -1; 1409 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1410 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1411 (rep->r_flags & R_SENT) || 1412 nmp->nm_sent < nmp->nm_cwnd) && 1413 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1414 if (so->so_state & SS_ISCONNECTED) 1415 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1416 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 1417 else 1418 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1419 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0); 1420 if (error) { 1421 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 1422 #ifdef DEBUG 1423 printf("nfs_timer: ignoring error %d\n", 1424 error); 1425 #endif 1426 so->so_error = 0; 1427 } 1428 } else { 1429 /* 1430 * Iff first send, start timing 1431 * else turn timing off, backoff timer 1432 * and divide congestion window by 2. 1433 */ 1434 if (rep->r_flags & R_SENT) { 1435 rep->r_flags &= ~R_TIMING; 1436 if (++rep->r_rexmit > NFS_MAXREXMIT) 1437 rep->r_rexmit = NFS_MAXREXMIT; 1438 nmp->nm_cwnd >>= 1; 1439 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1440 nmp->nm_cwnd = NFS_CWNDSCALE; 1441 nfsstats.rpcretries++; 1442 } else { 1443 rep->r_flags |= R_SENT; 1444 nmp->nm_sent += NFS_CWNDSCALE; 1445 } 1446 rep->r_rtt = 0; 1447 } 1448 } 1449 } 1450 1451 #ifdef NFSSERVER 1452 /* 1453 * Call the nqnfs server timer once a second to handle leases. 1454 */ 1455 if (lasttime != time.tv_sec) { 1456 lasttime = time.tv_sec; 1457 nqnfs_serverd(); 1458 } 1459 1460 /* 1461 * Scan the write gathering queues for writes that need to be 1462 * completed now. 1463 */ 1464 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec; 1465 for (slp = nfssvc_sockhead.tqh_first; slp != 0; 1466 slp = slp->ns_chain.tqe_next) { 1467 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1468 nfsrv_wakenfsd(slp); 1469 } 1470 #endif /* NFSSERVER */ 1471 splx(s); 1472 callout_reset(&nfs_timer_ch, nfs_ticks, nfs_timer, NULL); 1473 } 1474 1475 /* 1476 * Test for a termination condition pending on the process. 1477 * This is used for NFSMNT_INT mounts. 1478 */ 1479 int 1480 nfs_sigintr(nmp, rep, p) 1481 struct nfsmount *nmp; 1482 struct nfsreq *rep; 1483 struct proc *p; 1484 { 1485 sigset_t ss; 1486 1487 if (rep && (rep->r_flags & R_SOFTTERM)) 1488 return (EINTR); 1489 if (!(nmp->nm_flag & NFSMNT_INT)) 1490 return (0); 1491 if (p) { 1492 sigpending1(p, &ss); 1493 #if 0 1494 sigminusset(&p->p_sigctx.ps_sigignore, &ss); 1495 #endif 1496 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) || 1497 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) || 1498 sigismember(&ss, SIGQUIT)) 1499 return (EINTR); 1500 } 1501 return (0); 1502 } 1503 1504 /* 1505 * Lock a socket against others. 1506 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1507 * and also to avoid race conditions between the processes with nfs requests 1508 * in progress when a reconnect is necessary. 