1 /* $NetBSD: nfs_bio.c,v 1.119 2004/07/18 07:43:00 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.119 2004/07/18 07:43:00 yamt Exp $"); 39 40 #include "opt_nfs.h" 41 #include "opt_ddb.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/vnode.h> 50 #include <sys/mount.h> 51 #include <sys/kernel.h> 52 #include <sys/namei.h> 53 #include <sys/dirent.h> 54 #include <sys/malloc.h> 55 56 #include <uvm/uvm_extern.h> 57 #include <uvm/uvm.h> 58 59 #include <nfs/rpcv2.h> 60 #include <nfs/nfsproto.h> 61 #include <nfs/nfs.h> 62 #include <nfs/nfsmount.h> 63 #include <nfs/nqnfs.h> 64 #include <nfs/nfsnode.h> 65 #include <nfs/nfs_var.h> 66 67 extern int nfs_numasync; 68 extern int nfs_commitsize; 69 extern struct nfsstats nfsstats; 70 71 static int nfs_doio_read __P((struct buf *, struct uio *)); 72 static int nfs_doio_write __P((struct buf *, struct uio *)); 73 static int nfs_doio_phys __P((struct buf *, struct uio *)); 74 75 /* 76 * Vnode op for read using bio 77 * Any similarity to readip() is purely coincidental 78 */ 79 int 80 nfs_bioread(vp, uio, ioflag, cred, cflag) 81 struct vnode *vp; 82 struct uio *uio; 83 int ioflag, cflag; 84 struct ucred *cred; 85 { 86 struct nfsnode *np = VTONFS(vp); 87 struct buf *bp = NULL, *rabp; 88 struct vattr vattr; 89 struct proc *p; 90 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 91 struct nfsdircache *ndp = NULL, *nndp = NULL; 92 caddr_t baddr, ep, edp; 93 int got_buf = 0, error = 0, n = 0, on = 0, en, enn; 94 int enough = 0; 95 struct dirent *dp, *pdp; 96 off_t curoff = 0; 97 98 #ifdef DIAGNOSTIC 99 if (uio->uio_rw != UIO_READ) 100 panic("nfs_read mode"); 101 #endif 102 if (uio->uio_resid == 0) 103 return (0); 104 if (vp->v_type != VDIR && uio->uio_offset < 0) 105 return (EINVAL); 106 p = uio->uio_procp; 107 #ifndef NFS_V2_ONLY 108 if ((nmp->nm_flag & NFSMNT_NFSV3) && 109 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 110 (void)nfs_fsinfo(nmp, vp, cred, p); 111 #endif 112 if (vp->v_type != VDIR && 113 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 114 return (EFBIG); 115 116 /* 117 * For nfs, cache consistency can only be maintained approximately. 118 * Although RFC1094 does not specify the criteria, the following is 119 * believed to be compatible with the reference port. 120 * For nqnfs, full cache consistency is maintained within the loop. 121 * For nfs: 122 * If the file's modify time on the server has changed since the 123 * last read rpc or you have written to the file, 124 * you may have lost data cache consistency with the 125 * server, so flush all of the file's data out of the cache. 126 * Then force a getattr rpc to ensure that you have up to date 127 * attributes. 128 * NB: This implies that cache data can be read when up to 129 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 130 * attributes this could be forced by setting n_attrstamp to 0 before 131 * the VOP_GETATTR() call. 132 */ 133 134 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) { 135 if (np->n_flag & NMODIFIED) { 136 if (vp->v_type != VREG) { 137 if (vp->v_type != VDIR) 138 panic("nfs: bioread, not dir"); 139 nfs_invaldircache(vp, 0); 140 np->n_direofoffset = 0; 141 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 142 if (error) 143 return (error); 144 } 145 NFS_INVALIDATE_ATTRCACHE(np); 146 error = VOP_GETATTR(vp, &vattr, cred, p); 147 if (error) 148 return (error); 149 np->n_mtime = vattr.va_mtime; 150 } else { 151 error = VOP_GETATTR(vp, &vattr, cred, p); 152 if (error) 153 return (error); 154 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) { 155 if (vp->v_type == VDIR) { 156 nfs_invaldircache(vp, 0); 157 np->n_direofoffset = 0; 158 } 159 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 160 if (error) 161 return (error); 162 np->n_mtime = vattr.va_mtime; 163 } 164 } 165 } 166 167 do { 168 #ifndef NFS_V2_ONLY 169 /* 170 * Get a valid lease. If cached data is stale, flush it. 171 */ 172 if (nmp->nm_flag & NFSMNT_NQNFS) { 173 if (NQNFS_CKINVALID(vp, np, ND_READ)) { 174 do { 175 error = nqnfs_getlease(vp, ND_READ, cred, p); 176 } while (error == NQNFS_EXPIRED); 177 if (error) 178 return (error); 179 if (np->n_lrev != np->n_brev || 180 (np->n_flag & NQNFSNONCACHE) || 181 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) { 182 if (vp->v_type == VDIR) { 183 nfs_invaldircache(vp, 0); 184 np->n_direofoffset = 0; 185 } 186 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 187 if (error) 188 return (error); 189 np->n_brev = np->n_lrev; 190 } 191 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) { 192 nfs_invaldircache(vp, 0); 193 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 194 np->n_direofoffset = 0; 195 if (error) 196 return (error); 197 } 198 } 199 #endif 200 /* 201 * Don't cache symlinks. 