1509 */ 1510 int 1511 nfs_sndlock(flagp, rep) 1512 int *flagp; 1513 struct nfsreq *rep; 1514 { 1515 struct proc *p; 1516 int slpflag = 0, slptimeo = 0; 1517 1518 if (rep) { 1519 p = rep->r_procp; 1520 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1521 slpflag = PCATCH; 1522 } else 1523 p = (struct proc *)0; 1524 while (*flagp & NFSMNT_SNDLOCK) { 1525 if (nfs_sigintr(rep->r_nmp, rep, p)) 1526 return (EINTR); 1527 *flagp |= NFSMNT_WANTSND; 1528 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck", 1529 slptimeo); 1530 if (slpflag == PCATCH) { 1531 slpflag = 0; 1532 slptimeo = 2 * hz; 1533 } 1534 } 1535 *flagp |= NFSMNT_SNDLOCK; 1536 return (0); 1537 } 1538 1539 /* 1540 * Unlock the stream socket for others. 1541 */ 1542 void 1543 nfs_sndunlock(flagp) 1544 int *flagp; 1545 { 1546 1547 if ((*flagp & NFSMNT_SNDLOCK) == 0) 1548 panic("nfs sndunlock"); 1549 *flagp &= ~NFSMNT_SNDLOCK; 1550 if (*flagp & NFSMNT_WANTSND) { 1551 *flagp &= ~NFSMNT_WANTSND; 1552 wakeup((caddr_t)flagp); 1553 } 1554 } 1555 1556 int 1557 nfs_rcvlock(rep) 1558 struct nfsreq *rep; 1559 { 1560 struct nfsmount *nmp = rep->r_nmp; 1561 int *flagp = &nmp->nm_iflag; 1562 int slpflag, slptimeo = 0; 1563 1564 if (*flagp & NFSMNT_DISMNT) 1565 return EIO; 1566 1567 if (*flagp & NFSMNT_INT) 1568 slpflag = PCATCH; 1569 else 1570 slpflag = 0; 1571 while (*flagp & NFSMNT_RCVLOCK) { 1572 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) 1573 return (EINTR); 1574 *flagp |= NFSMNT_WANTRCV; 1575 nmp->nm_waiters++; 1576 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk", 1577 slptimeo); 1578 nmp->nm_waiters--; 1579 if (*flagp & NFSMNT_DISMNT) { 1580 wakeup(&nmp->nm_waiters); 1581 return EIO; 1582 } 1583 /* If our reply was received while we were sleeping, 1584 * then just return without taking the lock to avoid a 1585 * situation where a single iod could 'capture' the 1586 * receive lock. 1587 */ 1588 if (rep->r_mrep != NULL) 1589 return (EALREADY); 1590 if (slpflag == PCATCH) { 1591 slpflag = 0; 1592 slptimeo = 2 * hz; 1593 } 1594 } 1595 *flagp |= NFSMNT_RCVLOCK; 1596 return (0); 1597 } 1598 1599 /* 1600 * Unlock the stream socket for others. 1601 */ 1602 void 1603 nfs_rcvunlock(flagp) 1604 int *flagp; 1605 { 1606 1607 if ((*flagp & NFSMNT_RCVLOCK) == 0) 1608 panic("nfs rcvunlock"); 1609 *flagp &= ~NFSMNT_RCVLOCK; 1610 if (*flagp & NFSMNT_WANTRCV) { 1611 *flagp &= ~NFSMNT_WANTRCV; 1612 wakeup((caddr_t)flagp); 1613 } 1614 } 1615 1616 /* 1617 * Parse an RPC request 1618 * - verify it 1619 * - fill in the cred struct. 1620 */ 1621 int 1622 nfs_getreq(nd, nfsd, has_header) 1623 struct nfsrv_descript *nd; 1624 struct nfsd *nfsd; 1625 int has_header; 1626 { 1627 int len, i; 1628 u_int32_t *tl; 1629 int32_t t1; 1630 struct uio uio; 1631 struct iovec iov; 1632 caddr_t dpos, cp2, cp; 1633 u_int32_t nfsvers, auth_type; 1634 uid_t nickuid; 1635 int error = 0, nqnfs = 0, ticklen; 1636 struct mbuf *mrep, *md; 1637 struct nfsuid *nuidp; 1638 struct timeval tvin, tvout; 1639 1640 mrep = nd->nd_mrep; 1641 md = nd->nd_md; 1642 dpos = nd->nd_dpos; 1643 if (has_header) { 1644 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1645 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1646 if (*tl++ != rpc_call) { 1647 m_freem(mrep); 1648 return (EBADRPC); 1649 } 1650 } else 1651 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1652 nd->nd_repstat = 0; 1653 