202 */ 203 if (np->n_flag & NQNFSNONCACHE 204 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) { 205 switch (vp->v_type) { 206 case VREG: 207 return (nfs_readrpc(vp, uio)); 208 case VLNK: 209 return (nfs_readlinkrpc(vp, uio, cred)); 210 case VDIR: 211 break; 212 default: 213 printf(" NQNFSNONCACHE: type %x unexpected\n", 214 vp->v_type); 215 }; 216 } 217 baddr = (caddr_t)0; 218 switch (vp->v_type) { 219 case VREG: 220 nfsstats.biocache_reads++; 221 222 error = 0; 223 if (uio->uio_offset >= np->n_size) { 224 break; 225 } 226 while (uio->uio_resid > 0) { 227 void *win; 228 vsize_t bytelen = MIN(np->n_size - uio->uio_offset, 229 uio->uio_resid); 230 231 if (bytelen == 0) 232 break; 233 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, 234 &bytelen, UBC_READ); 235 error = uiomove(win, bytelen, uio); 236 ubc_release(win, 0); 237 if (error) { 238 break; 239 } 240 } 241 n = 0; 242 break; 243 244 case VLNK: 245 nfsstats.biocache_readlinks++; 246 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p); 247 if (!bp) 248 return (EINTR); 249 if ((bp->b_flags & B_DONE) == 0) { 250 bp->b_flags |= B_READ; 251 error = nfs_doio(bp, p); 252 if (error) { 253 brelse(bp); 254 return (error); 255 } 256 } 257 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 258 got_buf = 1; 259 on = 0; 260 break; 261 case VDIR: 262 diragain: 263 nfsstats.biocache_readdirs++; 264 ndp = nfs_searchdircache(vp, uio->uio_offset, 265 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0); 266 if (!ndp) { 267 /* 268 * We've been handed a cookie that is not 269 * in the cache. If we're not translating 270 * 32 <-> 64, it may be a value that was 271 * flushed out of the cache because it grew 272 * too big. Let the server judge if it's 273 * valid or not. In the translation case, 274 * we have no way of validating this value, 275 * so punt. 276 */ 277 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) 278 return (EINVAL); 279 ndp = nfs_enterdircache(vp, uio->uio_offset, 280 uio->uio_offset, 0, 0); 281 } 282 283 if (uio->uio_offset != 0 && 284 ndp->dc_cookie == np->n_direofoffset) { 285 nfsstats.direofcache_hits++; 286 return (0); 287 } 288 289 bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p); 290 if (!bp) 291 return (EINTR); 292 if ((bp->b_flags & B_DONE) == 0) { 293 bp->b_flags |= B_READ; 294 bp->b_dcookie = ndp->dc_blkcookie; 295 error = nfs_doio(bp, p); 296 if (error) { 297 /* 298 * Yuck! The directory has been modified on the 299 * server. Punt and let the userland code 300 * deal with it. 301 */ 302 brelse(bp); 303 if (error == NFSERR_BAD_COOKIE) { 304 nfs_invaldircache(vp, 0); 305 nfs_vinvalbuf(vp, 0, cred, p, 1); 306 error = EINVAL; 307 } 308 return (error); 309 } 310 } 311 312 /* 313 * Just return if we hit EOF right away with this 314 * block. Always check here, because direofoffset 315 * may have been set by an nfsiod since the last 316 * check. 317 */ 318 if (np->n_direofoffset != 0 && 319 ndp->dc_blkcookie == np->n_direofoffset) { 320 brelse(bp); 321 return (0); 322 } 323 324 /* 325 * Find the entry we were looking for in the block. 326 */ 327 328 en = ndp->dc_entry; 329 330 pdp = dp = (struct dirent *)bp->b_data; 331 edp = bp->b_data + bp->b_bcount - bp->b_resid; 332 enn = 0; 333 while (enn < en && (caddr_t)dp < edp) { 334 pdp = dp; 335 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); 336 enn++; 337 } 338 339 /* 340 * If the entry number was bigger than the number of 341 * entries in the block, or the cookie of the previous 342 * entry doesn't match, the directory cache is 343 * stale. Flush it and try again (i.e. go to 344 * the server). 345 */ 346 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp || 347 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) { 348 #ifdef DEBUG 349 printf("invalid cache: %p %p %p off %lx %lx\n", 350 pdp, dp, edp, 351 (unsigned long)uio->uio_offset, 352 (unsigned long)NFS_GETCOOKIE(pdp)); 353 #endif 354 brelse(bp); 355 nfs_invaldircache(vp, 0); 356 nfs_vinvalbuf(vp, 0, cred, p, 0); 357 goto diragain; 358 } 359 360 on = (caddr_t)dp - bp->b_data; 361 362 /* 363 * Cache all entries that may be exported to the 364 * user, as they may be thrown back at us. The 365 * NFSBIO_CACHECOOKIES flag indicates that all 366 * entries are being 'exported', so cache them all. 367 */ 368 369 if (en == 0 && pdp == dp) { 370 dp = (struct dirent *) 371 ((caddr_t)dp + dp->d_reclen); 372 enn++; 373 } 374 375 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) { 376 n = uio->uio_resid; 377 enough = 1; 378 } else 379 n = bp->b_bcount - bp->b_resid - on; 380 381 ep = bp->b_data + on + n; 382 383 /* 384 * Find last complete entry to copy, caching entries 385 * (if requested) as we go. 386 */ 387 388 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) { 389 if (cflag & NFSBIO_CACHECOOKIES) { 390 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp), 391 ndp->dc_blkcookie, enn, bp->b_lblkno); 392 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 393 NFS_STASHCOOKIE32(pdp, 394 nndp->dc_cookie32); 395 } 396 } 397 pdp = dp; 398 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); 399 enn++; 400 } 401 402 /* 403 * If the last requested entry was not the last in the 404 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ), 405 * cache the cookie of the last requested one, and 406 * set of the offset to it. 407 */ 408 409 if ((on + n) < bp->b_bcount - bp->b_resid) { 410 curoff = NFS_GETCOOKIE(pdp); 411 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie, 412 enn, bp->b_lblkno); 413 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 414 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 415 curoff = nndp->dc_cookie32; 416 } 417 } else 418 curoff = bp->b_dcookie; 419 420 /* 421 * Always cache the entry for the next block, 422 * so that readaheads can use it. 423 */ 424 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0); 425 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 426 if (curoff == bp->b_dcookie) { 427 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 428 curoff = nndp->dc_cookie32; 429 } 430 } 431 432 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on); 433 434 /* 435 * If not eof and read aheads are enabled, start one. 436 * (You need the current block first, so that you have the 437 * directory offset cookie of the next block.) 438 */ 439 if (nfs_numasync > 0 && nmp->nm_readahead > 0 && 440 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) { 441 rabp = nfs_getcacheblk(vp, nndp->dc_blkno, 442 NFS_DIRBLKSIZ, p); 443 if (rabp) { 444 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) { 445 rabp->b_dcookie = nndp->dc_cookie; 446 rabp->b_flags |= (B_READ | B_ASYNC); 447 if (nfs_asyncio(rabp)) { 448 rabp->b_flags |= B_INVAL; 449 brelse(rabp); 450 } 451 } else 452 brelse(rabp); 453 } 454 } 455 got_buf = 1; 456 break; 457 default: 458 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 459 break; 460 } 461 462 if (n > 0) { 463 if (!baddr) 464 baddr = bp->b_data; 465 error = uiomove(baddr + on, (int)n, uio); 466 } 467 switch (vp->v_type) { 468 case VREG: 469 break; 470 case VLNK: 471 n = 0; 472 break; 473 case VDIR: 474 if (np->n_flag & NQNFSNONCACHE) 475 bp->b_flags |= B_INVAL; 476 uio->uio_offset = curoff; 477 if (enough) 478 n = 0; 479 break; 480 default: 481 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 482 } 483 if (got_buf) 484 brelse(bp); 485 } while (error == 0 && uio->uio_resid > 0 && n > 0); 486 return (error); 487 } 488 489 /* 490 * Vnode op for write using bio 491 */ 492 int 493 nfs_write(v) 494 void *v; 495 { 496 struct vop_write_args /* { 497 struct vnode *a_vp; 498 struct uio *a_uio; 499 int a_ioflag; 500 struct ucred *a_cred; 501 } */ *ap = v; 502 struct uio *uio = ap->a_uio; 503 struct proc *p = uio->uio_procp; 504 struct vnode *vp = ap->a_vp; 505 struct nfsnode *np = VTONFS(vp); 506 struct ucred *cred = ap->a_cred; 507 int ioflag = ap->a_ioflag; 508 struct vattr vattr; 509 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 510 void *win; 511 voff_t oldoff, origoff; 512 vsize_t bytelen; 513 int error = 0; 514 int extended = 0, wrotedta = 0; 515 516 #ifdef DIAGNOSTIC 517 if (uio->uio_rw != UIO_WRITE) 518 panic("nfs_write mode"); 519 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc) 520 panic("nfs_write proc"); 521 #endif 522 if (vp->v_type != VREG) 523 return (EIO); 524 if (np->n_flag & NWRITEERR) { 525 np->n_flag &= ~NWRITEERR; 526 return (np->n_error); 527 } 528 #ifndef NFS_V2_ONLY 529 if ((nmp->nm_flag & NFSMNT_NFSV3) && 530 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 531 (void)nfs_fsinfo(nmp, vp, cred, p); 532 #endif 533 if (ioflag & (IO_APPEND | IO_SYNC)) { 534 if (np->n_flag & NMODIFIED) { 535 NFS_INVALIDATE_ATTRCACHE(np); 536 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 537 if (error) 538 return (error); 539 } 540 if (ioflag & IO_APPEND) { 541 NFS_INVALIDATE_ATTRCACHE(np); 542 