nd->nd_flag = 0; 1654 if (*tl++ != rpc_vers) { 1655 nd->nd_repstat = ERPCMISMATCH; 1656 nd->nd_procnum = NFSPROC_NOOP; 1657 return (0); 1658 } 1659 if (*tl != nfs_prog) { 1660 if (*tl == nqnfs_prog) 1661 nqnfs++; 1662 else { 1663 nd->nd_repstat = EPROGUNAVAIL; 1664 nd->nd_procnum = NFSPROC_NOOP; 1665 return (0); 1666 } 1667 } 1668 tl++; 1669 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1670 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1671 (nfsvers != NQNFS_VER3 && nqnfs)) { 1672 nd->nd_repstat = EPROGMISMATCH; 1673 nd->nd_procnum = NFSPROC_NOOP; 1674 return (0); 1675 } 1676 if (nqnfs) 1677 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1678 else if (nfsvers == NFS_VER3) 1679 nd->nd_flag = ND_NFSV3; 1680 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1681 if (nd->nd_procnum == NFSPROC_NULL) 1682 return (0); 1683 if (nd->nd_procnum >= NFS_NPROCS || 1684 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1685 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1686 nd->nd_repstat = EPROCUNAVAIL; 1687 nd->nd_procnum = NFSPROC_NOOP; 1688 return (0); 1689 } 1690 if ((nd->nd_flag & ND_NFSV3) == 0) 1691 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1692 auth_type = *tl++; 1693 len = fxdr_unsigned(int, *tl++); 1694 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1695 m_freem(mrep); 1696 return (EBADRPC); 1697 } 1698 1699 nd->nd_flag &= ~ND_KERBAUTH; 1700 /* 1701 * Handle auth_unix or auth_kerb. 1702 */ 1703 if (auth_type == rpc_auth_unix) { 1704 len = fxdr_unsigned(int, *++tl); 1705 if (len < 0 || len > NFS_MAXNAMLEN) { 1706 m_freem(mrep); 1707 return (EBADRPC); 1708 } 1709 nfsm_adv(nfsm_rndup(len)); 1710 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1711 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred)); 1712 nd->nd_cr.cr_ref = 1; 1713 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1714 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1715 len = fxdr_unsigned(int, *tl); 1716 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1717 m_freem(mrep); 1718 return (EBADRPC); 1719 } 1720 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1721 for (i = 0; i < len; i++) 1722 if (i < NGROUPS) 1723 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1724 else 1725 tl++; 1726 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len; 1727 if (nd->nd_cr.cr_ngroups > 1) 1728 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1729 len = fxdr_unsigned(int, *++tl); 1730 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1731 m_freem(mrep); 1732 return (EBADRPC); 1733 } 1734 if (len > 0) 1735 nfsm_adv(nfsm_rndup(len)); 1736 } else if (auth_type == rpc_auth_kerb) { 1737 switch (fxdr_unsigned(int, *tl++)) { 1738 case RPCAKN_FULLNAME: 1739 ticklen = fxdr_unsigned(int, *tl); 1740 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1741 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1742 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1743 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1744 m_freem(mrep); 1745 return (EBADRPC); 1746 } 1747 uio.uio_offset = 0; 1748 uio.uio_iov = &iov; 1749 uio.uio_iovcnt = 1; 1750 uio.uio_segflg = UIO_SYSSPACE; 1751 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1752 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1753 nfsm_mtouio(&uio, uio.uio_resid); 1754 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1755 if (*tl++ != rpc_auth_kerb || 1756 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1757 printf("Bad kerb verifier\n"); 1758 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1759 nd->nd_procnum = NFSPROC_NOOP; 1760 return (0); 1761 } 1762 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1763 tl = (u_int32_t *)cp; 1764 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1765 printf("Not fullname kerb verifier\n"); 1766 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1767 nd->nd_procnum = NFSPROC_NOOP; 1768 return (0); 1769 } 1770 cp += NFSX_UNSIGNED; 1771 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED); 1772 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1773 nd->nd_flag |= ND_KERBFULL; 1774 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1775 break; 1776 case RPCAKN_NICKNAME: 1777 if (len != 2 * NFSX_UNSIGNED) { 1778 printf("Kerb nickname short\n"); 1779 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1780 nd->nd_procnum = NFSPROC_NOOP; 1781 return (0); 1782 } 1783 nickuid = fxdr_unsigned(uid_t, *tl); 1784 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1785 if (*tl++ != rpc_auth_kerb || 1786 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1787 printf("Kerb nick verifier bad\n"); 1788 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1789 nd->nd_procnum = NFSPROC_NOOP; 1790 return (0); 1791 } 1792 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1793 tvin.tv_sec = *tl++; 1794 tvin.tv_usec = *tl; 1795 1796 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1797 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1798 if (nuidp->nu_cr.cr_uid == nickuid && 1799 (!nd->nd_nam2 || 1800 netaddr_match(NU_NETFAM(nuidp), 1801 &nuidp->nu_haddr, nd->nd_nam2))) 1802 break; 1803 } 1804 if (!nuidp) { 1805 nd->nd_repstat = 1806 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1807 nd->nd_procnum = NFSPROC_NOOP; 1808 return (0); 1809 } 1810 1811 /* 1812 * Now, decrypt the timestamp using the session key 1813 * and validate it. 1814 */ 1815 #ifdef NFSKERB 1816 XXX 1817 #endif 1818 1819 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1820 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1821 if (nuidp->nu_expire < time.tv_sec || 1822 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1823 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1824 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1825 nuidp->nu_expire = 0; 1826 nd->nd_repstat = 1827 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1828 nd->nd_procnum = NFSPROC_NOOP; 1829 return (0); 1830 } 1831 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1832 nd->nd_flag |= ND_KERBNICK; 1833 }; 1834 } else { 1835 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1836 nd->nd_procnum = NFSPROC_NOOP; 1837 return (0); 1838 } 1839 1840 /* 1841 * For nqnfs, get piggybacked lease request. 