error = VOP_GETATTR(vp, &vattr, cred, p); 543 if (error) 544 return (error); 545 uio->uio_offset = np->n_size; 546 } 547 } 548 if (uio->uio_offset < 0) 549 return (EINVAL); 550 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 551 return (EFBIG); 552 if (uio->uio_resid == 0) 553 return (0); 554 /* 555 * Maybe this should be above the vnode op call, but so long as 556 * file servers have no limits, i don't think it matters 557 */ 558 if (p && uio->uio_offset + uio->uio_resid > 559 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 560 psignal(p, SIGXFSZ); 561 return (EFBIG); 562 } 563 564 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) { 565 int iomode = NFSV3WRITE_FILESYNC; 566 boolean_t stalewriteverf = FALSE; 567 568 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 569 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf); 570 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 571 if (stalewriteverf) 572 nfs_clearcommit(vp->v_mount); 573 return (error); 574 } 575 576 origoff = uio->uio_offset; 577 do { 578 boolean_t extending; /* if we are extending whole pages */ 579 u_quad_t oldsize; 580 oldoff = uio->uio_offset; 581 bytelen = uio->uio_resid; 582 583 #ifndef NFS_V2_ONLY 584 /* 585 * Check for a valid write lease. 586 */ 587 if ((nmp->nm_flag & NFSMNT_NQNFS) && 588 NQNFS_CKINVALID(vp, np, ND_WRITE)) { 589 do { 590 error = nqnfs_getlease(vp, ND_WRITE, cred, p); 591 } while (error == NQNFS_EXPIRED); 592 if (error) 593 return (error); 594 if (np->n_lrev != np->n_brev || 595 (np->n_flag & NQNFSNONCACHE)) { 596 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 597 if (error) 598 return (error); 599 np->n_brev = np->n_lrev; 600 } 601 } 602 #endif 603 nfsstats.biocache_writes++; 604 605 oldsize = np->n_size; 606 np->n_flag |= NMODIFIED; 607 if (np->n_size < uio->uio_offset + bytelen) { 608 np->n_size = uio->uio_offset + bytelen; 609 } 610 extending = ((uio->uio_offset & PAGE_MASK) == 0 && 611 (bytelen & PAGE_MASK) == 0 && 612 uio->uio_offset >= vp->v_size); 613 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen, 614 UBC_WRITE | (extending ? UBC_FAULTBUSY : 0)); 615 error = uiomove(win, bytelen, uio); 616 ubc_release(win, 0); 617 if (error) { 618 if (extending) { 619 /* 620 * backout size and free pages past eof. 621 */ 622 np->n_size = oldsize; 623 simple_lock(&vp->v_interlock); 624 (void)VOP_PUTPAGES(vp, round_page(vp->v_size), 625 0, PGO_SYNCIO | PGO_FREE); 626 } 627 break; 628 } 629 wrotedta = 1; 630 631 /* 632 * update UVM's notion of the size now that we've 633 * copied the data into the vnode's pages. 634 */ 635 636 if (vp->v_size < uio->uio_offset) { 637 uvm_vnp_setsize(vp, uio->uio_offset); 638 extended = 1; 639 } 640 641 if ((oldoff & ~(nmp->nm_wsize - 1)) != 642 (uio->uio_offset & ~(nmp->nm_wsize - 1))) { 643 simple_lock(&vp->v_interlock); 644 error = VOP_PUTPAGES(vp, 645 trunc_page(oldoff & ~(nmp->nm_wsize - 1)), 646 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 647 ~(nmp->nm_wsize - 1)), PGO_CLEANIT); 648 } 649 } while (uio->uio_resid > 0); 650 if (wrotedta) 651 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0)); 652 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) { 653 simple_lock(&vp->v_interlock); 654 error = VOP_PUTPAGES(vp, 655 trunc_page(origoff & ~(nmp->nm_wsize - 1)), 656 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 657 ~(nmp->nm_wsize - 1)), 658 PGO_CLEANIT | PGO_SYNCIO); 659 } 660 return error; 661 } 662 663 /* 664 * Get an nfs cache block. 665 * Allocate a new one if the block isn't currently in the cache 666 * and return the block marked busy. If the calling process is 667 * interrupted by a signal for an interruptible mount point, return 668 * NULL. 669 */ 670 struct buf * 671 nfs_getcacheblk(vp, bn, size, p) 672 struct vnode *vp; 673 daddr_t bn; 674 int size; 675 struct proc *p; 676 { 677 struct buf *bp; 678 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 679 680 if (nmp->nm_flag & NFSMNT_INT) { 681 bp = getblk(vp, bn, size, PCATCH, 0); 682 while (bp == NULL) { 683 if (nfs_sigintr(nmp, NULL, p)) 684 return (NULL); 685 bp = getblk(vp, bn, size, 0, 2 * hz); 686 } 687 } else 688 bp = getblk(vp, bn, size, 0, 0); 689 return (bp); 690 } 691 692 /* 693 * Flush and invalidate all dirty buffers. If another process is already 694 * doing the flush, just wait for completion. 