1842 */ 1843 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 1844 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1845 nd->nd_flag |= fxdr_unsigned(int, *tl); 1846 if (nd->nd_flag & ND_LEASE) { 1847 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1848 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl); 1849 } else 1850 nd->nd_duration = NQ_MINLEASE; 1851 } else 1852 nd->nd_duration = NQ_MINLEASE; 1853 nd->nd_md = md; 1854 nd->nd_dpos = dpos; 1855 return (0); 1856 nfsmout: 1857 return (error); 1858 } 1859 1860 int 1861 nfs_msg(p, server, msg) 1862 struct proc *p; 1863 char *server, *msg; 1864 { 1865 tpr_t tpr; 1866 1867 if (p) 1868 tpr = tprintf_open(p); 1869 else 1870 tpr = NULL; 1871 tprintf(tpr, "nfs server %s: %s\n", server, msg); 1872 tprintf_close(tpr); 1873 return (0); 1874 } 1875 1876 #ifdef NFSSERVER 1877 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, 1878 struct nfssvc_sock *, struct proc *, 1879 struct mbuf **)) = { 1880 nfsrv_null, 1881 nfsrv_getattr, 1882 nfsrv_setattr, 1883 nfsrv_lookup, 1884 nfsrv3_access, 1885 nfsrv_readlink, 1886 nfsrv_read, 1887 nfsrv_write, 1888 nfsrv_create, 1889 nfsrv_mkdir, 1890 nfsrv_symlink, 1891 nfsrv_mknod, 1892 nfsrv_remove, 1893 nfsrv_rmdir, 1894 nfsrv_rename, 1895 nfsrv_link, 1896 nfsrv_readdir, 1897 nfsrv_readdirplus, 1898 nfsrv_statfs, 1899 nfsrv_fsinfo, 1900 nfsrv_pathconf, 1901 nfsrv_commit, 1902 nqnfsrv_getlease, 1903 nqnfsrv_vacated, 1904 nfsrv_noop, 1905 nfsrv_noop 1906 }; 1907 1908 /* 1909 * Socket upcall routine for the nfsd sockets. 1910 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 1911 * Essentially do as much as possible non-blocking, else punt and it will 1912 * be called with M_WAIT from an nfsd. 1913 */ 1914 void 1915 nfsrv_rcv(so, arg, waitflag) 1916 struct socket *so; 1917 caddr_t arg; 1918 int waitflag; 1919 { 1920 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 1921 struct mbuf *m; 1922 struct mbuf *mp, *nam; 1923 struct uio auio; 1924 int flags, error; 1925 1926 if ((slp->ns_flag & SLP_VALID) == 0) 1927 return; 1928 #ifdef notdef 1929 /* 1930 * Define this to test for nfsds handling this under heavy load. 1931 */ 1932 if (waitflag == M_DONTWAIT) { 1933 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 1934 } 1935 #endif 1936 auio.uio_procp = NULL; 1937 if (so->so_type == SOCK_STREAM) { 1938 /* 1939 * If there are already records on the queue, defer soreceive() 1940 * to an nfsd so that there is feedback to the TCP layer that 1941 * the nfs servers are heavily loaded. 1942 */ 1943 if (slp->ns_rec && waitflag == M_DONTWAIT) { 1944 slp->ns_flag |= SLP_NEEDQ; 1945 goto dorecs; 1946 } 1947 1948 /* 1949 * Do soreceive(). 1950 */ 1951 auio.uio_resid = 1000000000; 1952 flags = MSG_DONTWAIT; 1953 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags); 1954 if (error || mp == (struct mbuf *)0) { 1955 if (error == EWOULDBLOCK) 1956 slp->ns_flag |= SLP_NEEDQ; 1957 else 1958 slp->ns_flag |= SLP_DISCONN; 1959 goto dorecs; 1960 } 1961 m = mp; 1962 if (slp->ns_rawend) { 1963 slp->ns_rawend->m_next = m; 1964 slp->ns_cc += 1000000000 - auio.uio_resid; 1965 } else { 1966 slp->ns_raw = m; 1967 slp->ns_cc = 1000000000 - auio.uio_resid; 1968 } 1969 while (m->m_next) 