695 */ 696 int 697 nfs_vinvalbuf(vp, flags, cred, p, intrflg) 698 struct vnode *vp; 699 int flags; 700 struct ucred *cred; 701 struct proc *p; 702 int intrflg; 703 { 704 struct nfsnode *np = VTONFS(vp); 705 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 706 int error = 0, slpflag, slptimeo; 707 708 if ((nmp->nm_flag & NFSMNT_INT) == 0) 709 intrflg = 0; 710 if (intrflg) { 711 slpflag = PCATCH; 712 slptimeo = 2 * hz; 713 } else { 714 slpflag = 0; 715 slptimeo = 0; 716 } 717 /* 718 * First wait for any other process doing a flush to complete. 719 */ 720 simple_lock(&vp->v_interlock); 721 while (np->n_flag & NFLUSHINPROG) { 722 np->n_flag |= NFLUSHWANT; 723 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval", 724 slptimeo, &vp->v_interlock); 725 if (error && intrflg && nfs_sigintr(nmp, NULL, p)) { 726 simple_unlock(&vp->v_interlock); 727 return EINTR; 728 } 729 } 730 731 /* 732 * Now, flush as required. 733 */ 734 np->n_flag |= NFLUSHINPROG; 735 simple_unlock(&vp->v_interlock); 736 error = vinvalbuf(vp, flags, cred, p, slpflag, 0); 737 while (error) { 738 if (intrflg && nfs_sigintr(nmp, NULL, p)) { 739 error = EINTR; 740 break; 741 } 742 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo); 743 } 744 simple_lock(&vp->v_interlock); 745 if (error == 0) 746 np->n_flag &= ~NMODIFIED; 747 np->n_flag &= ~NFLUSHINPROG; 748 if (np->n_flag & NFLUSHWANT) { 749 np->n_flag &= ~NFLUSHWANT; 750 wakeup(&np->n_flag); 751 } 752 simple_unlock(&vp->v_interlock); 753 return error; 754 } 755 756 /* 757 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 758 * This is mainly to avoid queueing async I/O requests when the nfsiods 759 * are all hung on a dead server. 760 */ 761 762 int 763 nfs_asyncio(bp) 764 struct buf *bp; 765 { 766 int i; 767 struct nfsmount *nmp; 768 int gotiod, slpflag = 0, slptimeo = 0, error; 769 770 if (nfs_numasync == 0) 771 return (EIO); 772 773 nmp = VFSTONFS(bp->b_vp->v_mount); 774 again: 775 if (nmp->nm_flag & NFSMNT_INT) 776 slpflag = PCATCH; 777 gotiod = FALSE; 778 779 /* 780 * Find a free iod to process this request. 781 */ 782 783 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) { 784 struct nfs_iod *iod = &nfs_asyncdaemon[i]; 785 786 simple_lock(&iod->nid_slock); 787 if (iod->nid_want) { 788 /* 789 * Found one, so wake it up and tell it which 790 * mount to process. 791 */ 792 iod->nid_want = NULL; 793 iod->nid_mount = nmp; 794 wakeup(&iod->nid_want); 795 simple_lock(&nmp->nm_slock); 796 simple_unlock(&iod->nid_slock); 797 nmp->nm_bufqiods++; 798 gotiod = TRUE; 799 break; 800 } 801 simple_unlock(&iod->nid_slock); 802 } 803 804 /* 805 * If none are free, we may already have an iod working on this mount 806 * point. If so, it will process our request. 807 */ 808 809 if (!gotiod) { 810 simple_lock(&nmp->nm_slock); 811 if (nmp->nm_bufqiods > 0) 812 gotiod = TRUE; 813 } 814 815 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock)); 816 817 /* 818 * If we have an iod which can process the request, then queue 819 * the buffer. However, even if we have an iod, do not initiate 820 * queue cleaning if curproc is the pageout daemon. if the NFS mount 821 * is via local loopback, we may put curproc (pagedaemon) to sleep 822 * waiting for the writes to complete. But the server (ourself) 823 * may block the write, waiting for its (ie., our) pagedaemon 824 * to produce clean pages to handle the write: deadlock. 825 * XXX: start non-loopback mounts straight away? If "lots free", 826 * let pagedaemon start loopback writes anyway? 827 */ 828 if (gotiod) { 829 830 /* 831 * Ensure that the queue never grows too large. 832 */ 833 if (curproc == uvm.pagedaemon_proc) { 834 /* Enque for later, to avoid free-page deadlock */ 835 (void) 0; 836 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) { 837 nmp->nm_bufqwant = TRUE; 838 error = ltsleep(&nmp->nm_bufq, 839 slpflag | PRIBIO | PNORELOCK, 840 "nfsaio", slptimeo, &nmp->nm_slock); 841 if (error) { 842 if (nfs_sigintr(nmp, NULL, curproc)) 843 return (EINTR); 844 if (slpflag == PCATCH) { 845 slpflag = 0; 846 slptimeo = 2 * hz; 847 } 848 } 849 850 /* 851 * We might have lost our iod while sleeping, 852 * so check and loop if nescessary. 853 */ 854 855 if (nmp->nm_bufqiods == 0) 856 goto again; 857 858 simple_lock(&nmp->nm_slock); 859 } 860 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 861 nmp->nm_bufqlen++; 862 simple_unlock(&nmp->nm_slock); 863 return (0); 864 } 865 simple_unlock(&nmp->nm_slock); 866 867 /* 868 * All the iods are busy on other mounts, so return EIO to 869 * force the caller to process the i/o synchronously. 870 */ 871 872 return (EIO); 873 } 874 875 /* 876 * nfs_doio for read. 877 */ 878 static int 879 nfs_doio_read(bp, uiop) 880 struct buf *bp; 881 struct uio *uiop; 882 { 883 struct vnode *vp = bp->b_vp; 884 struct nfsnode *np = VTONFS(vp); 885 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 886 int error = 0; 887 888 uiop->uio_rw = UIO_READ; 889 switch (vp->v_type) { 890 case VREG: 891 nfsstats.read_bios++; 892 error = nfs_readrpc(vp, uiop); 893 if (!error && uiop->uio_resid) { 894 int diff, len; 895 896 /* 897 * If uio_resid > 0, there is a hole in the file and 898 * no writes after the hole have been pushed to 899 * the server yet or the file has been truncated 900 * on the server. 901 * Just zero fill the rest of the valid area. 902 */ 903 904 KASSERT(vp->v_size >= 905 uiop->uio_offset + uiop->uio_resid); 906 diff = bp->b_bcount - uiop->uio_resid; 907 len = uiop->uio_resid; 908 memset((char *)bp->b_data + diff, 0, len); 909 } 910 if (uiop->uio_procp && (vp->v_flag & VTEXT) && 911 (((nmp->nm_flag & NFSMNT_NQNFS) && 912 NQNFS_CKINVALID(vp, np, ND_READ) && 913 np->n_lrev != np->n_brev) || 914 (!(nmp->nm_flag & NFSMNT_NQNFS) && 915 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)))) { 916 uprintf("Process killed due to " 917 "text file modification\n"); 918 psignal(uiop->uio_procp, SIGKILL); 919 #if 0 /* XXX NJWLWP */ 920 uiop->uio_procp->p_holdcnt++; 921 #endif 922 } 923 break; 924 case VLNK: 925 KASSERT(uiop->uio_offset == (off_t)0); 926 nfsstats.readlink_bios++; 927 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred); 928 break; 929 case VDIR: 930 nfsstats.readdir_bios++; 931 uiop->uio_offset = bp->b_dcookie; 932 #ifndef NFS_V2_ONLY 933 if (nmp->nm_flag & NFSMNT_RDIRPLUS) { 934 error = nfs_readdirplusrpc(vp, uiop, np->n_rcred); 935 if (error == NFSERR_NOTSUPP) 936 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 937 } 938 #else 939 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 940 #endif 941 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 942 error = nfs_readdirrpc(vp, uiop, np->n_rcred); 943 if (!error) { 944 bp->b_dcookie = uiop->uio_offset; 945 } 946 break; 947 default: 948 printf("nfs_doio: type %x unexpected\n", vp->v_type); 949 break; 950 } 951 if (error) { 952 bp->b_flags |= B_ERROR; 953 bp->b_error = error; 954 } 955 return error; 956 } 957 958 /* 959 * nfs_doio for write. 960 */ 961 static int 962 nfs_doio_write(bp, uiop) 963 struct buf *bp; 964 struct uio *uiop; 965 { 966 struct vnode *vp = bp->b_vp; 967 struct nfsnode *np = VTONFS(vp); 968 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 969 int iomode; 970 boolean_t stalewriteverf = FALSE; 971 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT; 972 struct vm_page *pgs[npages]; 973 #ifndef NFS_V2_ONLY 974 boolean_t needcommit = TRUE; /* need only COMMIT RPC */ 975 #else 976 boolean_t needcommit = FALSE; /* need only COMMIT RPC */ 977 #endif 978 boolean_t pageprotected; 979 struct uvm_object *uobj = &vp->v_uobj; 980 int error; 981 off_t off, cnt; 982 983 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) { 984 iomode = NFSV3WRITE_UNSTABLE; 985 } else { 986 iomode = NFSV3WRITE_FILESYNC; 987 } 988 989 #ifndef NFS_V2_ONLY 990 again: 991 #endif 992 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 993 994 for (i = 0; i < npages; i++) { 995 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT)); 996 if (pgs[i]->uobject == uobj && 997 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) { 998 KASSERT(pgs[i]->flags & PG_BUSY); 999 /* 1000 * this page belongs to our object. 1001 */ 1002 simple_lock(&uobj->vmobjlock); 1003 /* 1004 * write out the page stably if it's about to 1005 * be released because we can't resend it 1006 * on the server crash. 1007 * 1008 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be 1009 * changed until unbusy the page. 1010 */ 1011 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT)) 1012 iomode = NFSV3WRITE_FILESYNC; 1013 /* 1014 * if we met a page which hasn't been sent yet, 1015 * we need do WRITE RPC. 1016 */ 1017 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0) 1018 needcommit = FALSE; 1019 simple_unlock(&uobj->vmobjlock); 1020 } else { 1021 iomode = NFSV3WRITE_FILESYNC; 1022 needcommit = FALSE; 1023 } 1024 } 1025 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) { 1026 simple_lock(&uobj->vmobjlock); 1027 for (i = 0; i < npages; i++) { 1028 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY; 1029 pmap_page_protect(pgs[i], VM_PROT_READ); 1030 } 1031 simple_unlock(&uobj->vmobjlock); 1032 pageprotected = TRUE; /* pages can't be modified during i/o. */ 1033 } else 1034 pageprotected = FALSE; 1035 1036 /* 1037 * Send the data to the server if necessary, 1038 * otherwise just send a commit rpc. 1039 */ 1040 #ifndef NFS_V2_ONLY 1041 if (needcommit) { 1042 1043 /* 1044 * If the buffer is in the range that we already committed, 1045 * there's nothing to do. 1046 * 1047 * If it's in the range that we need to commit, push the 1048 * whole range at once, otherwise only push the buffer. 