1970 m = m->m_next; 1971 slp->ns_rawend = m; 1972 1973 /* 1974 * Now try and parse record(s) out of the raw stream data. 1975 */ 1976 error = nfsrv_getstream(slp, waitflag); 1977 if (error) { 1978 if (error == EPERM) 1979 slp->ns_flag |= SLP_DISCONN; 1980 else 1981 slp->ns_flag |= SLP_NEEDQ; 1982 } 1983 } else { 1984 do { 1985 auio.uio_resid = 1000000000; 1986 flags = MSG_DONTWAIT; 1987 error = (*so->so_receive)(so, &nam, &auio, &mp, 1988 (struct mbuf **)0, &flags); 1989 if (mp) { 1990 if (nam) { 1991 m = nam; 1992 m->m_next = mp; 1993 } else 1994 m = mp; 1995 if (slp->ns_recend) 1996 slp->ns_recend->m_nextpkt = m; 1997 else 1998 slp->ns_rec = m; 1999 slp->ns_recend = m; 2000 m->m_nextpkt = (struct mbuf *)0; 2001 } 2002 if (error) { 2003 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2004 && error != EWOULDBLOCK) { 2005 slp->ns_flag |= SLP_DISCONN; 2006 goto dorecs; 2007 } 2008 } 2009 } while (mp); 2010 } 2011 2012 /* 2013 * Now try and process the request records, non-blocking. 2014 */ 2015 dorecs: 2016 if (waitflag == M_DONTWAIT && 2017 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 2018 nfsrv_wakenfsd(slp); 2019 } 2020 2021 /* 2022 * Try and extract an RPC request from the mbuf data list received on a 2023 * stream socket. The "waitflag" argument indicates whether or not it 2024 * can sleep. 2025 */ 2026 int 2027 nfsrv_getstream(slp, waitflag) 2028 struct nfssvc_sock *slp; 2029 int waitflag; 2030 { 2031 struct mbuf *m, **mpp; 2032 char *cp1, *cp2; 2033 int len; 2034 struct mbuf *om, *m2, *recm = NULL; 2035 u_int32_t recmark; 2036 2037 if (slp->ns_flag & SLP_GETSTREAM) 2038 panic("nfs getstream"); 2039 slp->ns_flag |= SLP_GETSTREAM; 2040 for (;;) { 2041 if (slp->ns_reclen == 0) { 2042 if (slp->ns_cc < NFSX_UNSIGNED) { 2043 slp->ns_flag &= ~SLP_GETSTREAM; 2044 return (0); 2045 } 2046 m = slp->ns_raw; 2047 if (m->m_len >= NFSX_UNSIGNED) { 2048 memcpy((caddr_t)&recmark, mtod(m, caddr_t), NFSX_UNSIGNED); 2049 m->m_data += NFSX_UNSIGNED; 2050 m->m_len -= NFSX_UNSIGNED; 2051 } else { 2052 cp1 = (caddr_t)&recmark; 2053 cp2 = mtod(m, caddr_t); 2054 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2055 while (m->m_len == 0) { 2056 m = m->m_next; 2057 cp2 = mtod(m, caddr_t); 2058 } 2059 *cp1++ = *cp2++; 2060 m->m_data++; 2061 m->m_len--; 2062 } 2063 slp->ns_raw = m; 2064 } 2065 slp->ns_cc -= NFSX_UNSIGNED; 2066 recmark = ntohl(recmark); 2067 slp->ns_reclen = recmark & ~0x80000000; 2068 if (recmark & 0x80000000) 2069 slp->ns_flag |= SLP_LASTFRAG; 2070 else 2071 slp->ns_flag &= ~SLP_LASTFRAG; 2072 if (slp->ns_reclen > NFS_MAXPACKET) { 2073 slp->ns_flag &= ~SLP_GETSTREAM; 2074 return (EPERM); 2075 } 2076 } 2077 2078 /* 2079 * Now get the record part. 2080 */ 2081 if (slp->ns_cc == slp->ns_reclen) { 2082 recm = slp->ns_raw; 2083 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2084 slp->ns_cc = slp->ns_reclen = 0; 2085 } else if (slp->ns_cc > slp->ns_reclen) { 2086 len = 0; 2087 m = slp->ns_raw; 2088 om = (struct mbuf *)0; 2089 while (len < slp->ns_reclen) { 2090 if ((len + m->m_len) > slp->ns_reclen) { 2091 size_t left = slp->ns_reclen - len; 2092 2093 MGETHDR(m2, waitflag, m->m_type); 2094 if (m2 == NULL) { 2095 slp->ns_flag &= ~SLP_GETSTREAM; 2096 return (EWOULDBLOCK); 2097 } 2098 if (left > MHLEN) { 2099 MCLGET(m2, waitflag); 2100 if (!