1049 * In both these cases, acquire the commit lock to avoid 1050 * other processes modifying the range. 1051 */ 1052 1053 off = uiop->uio_offset; 1054 cnt = bp->b_bcount; 1055 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1056 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) { 1057 boolean_t pushedrange; 1058 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) { 1059 pushedrange = TRUE; 1060 off = np->n_pushlo; 1061 cnt = np->n_pushhi - np->n_pushlo; 1062 } else { 1063 pushedrange = FALSE; 1064 } 1065 error = nfs_commit(vp, off, cnt, curproc); 1066 if (error == 0) { 1067 if (pushedrange) { 1068 nfs_merge_commit_ranges(vp); 1069 } else { 1070 nfs_add_committed_range(vp, off, cnt); 1071 } 1072 } 1073 } else { 1074 error = 0; 1075 } 1076 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1077 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1078 if (!error) { 1079 /* 1080 * pages are now on stable storage. 1081 */ 1082 uiop->uio_resid = 0; 1083 simple_lock(&uobj->vmobjlock); 1084 for (i = 0; i < npages; i++) { 1085 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1086 } 1087 simple_unlock(&uobj->vmobjlock); 1088 return 0; 1089 } else if (error == NFSERR_STALEWRITEVERF) { 1090 nfs_clearcommit(vp->v_mount); 1091 goto again; 1092 } 1093 if (error) { 1094 bp->b_flags |= B_ERROR; 1095 bp->b_error = np->n_error = error; 1096 np->n_flag |= NWRITEERR; 1097 } 1098 return error; 1099 } 1100 #endif 1101 off = uiop->uio_offset; 1102 cnt = bp->b_bcount; 1103 uiop->uio_rw = UIO_WRITE; 1104 nfsstats.write_bios++; 1105 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf); 1106 #ifndef NFS_V2_ONLY 1107 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1108 /* 1109 * we need to commit pages later. 1110 */ 1111 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1112 nfs_add_tobecommitted_range(vp, off, cnt); 1113 /* 1114 * if there can be too many uncommitted pages, commit them now. 1115 */ 1116 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) { 1117 off = np->n_pushlo; 1118 cnt = nfs_commitsize >> 1; 1119 error = nfs_commit(vp, off, cnt, curproc); 1120 if (!error) { 1121 nfs_add_committed_range(vp, off, cnt); 1122 nfs_del_tobecommitted_range(vp, off, cnt); 1123 } 1124 if (error == NFSERR_STALEWRITEVERF) { 1125 stalewriteverf = TRUE; 1126 error = 0; /* it isn't a real error */ 1127 } 1128 } else { 1129 /* 1130 * re-dirty pages so that they will be passed 1131 * to us later again. 1132 */ 1133 simple_lock(&uobj->vmobjlock); 1134 for (i = 0; i < npages; i++) { 1135 pgs[i]->flags &= ~PG_CLEAN; 1136 } 1137 simple_unlock(&uobj->vmobjlock); 1138 } 1139 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1140 } else 1141 #endif 1142 if (!error) { 1143 /* 1144 * pages are now on stable storage. 1145 */ 1146 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1147 nfs_del_committed_range(vp, off, cnt); 1148 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1149 simple_lock(&uobj->vmobjlock); 1150 for (i = 0; i < npages; i++) { 1151 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1152 } 1153 simple_unlock(&uobj->vmobjlock); 1154 } else { 1155 /* 1156 * we got an error. 1157 */ 1158 bp->b_flags |= B_ERROR; 1159 bp->b_error = np->n_error = error; 1160 np->n_flag |= NWRITEERR; 1161 } 1162 1163 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1164 1165 if (stalewriteverf) { 1166 nfs_clearcommit(vp->v_mount); 1167 } 1168 return error; 1169 } 1170 1171 /* 1172 * nfs_doio for B_PHYS. 1173 */ 1174 static int 1175 nfs_doio_phys(bp, uiop) 1176 struct buf *bp; 1177 struct uio *uiop; 1178 { 1179 struct vnode *vp = bp->b_vp; 1180 int error; 1181 1182 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; 1183 if (bp->b_flags & B_READ) { 1184 uiop->uio_rw = UIO_READ; 1185 nfsstats.read_physios++; 1186 error = nfs_readrpc(vp, uiop); 1187 } else { 1188 int iomode = NFSV3WRITE_DATASYNC; 1189 boolean_t stalewriteverf; 1190 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1191 1192 uiop->uio_rw = UIO_WRITE; 1193 nfsstats.write_physios++; 1194 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 1195 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf); 1196 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1197 if (stalewriteverf) { 1198 nfs_clearcommit(bp->b_vp->v_mount); 1199 } 1200 } 1201 if (error) { 1202 bp->b_flags |= B_ERROR; 1203 bp->b_error = error; 1204 } 1205 return error; 1206 } 1207 1208 /* 1209 * Do an I/O operation to/from a cache block. This may be called 1210 * synchronously or from an nfsiod. 