(m2->m_flags & M_EXT)) { 2101 m_freem(m2); 2102 slp->ns_flag &= ~SLP_GETSTREAM; 2103 return (EWOULDBLOCK); 2104 } 2105 } 2106 memcpy(mtod(m2, caddr_t), mtod(m, caddr_t), 2107 left); 2108 m2->m_len = left; 2109 m->m_data += left; 2110 m->m_len -= left; 2111 if (om) { 2112 om->m_next = m2; 2113 recm = slp->ns_raw; 2114 } else 2115 recm = m2; 2116 len = slp->ns_reclen; 2117 } else if ((len + m->m_len) == slp->ns_reclen) { 2118 om = m; 2119 len += m->m_len; 2120 m = m->m_next; 2121 recm = slp->ns_raw; 2122 om->m_next = (struct mbuf *)0; 2123 } else { 2124 om = m; 2125 len += m->m_len; 2126 m = m->m_next; 2127 } 2128 } 2129 slp->ns_raw = m; 2130 slp->ns_cc -= len; 2131 slp->ns_reclen = 0; 2132 } else { 2133 slp->ns_flag &= ~SLP_GETSTREAM; 2134 return (0); 2135 } 2136 2137 /* 2138 * Accumulate the fragments into a record. 2139 */ 2140 mpp = &slp->ns_frag; 2141 while (*mpp) 2142 mpp = &((*mpp)->m_next); 2143 *mpp = recm; 2144 if (slp->ns_flag & SLP_LASTFRAG) { 2145 if (slp->ns_recend) 2146 slp->ns_recend->m_nextpkt = slp->ns_frag; 2147 else 2148 slp->ns_rec = slp->ns_frag; 2149 slp->ns_recend = slp->ns_frag; 2150 slp->ns_frag = (struct mbuf *)0; 2151 } 2152 } 2153 } 2154 2155 /* 2156 * Parse an RPC header. 2157 */ 2158 int 2159 nfsrv_dorec(slp, nfsd, ndp) 2160 struct nfssvc_sock *slp; 2161 struct nfsd *nfsd; 2162 struct nfsrv_descript **ndp; 2163 { 2164 struct mbuf *m, *nam; 2165 struct nfsrv_descript *nd; 2166 int error; 2167 2168 *ndp = NULL; 2169 if ((slp->ns_flag & SLP_VALID) == 0 || 2170 (m = slp->ns_rec) == (struct mbuf *)0) 2171 return (ENOBUFS); 2172 slp->ns_rec = m->m_nextpkt; 2173 if (slp->ns_rec) 2174 m->m_nextpkt = (struct mbuf *)0; 2175 else 2176 slp->ns_recend = (struct mbuf *)0; 2177 if (m->m_type == MT_SONAME) { 2178 nam = m; 2179 m = m->m_next; 2180 nam->m_next = NULL; 2181 } else 2182 nam = NULL; 2183 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2184 M_NFSRVDESC, M_WAITOK); 2185 nd->nd_md = nd->nd_mrep = m; 2186 nd->nd_nam2 = nam; 2187 nd->nd_dpos = mtod(m, caddr_t); 2188 error = nfs_getreq(nd, nfsd, TRUE); 2189 if (error) { 2190 m_freem(nam); 2191 free((caddr_t)nd, M_NFSRVDESC); 2192 return (error); 2193 } 2194 *ndp = nd; 2195 nfsd->nfsd_nd = nd; 2196 return (0); 2197 } 2198 2199 2200 /* 2201 * Search for a sleeping nfsd and wake it up. 2202 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2203 * running nfsds will go look for the work in the nfssvc_sock list. 2204 */ 2205 void 2206 nfsrv_wakenfsd(slp) 2207 struct nfssvc_sock *slp; 2208 { 2209 struct nfsd *nd; 2210 2211 if ((slp->ns_flag & SLP_VALID) == 0) 2212 return; 2213 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) { 2214 if (nd->nfsd_flag & NFSD_WAITING) { 2215 nd->nfsd_flag &= ~NFSD_WAITING; 2216 if (nd->nfsd_slp) 2217 panic("nfsd wakeup"); 2218 slp->ns_sref++; 2219 nd->nfsd_slp = slp; 2220 wakeup((caddr_t)nd); 2221 return; 2222 } 2223 } 2224 slp->ns_flag |= SLP_DOREC; 2225 nfsd_head_flag |= NFSD_CHECKSLP; 2226 } 2227 #endif /* NFSSERVER */ 2228