1211 */ 1212 int 1213 nfs_doio(bp, p) 1214 struct buf *bp; 1215 struct proc *p; 1216 { 1217 int error; 1218 struct uio uio; 1219 struct uio *uiop = &uio; 1220 struct iovec io; 1221 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist); 1222 1223 uiop->uio_iov = &io; 1224 uiop->uio_iovcnt = 1; 1225 uiop->uio_segflg = UIO_SYSSPACE; 1226 uiop->uio_procp = p; 1227 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT); 1228 io.iov_base = bp->b_data; 1229 io.iov_len = uiop->uio_resid = bp->b_bcount; 1230 1231 /* 1232 * Historically, paging was done with physio, but no more... 1233 */ 1234 if (bp->b_flags & B_PHYS) { 1235 /* 1236 * ...though reading /dev/drum still gets us here. 1237 */ 1238 error = nfs_doio_phys(bp, uiop); 1239 } else if (bp->b_flags & B_READ) { 1240 error = nfs_doio_read(bp, uiop); 1241 } else { 1242 error = nfs_doio_write(bp, uiop); 1243 } 1244 bp->b_resid = uiop->uio_resid; 1245 biodone(bp); 1246 return (error); 1247 } 1248 1249 /* 1250 * Vnode op for VM getpages. 1251 */ 1252 1253 int 1254 nfs_getpages(v) 1255 void *v; 1256 { 1257 struct vop_getpages_args /* { 1258 struct vnode *a_vp; 1259 voff_t a_offset; 1260 struct vm_page **a_m; 1261 int *a_count; 1262 int a_centeridx; 1263 vm_prot_t a_access_type; 1264 int a_advice; 1265 int a_flags; 1266 } */ *ap = v; 1267 1268 struct vnode *vp = ap->a_vp; 1269 struct uvm_object *uobj = &vp->v_uobj; 1270 struct nfsnode *np = VTONFS(vp); 1271 const int npages = *ap->a_count; 1272 struct vm_page *pg, **pgs, *opgs[npages]; 1273 off_t origoffset, len; 1274 int i, error; 1275 boolean_t v3 = NFS_ISV3(vp); 1276 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1277 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0; 1278 1279 /* 1280 * call the genfs code to get the pages. `pgs' may be NULL 1281 * when doing read-ahead. 1282 */ 1283 1284 pgs = ap->a_m; 1285 if (write && locked && v3) { 1286 KASSERT(pgs != NULL); 1287 #ifdef DEBUG 1288 1289 /* 1290 * If PGO_LOCKED is set, real pages shouldn't exists 1291 * in the array. 1292 */ 1293 1294 for (i = 0; i < npages; i++) 1295 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE); 1296 #endif 1297 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *)); 1298 } 1299 error = genfs_getpages(v); 1300 if (error) { 1301 return (error); 1302 } 1303 1304 /* 1305 * for read faults where the nfs node is not yet marked NMODIFIED, 1306 * set PG_RDONLY on the pages so that we come back here if someone 1307 * tries to modify later via the mapping that will be entered for 1308 * this fault. 1309 */ 1310 1311 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) { 1312 if (!locked) { 1313 simple_lock(&uobj->vmobjlock); 1314 } 1315 for (i = 0; i < npages; i++) { 1316 pg = pgs[i]; 1317 if (pg == NULL || pg == PGO_DONTCARE) { 1318 continue; 1319 } 1320 pg->flags |= PG_RDONLY; 1321 } 1322 if (!locked) { 1323 simple_unlock(&uobj->vmobjlock); 1324 } 1325 } 1326 if (!write) { 1327 return (0); 1328 } 1329 1330 /* 1331 * this is a write fault, update the commit info. 1332 */ 1333 1334 origoffset = ap->a_offset; 1335 len = npages << PAGE_SHIFT; 1336 1337 if (v3) { 1338 error = lockmgr(&np->n_commitlock, 1339 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL); 1340 if (error) { 1341 KASSERT(locked != 0); 1342 1343 /* 1344 * Since PGO_LOCKED is set, we need to unbusy 1345 * all pages fetched by genfs_getpages() above, 1346 * tell the caller that there are no pages 1347 * available and put back original pgs array. 1348 */ 1349 1350 uvm_lock_pageq(); 1351 uvm_page_unbusy(pgs, npages); 1352 uvm_unlock_pageq(); 1353 *ap->a_count = 0; 1354 memcpy(pgs, opgs, 1355 npages * sizeof(struct vm_pages *)); 1356 return (error); 1357 } 1358 nfs_del_committed_range(vp, origoffset, len); 1359 nfs_del_tobecommitted_range(vp, origoffset, len); 1360 } 1361 np->n_flag |= NMODIFIED; 1362 if (!locked) { 1363 simple_lock(&uobj->vmobjlock); 1364 } 1365 for (i = 0; i < npages; i++) { 1366 pg = pgs[i]; 1367 if (pg == NULL || pg == PGO_DONTCARE) { 1368 continue; 1369 } 1370 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1371 } 1372 if (!locked) { 1373 simple_unlock(&uobj->vmobjlock); 1374 } 1375 if (v3) { 1376 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1377 } 1378 return (0); 1379 } 1380